1
|
Wu T, Zhu W, Duan R, Sun J, Bao S, Chen K, Han B, Chen Y, Lu Y. Magnetic vagus nerve stimulation ameliorates contrast-induced acute kidney injury by circulating plasma exosomal miR-365-3p. J Nanobiotechnology 2024; 22:666. [PMID: 39468562 PMCID: PMC11520859 DOI: 10.1186/s12951-024-02928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Contrast-induced acute kidney injury (CI-AKI) is manifested by a rapid decline in renal function occurring within 48-72 h in patients exposed to iodinated contrast media (CM). Although intravenous hydration is currently the effective method confirmed to prevent CI-AKI, it has several drawbacks. Some investigations have demonstrated the nephroprotective effects of vagus nerve stimulation (VNS) against kidney ischemia-reperfusion injury, but no direct research has investigated the use of VNS for treating CI-AKI. Additionally, most current VNS treatment applies invasive electrical stimulator implantation, which is largely limited by the complications. Our recent publications introduce the magnetic vagus nerve stimulation (mVNS) system pioneered and successfully used for the treatment of myocardial infarction. However, it remains uncertain whether mVNS can mitigate CI-AKI and its specific underlying mechanisms. Therefore, we herein evaluate the potential therapeutic effects of mVNS on CM-induced nephropathy in rats and explore the underlying mechanisms. RESULTS mVNS treatment was found to significantly improve the damaged renal function, including the reduction of elevated serum creatinine (Scr), blood urea nitrogen (BUN), and urinary N-acetyl-β-D-glucosaminidase (NAG) with increased urine output. Pathologically, mVNS treatment alleviated the renal tissue structure injury, and suppressed kidney injury molecule-1 (KIM-1) expression and apoptosis in renal tubular epithelial cells. Mechanistically, increased circulating plasma exosomal miR-365-3p after mVNS treatment enhanced the autophagy and reduced CM-induced apoptosis in renal tubular epithelial cells by targeting Ras homolog enriched in brain (Rheb). CONCLUSIONS In summary, we demonstrated that mVNS can improve CI-AKI through enhanced autophagy and apoptosis inhibition, which depended on plasma exosomal miR-365-3p. Our findings highlight the therapeutic potential of mVNS for CI-AKI in clinical practice. However, further research is needed to determine the optimal stimulation parameters to achieve the best therapeutic effects.
Collapse
Affiliation(s)
- Tianyu Wu
- XuZhou Clinical School of Xuzhou Medical University, Department of Central Laboratory, Xuzhou Central Hospital, No.199 Jiefang South Road, Xuzhou, 221009, P.R. China
| | - Wenwu Zhu
- XuZhou Clinical School of Xuzhou Medical University, Department of Cardiology, Xuzhou Central Hospital, XuZhou Institute of Cardiovascular disease, No.199 Jiefang South Road, Xuzhou, 221009, P.R. China
| | - Rui Duan
- XuZhou Clinical School of Xuzhou Medical University, Department of Cardiology, Xuzhou Central Hospital, XuZhou Institute of Cardiovascular disease, No.199 Jiefang South Road, Xuzhou, 221009, P.R. China
| | - Jianfei Sun
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P.R. China
| | - Siyuan Bao
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P.R. China
| | - Kaiyan Chen
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, P.R. China
| | - Bing Han
- XuZhou Clinical School of Xuzhou Medical University, Department of Cardiology, Xuzhou Central Hospital, XuZhou Institute of Cardiovascular disease, No.199 Jiefang South Road, Xuzhou, 221009, P.R. China.
| | - Yuqiong Chen
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215000, PR China.
| | - Yao Lu
- XuZhou Clinical School of Xuzhou Medical University, Department of Cardiology, Xuzhou Central Hospital, XuZhou Institute of Cardiovascular disease, No.199 Jiefang South Road, Xuzhou, 221009, P.R. China.
| |
Collapse
|
2
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
3
|
Liu Chung Ming C, Wang X, Gentile C. Protective role of acetylcholine and the cholinergic system in the injured heart. iScience 2024; 27:110726. [PMID: 39280620 PMCID: PMC11402255 DOI: 10.1016/j.isci.2024.110726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
This review explores the roles of the cholinergic system in the heart, comprising the neuronal and non-neuronal cholinergic systems. Both systems are essential for maintaining cardiac homeostasis by regulating the release of acetylcholine (ACh). A reduction in ACh release is associated with the early onset of cardiovascular diseases (CVDs), and increasing evidence supports the protective roles of ACh against CVD. We address the challenges and limitations of current strategies to elevate ACh levels, including vagus nerve stimulation and pharmacological interventions such as cholinesterase inhibitors. Additionally, we introduce alternative strategies to increase ACh in the heart, such as stem cell therapy, gene therapy, microRNAs, and nanoparticle drug delivery methods. These findings offer new insights into advanced treatments for regenerating the injured human heart.
Collapse
Affiliation(s)
- Clara Liu Chung Ming
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Cardiovascular Regeneration Group, Heart Research Institute, Newtown, NSW 2042, Australia
| | - Xiaowei Wang
- Department of Medicine, Monash University, Melbourne, VIC 3800, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
- Cardiovascular Regeneration Group, Heart Research Institute, Newtown, NSW 2042, Australia
| |
Collapse
|
4
|
Giannino G, Nocera L, Andolfatto M, Braia V, Giacobbe F, Bruno F, Saglietto A, Angelini F, De Filippo O, D'Ascenzo F, De Ferrari GM, Dusi V. Vagal nerve stimulation in myocardial ischemia/reperfusion injury: from bench to bedside. Bioelectron Med 2024; 10:22. [PMID: 39267134 PMCID: PMC11395864 DOI: 10.1186/s42234-024-00153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024] Open
Abstract
The identification of acute cardioprotective strategies against myocardial ischemia/reperfusion (I/R) injury that can be applied in the catheterization room is currently an unmet clinical need and several interventions evaluated in the past at the pre-clinical level have failed in translation. Autonomic imbalance, sustained by an abnormal afferent signalling, is a key component of I/R injury. Accordingly, there is a strong rationale for neuromodulation strategies, aimed at reducing sympathetic activity and/or increasing vagal tone, in this setting. In this review we focus on cervical vagal nerve stimulation (cVNS) and on transcutaneous auricular vagus nerve stimulation (taVNS); the latest has the potential to overcome several of the issues of invasive cVNS, including the possibility of being used in an acute setting, while retaining its beneficial effects. First, we discuss the pathophysiology of I/R injury, that is mostly a consequence of the overproduction of reactive oxygen species. Second, we describe the functional anatomy of the parasympathetic branch of the autonomic nervous system and the most relevant principles of bioelectronic medicine applied to electrical vagal modulation, with a particular focus on taVNS. Then, we provide a detailed and comprehensive summary of the most relevant pre-clinical studies of invasive and non-invasive VNS that support its strong cardioprotective effect whenever there is an acute or chronic cardiac injury and specifically in the setting of myocardial I/R injury. The potential benefit in the emerging field of post cardiac arrest syndrome (PCAS) is also mentioned. Indeed, electrical cVNS has a strong anti-adrenergic, anti-inflammatory, antioxidants, anti-apoptotic and pro-angiogenic effect; most of the involved molecular pathways were already directly confirmed to take place at the cardiac level for taVNS. Pre-clinical data clearly show that the sooner VNS is applied, the better the outcome, with the possibility of a marked infarct size reduction and almost complete left ventricular reverse remodelling when VNS is applied immediately before and during reperfusion. Finally, we describe in detail the limited but very promising clinical experience of taVNS in I/R injury available so far.
Collapse
Affiliation(s)
- Giuseppe Giannino
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Lorenzo Nocera
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Maria Andolfatto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Valentina Braia
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Federico Giacobbe
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Francesco Bruno
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Andrea Saglietto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Filippo Angelini
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Ovidio De Filippo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Fabrizio D'Ascenzo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Gaetano Maria De Ferrari
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Veronica Dusi
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy.
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy.
| |
Collapse
|
5
|
Du L, He X, Xiong X, Zhang X, Jian Z, Yang Z. Vagus nerve stimulation in cerebral stroke: biological mechanisms, therapeutic modalities, clinical applications, and future directions. Neural Regen Res 2024; 19:1707-1717. [PMID: 38103236 PMCID: PMC10960277 DOI: 10.4103/1673-5374.389365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/31/2023] [Accepted: 09/26/2023] [Indexed: 12/18/2023] Open
Abstract
Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life. Many stroke victims are left with long-term neurological dysfunction, which adversely affects the well-being of the individual and the broader socioeconomic impact. Currently, post-stroke brain dysfunction is a major and difficult area of treatment. Vagus nerve stimulation is a Food and Drug Administration-approved exploratory treatment option for autism, refractory depression, epilepsy, and Alzheimer's disease. It is expected to be a novel therapeutic technique for the treatment of stroke owing to its association with multiple mechanisms such as altering neurotransmitters and the plasticity of central neurons. In animal models of acute ischemic stroke, vagus nerve stimulation has been shown to reduce infarct size, reduce post-stroke neurological damage, and improve learning and memory capacity in rats with stroke by reducing the inflammatory response, regulating blood-brain barrier permeability, and promoting angiogenesis and neurogenesis. At present, vagus nerve stimulation includes both invasive and non-invasive vagus nerve stimulation. Clinical studies have found that invasive vagus nerve stimulation combined with rehabilitation therapy is effective in improving upper limb motor and cognitive abilities in stroke patients. Further clinical studies have shown that non-invasive vagus nerve stimulation, including ear/cervical vagus nerve stimulation, can stimulate vagal projections to the central nervous system similarly to invasive vagus nerve stimulation and can have the same effect. In this paper, we first describe the multiple effects of vagus nerve stimulation in stroke, and then discuss in depth its neuroprotective mechanisms in ischemic stroke. We go on to outline the results of the current major clinical applications of invasive and non-invasive vagus nerve stimulation. Finally, we provide a more comprehensive evaluation of the advantages and disadvantages of different types of vagus nerve stimulation in the treatment of cerebral ischemia and provide an outlook on the developmental trends. We believe that vagus nerve stimulation, as an effective treatment for stroke, will be widely used in clinical practice to promote the recovery of stroke patients and reduce the incidence of disability.
Collapse
Affiliation(s)
- Li Du
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xuan He
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhenxing Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
6
|
Zhang H, Hu H, Zhai C, Jing L, Tian H. Cardioprotective Strategies After Ischemia-Reperfusion Injury. Am J Cardiovasc Drugs 2024; 24:5-18. [PMID: 37815758 PMCID: PMC10806044 DOI: 10.1007/s40256-023-00614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Acute myocardial infarction (AMI) is associated with high morbidity and mortality worldwide. Although early reperfusion is the most effective strategy to salvage ischemic myocardium, reperfusion injury can develop with the restoration of blood flow. Therefore, it is important to identify protection mechanisms and strategies for the heart after myocardial infarction. Recent studies have shown that multiple intracellular molecules and signaling pathways are involved in cardioprotection. Meanwhile, device-based cardioprotective modalities such as cardiac left ventricular unloading, hypothermia, coronary sinus intervention, supersaturated oxygen (SSO2), and remote ischemic conditioning (RIC) have become important areas of research. Herein, we review the molecular mechanisms of cardioprotection and cardioprotective modalities after ischemia-reperfusion injury (IRI) to identify potential approaches to reduce mortality and improve prognosis in patients with AMI.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Huilin Hu
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China.
| | - Changlin Zhai
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Lele Jing
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| | - Hongen Tian
- Department of Cardiology, Affiliated Hospital of Jiaxing University: First Hospital of Jiaxing, No. 1882 Zhonghuan South Road, Jiaxing, 314000, Zhejiang, People's Republic of China
| |
Collapse
|
7
|
Xu YP, Lu XY, Song ZQ, Lin H, Chen YH. The protective effect of vagus nerve stimulation against myocardial ischemia/reperfusion injury: pooled review from preclinical studies. Front Pharmacol 2023; 14:1270787. [PMID: 38034997 PMCID: PMC10682444 DOI: 10.3389/fphar.2023.1270787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Aims: Myocardial ischemia-reperfusion (I/R) injury markedly undermines the protective benefits of revascularization, contributing to ventricular dysfunction and mortality. Due to complex mechanisms, no efficient ways exist to prevent cardiomyocyte reperfusion damage. Vagus nerve stimulation (VNS) appears as a potential therapeutic intervention to alleviate myocardial I/R injury. Hence, this meta-analysis intends to elucidate the potential cellular and molecular mechanisms underpinning the beneficial impact of VNS, along with its prospective clinical implications. Methods and Results: A literature search of MEDLINE, PubMed, Embase, and Cochrane Database yielded 10 articles that satisfied the inclusion criteria. VNS was significantly correlated with a reduced infarct size following myocardial I/R injury [Weighed mean difference (WMD): 25.24, 95% confidence interval (CI): 32.24 to 18.23, p < 0.001] when compared to the control group. Despite high heterogeneity (I2 = 95.3%, p < 0.001), sensitivity and subgroup analyses corroborated the robust efficacy of VNS in limiting infarct expansion. Moreover, meta-regression failed to identify significant influences of pre-specified covariates (i.e., stimulation type or site, VNS duration, condition, and species) on the primary estimates. Notably, VNS considerably impeded ventricular remodeling and cardiac dysfunction, as evidenced by improved left ventricular ejection fraction (LVEF) (WMD: 10.12, 95% CI: 4.28; 15.97, p = 0.001) and end-diastolic pressure (EDP) (WMD: 5.79, 95% CI: 9.84; -1.74, p = 0.005) during the reperfusion phase. Conclusion: VNS offers a protective role against myocardial I/R injury and emerges as a promising therapeutic strategy for future clinical application.
Collapse
Affiliation(s)
- Yu-Peng Xu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Xin-Yu Lu
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Zheng-Qi Song
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Hui Lin
- Department of Respiratory, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi-He Chen
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Lu Y, Chen K, Zhao W, Hua Y, Bao S, Zhang J, Wu T, Ge G, Yu Y, Sun J, Zhang F. Magnetic vagus nerve stimulation alleviates myocardial ischemia-reperfusion injury by the inhibition of pyroptosis through the M 2AChR/OGDHL/ROS axis in rats. J Nanobiotechnology 2023; 21:421. [PMID: 37957640 PMCID: PMC10644528 DOI: 10.1186/s12951-023-02189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion (I/R) injury is accompanied by an imbalance in the cardiac autonomic nervous system, characterized by over-activated sympathetic tone and reduced vagal nerve activity. In our preceding study, we pioneered the development of the magnetic vagus nerve stimulation (mVNS) system. This system showcased precise vagus nerve stimulation, demonstrating remarkable effectiveness and safety in treating myocardial infarction. However, it remains uncertain whether mVNS can mitigate myocardial I/R injury and its specific underlying mechanisms. In this study, we utilized a rat model of myocardial I/R injury to delve into the therapeutic potential of mVNS against this type of injury. RESULTS Our findings revealed that mVNS treatment led to a reduction in myocardial infarct size, a decrease in ventricular fibrillation (VF) incidence and a curbing of inflammatory cytokine release. Mechanistically, mVNS demonstrated beneficial effects on myocardial I/R injury by inhibiting NLRP3-mediated pyroptosis through the M2AChR/OGDHL/ROS axis. CONCLUSIONS Collectively, these outcomes highlight the promising potential of mVNS as a treatment strategy for myocardial I/R injury.
Collapse
Affiliation(s)
- Yao Lu
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
- Department of Cardiology, Xuzhou Central Hospital, Xuzhou Clinical School of Nanjing Medical University, No.199 Jiefang South Road, Xuzhou, 221009, PR China
| | - Kaiyan Chen
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Wei Zhao
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Yan Hua
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Siyuan Bao
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Jian Zhang
- Department of Echocardiography, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Fudan University, 180 Fenglin Road, Shanghai, China
| | - Tianyu Wu
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Gaoyuan Ge
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Yue Yu
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Jianfei Sun
- The State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China.
| | - Fengxiang Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China.
| |
Collapse
|
9
|
Schunke KJ, Rodriguez J, Dyavanapalli J, Schloen J, Wang X, Escobar J, Kowalik G, Cheung EC, Ribeiro C, Russo R, Alber BR, Dergacheva O, Chen SW, Murillo-Berlioz AE, Lee KB, Trachiotis G, Entcheva E, Brantner CA, Mendelowitz D, Kay MW. Outcomes of hypothalamic oxytocin neuron-driven cardioprotection after acute myocardial infarction. Basic Res Cardiol 2023; 118:43. [PMID: 37801130 PMCID: PMC10558415 DOI: 10.1007/s00395-023-01013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Altered autonomic balance is a hallmark of numerous cardiovascular diseases, including myocardial infarction (MI). Although device-based vagal stimulation is cardioprotective during chronic disease, a non-invasive approach to selectively stimulate the cardiac parasympathetic system immediately after an infarction does not exist and is desperately needed. Cardiac vagal neurons (CVNs) in the brainstem receive powerful excitation from a population of neurons in the paraventricular nucleus (PVN) of the hypothalamus that co-release oxytocin (OXT) and glutamate to excite CVNs. We tested if chemogenetic activation of PVN-OXT neurons following MI would be cardioprotective. The PVN of neonatal rats was transfected with vectors to selectively express DREADDs within OXT neurons. At 6 weeks of age, an MI was induced and DREADDs were activated with clozapine-N-oxide. Seven days following MI, patch-clamp electrophysiology confirmed the augmented excitatory neurotransmission from PVN-OXT neurons to downstream nuclei critical for parasympathetic activity with treatment (43.7 ± 10 vs 86.9 ± 9 pA; MI vs. treatment), resulting in stark improvements in survival (85% vs. 95%; MI vs. treatment), inflammation, fibrosis assessed by trichrome blue staining, mitochondrial function assessed by Seahorse assays, and reduced incidence of arrhythmias (50% vs. 10% cumulative incidence of ventricular fibrillation; MI vs. treatment). Myocardial transcriptomic analysis provided molecular insight into potential cardioprotective mechanisms, which revealed the preservation of beneficial signaling pathways, including muscarinic receptor activation, in treated animals. These comprehensive results demonstrate that the PVN-OXT network could be a promising therapeutic target to quickly activate beneficial parasympathetic-mediated cellular pathways within the heart during the early stages of infarction.
Collapse
Affiliation(s)
- Kathryn J Schunke
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA.
- Department of Anatomy, Biochemistry and Physiology, University of Hawaii, 651 Ilalo St, Honolulu, HI, BSB 211 96813, USA.
| | - Jeannette Rodriguez
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Jhansi Dyavanapalli
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - John Schloen
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Xin Wang
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Joan Escobar
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Grant Kowalik
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Emily C Cheung
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Caitlin Ribeiro
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Rebekah Russo
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Bridget R Alber
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Olga Dergacheva
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA
| | - Sheena W Chen
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Alejandro E Murillo-Berlioz
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Kyongjune B Lee
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Gregory Trachiotis
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
- Division of Cardiothoracic Surgery and Cardiothoracic Research, Veterans Affairs Medical Center, 50 Irving St. NW, Washington, DC, 20422, USA
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA
| | - Christine A Brantner
- The GWU Nanofabrication and Imaging Center, 800 22nd Street NW, Washington, DC, 20052, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, George Washington University, Suite 640 Ross Hall, 2300 Eye St. NW, Washington, DC, 20052, USA.
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Suite 5000 Science and Engineering Hall, 800 22nd Street NW, Washington, DC, 20052, USA.
| |
Collapse
|
10
|
Kaplan A, Lakkis B, El-Samadi L, Karaayvaz EB, Booz GW, Zouein FA. Cooling Down Inflammation in the Cardiovascular System via the Nicotinic Acetylcholine Receptor. J Cardiovasc Pharmacol 2023; 82:241-265. [PMID: 37539950 DOI: 10.1097/fjc.0000000000001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
ABSTRACT Inflammation is a major player in many cardiovascular diseases including hypertension, atherosclerosis, myocardial infarction, and heart failure. In many individuals, these conditions coexist and mutually exacerbate each other's progression. The pathophysiology of these diseases entails the active involvement of both innate and adaptive immune cells. Immune cells that possess the α7 subunit of the nicotinic acetylcholine receptor on their surface have the potential to be targeted through both pharmacological and electrical stimulation of the cholinergic system. The cholinergic system regulates the inflammatory response to various stressors in different organ systems by systematically suppressing spleen-derived monocytes and chemokines and locally improving immune cell function. Research on the cardiovascular system has demonstrated the potential for atheroma plaque stabilization and regression as favorable outcomes. Smaller infarct size and reduced fibrosis have been associated with improved cardiac function and a decrease in adverse cardiac remodeling. Furthermore, enhanced electrical stability of the myocardium can lead to a reduction in the incidence of ventricular tachyarrhythmia. In addition, improving mitochondrial dysfunction and decreasing oxidative stress can result in less myocardial tissue damage caused by reperfusion injury. Restoring baroreflex activity and reduction in renal damage can promote blood pressure regulation and help counteract hypertension. Thus, the present review highlights the potential of nicotinic acetylcholine receptor activation as a natural approach to alleviate the adverse consequences of inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- Department of Cardiology, Kemer Public Hospital, Kemer, Antalya, Turkey
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Bachir Lakkis
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Lana El-Samadi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Ekrem Bilal Karaayvaz
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, France
| |
Collapse
|
11
|
Hadaya J, Dajani AH, Cha S, Hanna P, Challita R, Hoover DB, Ajijola OA, Shivkumar K, Ardell JL. Vagal Nerve Stimulation Reduces Ventricular Arrhythmias and Mitigates Adverse Neural Cardiac Remodeling Post-Myocardial Infarction. JACC Basic Transl Sci 2023; 8:1100-1118. [PMID: 37791302 PMCID: PMC10543930 DOI: 10.1016/j.jacbts.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 10/05/2023]
Abstract
This study sought to evaluate the impact of chronic vagal nerve stimulation (cVNS) on cardiac and extracardiac neural structure/function after myocardial infarction (MI). Groups were control, MI, and MI + cVNS; cVNS was started 2 days post-MI. Terminal experiments were performed 6 weeks post-MI. MI impaired left ventricular mechanical function, evoked anisotropic electrical conduction, increased susceptibility to ventricular tachycardia and fibrillation, and altered neuronal and glial phenotypes in the stellate and dorsal root ganglia, including glial activation. cVNS improved cardiac mechanical function and reduced ventricular tachycardia/ventricular fibrillation post-MI, partly by stabilizing activation/repolarization in the border zone. MI-associated extracardiac neural remodeling, particularly glial activation, was mitigated with cVNS.
Collapse
Affiliation(s)
- Joseph Hadaya
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Molecular, Cellular, and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, California, USA
| | - Al-Hassan Dajani
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Steven Cha
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Peter Hanna
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Molecular, Cellular, and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, California, USA
| | - Ronald Challita
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Donald B. Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Molecular, Cellular, and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, California, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Molecular, Cellular, and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, California, USA
| | - Jeffrey L. Ardell
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Molecular, Cellular, and Integrative Physiology Program, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
12
|
Elamin ABA, Forsat K, Senok SS, Goswami N. Vagus Nerve Stimulation and Its Cardioprotective Abilities: A Systematic Review. J Clin Med 2023; 12:jcm12051717. [PMID: 36902505 PMCID: PMC10003006 DOI: 10.3390/jcm12051717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Despite the vagus nerve stimulator (VNS) being used in neuroscience, it has recently been highlighted that it has cardioprotective functions. However, many studies related to VNS are not mechanistic in nature. This systematic review aims to focus on the role of VNS in cardioprotective therapy, selective vagus nerve stimulators (sVNS), and their functional capabilities. A systemic review of the current literature was conducted on VNS, sVNS, and their ability to induce positive effects on arrhythmias, cardiac arrest, myocardial ischemia/reperfusion injury, and heart failure. Both experimental and clinical studies were reviewed and assessed separately. Of 522 research articles retrieved from literature archives, 35 met the inclusion criteria and were included in the review. Literature analysis proves that combining fiber-type selectivity with spatially-targeted vagus nerve stimulation is feasible. The role of VNS as a tool for modulating heart dynamics, inflammatory response, and structural cellular components was prominently seen across the literature. The application of transcutaneous VNS, as opposed to implanted electrodes, provides the best clinical outcome with minimal side effects. VNS presents a method for future cardiovascular treatment that can modulate human cardiac physiology. However, continued research is needed for further insight.
Collapse
Affiliation(s)
| | - Kowthar Forsat
- College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Solomon Silas Senok
- College of Medicine, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Nandu Goswami
- Institute of Physiology (Gravitational Physiology and Medicine), Medical University of Graz, 8036 Graz, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
- Correspondence:
| |
Collapse
|
13
|
Prathumsap N, Ongnok B, Khuanjing T, Arinno A, Maneechote C, Apaijai N, Chunchai T, Arunsak B, Kerdphoo S, Janjek S, Chattipakorn SC, Chattipakorn N. Vagus nerve stimulation exerts cardioprotection against doxorubicin-induced cardiotoxicity through inhibition of programmed cell death pathways. Cell Mol Life Sci 2022; 80:21. [PMID: 36583785 PMCID: PMC11072695 DOI: 10.1007/s00018-022-04678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
The aberration of programmed cell death including cell death associated with autophagy/mitophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis can be observed in the development and progression of doxorubicin-induced cardiotoxicity (DIC). Vagus nerve stimulation (VNS) has been shown to exert cardioprotection against cardiomyocyte death through the release of the neurotransmitter acetylcholine (ACh) under a variety of pathological conditions. However, the roles of VNS and its underlying mechanisms against DIC have never been investigated. Forty adults male Wistar rats were divided into 5 experimental groups: (i) control without VNS (CSham) group, (ii) doxorubicin (3 mg/kg/day, i.p.) without VNS (DSham) group, (iii) doxorubicin + VNS (DVNS) group, (iv) doxorubicin + VNS + mAChR antagonist (atropine; 1 mg/kg/day, ip, DVNS + Atro) group, and (v) doxorubicin + VNS + nAChR antagonist (mecamylamine; 7.5 mg/kg/day, ip, DVNS + Mec) group. Our results showed that doxorubicin insult led to left ventricular (LV) dysfunction through impaired cardiac autonomic balance, decreased mitochondrial function, imbalanced mitochondrial dynamics, and exacerbated cardiomyocyte death including autophagy/mitophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis. However, VNS treatment improved cardiac mitochondrial and autonomic functions, and suppressed excessive autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis, leading to improved LV function. Consistent with this, ACh effectively improved cell viability and suppressed cell cytotoxicity in doxorubicin-treated H9c2 cells. In contrast, either inhibitors of muscarinic (mAChR) or nicotinic acetylcholine receptor (nAChR) completely abrogated the favorable effects mediated by VNS and acetylcholine. These findings suggest that VNS exerts cardioprotective effects against doxorubicin-induced cardiomyocyte death via activation of both mAChR and nAChR.
Collapse
Affiliation(s)
- Nanthip Prathumsap
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Benjamin Ongnok
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Apiwan Arinno
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sornram Janjek
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
14
|
Jankauskaite L, Malinauskas M, Mickeviciute GC. HMGB1: A Potential Target of Nervus Vagus Stimulation in Pediatric SARS-CoV-2-Induced ALI/ARDS. Front Pediatr 2022; 10:884539. [PMID: 35633962 PMCID: PMC9132499 DOI: 10.3389/fped.2022.884539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
From the start of pandemics, children were described as the ones who were less affected by SARS-Cov-2 or COVID-19, which was mild in most of the cases. However, with the growing vaccination rate of the adult population, children became more exposed to the virus and more cases of severe SARS-CoV-2-induced ARDS are being diagnosed with the disabling consequences or lethal outcomes associated with the cytokine storm. Thus, we do hypothesize that some of the children could benefit from nervus vagus stimulation during COVID-19 ARDS through the inhibition of HMGB1 release and interaction with the receptor, resulting in decreased neutrophil accumulation, oxidative stress, and coagulopathy as well as lung vascular permeability. Moreover, stimulation through alpha-7 nicotinic acetylcholine receptors could boost macrophage phagocytosis and increase the clearance of DAMPs and PAMPs. Further rise of FGF10 could contribute to lung stem cell proliferation and potential regeneration of the injured lung. However, this stimulation should be very specific, timely, and of proper duration, as it could lead to such adverse effects as increased viral spread and systemic infection, especially in small children or infants due to specific pediatric immunity state and anatomical features of the respiratory system.
Collapse
Affiliation(s)
- Lina Jankauskaite
- Lithuanian University of Health Sciences, Medical Academy, Pediatric Department, Kaunas, Lithuania
- Lithuanian University of Health Sciences, Medical Academy, Institute of Physiology and Pharmacology, Kaunas, Lithuania
| | - Mantas Malinauskas
- Lithuanian University of Health Sciences, Medical Academy, Institute of Physiology and Pharmacology, Kaunas, Lithuania
| | - Goda-Camille Mickeviciute
- Lithuanian University of Health Sciences, Medical Academy, Pediatric Department, Kaunas, Lithuania
- Lithuanian University of Health Sciences, Medical Academy, Institute of Physiology and Pharmacology, Kaunas, Lithuania
- Rehabilitation Center “Palangos Linas”, Palanga, Lithuania
| |
Collapse
|
15
|
Ottaviani MM, Vallone F, Micera S, Recchia FA. Closed-Loop Vagus Nerve Stimulation for the Treatment of Cardiovascular Diseases: State of the Art and Future Directions. Front Cardiovasc Med 2022; 9:866957. [PMID: 35463766 PMCID: PMC9021417 DOI: 10.3389/fcvm.2022.866957] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
The autonomic nervous system exerts a fine beat-to-beat regulation of cardiovascular functions and is consequently involved in the onset and progression of many cardiovascular diseases (CVDs). Selective neuromodulation of the brain-heart axis with advanced neurotechnologies is an emerging approach to corroborate CVDs treatment when classical pharmacological agents show limited effectiveness. The vagus nerve is a major component of the cardiac neuroaxis, and vagus nerve stimulation (VNS) is a promising application to restore autonomic function under various pathological conditions. VNS has led to encouraging results in animal models of CVDs, but its translation to clinical practice has not been equally successful, calling for more investigation to optimize this technique. Herein we reviewed the state of the art of VNS for CVDs and discuss avenues for therapeutic optimization. Firstly, we provided a succinct description of cardiac vagal innervation anatomy and physiology and principles of VNS. Then, we examined the main clinical applications of VNS in CVDs and the related open challenges. Finally, we presented preclinical studies that aim at overcoming VNS limitations through optimization of anatomical targets, development of novel neural interface technologies, and design of efficient VNS closed-loop protocols.
Collapse
Affiliation(s)
- Matteo Maria Ottaviani
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Fabio Vallone
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Silvestro Micera
- Department of Excellence in Robotics and Artificial Intelligence, The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Fabio A. Recchia
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Acetylcholine exerts cytoprotection against hypoxia/reoxygenation-induced apoptosis, autophagy and mitochondrial impairment through both muscarinic and nicotinic receptors. Apoptosis 2022; 27:233-245. [DOI: 10.1007/s10495-022-01715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
|
17
|
Biodata Mining of Differentially Expressed Genes between Acute Myocardial Infarction and Unstable Angina Based on Integrated Bioinformatics. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5584681. [PMID: 34568491 PMCID: PMC8456013 DOI: 10.1155/2021/5584681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/10/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Acute coronary syndrome (ACS) is a complex syndrome of clinical symptoms. In order to accurately diagnose the type of disease in ACS patients, this study is aimed at exploring the differentially expressed genes (DEGs) and biological pathways between acute myocardial infarction (AMI) and unstable angina (UA). The GSE29111 and GSE60993 datasets containing microarray data from AMI and UA patients were downloaded from the Gene Expression Omnibus (GEO) database. DEG analysis of these 2 datasets is performed using the “limma” package in R software. DEGs were also analyzed using protein-protein interaction (PPI), Molecular Complex Detection (MCODE) algorithm, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Correlation analysis and “cytoHubba” were used to analyze the hub genes. A total of 286 DEGs were obtained from GSE29111 and GSE60993, including 132 upregulated genes and 154 downregulated genes. Subsequent comprehensive analysis identified 20 key genes that may be related to the occurrence and development of AMI and UA and were involved in the inflammatory response, interaction of neuroactive ligand-receptor, calcium signaling pathway, inflammatory mediator regulation of TRP channels, viral protein interaction with cytokine and cytokine receptor, human cytomegalovirus infection, and cytokine-cytokine receptor interaction pathway. The integrated bioinformatical analysis could improve our understanding of DEGs between AMI and UA. The results of this study might provide a new perspective and reference for the early diagnosis and treatment of ACS.
Collapse
|
18
|
Zhao S, Dai Y, Ning X, Tang M, Zhao Y, Li Z, Zhang S. Vagus Nerve Stimulation in Early Stage of Acute Myocardial Infarction Prevent Ventricular Arrhythmias and Cardiac Remodeling. Front Cardiovasc Med 2021; 8:648910. [PMID: 33981734 PMCID: PMC8107219 DOI: 10.3389/fcvm.2021.648910] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Aims: To evaluate whether low level left vagus nerve stimulation (LLVNS) in early stage of myocardial infarction (MI) could effectively prevent ventricular arrhythmias (VAs) and protect cardiac function, and explore the underlying mechanisms. Methods and Results: After undergoing implantable cardioverter defibrillators (ICD) and left cervical vagal stimulators implantation and MI creation, 16 dogs were randomly divided into three groups: the MI (n = 6), MI+LLVNS (n = 5), and sham operation (n = 5) groups. LLVNS was performed for 3 weeks. VAs, the left ventricular function, the density of the nerve fibers in the infarction area and gene expression profiles were analyzed. Compared with the MI group, dogs in the MI+LLVNS group had a lower VAs incidence (p < 0.05) and better left ventricular function. LLVNS significantly inhibited excessive sympathetic nerve sprouting with the evidences of decreased density of TH, GAP43 and NF positive nerves (p < 0.05). The gene expression profiling found a total of 206 genes differentially expressed between MI+LLVNS and MI dogs, mainly involved in cardiac tissue remodeling, cardiac neural remodeling, immune response and apoptosis. These genes, including 55 up-regulated genes and 151 down-regulated genes, showed more protective expressions under LLVNS. Conclusions: This study suggests that LLVNS was delivered without altering heart rate, contributing to reduced incidences of VAs and improved left ventricular function. The potential mechanisms included suppressing cardiac neuronal sprouting, inhibiting excessive sympathetic nerve sprouting and subduing pro-inflammatory responses by regulating gene expressions from a canine experimental study.
Collapse
Affiliation(s)
- Shuang Zhao
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Dai
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohui Ning
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Tang
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunzi Zhao
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zeyi Li
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu Zhang
- State Key Laboratory of Cardiovascular Disease, Arrhythmia Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Khuanjing T, Palee S, Kerdphoo S, Jaiwongkam T, Anomasiri A, Chattipakorn SC, Chattipakorn N. Donepezil attenuated cardiac ischemia/reperfusion injury through balancing mitochondrial dynamics, mitophagy, and autophagy. Transl Res 2021; 230:82-97. [PMID: 33137536 DOI: 10.1016/j.trsl.2020.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023]
Abstract
Cardiac autonomic imbalance including sympathetic overactivity and diminished parasympathetic activity is associated with left ventricular (LV) dysfunction in cases of cardiac ischemia/reperfusion (I/R) injury. Electrical stimulation to increase vagal activity has been shown to reduce infarct size and decrease fatal arrhythmias in cardiac I/R injury. However, the benefits of a parasympathomimetic drug on the heart during I/R are unclear. We hypothesized that administration of donepezil provides cardioprotection in cardiac I/R injury via reducing cellular apoptosis, oxidative stress, mitochondrial dysfunction, mitochondrial dynamic imbalance, increasing autophagy, and mitophagy. Fifty-four male Wistar rats were randomly assigned into sham and I/R groups. Acute cardiac I/R injury was induced by 30-minutes left anterior descending (LAD) coronary artery occlusion followed by 120-minutes reperfusion. These rats with induced I/R injury were randomly assigned to be treated with either: (1) Saline (vehicle group) or donepezil 3 mg/kg via intravenous injection given (2) before ischemia, (3) during ischemia, or (4) at the onset of reperfusion. Rats with cardiac I/R injury showed an increase in infarct size and arrhythmia score, LV dysfunction, impaired mitochondrial dynamic balance, autophagy and mitophagy, mitochondrial dysfunction, and increased apoptosis. All the donepezil-treated rats, regardless of the time of administration, showed a similar reduction in these impairments, and rebalancing in cardiac mitochondrial dynamics, leading to reduced myocardial infarct size and arrhythmia, and improved LV function. These findings suggested that donepezil effectively protected the heart against I/R injury through cardiac mitochondrial protection regardless of the time of administration.
Collapse
Affiliation(s)
- Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Anawin Anomasiri
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
20
|
Lu J, Wu W. Cholinergic modulation of the immune system - A novel therapeutic target for myocardial inflammation. Int Immunopharmacol 2021; 93:107391. [PMID: 33548577 DOI: 10.1016/j.intimp.2021.107391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
The immune system and the nervous system depend on each other for their fine tuning and working, thus cooperating to maintain physiological homeostasis and prevent infections. The cholinergic system regulates the mobilization, differentiation, secretion, and antigen presentation of adaptive and innate immune cells mainly through α7 nicotinic acetylcholine receptors (α7nAChRs). The neuro-immune interactions are established and maintained by the following mechanisms: colocalization of immune and neuronal cells at defined anatomical sites, expression of the non-neuronal cholinergic system by immune cells, and the acetylcholine receptor-mediated activation of intracellular signaling pathways. Based on these immunological mechanisms, the protective effects of cholinergic system in animal models of diseases were summarized in this paper, such as myocardial infarction/ischemia-reperfusion, viral myocarditis, and endotoxin-induced myocardial damage. In addition to maintaining hemodynamic stability and improving the energy metabolism of the heart, both non-neuronal acetylcholine and neuronal acetylcholine in the heart can alleviate myocardial inflammation and remodeling to exert a significant cardioprotective effect. The new findings on the role of cholinergic agonists and vagus nerve stimulation in immune regulation are updated, so as to develop improved approaches to treat inflammatory heart disease.
Collapse
Affiliation(s)
- Jing Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| | - Weifeng Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Shuangyong Road 22, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
21
|
Yang Y, Li Y, Wang J, Hong L, Qiao S, Wang C, An J. Cholinergic receptors play a role in the cardioprotective effects of anesthetic preconditioning: Roles of nitric oxide and the CaMKKβ/AMPK pathway. Exp Ther Med 2021; 21:137. [PMID: 33456504 PMCID: PMC7791965 DOI: 10.3892/etm.2020.9569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/13/2020] [Indexed: 11/06/2022] Open
Abstract
Vagus nerve activation may have important therapeutic significance for myocardial ischemia-reperfusion (IR) injury. Nitric oxide (NO) plays a vital role in the cardioprotective effects of anesthetic preconditioning (APC). Moreover, acetylcholine (ACh) prevents cardiomyocyte damage by activating AMP-activated protein kinase (AMPK) and increasing the phosphorylation of Ca2+/calmodulin-dependent protein kinase β (CaMKKβ). The aim of the present study was to determine whether APC could protect heart function by antagonizing IR damage via the cholinergic system. It was hypothesized that the NO synthase (NOS)/CaMKKβ/AMPK pathway might be involved in the cardioprotective effects induced by cholinergic receptor activation. Isolated rat hearts were subjected to ischemia for 30 min followed by 120 min of reperfusion. Volatile anesthetic sevoflurane (3.5%) was administered for 15 min before ischemia, then rinsed for 15 min. The muscarinic acetylcholine receptor (mAChR) antagonist atropine (ATR; 100 nM) and the nicotinic acetylcholine receptor (nAChR) antagonist hexamethonium (HEM; 50 µM) were administered 10 min before APC. Both mAChR and nAChR were involved in APC-induced cardioprotection. ATR and HEM treatment both abolished the protective effects of APC on IR damage in isolated hearts, demonstrating the importance of cholinergic receptors in the protection mechanism of APC. The present study thus suggests that APC plays a cardioprotective role, in part, by regulating neurohumoral pathways. In addition, there may be functional coupling between the two cholinergic receptors, and the NOS and CaMKKβ/AMPK pathways may play roles in shared pathways that mediate the cardioprotective effects of APC. These findings may provide insight into potential new mechanisms of APC-induced cardioprotection against IR injury.
Collapse
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, Wujiang Hospital Affiliated to Nantong University, Suzhou, Jiangsu 215200, P.R. China
| | - Ying Li
- Department of Cardiology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Jie Wang
- Department of Anesthesiology, Wujiang Hospital Affiliated to Nantong University, Suzhou, Jiangsu 215200, P.R. China
| | - Lei Hong
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Chen Wang
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Jianzhong An
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| |
Collapse
|
22
|
Microbiota, a New Playground for the Omega-3 Polyunsaturated Fatty Acids in Cardiovascular Diseases. Mar Drugs 2021; 19:md19020054. [PMID: 33498729 PMCID: PMC7931107 DOI: 10.3390/md19020054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Several cardioprotective mechanisms attributed to Omega-3 polyunsaturated fatty acids (PUFAs) have been studied and widely documented. However, in recent years, studies have supported the concept that the intestinal microbiota can play a much larger role than we had anticipated. Microbiota could contribute to several pathologies, including cardiovascular diseases. Indeed, an imbalance in the microbiota has often been reported in patients with cardiovascular disease and produces low-level inflammation. This inflammation contributes to, more or less, long-term development of cardiovascular diseases. It can also worsen the symptoms and the consequences of these pathologies. According to some studies, omega-3 PUFAs in the diet could restore this imbalance and mitigate its harmful effects on cardiovascular diseases. Many mechanisms are involved and included: (1) a reduction of bacteria producing trimethylamine (TMA); (2) an increase in bacteria producing butyrate, which has anti-inflammatory properties; and (3) a decrease in the production of pro-inflammatory cytokines. Additionally, omega-3 PUFAs would help maintain better integrity in the intestinal barrier, thereby preventing the translocation of intestinal contents into circulation. This review will summarize the effects of omega-3 PUFAs on gut micro-biota and the potential impact on cardiac health.
Collapse
|
23
|
Luo B, Wu Y, Liu SL, Li XY, Zhu HR, Zhang L, Zheng F, Liu XY, Guo LY, Wang L, Song HX, Lv YX, Cheng ZS, Chen SY, Wang JN, Tang JM. Vagus nerve stimulation optimized cardiomyocyte phenotype, sarcomere organization and energy metabolism in infarcted heart through FoxO3A-VEGF signaling. Cell Death Dis 2020; 11:971. [PMID: 33184264 PMCID: PMC7665220 DOI: 10.1038/s41419-020-03142-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022]
Abstract
Vagus nerve stimulation (VNS) restores autonomic balance, suppresses inflammation action and minimizes cardiomyocyte injury. However, little knowledge is known about the VNS’ role in cardiomyocyte phenotype, sarcomere organization, and energy metabolism of infarcted hearts. VNS in vivo and acetylcholine (ACh) in vitro optimized the levels of α/β-MHC and α-Actinin positive sarcomere organization in cardiomyocytes while reducing F-actin assembly of cardiomyocytes. Consistently, ACh improved glucose uptake while decreasing lipid deposition in myocytes, correlating both with the increase of Glut4 and CPT1α and the decrease of PDK4 in infarcted hearts in vivo and myocytes in vitro, attributing to improvement in both glycolysis by VEGF-A and lipid uptake by VEGF-B in response to Ach. This led to increased ATP levels accompanied by the repaired mitochondrial function and the decreased oxygen consumption. Functionally, VNS improved the left ventricular performance. In contrast, ACh-m/nAChR inhibitor or knockdown of VEGF-A/B by shRNA powerfully abrogated these effects mediated by VNS. On mechanism, ACh decreased the levels of nuclear translocation of FoxO3A in myocytes due to phosphorylation of FoxO3A by activating AKT. FoxO3A overexpression or knockdown could reverse the specific effects of ACh on the expression of VEGF-A/B, α/β-MHC, Glut4, and CPT1α, sarcomere organization, glucose uptake and ATP production. Taken together, VNS optimized cardiomyocytes sarcomere organization and energy metabolism to improve heart function of the infarcted heart during the process of delaying and/or blocking the switch from compensated hypertrophy to decompensated heart failure, which were associated with activation of both P13K/AKT-FoxO3A-VEGF-A/B signaling cascade.
Collapse
Affiliation(s)
- Bin Luo
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, 442000, Hubei, China.,Institute of Biomedicine, Hubei University of Medicine, 442000, Hubei, China
| | - Yan Wu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, 442000, Hubei, China.,Institute of Biomedicine, Hubei University of Medicine, 442000, Hubei, China
| | - Shu-Lin Liu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, 442000, Hubei, China.,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Xing-Yuan Li
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Hong-Rui Zhu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, 442000, Hubei, China
| | - Lei Zhang
- Institute of Biomedicine, Hubei University of Medicine, 442000, Hubei, China.,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Fei Zheng
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Xiao-Yao Liu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, 442000, Hubei, China
| | - Ling-Yun Guo
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Lu Wang
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Hong-Xian Song
- Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Yan-Xia Lv
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, 442000, Hubei, China.,Institute of Biomedicine, Hubei University of Medicine, 442000, Hubei, China
| | - Zhong-Shan Cheng
- Applied Bioinformatics Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shi-You Chen
- The Department of Surgery, University of Missouri, Columbia, MO, USA
| | - Jia-Ning Wang
- Institute of Biomedicine, Hubei University of Medicine, 442000, Hubei, China.,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Jun-Ming Tang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine Science, Hubei University of Medicine, 442000, Hubei, China. .,Institute of Biomedicine, Hubei University of Medicine, 442000, Hubei, China. .,Institute of Clinical Medicine and Department of Cardiology, Renmin Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China.
| |
Collapse
|
24
|
Statz GM, Olshansky B. Editorial commentary: Vagal nerve stimulation for myocardial ischemia-reperfusion injury: Hope or Hype? Trends Cardiovasc Med 2020; 30:489-490. [PMID: 31926809 DOI: 10.1016/j.tcm.2019.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 10/25/2022]
|
25
|
Rusiecka OM, Montgomery J, Morel S, Batista-Almeida D, Van Campenhout R, Vinken M, Girao H, Kwak BR. Canonical and Non-Canonical Roles of Connexin43 in Cardioprotection. Biomolecules 2020; 10:biom10091225. [PMID: 32842488 PMCID: PMC7563275 DOI: 10.3390/biom10091225] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Since the mid-20th century, ischemic heart disease has been the world’s leading cause of death. Developing effective clinical cardioprotection strategies would make a significant impact in improving both quality of life and longevity in the worldwide population. Both ex vivo and in vivo animal models of cardiac ischemia/reperfusion (I/R) injury are robustly used in research. Connexin43 (Cx43), the predominant gap junction channel-forming protein in cardiomyocytes, has emerged as a cardioprotective target. Cx43 posttranslational modifications as well as cellular distribution are altered during cardiac reperfusion injury, inducing phosphorylation states and localization detrimental to maintaining intercellular communication and cardiac conduction. Pre- (before ischemia) and post- (after ischemia but before reperfusion) conditioning can abrogate this injury process, preserving Cx43 and reducing cell death. Pre-/post-conditioning has been shown to largely rely on the presence of Cx43, including mitochondrial Cx43, which is implicated to play a major role in pre-conditioning. Posttranslational modifications of Cx43 after injury alter the protein interactome, inducing negative protein cascades and altering protein trafficking, which then causes further damage post-I/R injury. Recently, several peptides based on the Cx43 sequence have been found to successfully diminish cardiac injury in pre-clinical studies.
Collapse
Affiliation(s)
- Olga M. Rusiecka
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Jade Montgomery
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Sandrine Morel
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Daniela Batista-Almeida
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.B.-A.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Henrique Girao
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.B.-A.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
- Correspondence:
| |
Collapse
|
26
|
Kaniusas E, Szeles JC, Kampusch S, Alfageme-Lopez N, Yucuma-Conde D, Li X, Mayol J, Neumayer C, Papa M, Panetsos F. Non-invasive Auricular Vagus Nerve Stimulation as a Potential Treatment for Covid19-Originated Acute Respiratory Distress Syndrome. Front Physiol 2020; 11:890. [PMID: 32848845 PMCID: PMC7399203 DOI: 10.3389/fphys.2020.00890] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/30/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Covid-19 is an infectious disease caused by an invasion of the alveolar epithelial cells by coronavirus 19. The most severe outcome of the disease is the Acute Respiratory Distress Syndrome (ARDS) combined with hypoxemia and cardiovascular damage. ARDS and co-morbidities are associated with inflammatory cytokine storms, sympathetic hyperactivity, and respiratory dysfunction. Hypothesis: In the present paper, we present and justify a novel potential treatment for Covid19-originated ARDS and associated co-morbidities, based on the non-invasive stimulation of the auricular branch of the vagus nerve. Methods: Auricular vagus nerve stimulation activates the parasympathetic system including anti-inflammatory pathways (the cholinergic anti-inflammatory pathway and the hypothalamic pituitary adrenal axis) while regulating the abnormal sympatho-vagal balance and improving respiratory control. Results: Along the paper (1) we expose the role of the parasympathetic system and the vagus nerve in the control of inflammatory processes (2) we formulate our physiological and methodological hypotheses (3) we provide a large body of clinical and preclinical data that support the favorable effects of auricular vagus nerve stimulation in inflammation, sympatho-vagal balance as well as in respiratory and cardiac ailments, and (4) we list the (few) possible collateral effects of the treatment. Finally, we discuss auricular vagus nerve stimulation protective potential, especially in the elderly and co-morbid population with already reduced parasympathetic response. Conclusions: Auricular vagus nerve stimulation is a safe clinical procedure and it could be either an effective treatment for ARDS originated by Covid-19 and similar viruses or a supplementary treatment to actual ARDS therapeutic approaches.
Collapse
Affiliation(s)
- Eugenijus Kaniusas
- Faculty of Electrical Engineering and Information Technology, Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Jozsef C. Szeles
- General Hospital of the City of Vienna, Vienna, Austria
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | | | - Nuria Alfageme-Lopez
- Faculty of Biology and Faculty of Optics, Complutense University of Madrid, Madrid, Spain
| | - Daniela Yucuma-Conde
- Department of Clinical Epidemiology and Biostatistics, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Xie Li
- The Pediatric Department, Women and Children's Hospital of Hunan, Changsha, China
| | - Julio Mayol
- San Carlos Clinical Hospital, Madrid, Spain
- Institute for Health Research, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Christoph Neumayer
- General Hospital of the City of Vienna, Vienna, Austria
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Michele Papa
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Fivos Panetsos
- Faculty of Biology and Faculty of Optics, Complutense University of Madrid, Madrid, Spain
- Institute for Health Research, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| |
Collapse
|
27
|
Xiao Y, Chen W, Zhong Z, Ding L, Bai H, Chen H, Zhang H, Gu Y, Lu S. Electroacupuncture preconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting mitophagy mediated by the mTORC1-ULK1-FUNDC1 pathway. Biomed Pharmacother 2020; 127:110148. [PMID: 32344255 DOI: 10.1016/j.biopha.2020.110148] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) is an important complication of reperfusion therapy for myocardial infarction, and trimetazidine is used successfully for treatment of ischemic cardiomyopathy by regulating mitochondrial function. Moreover, electroacupuncture (EA) preconditioning was demonstrated to be cardioprotective in both in vivo rodent models and in patients undergoing heart valve replacement surgery. However, the mechanisms have not been well elucidated. Mitophagy, mediated by the mTORC1-ULK1-FUNDC1 (mTOR complex 1-unc-51-like autophagy-activating kinase 1-FUN14 domain-containing 1) pathway, can regulate mitochondrial mass and cell survival effectively to restrain the development of myocardial ischemia/reperfusion injury (MIRI). In this study, we hypothesized that EA preconditioning ameliorated MIRI via mitophagy. To test this, rapamycin, an mTOR inhibitor, was used. The results showed that EA preconditioning could reduce the infarct size and risk size, and decrease the ventricular arrhythmia score and serum creatine kinase-myocardial band isoenzyme (CK-MB), lactate dehydrogenase (LDH), and cardiac troponin T (cTnT) in MIRI rats. Moreover, it also attenuated MIRI-induced apoptosis and mitophagy accompanied by elevated mTORC1 level and decreased ULK1 and FUNDC1 levels. However, these effects of EA preconditioning were blocked by rapamycin, which aggravated MIRI, reduced adenosine triphosphate (ATP) production, and antagonized infarct size reduction. In conclusion, our results indicated that EA preconditioning protected the myocardium against I/R injury by inhibiting mitophagy mediated by the mTORC1-ULK1-FUNDC1 pathway.
Collapse
Affiliation(s)
- Yan Xiao
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Wanying Chen
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Zehao Zhong
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Liang Ding
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, 39 Xiashatang Road, Wuzhong District, Suzhou, Jiangsu, 215101, China
| | - Hua Bai
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hao Chen
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hongru Zhang
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yihuang Gu
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Shengfeng Lu
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
28
|
Valverde CA, Mazzocchi G, Di Carlo MN, Ciocci Pardo A, Salas N, Ragone MI, Felice JI, Cely-Ortiz A, Consolini AE, Portiansky E, Mosca S, Kranias EG, Wehrens XHT, Mattiazzi A. Ablation of phospholamban rescues reperfusion arrhythmias but exacerbates myocardium infarction in hearts with Ca2+/calmodulin kinase II constitutive phosphorylation of ryanodine receptors. Cardiovasc Res 2020; 115:556-569. [PMID: 30169578 DOI: 10.1093/cvr/cvy213] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/03/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022] Open
Abstract
AIMS Abnormal Ca2+ release from the sarcoplasmic reticulum (SR), associated with Ca2+-calmodulin kinase II (CaMKII)-dependent phosphorylation of RyR2 at Ser2814, has consistently been linked to arrhythmogenesis and ischaemia/reperfusion (I/R)-induced cell death. In contrast, the role played by SR Ca2+ uptake under these stress conditions remains controversial. We tested the hypothesis that an increase in SR Ca2+ uptake is able to attenuate reperfusion arrhythmias and cardiac injury elicited by increased RyR2-Ser2814 phosphorylation. METHODS AND RESULTS We used WT mice, which have been previously shown to exhibit a transient increase in RyR2-Ser2814 phosphorylation at the onset of reperfusion; mice with constitutive pseudo-phosphorylation of RyR2 at Ser2814 (S2814D) to exacerbate CaMKII-dependent reperfusion arrhythmias and cardiac damage, and phospholamban (PLN)-deficient-S2814D knock-in (SDKO) mice resulting from crossbreeding S2814D with phospholamban knockout deficient (PLNKO) mice. At baseline, S2814D and SDKO mice had structurally normal hearts. Moreover none of the strains were arrhythmic before ischaemia. Upon cardiac I/R, WT, and S2814D hearts exhibited abundant arrhythmias that were prevented by PLN ablation. In contrast, PLN ablation increased infarct size compared with WT and S2814D hearts. Mechanistically, the enhanced SR Ca2+ sequestration evoked by PLN ablation in SDKO hearts prevented arrhythmogenic events upon reperfusion by fragmenting SR Ca2+ waves into non-propagated and non-arrhythmogenic events (mini-waves). Conversely, the increase in SR Ca2+ sequestration did not reduce but rather exacerbated I/R-induced SR Ca2+ leak, as well as mitochondrial alterations, which were greatly avoided by inhibition of RyR2. These results indicate that the increase in SR Ca2+ uptake is ineffective in preventing the enhanced SR Ca2+ leak of PLN ablated myocytes from either entering into nearby mitochondria and/or activating additional CaMKII pathways, contributing to cardiac damage. CONCLUSION Our results demonstrate that increasing SR Ca2+ uptake by PLN ablation can prevent the arrhythmic events triggered by CaMKII-dependent phosphorylation of RyR2-induced SR Ca2+ leak. These findings underscore the benefits of increasing SERCA2a activity in the face of SR Ca2+ triggered arrhythmias. However, enhanced SERCA2a cannot prevent but rather exacerbates I/R cardiac injury.
Collapse
Affiliation(s)
- Carlos A Valverde
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Gabriela Mazzocchi
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Mariano N Di Carlo
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Alejandro Ciocci Pardo
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Nehuen Salas
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - María Ines Ragone
- Grupo de Farmacología Experimental, (GFEYEC), Departamento of Ciencias Biológicas, Facultad de Ciencias Exactas - CONICET., La Plata, Argentina
| | - Juan I Felice
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Alejandra Cely-Ortiz
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Alicia E Consolini
- Grupo de Farmacología Experimental, (GFEYEC), Departamento of Ciencias Biológicas, Facultad de Ciencias Exactas - CONICET., La Plata, Argentina
| | - Enrique Portiansky
- Laboratorio de Análisis de Imágenes, Facultad de Cs. Veterinarias, UNLP, La Plata, Argentina
| | - Susana Mosca
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| | - Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine (in Cardiology), Cardiovascular Research Institute, Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Cardiovascular Research Institute, Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares 'Dr. Horacio E. Cingolani', CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, 60 y 120 s/n, La Plata CP, Argentina
| |
Collapse
|
29
|
Capilupi MJ, Kerath SM, Becker LB. Vagus Nerve Stimulation and the Cardiovascular System. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034173. [PMID: 31109966 DOI: 10.1101/cshperspect.a034173] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The vagus nerve plays an important role in maintaining physiological homeostasis, which includes reflex pathways that regulate cardiac function. The link between vagus nerve activity and the high-frequency component of heart rate variability (HRV) has been well established, correlating with vagal tone. Recently, vagus nerve stimulation (VNS) has been investigated as a therapeutic for a multitude of diseases, such as treatment-resistant epilepsy, rheumatoid arthritis, Crohn's disease, and asthma. Because of the vagus nerve's innervation of the heart, VNS has been identified as a potential therapy for cardiovascular disorders, such as cardiac arrest, acute myocardial infarction, and stroke. Here, we review the current state of preclinical and clinical studies, as well as the potential application of VNS in relation to the cardiovascular system.
Collapse
Affiliation(s)
- Michael J Capilupi
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, New York 11030
| | - Samantha M Kerath
- Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030
| | - Lance B Becker
- Department of Emergency Medicine, North Shore University Hospital, Northwell Health, Manhasset, New York 11030.,Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York 11030.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York 11549
| |
Collapse
|
30
|
Khuanjing T, Palee S, Chattipakorn SC, Chattipakorn N. The effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure: From cells to patient reports. Acta Physiol (Oxf) 2020; 228:e13396. [PMID: 31595611 DOI: 10.1111/apha.13396] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/30/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases remain a major cause of morbidity and mortality worldwide. Cardiovascular diseases such as acute myocardial infarction, ischaemia/reperfusion injury and heart failure are associated with cardiac autonomic imbalance characterized by sympathetic overactivity and parasympathetic withdrawal from the heart. Increased parasympathetic activity by electrical vagal nerve stimulation has been shown to provide beneficial effects in the case of cardiovascular diseases in both animals and patients by improving autonomic function, cardiac remodelling and mitochondrial function. However, clinical limitations for electrical vagal nerve stimulation exist because of its invasive nature, costly equipment and limited clinical validation. Therefore, novel therapeutic approaches which moderate parasympathetic activities could be beneficial for in the case of cardiovascular disease. Acetylcholinesterase inhibitors inhibit acetylcholinesterase and hence increase cholinergic transmission. Recent studies have reported that acetylcholinesterase inhibitors improve autonomic function and cardiac function in cardiovascular disease models. Despite its potential clinical benefits for cardiovascular disease patients, the role of acetylcholinesterase inhibitors in acute myocardial infarction and heart failure remediation remains unclear. This article comprehensively reviews the effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure scenarios from in vitro and in vivo studies to clinical reports. The mechanisms involved are also discussed in this review.
Collapse
Affiliation(s)
- Thawatchai Khuanjing
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| | - Siripong Palee
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences Faculty of Dentistry Chiang Mai University Chiang Mai Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
31
|
Vagus nerve stimulation as a promising adjunctive treatment for ischemic stroke. Neurochem Int 2019; 131:104539. [DOI: 10.1016/j.neuint.2019.104539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022]
|
32
|
Hype or hope: Vagus nerve stimulation against acute myocardial ischemia-reperfusion injury. Trends Cardiovasc Med 2019; 30:481-488. [PMID: 31740206 DOI: 10.1016/j.tcm.2019.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023]
Abstract
Acute myocardial infarction (MI) is a major cause of death worldwide. Although timely and successful reperfusion could reduce myocardial ischemia injury, limit infarct size, and improve ventricular dysfunction and reduce acute mortality, restoring blood flow might also lead to unwanted myocardial ischemic-reperfusion (I/R) injury. Pre-clinical studies have demonstrated that multiple approaches are capable of attenuating the myocardial I/R injury. However, there is still no effective therapy for preventing myocardial I/R injury for the clinical setting. It is known that myocardial I/R injury could induce cardiac autonomic imbalance with over-activated sympathetic tone and reduced vagal activity, in turn, contributing to pathogenesis of myocardial I/R injury. Cumulative evidence shows that the enhancement of vagal activity, so called vagus nerve stimulation (VNS), is able to reduce injury and promote recovery of injured myocardium. Therefore, VNS might be a potentially novel strategy choice for preventing/attenuating myocardial I/R injury. In this review, we describe the protective role of VNS in myocardial I/R injury and related potential mechanisms. Then, we discuss the challenge and the opportunity of VNS in the treatment of acute myocardial I/R injury.
Collapse
|
33
|
Nederhoff MGJ, Fransen DE, Verlinde SAMW, Brans MAD, Pasterkamp G, Bleys RLAW. Effect of vagus nerve stimulation on tissue damage and function loss in a mouse myocardial ischemia-reperfusion model. Auton Neurosci 2019; 221:102580. [PMID: 31491700 DOI: 10.1016/j.autneu.2019.102580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVES In cardiac ischemia, acute inflammatory responses further increase the detrimental effect on myocardial tissue. Since vagus nerve stimulation (VS) attenuates inflammatory responsiveness this study examines the effect of VS on myocardial damage development in a cardiac ischemia-reperfusion (IR) mouse model. METHODS 54 male C57Bl/6j mice were subjected to an IR procedure with or without prior VS. The effects on inflammatory responsiveness, infarct size, cardiac function, neutrophils, lymphocytes and vascular endothelial growth factor (VEGF) in the infarcted myocardium were measured at 48 h after intervention. Group results were compared with unpaired Mann-Whitney or Kruskall-Wallis test. RESULTS A significant decrease in inflammatory responsiveness was not verified by decreased TNFα levels in blood from VS and IR treated mice. The percentage infarct size over area at risk was smaller in the group with VS + IR compared with IR (22.4 ± 10.2% vs 37.6 ± 9.0%, p = 0.003). The degree of the reduction in cardiac function was not different between the IR groups with or without VS and no group differences were found in amounts of neutrophils, CD3+ lymphocytes and VEGF in the reperfused mouse heart. CONCLUSION The present study does not provide clear evidence of a reducing role for VS on cardiac function loss. This could mean that VS has a less inhibiting effect on myocardial inflammation than may be expected from the literature.
Collapse
Affiliation(s)
- M G J Nederhoff
- Department of Anatomy, Division Surgical Specialties, University Medical Center Utrecht, Universiteitsweg 100, room: Str. 0.305, 3584CG Utrecht, the Netherlands.
| | - D E Fransen
- Department of Anatomy, Division Surgical Specialties, University Medical Center Utrecht, Universiteitsweg 100, room: Str. 0.305, 3584CG Utrecht, the Netherlands
| | - S A M W Verlinde
- Department of Anatomy, Division Surgical Specialties, University Medical Center Utrecht, Universiteitsweg 100, room: Str. 0.305, 3584CG Utrecht, the Netherlands
| | - M A D Brans
- Experimental Cardiology Laboratory, Division Surgical Specialties, University Medical Center Utrecht, Universiteitsweg 100, room: Str. 0.305, 3584CG Utrecht, the Netherlands
| | - G Pasterkamp
- Experimental Cardiology Laboratory, Division Surgical Specialties, University Medical Center Utrecht, Universiteitsweg 100, room: Str. 0.305, 3584CG Utrecht, the Netherlands
| | - R L A W Bleys
- Department of Anatomy, Division Surgical Specialties, University Medical Center Utrecht, Universiteitsweg 100, room: Str. 0.305, 3584CG Utrecht, the Netherlands
| |
Collapse
|
34
|
Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, Kiss A, Podesser B, Cassara AM, Tanghe E, Samoudi AM, Tarnaud T, Joseph W, Marozas V, Lukosevicius A, Ištuk N, Šarolić A, Lechner S, Klonowski W, Varoneckas G, Széles JC. Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective. Front Neurosci 2019; 13:854. [PMID: 31447643 PMCID: PMC6697069 DOI: 10.3389/fnins.2019.00854] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023] Open
Abstract
Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging technology in the field of bioelectronic medicine with applications in therapy. Modulation of the afferent vagus nerve affects a large number of physiological processes and bodily states associated with information transfer between the brain and body. These include disease mitigating effects and sustainable therapeutic applications ranging from chronic pain diseases, neurodegenerative and metabolic ailments to inflammatory and cardiovascular diseases. Given the current evidence from experimental research in animal and clinical studies we discuss basic aVNS mechanisms and their potential clinical effects. Collectively, we provide a focused review on the physiological role of the vagus nerve and formulate a biology-driven rationale for aVNS. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the framework of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, in silico aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on physiological aspects - a discussion of engineering aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.
Collapse
Affiliation(s)
- Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Raquel Fernandez Gines
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | - Emmeric Tanghe
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | | | - Thomas Tarnaud
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Wout Joseph
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Vaidotas Marozas
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Arunas Lukosevicius
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Niko Ištuk
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | - Antonio Šarolić
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | | | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Giedrius Varoneckas
- Sleep Medicine Centre, Klaipeda University Hospital, Klaipëda, Lithuania
- Institute of Neuroscience, Lithuanian University of Health Sciences, Palanga, Lithuania
| | | |
Collapse
|
35
|
Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, Kiss A, Podesser B, Cassara AM, Tanghe E, Samoudi AM, Tarnaud T, Joseph W, Marozas V, Lukosevicius A, Ištuk N, Lechner S, Klonowski W, Varoneckas G, Széles JC, Šarolić A. Current Directions in the Auricular Vagus Nerve Stimulation II - An Engineering Perspective. Front Neurosci 2019; 13:772. [PMID: 31396044 PMCID: PMC6667675 DOI: 10.3389/fnins.2019.00772] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging electroceutical technology in the field of bioelectronic medicine with applications in therapy. Artificial modulation of the afferent vagus nerve - a powerful entrance to the brain - affects a large number of physiological processes implicating interactions between the brain and body. Engineering aspects of aVNS determine its efficiency in application. The relevant safety and regulatory issues need to be appropriately addressed. In particular, in silico modeling acts as a tool for aVNS optimization. The evolution of personalized electroceuticals using novel architectures of the closed-loop aVNS paradigms with biofeedback can be expected to optimally meet therapy needs. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the scope of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, in silico aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on engineering aspects - a discussion of physiological aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.
Collapse
Affiliation(s)
- Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Raquel Fernandez Gines
- Neurocomputing & Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | - Emmeric Tanghe
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | | | - Thomas Tarnaud
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Wout Joseph
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Vaidotas Marozas
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Arunas Lukosevicius
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Niko Ištuk
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | | | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Giedrius Varoneckas
- Sleep Medicine Centre, Klaipeda University Hospital, Klaipėda, Lithuania
- Institute of Neuroscience, Lithuanian University of Health Sciences, Palanga, Lithuania
| | | | - Antonio Šarolić
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| |
Collapse
|
36
|
Brandt EB, Bashar SJ, Mahmoud AI. Stimulating ideas for heart regeneration: the future of nerve-directed heart therapy. Bioelectron Med 2019; 5:8. [PMID: 32232098 PMCID: PMC7098228 DOI: 10.1186/s42234-019-0024-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Ischemic heart disease is the leading cause of death worldwide. The blockade of coronary arteries limits oxygen-rich blood to the heart and consequently there is cardiomyocyte (CM) cell death, inflammation, fibrotic scarring, and myocardial remodeling. Unfortunately, current therapeutics fail to effectively replace the lost cardiomyocytes or prevent fibrotic scarring, which results in reduced cardiac function and the development of heart failure (HF) in the adult mammalian heart. In contrast, neonatal mice are capable of regenerating their hearts following injury. However, this regenerative response is restricted to the first week of post-natal development. Recently, we identified that cholinergic nerve signaling is necessary for the neonatal mouse cardiac regenerative response. This demonstrates that cholinergic nerve stimulation holds significant potential as a bioelectronic therapeutic tool for heart disease. However, the mechanisms of nerve directed regeneration in the heart remain undetermined. In this review, we will describe the historical evidence of nerve function during regeneration across species. Specifically, we will focus on the emerging role of cholinergic innervation in modulating cardiomyocyte proliferation and inflammation during heart regeneration. Understanding the role of nerves in mammalian heart regeneration and adult cardiac remodeling can provide us with innovative bioelectronic-based therapeutic approaches for treatment of human heart disease.
Collapse
Affiliation(s)
- Emma B Brandt
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave, Room 4557, Madison, WI 53705 USA
| | - S Janna Bashar
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave, Room 4557, Madison, WI 53705 USA
| | - Ahmed I Mahmoud
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Ave, Room 4557, Madison, WI 53705 USA
| |
Collapse
|
37
|
The autonomic nervous system and cardiac arrhythmias: current concepts and emerging therapies. Nat Rev Cardiol 2019; 16:707-726. [DOI: 10.1038/s41569-019-0221-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 12/19/2022]
|
38
|
Xue RQ, Yu XJ, Zhao M, Xu M, Wu Q, Cui YL, Yang S, Li DL, Zang WJ. Pyridostigmine alleviates cardiac dysfunction via improving mitochondrial cristae shape in a mouse model of metabolic syndrome. Free Radic Biol Med 2019; 134:119-132. [PMID: 30633969 DOI: 10.1016/j.freeradbiomed.2019.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 01/02/2023]
Abstract
Insulin resistance and autonomic imbalance are important pathological processes in metabolic syndrome-induced cardiac remodeling. Recent studies determined that disruption of mitochondrial cristae shape is associated with myocardial ischemia; however, the change in cristae shape in metabolic syndrome-induced cardiac remodeling remains unclear. This study determined the effect of pyridostigmine (PYR), which reversibly inhibits cholinesterase to improve autonomic imbalance, on high-fat diet (HFD)-induced cardiac insulin resistance and explored the potential effect on the shape of mitochondrial cristae. Feeding of a HFD for 22 weeks led to an irregular and even lysed cristae structure in cardiac mitochondria, which contributed to decreased mitochondrial content and ATP production and increased oxygen species production, ultimately impairing insulin signaling and lipid metabolism. Interestingly, PYR enhanced vagal activity by increasing acetylcholine production and exerted mito-protective effects by activating the LKB1/AMPK/ACC signal pathway. Specifically, PYR upregulated OPA1 and Mfn1/2 expression, promoted the formation of the mitofilin/CHCHD3/Sam50 complex, and decreased p-Drp1 and Fis1 expression, resulting in tight and parallel cristae and increasing cardiac mitochondrial complex subunit expression and ATP generation as well as decreasing release of cytochrome C from mitochondria and oxidative damage. Furthermore, PYR improved glucose and insulin tolerance and insulin-stimulated Akt phosphorylation, decreased lipid toxicity, and ultimately ameliorated HFD-induced cardiac remodeling and dysfunction. In conclusion, PYR prevented cardiac and insulin insensitivity and remodeling by stimulating vagal activity to regulate mitochondrial cristae shape and function in HFD-induced metabolic syndrome in mice. These results provide novel insights for the development of a therapeutic strategy for obesity-induced cardiac dysfunction that targets mitochondrial cristae.
Collapse
Affiliation(s)
- Run-Qing Xue
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China
| | - Xiao-Jiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China
| | - Ming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China
| | - Man Xu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China
| | - Qing Wu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China
| | - Yan-Ling Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China
| | - Si Yang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China
| | - Dong-Ling Li
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China.
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, PO Box 77#, No.76 Yanta West Road, Xi'an City, 710061, Shaanxi Province, PR China.
| |
Collapse
|
39
|
Intachai K, C Chattipakorn S, Chattipakorn N, Shinlapawittayatorn K. Revisiting the Cardioprotective Effects of Acetylcholine Receptor Activation against Myocardial Ischemia/Reperfusion Injury. Int J Mol Sci 2018; 19:ijms19092466. [PMID: 30134547 PMCID: PMC6164157 DOI: 10.3390/ijms19092466] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
Acute myocardial infarction (AMI) is the most common cause of acute myocardial injury and its most clinically significant form. The most effective treatment for AMI is to restore an adequate coronary blood flow to the ischemic myocardium as quickly as possible. However, reperfusion of an ischemic region can induce cardiomyocyte death, a phenomenon termed “myocardial ischemia/reperfusion (I/R) injury”. Disruption of cardiac parasympathetic (vagal) activity is a common hallmark of a variety of cardiovascular diseases including AMI. Experimental studies have shown that increased vagal activity exerts cardioprotective effects against myocardial I/R injury. In addition, acetylcholine (ACh), the principle cardiac vagal neurotransmitter, has been shown to replicate the cardioprotective effects of cardiac ischemic conditioning. Moreover, studies have shown that cardiomyocytes can synthesize and secrete ACh, which gives further evidence concerning the importance of the non-neuronal cholinergic signaling cascades. This suggests that the activation of ACh receptors is involved in cardioprotection against myocardial I/R injury. There are two types of ACh receptors (AChRs), namely muscarinic and nicotinic receptors (mAChRs and nAChRs, respectively). However, the effects of AChRs activation in cardioprotection during myocardial I/R are still not fully understood. In this review, we summarize the evidence suggesting the association between AChRs activation with both electrical and pharmacological interventions and the cardioprotection during myocardial I/R, as well as outline potential mechanisms underlying these cardioprotective effects.
Collapse
Affiliation(s)
- Kannaporn Intachai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
- Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
40
|
Differential temporal inhibition of mitochondrial fission by Mdivi-1 exerts effective cardioprotection in cardiac ischemia/reperfusion injury. Clin Sci (Lond) 2018; 132:1669-1683. [PMID: 30065084 DOI: 10.1042/cs20180510] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 12/26/2022]
Abstract
Altered cardiac mitochondrial dynamics with excessive fission is a predominant cause of cardiac dysfunction during ischemia/reperfusion (I/R) injury. Although pre-ischemic inhibition of mitochondrial fission has been shown to improve cardiac function in I/R injury, the effects of this inhibitor given at different time-points during cardiac I/R injury are unknown. Fifty male Wistar rats were subjected to sham and cardiac I/R injury. For cardiac I/R injury, rats were randomly divided into pre-ischemia, during-ischemia, and upon onset of reperfusion group. A mitochondrial fission inhibitor, Mdivi-1 (mitochondrial division inhibitor 1) (1.2 mg/kg) was used. During I/R protocols, the left ventricular (LV) function, arrhythmia score, and mortality rate were determined. Then, the heart was removed to determine infarct size, mitochondrial function, mitochondrial dynamics, and apoptosis. Our results showed that Mdivi-1 given prior to ischemia, exerted the highest level of cardioprotection quantitated through the attenuated incidence of arrhythmia, reduced infarct size, improved cardiac mitochondrial function and fragmentation, and decreased cardiac apoptosis, leading to preserved LV function during I/R injury. Mdivi-1 administered during ischemia and upon the onset of reperfusion also improved cardiac mitochondrial function and LV function, but at a lower efficacy than when it was given prior to ischemia. Taken together, mitochondrial fission inhibition after myocardial ischemic insults still exerts cardioprotection by attenuating mitochondrial dysfunction and dynamic imbalance, leading to decreased infarct size and ultimately improved LV function after acute cardiac I/R injury in rats. These findings indicate its potential clinical usefulness.
Collapse
|
41
|
Basalay MV, Davidson SM, Gourine AV, Yellon DM. Neural mechanisms in remote ischaemic conditioning in the heart and brain: mechanistic and translational aspects. Basic Res Cardiol 2018; 113:25. [PMID: 29858664 PMCID: PMC5984640 DOI: 10.1007/s00395-018-0684-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/02/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
Abstract
Remote ischaemic conditioning (RIC) is a promising method of cardioprotection, with numerous clinical studies having demonstrated its ability to reduce myocardial infarct size and improve prognosis. On the other hand, there are several clinical trials, in particular those conducted in the setting of elective cardiac surgery, that have failed to show any benefit of RIC. These contradictory data indicate that there is insufficient understanding of the mechanisms underlying RIC. RIC is now known to signal indiscriminately, protecting not only the heart, but also other organs. In particular, experimental studies have demonstrated that it is able to reduce infarct size in an acute ischaemic stroke model. However, the mechanisms underlying RIC-induced neuroprotection are even less well understood than for cardioprotection. The existence of bidirectional feedback interactions between the heart and the brain suggests that the mechanisms of RIC-induced neuroprotection and cardioprotection should be studied as a whole. This review, therefore, addresses the topic of the neural component of the RIC mechanism.
Collapse
Affiliation(s)
- Marina V Basalay
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Andrey V Gourine
- Department of Cardiology, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
42
|
Nuntaphum W, Pongkan W, Wongjaikam S, Thummasorn S, Tanajak P, Khamseekaew J, Intachai K, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K. Vagus nerve stimulation exerts cardioprotection against myocardial ischemia/reperfusion injury predominantly through its efferent vagal fibers. Basic Res Cardiol 2018; 113:22. [PMID: 29744667 DOI: 10.1007/s00395-018-0683-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 01/08/2023]
Abstract
Vagus nerve stimulation (VNS) has been shown to exert cardioprotection against myocardial ischemia/reperfusion (I/R) injury. However, whether the cardioprotection of VNS is mainly due to direct activation through its ipsilateral efferent fibers (motor) rather than indirect effects mediated by the afferent fibers (sensory) have not been clearly understood. We hypothesized that VNS exerts cardioprotection predominantly through its efferent vagal fibers. Thirty swine (30-35 kg) were randomized into five groups: I/R no VNS (I/R), and left mid-cervical VNS with both vagal trunks intact (LC-VNS), with left vagus nerve transection (LtVNX), with right vagus nerve transection (RtVNX) and with atropine pretreatment (Atropine), respectively. VNS was applied at the onset of ischemia (60 min) and continued until the end of reperfusion (120 min). Cardiac function, infarct size, arrhythmia score, myocardial connexin43 expression, apoptotic markers, oxidative stress markers, inflammatory markers (TNF-α and IL-10) and cardiac mitochondrial function, dynamics and fatty acid oxidation (MFN2, OPA1, DRP1, PGC1α and CPT1) were determined. LC-VNS exerted cardioprotection against myocardial I/R injury via improvement of mitochondrial function and dynamics and shifted cardiac fatty acid metabolism toward beta oxidation. However, LC-VNS and LtVNX, both efferent vagal fibers are intact, produced more profound cardioprotection, particularly infarct size reduction, decreased arrhythmia score, oxidative stress and apoptosis and attenuated mitochondrial dysfunction compared to RtVNX. These beneficial effects of VNS were abolished by atropine. Our findings suggest that selective efferent VNS may potentially be effective in attenuating myocardial I/R injury. Moreover, VNS required the contralateral efferent vagal activities to fully provide its cardioprotection.
Collapse
Affiliation(s)
- Watthana Nuntaphum
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Wanpitak Pongkan
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Suwakon Wongjaikam
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Savitree Thummasorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pongpan Tanajak
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Juthamas Khamseekaew
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Kannaporn Intachai
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
43
|
Buchholz B, Kelly J, Muñoz M, Bernatené EA, Méndez Diodati N, González Maglio DH, Dominici FP, Gelpi RJ. Vagal stimulation mimics preconditioning and postconditioning of ischemic myocardium in mice by activating different protection mechanisms. Am J Physiol Heart Circ Physiol 2018; 314:H1289-H1297. [PMID: 29631370 DOI: 10.1152/ajpheart.00286.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vagal stimulation (VS) during myocardial ischemia and reperfusion has beneficial effects. However, it is not known whether short-term VS applied before ischemia or at the onset of reperfusion protects the ischemic myocardium. This study was designed to determine whether short-term VS applied before ischemia or at the onset of reperfusion reduces myocardial infarct size (IS), mimicking classic preconditioning and postconditioning. A second objective was to study the participation of muscarinic and nicotinic receptors in the protection of both preischemic and reperfusion stimulation. FVB mice were subjected to 30 min of regional myocardial ischemia followed by 2 h of reperfusion without VS, with 10-min preischemic VS (pVS), or with VS during the first 10 min of reperfusion (rVS). pVS reduced IS, and this effect was abolished by atropine and wortmannin. rVS also reduced IS in a similar manner, and this effect was abolished by the α7-nicotinic acetylcholine receptor blocker methyllycaconitine. pVS increased Akt and glycogen synthase kinase (GSK)-3β phosphorylation. No changes in Akt and GSK-3β phosphorylation were observed in rVS. Stimulation-mediated IS protection was abolished with the JAK2 blocker AG490. rVS did not modify IL-6 and IL-10 levels in the plasma or myocardium. Splenic denervation and splenectomy did not abolish the protective effect of rVS. In conclusion, pVS and rVS reduced IS by different mechanisms: pVS activated the Akt/GSK-3β muscarinic pathway, whereas rVS activated α7-nicotinic acetylcholine receptors and JAK2, independently of the cholinergic anti-inflammatory pathway. NEW & NOTEWORTHY Our data suggest, for the first time, that vagal stimulation applied briefly either before ischemia or at the beginning of reperfusion mimics classic preconditioning and postconditioning and reduces myocardial infarction, activating different mechanisms. We also infer an important role of α7-nicotinic receptors for myocardial protection independent of the cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Bruno Buchholz
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Instituto de Fisiopatología Cardiovascular , Buenos Aires , Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular, Facultad de Medicina , Buenos Aires , Argentina
| | - Jazmín Kelly
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Instituto de Fisiopatología Cardiovascular , Buenos Aires , Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular, Facultad de Medicina , Buenos Aires , Argentina
| | - Marina Muñoz
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas , Buenos Aires , Argentina
| | - Eduardo A Bernatené
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Instituto de Fisiopatología Cardiovascular , Buenos Aires , Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular, Facultad de Medicina , Buenos Aires , Argentina
| | - Nahuel Méndez Diodati
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Instituto de Fisiopatología Cardiovascular , Buenos Aires , Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular, Facultad de Medicina , Buenos Aires , Argentina
| | - Daniel H González Maglio
- Cátedra de Inmunología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires , Buenos Aires , Argentina.,Instituto de Estudios de la Inmunidad Humoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires , Argentina
| | - Fernando P Dominici
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas , Buenos Aires , Argentina
| | - Ricardo J Gelpi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Patología, Instituto de Fisiopatología Cardiovascular , Buenos Aires , Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Bioquímica y Medicina Molecular, Facultad de Medicina , Buenos Aires , Argentina
| |
Collapse
|
44
|
Neuromodulation Therapies for Cardiac Disease. Neuromodulation 2018. [DOI: 10.1016/b978-0-12-805353-9.00129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Kiss A, Tratsiakovich Y, Mahdi A, Yang J, Gonon AT, Podesser BK, Pernow J. Vagal nerve stimulation reduces infarct size via a mechanism involving the alpha-7 nicotinic acetylcholine receptor and downregulation of cardiac and vascular arginase. Acta Physiol (Oxf) 2017; 221:174-181. [PMID: 28238218 DOI: 10.1111/apha.12861] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/17/2016] [Accepted: 02/21/2017] [Indexed: 02/05/2023]
Abstract
AIMS Vagal nerve stimulation (VNS) protects from myocardial and vascular injury following myocardial ischaemia and reperfusion (IR) via a mechanism involving activation of alpha-7 nicotinic acetylcholine receptor (α7 nAChR) and reduced inflammation. Arginase is involved in development of myocardial IR injury driven by inflammatory mediators. The aim of the study was to clarify whether VNS downregulates myocardial and vascular arginase via a mechanism involving activation of α7 nAChR following myocardial IR. METHODS Anaesthetized rats were randomized to (i) sham-operated, (ii) control IR (30-min ischaemia and 2-h reperfusion, (iii) VNS throughout IR, (iv) the arginase inhibitor nor-NOHA+IR, (v) nor-NOHA+VNS+IR, (vi) selective α7 nAChR blockade by methyllycaconitine (MLA) followed by VNS throughout IR and (vii) MLA+IR. RESULTS Infarct size was reduced by VNS compared to control IR (41 ± 3% vs. 67 ± 2% of the myocardium at risk, P < 0.001). Myocardial IR increased myocardial and aortic arginase activity 1.7- and 3.1-fold respectively (P < 0.05). VNS attenuated the increase in arginase activity compared to control IR both in the myocardium and aorta (P < 0.05). MLA partially abolished the cardioprotective effect of VNS and completely abrogated the effect of VNS on arginase activity. Arginase inhibition combined with VNS did not further reduce infarct size. CONCLUSION Vagal nerve stimulation reduced infarct size and reversed the upregulation of arginase induced by IR both in the myocardium and aorta via a mechanism depending on α7 nAChR activation. The data suggest that the cardioprotective effect of VNS is mediated via reduction in arginase activity.
Collapse
Affiliation(s)
- A. Kiss
- Department of Medicine; Unit of Cardiology; Karolinska Institutet; Heart and Vascular Theme; Karolinska University Hospital; Stockholm Sweden
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research; Medical University of Vienna; Vienna Austria
| | - Y. Tratsiakovich
- Department of Medicine; Unit of Cardiology; Karolinska Institutet; Heart and Vascular Theme; Karolinska University Hospital; Stockholm Sweden
| | - A. Mahdi
- Department of Medicine; Unit of Cardiology; Karolinska Institutet; Heart and Vascular Theme; Karolinska University Hospital; Stockholm Sweden
| | - J. Yang
- Department of Medicine; Unit of Cardiology; Karolinska Institutet; Heart and Vascular Theme; Karolinska University Hospital; Stockholm Sweden
| | - A. T. Gonon
- Department of Medicine; Unit of Cardiology; Karolinska Institutet; Heart and Vascular Theme; Karolinska University Hospital; Stockholm Sweden
| | - B. K. Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research; Medical University of Vienna; Vienna Austria
| | - J. Pernow
- Department of Medicine; Unit of Cardiology; Karolinska Institutet; Heart and Vascular Theme; Karolinska University Hospital; Stockholm Sweden
| |
Collapse
|
46
|
Bezerra OC, França CM, Rocha JA, Neves GA, Souza PRM, Teixeira Gomes M, Malfitano C, Loleiro TCA, Dourado PM, Llesuy S, de Angelis K, Irigoyen MCC, Ulloa L, Consolim-Colombo FM. Cholinergic Stimulation Improves Oxidative Stress and Inflammation in Experimental Myocardial Infarction. Sci Rep 2017; 7:13687. [PMID: 29057895 PMCID: PMC5651932 DOI: 10.1038/s41598-017-14021-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/02/2017] [Indexed: 01/08/2023] Open
Abstract
We previously reported that cholinergic stimulation with pyridostigmine (PY) induces anti-inflammatory cell recruitment soon after myocardial infarction (MI). In this study, we evaluated the anti-inflammatory effects of PY during the proliferative phase of cardiac repair by analyzing the infiltration of macrophages, Treg lymphocytes, oxidative stress and inflammatory cytokines. Wistar rats underwent control sham surgery or ligation of the left coronary artery and were randomly allocated to remain untreated (untreated infarcted group, I) or to receive PY (30 mg·kg(−1)·day(−1)) in the supplied water (infarcted treated group, I + PY). Blood pressure and heart rate variability were registered at day 5 post-MI. The animals were euthanized 7 days after thoracotomy, when the hearts were removed and processed for immunohistochemistry (CD68, CD206, FOXP3), cytokines (IL-1β, IL-6, IL-10, TNF-α) and oxidative stress (superoxide dismutase, catalase, glutathione peroxidase, lipidic and protein peroxidation). PY treatment increased parasympathetic modulation, M2 macrophages and the anti-oxidant enzyme activity but reduced protein oxidation (carbonyls) and the concentration of IL-1β, IL-6, TNF-α and IL-10. Cholinergic stimulation induces parasympathetic neuro-immune modulation and anti-inflammatory cell enrollment as well as prevents oxidative stress and cytokine production after MI.
Collapse
Affiliation(s)
| | - Cristiane Miranda França
- Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil. .,Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, 97229, USA.
| | - Juraci Aparecida Rocha
- Hypertension Unit, Heart Institute (INCOR) School of medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Gizele A Neves
- Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | | | | | - Christiane Malfitano
- Hypertension Unit, Heart Institute (INCOR) School of medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Tatiane C Alba Loleiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paulo Magno Dourado
- Hypertension Unit, Heart Institute (INCOR) School of medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Susana Llesuy
- Universidad de Buenos Aires, Buenos Aires, Argentina, Facultad de Farmácia y Bioquímica, Buenos Aires, Argentina
| | | | - Maria Claudia C Irigoyen
- Hypertension Unit, Heart Institute (INCOR) School of medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Luis Ulloa
- Center of Immunology and Inflammation, Rutgerts - New Jersey Medical School, Newark, NJ, 07101, USA
| | - Fernanda M Consolim-Colombo
- Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil.,Hypertension Unit, Heart Institute (INCOR) School of medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
47
|
Cheng YF, Chang YT, Chen WH, Shih HC, Chen YH, Shyu BC, Chen CC. Cardioprotection induced in a mouse model of neuropathic pain via anterior nucleus of paraventricular thalamus. Nat Commun 2017; 8:826. [PMID: 29018188 PMCID: PMC5635036 DOI: 10.1038/s41467-017-00891-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
Myocardial infarction is the leading cause of death worldwide. Restoration of blood flow rescues myocardium but also causes ischemia-reperfusion injury. Here, we show that in a mouse model of chronic neuropathic pain, ischemia-reperfusion injury following myocardial infarction is reduced, and this cardioprotection is induced via an anterior nucleus of paraventricular thalamus (PVA)-dependent parasympathetic pathway. Pharmacological inhibition of extracellular signal-regulated kinase activation in the PVA abolishes neuropathic pain-induced cardioprotection, whereas activation of PVA neurons pharmacologically, or optogenetic stimulation, is sufficient to induce cardioprotection. Furthermore, neuropathic injury and optogenetic stimulation of PVA neurons reduce the heart rate. These results suggest that the parasympathetic nerve is responsible for this unexpected cardioprotective effect of chronic neuropathic pain in mice. Various forms of preconditioning can prevent ischemic-reperfusion injury after myocardial infarction. Here, the authors show that in mice, the presence of chronic neuropathic pain can have a cardioprotective effect, and that this is dependent on neural activation in the paraventricular thalamus.
Collapse
Affiliation(s)
- Yi-Fen Cheng
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Ya-Ting Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.,International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 115, Taiwan
| | - Wei-Hsin Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Hsi-Chien Shih
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Yen-Hui Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan
| | - Chien-Chang Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan. .,International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
48
|
Salavatian S, Beaumont E, Gibbons D, Hammer M, Hoover DB, Armour JA, Ardell JL. Thoracic spinal cord and cervical vagosympathetic neuromodulation obtund nodose sensory transduction of myocardial ischemia. Auton Neurosci 2017; 208:57-65. [PMID: 28919363 DOI: 10.1016/j.autneu.2017.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Autonomic regulation therapy involving either vagus nerve stimulation (VNS) or spinal cord stimulation (SCS) represents emerging bioelectronic therapies for heart disease. The objective of this study was to determine if VNS and/or SCS modulate primary cardiac afferent sensory transduction of the ischemic myocardium. METHODS Using extracellular recordings in 19 anesthetized canines, of 88 neurons evaluated, 36 ventricular-related nodose ganglia sensory neurons were identified by their functional activity responses to epicardial touch, chemical activation of their sensory neurites (epicardial veratridine) and great vessel (descending aorta or inferior vena cava) occlusion. Neural responses to 1min left anterior descending (LAD) coronary artery occlusion (CAO) were then evaluated. These interventions were then studied following either: i) SCS [T1-T3 spinal level; 50Hz, 90% motor threshold] or ii) cervical VNS [15-20Hz; 1.2× threshold]. RESULTS LAD occlusion activated 66% of identified nodose ventricular sensory neurons (0.33±0.08-0.79±0.20Hz; baseline to CAO; p<0.002). Basal activity of cardiac-related nodose neurons was differentially reduced by VNS (0.31±0.11 to 0.05±0.02Hz; p<0.05) as compared to SCS (0.36±0.12 to 0.28±0.14, p=0.59), with their activity response to transient LAD CAO being suppressed by either SCS (0.85±0.39-0.11±0.04Hz; p<0.03) or VNS (0.75±0.27-0.12±0.05Hz; p<0.04). VNS did not alter evoked neural responses of cardiac-related nodose neurons to great vessel occlusion. CONCLUSIONS Both VNS and SCS obtund ventricular ischemia induced enhancement of nodose afferent neuronal inputs to the medulla.
Collapse
Affiliation(s)
- Siamak Salavatian
- UCLA Neurocardiology Research Program of Excellence, Los Angeles, CA, United States; UCLA Cardiac Arrhythmia Center, Los Angeles, CA, United States
| | - Eric Beaumont
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, United States; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, United States
| | - David Gibbons
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Matthew Hammer
- UCLA Neurocardiology Research Program of Excellence, Los Angeles, CA, United States
| | - Donald B Hoover
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, United States; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, United States
| | - J Andrew Armour
- UCLA Neurocardiology Research Program of Excellence, Los Angeles, CA, United States; UCLA Cardiac Arrhythmia Center, Los Angeles, CA, United States
| | - Jeffrey L Ardell
- UCLA Neurocardiology Research Program of Excellence, Los Angeles, CA, United States; UCLA Cardiac Arrhythmia Center, Los Angeles, CA, United States.
| |
Collapse
|
49
|
Yuan Y, Hassel JL, Doytchinova A, Adams D, Wright KC, Meshberger C, Chen LS, Guerra MP, Shen C, Lin SF, Everett TH, Salanova V, Chen PS. Left cervical vagal nerve stimulation reduces skin sympathetic nerve activity in patients with drug resistant epilepsy. Heart Rhythm 2017; 14:1771-1778. [PMID: 28778733 DOI: 10.1016/j.hrthm.2017.07.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND We recently reported that skin sympathetic nerve activity (SKNA) can be used to estimate sympathetic tone in humans. In animal models, vagal nerve stimulation (VNS) can damage the stellate ganglion, reduce stellate ganglion nerve activity, and suppress cardiac arrhythmia. Whether VNS can suppress sympathetic tone in humans remains unclear. OBJECTIVE The purpose of this study was to test the hypothesis that VNS suppresses SKNA in patients with drug-resistant epilepsy. METHODS ECG patch electrodes were used to continuously record SKNA in 26 patients with drug-resistant epilepsy who were admitted for video electroencephalographic monitoring. Among them, 6 (2 men, age 40 ± 11 years) were previously treated with VNS and 20 (7 men, age 37 ± 8 years) were not. The signals from ECG leads I and II were filtered to detect SKNA. RESULTS VNS had an on-time of 30 seconds and off-time of 158 ± 72 seconds, with output of 1.92 ± 0.42 mA at 24.17 ± 2.01 Hz. Average SKNA during VNS off-time was 1.06 μV (95% confidence interval [CI] 0.93-1.18) in lead I and 1.13 μV (95% CI 0.99-1.27) in lead II, which was significantly lower than 1.38 μV (95% CI 1.01-1.75; P = .036) and 1.38 μV (95% CI 0.98-1.78; P = .035) in the control group, respectively. Heart rate was 65 bpm (95% CI 59-71) in the VNS group, which was significantly lower than 77 bpm (95% CI 71-83) in the control group. CONCLUSION Patients with VNS had significantly lower SKNA than those without VNS.
Collapse
Affiliation(s)
- Yuan Yuan
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Cardiothoracic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jonathan L Hassel
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anisiia Doytchinova
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - David Adams
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Keith C Wright
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chad Meshberger
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lan S Chen
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Maria P Guerra
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Changyu Shen
- Richard and Susan Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Shien-Fong Lin
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan
| | - Thomas H Everett
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Vicenta Salanova
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
50
|
Headrick JP, Peart JN, Budiono BP, Shum DH, Neumann DL, Stapelberg NJ. The heartbreak of depression: ‘Psycho-cardiac’ coupling in myocardial infarction. J Mol Cell Cardiol 2017; 106:14-28. [DOI: 10.1016/j.yjmcc.2017.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/25/2022]
|