1
|
Loh YH, Lv J, Goh Y, Sun X, Zhu X, Muheyati M, Luan Y. Remodeling of T-Tubules and Associated Calcium Handling Dysfunction in Heart Failure: Mechanisms and Therapeutic Insights. Can J Cardiol 2024:S0828-282X(24)01035-3. [PMID: 39455023 DOI: 10.1016/j.cjca.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
In cardiomyocytes, transverse tubules (T-tubules) are sarcolemmal invaginations that facilitate excitation-contraction coupling (ECC) and diastolic function. The clinical significance of T-tubules has become evident as their remodeling is recognized as a hallmark feature of heart failure (HF) and a key contributor to disrupted Ca2+ homeostasis, compromised cardiac function, and arrhythmogenesis. Further investigations have revealed that T-tubule remodeling is particularly pronounced in HF with reduced ejection fraction (HFrEF), but not in HF with preserved ejection fraction (HFpEF), implying that T-tubule remodeling may play a crucial pathophysiological role in HFrEF. While research on the functional importance of T-tubules is ongoing due to their complexity, T-tubule remodeling has been found to be reversible. Such finding has triggered a surge in studies aimed at identifying specific therapeutic approaches for HFrEF. This review discusses the functional importance of T-tubules and their microdomains, the pathophysiology of T-tubule remodeling, and the potential mechanisms of current HFrEF therapeutic approaches in reversing T-tubule alterations. We also highlight discrepancies regarding the roles of T-tubule proteins in the recovery process across studies to offer valuable insights for future research.
Collapse
Affiliation(s)
- Yi Hao Loh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Jingyi Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yenfang Goh
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xiangjie Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Xianfeng Zhu
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; Department of Critical Care Medicine, Hangzhou Ninth People's Hospital, China
| | - Muergen Muheyati
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
| | - Yi Luan
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China; Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China; School of Medicine, Shaoxing University, China.
| |
Collapse
|
2
|
Zhao S, Hulsurkar MM, Lahiri SK, Aguilar-Sanchez Y, Munivez E, Müller FU, Jain A, Malovannaya A, Yiu CHK, Reilly S, Wehrens XHT. Atrial proteomic profiling reveals a switch towards profibrotic gene expression program in CREM-IbΔC-X mice with persistent atrial fibrillation. J Mol Cell Cardiol 2024; 190:1-12. [PMID: 38514002 DOI: 10.1016/j.yjmcc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/19/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Overexpression of the CREM (cAMP response element-binding modulator) isoform CREM-IbΔC-X in transgenic mice (CREM-Tg) causes the age-dependent development of spontaneous AF. PURPOSE To identify key proteome signatures and biological processes accompanying the development of persistent AF through integrated proteomics and bioinformatics analysis. METHODS Atrial tissue samples from three CREM-Tg mice and three wild-type littermates were subjected to unbiased mass spectrometry-based quantitative proteomics, differential expression and pathway enrichment analysis, and protein-protein interaction (PPI) network analysis. RESULTS A total of 98 differentially expressed proteins were identified. Gene ontology analysis revealed enrichment for biological processes regulating actin cytoskeleton organization and extracellular matrix (ECM) dynamics. Changes in ITGAV, FBLN5, and LCP1 were identified as being relevant to atrial fibrosis and structural based on expression changes, co-expression patterns, and PPI network analysis. Comparative analysis with previously published datasets revealed a shift in protein expression patterns from ion-channel and metabolic regulators in young CREM-Tg mice to profibrotic remodeling factors in older CREM-Tg mice. Furthermore, older CREM-Tg mice exhibited protein expression patterns reminiscent of those seen in humans with persistent AF. CONCLUSIONS This study uncovered distinct temporal changes in atrial protein expression patterns with age in CREM-Tg mice consistent with the progressive evolution of AF. Future studies into the role of the key differentially abundant proteins identified in this study in AF progression may open new therapeutic avenues to control atrial fibrosis and substrate development in AF.
Collapse
Affiliation(s)
- Shuai Zhao
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohit M Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Satadru K Lahiri
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuriana Aguilar-Sanchez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elda Munivez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank Ulrich Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA; Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chi Him Kendrick Yiu
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, NIHR Oxford BRC, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, NIHR Oxford BRC, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine (in Cardiology), Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics (in Cardiology), Baylor College of Medicine, Houston, TX 77030, USA; Center for Space Medicine, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
3
|
Nelson AD, Catalfio AM, Gupta JP, Min L, Caballero-Florán RN, Dean KP, Elvira CC, Derderian KD, Kyoung H, Sahagun A, Sanders SJ, Bender KJ, Jenkins PM. Physical and functional convergence of the autism risk genes Scn2a and Ank2 in neocortical pyramidal cell dendrites. Neuron 2024; 112:1133-1149.e6. [PMID: 38290518 PMCID: PMC11097922 DOI: 10.1016/j.neuron.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 04/26/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Abstract
Dysfunction in sodium channels and their ankyrin scaffolding partners have both been implicated in neurodevelopmental disorders, including autism spectrum disorder (ASD). In particular, the genes SCN2A, which encodes the sodium channel NaV1.2, and ANK2, which encodes ankyrin-B, have strong ASD association. Recent studies indicate that ASD-associated haploinsufficiency in Scn2a impairs dendritic excitability and synaptic function in neocortical pyramidal cells, but how NaV1.2 is anchored within dendritic regions is unknown. Here, we show that ankyrin-B is essential for scaffolding NaV1.2 to the dendritic membrane of mouse neocortical neurons and that haploinsufficiency of Ank2 phenocopies intrinsic dendritic excitability and synaptic deficits observed in Scn2a+/- conditions. These results establish a direct, convergent link between two major ASD risk genes and reinforce an emerging framework suggesting that neocortical pyramidal cell dendritic dysfunction can contribute to neurodevelopmental disorder pathophysiology.
Collapse
Affiliation(s)
- Andrew D Nelson
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Amanda M Catalfio
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Julie P Gupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lia Min
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Kendall P Dean
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carina C Elvira
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kimberly D Derderian
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Kyoung
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Atehsa Sahagun
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Stephan J Sanders
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J Bender
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Paul M Jenkins
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Lee C, Xu S, Samad T, Goodyer WR, Raissadati A, Heinrich P, Wu SM. The cardiac conduction system: History, development, and disease. Curr Top Dev Biol 2024; 156:157-200. [PMID: 38556422 DOI: 10.1016/bs.ctdb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The heart is the first organ to form during embryonic development, establishing the circulatory infrastructure necessary to sustain life and enable downstream organogenesis. Critical to the heart's function is its ability to initiate and propagate electrical impulses that allow for the coordinated contraction and relaxation of its chambers, and thus, the movement of blood and nutrients. Several specialized structures within the heart, collectively known as the cardiac conduction system (CCS), are responsible for this phenomenon. In this review, we discuss the discovery and scientific history of the mammalian cardiac conduction system as well as the key genes and transcription factors implicated in the formation of its major structures. We also describe known human diseases related to CCS development and explore existing challenges in the clinical context.
Collapse
Affiliation(s)
- Carissa Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Sidra Xu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Tahmina Samad
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States; Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - William R Goodyer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alireza Raissadati
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Paul Heinrich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Cardiology, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States.
| |
Collapse
|
5
|
Zhao S, Hulsurkar MM, Lahiri SK, Aguilar-Sanchez Y, Munivez E, Müller FU, Jain A, Malovannaya A, Yiu K, Reilly S, Wehrens XH. Atrial Proteomic Profiling Reveals a Switch Towards Profibrotic Gene Expression Program in CREM-IbΔC-X Mice with Persistent Atrial Fibrillation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575097. [PMID: 38260363 PMCID: PMC10802622 DOI: 10.1101/2024.01.10.575097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Overexpression of the CREM (cAMP response element-binding modulator) isoform CREM-IbΔC-X in transgenic mice (CREM-Tg) causes the age-dependent development of spontaneous AF. Purpose To identify key proteome signatures and biological processes accompanying the development of persistent AF through integrated proteomics and bioinformatics analysis. Methods Atrial tissue samples from three CREM-Tg mice and three wild-type littermates were subjected to unbiased mass spectrometry-based quantitative proteomics, differential expression and pathway enrichment analysis, and protein-protein interaction (PPI) network analysis. Results A total of 98 differentially expressed proteins were identified. Gene ontology analysis revealed enrichment for biological processes regulating actin cytoskeleton organization and extracellular matrix (ECM) dynamics. Changes in ITGAV, FBLN5, and LCP1 were identified as being relevant to atrial fibrosis and remodeling based on expression changes, co-expression patterns, and PPI network analysis. Comparative analysis with previously published datasets revealed a shift in protein expression patterns from ion-channel and metabolic regulators in young CREM-Tg mice to profibrotic remodeling factors in older CREM-Tg mice. Furthermore, older CREM-Tg mice exhibited protein expression patterns that resembled those of humans with persistent AF. Conclusions This study uncovered distinct temporal changes in atrial protein expression patterns with age in CREM-Tg mice consistent with the progressive evolution of AF. Future studies into the role of the key differentially abundant proteins identified in this study in AF progression may open new therapeutic avenues to control atrial fibrosis and substrate development in AF.
Collapse
Affiliation(s)
- Shuai Zhao
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohit M. Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Satadru K. Lahiri
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuriana Aguilar-Sanchez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elda Munivez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank Ulrich Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kendrick Yiu
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, NIHR Oxford BRC, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, NIHR Oxford BRC, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine (in Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics (in Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, USA
| |
Collapse
|
6
|
Hou J, Lu K, Chen P, Wang P, Li J, Yang J, Liu Q, Xue Q, Tang Z, Pei H. Comprehensive viewpoints on heart rate variability at high altitude. Clin Exp Hypertens 2023; 45:2238923. [PMID: 37552638 DOI: 10.1080/10641963.2023.2238923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVES Hypoxia is a physiological state characterized by reduced oxygen levels in organs and tissues. It is a common clinicopathological process and a major cause of health problems in highland areas. Heart rate variability (HRV) is a measure of the balance in autonomic innervation to the heart. It provides valuable information on the regulation of the cardiovascular system by neurohumoral factors, and changes in HRV reflect the complex interactions between multiple systems. In this review, we provide a comprehensive overview of the relationship between high-altitude hypoxia and HRV. We summarize the different mechanisms of diseases caused by hypoxia and explore the changes in HRV across various systems. Additionally, we discuss relevant pharmaceutical interventions. Overall, this review aims to provide research ideas and assistance for in-depth studies on HRV. By understanding the intricate relationship between high-altitude hypoxia and HRV, we can gain insights into the underlying mechanisms and potential therapeutic approaches to mitigate the effects of hypoxia on cardiovascular and other systems. METHODS The relevant literature was collected systematically from scientific database, including PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Baidu Scholar, as well as other literature sources, such as classic books of hypoxia. RESULTS There is a close relationship between heart rate variability and high-altitude hypoxia. Heart rate variability is an indicator that evaluates the impact of hypoxia on the cardiovascular system and other related systems. By improving the observation of HRV, we can estimate the progress of cardiovascular diseases and predict the impact on other systems related to cardiovascular health. At the same time, changes in heart rate variability can be used to observe the efficacy of preventive drugs for altitude related diseases. CONCLUSIONS HRV can be used to assess autonomic nervous function under various systemic conditions, and can be used to predict and monitor diseases caused by hypoxia at high altitude. Investigating the correlation between high altitude hypoxia and heart rate variability can help make HRV more rapid, accurate, and effective for the diagnosis of plateau-related diseases.
Collapse
Affiliation(s)
- Jun Hou
- Department of Cardiology, Chengdu Third People's Hospital, Affiliated Hospital of Southwest Jiao Tong University, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
| | - Keji Lu
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Peiwen Chen
- School of Medical and Life Sciences, Chengdu University of TCM, Chengdu, China
| | - Peng Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jing Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| | - Jiali Yang
- Department of Cardiology, Chengdu Third People's Hospital, Affiliated Hospital of Southwest Jiao Tong University, Cardiovascular Disease Research Institute of Chengdu, Chengdu, China
| | - Qing Liu
- Department of Medical Engineering, The 950th Hospital of PLA, Yecheng, Xinjiang, China
| | - Qiang Xue
- Department of Cardiology Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Zhaobing Tang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Haifeng Pei
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu, China
| |
Collapse
|
7
|
Yoon S, Santos MD, Forrest MP, Pratt CP, Khalatyan N, Mohler PJ, Savas JN, Penzes P. Early developmental deletion of forebrain Ank2 causes seizure-related phenotypes by reshaping the synaptic proteome. Cell Rep 2023; 42:112784. [PMID: 37428632 PMCID: PMC10566302 DOI: 10.1016/j.celrep.2023.112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/21/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023] Open
Abstract
Rare genetic variants in ANK2, which encodes ankyrin-B, are associated with neurodevelopmental disorders (NDDs); however, their pathogenesis is poorly understood. We find that mice with prenatal deletion in cortical excitatory neurons and oligodendrocytes (Ank2-/-:Emx1-Cre), but not with adolescent deletion in forebrain excitatory neurons (Ank2-/-:CaMKIIα-Cre), display severe spontaneous seizures, increased mortality, hyperactivity, and social deficits. Calcium imaging of cortical slices from Ank2-/-:Emx1-Cre mice shows increased neuronal calcium event amplitude and frequency, along with network hyperexcitability and hypersynchrony. Quantitative proteomic analysis of cortical synaptic membranes reveals upregulation of dendritic spine plasticity-regulatory proteins and downregulation of intermediate filaments. Characterization of the ankyrin-B interactome identifies interactors associated with autism and epilepsy risk factors and synaptic proteins. The AMPA receptor antagonist, perampanel, restores cortical neuronal activity and partially rescues survival in Ank2-/-:Emx1-Cre mice. Our findings suggest that synaptic proteome alterations resulting from Ank2 deletion impair neuronal activity and synchrony, leading to NDDs-related behavioral impairments.
Collapse
Affiliation(s)
- Sehyoun Yoon
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc Dos Santos
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Marc P Forrest
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Christopher P Pratt
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Natalia Khalatyan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Peter J Mohler
- Departments of Internal Medicine and Physiology, Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia Research; Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Northwestern University, Center for Autism and Neurodevelopment, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Maurya S, Mills RW, Kahnert K, Chiang DY, Bertoli G, Lundegaard PR, Duran MPH, Zhang M, Rothenberg E, George AL, MacRae CA, Delmar M, Lundby A. Outlining cardiac ion channel protein interactors and their signature in the human electrocardiogram. NATURE CARDIOVASCULAR RESEARCH 2023; 2:673-692. [PMID: 38666184 PMCID: PMC11041666 DOI: 10.1038/s44161-023-00294-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/31/2023] [Indexed: 04/28/2024]
Abstract
Protein-protein interactions are essential for normal cellular processes and signaling events. Defining these interaction networks is therefore crucial for understanding complex cellular functions and interpretation of disease-associated gene variants. We need to build a comprehensive picture of the interactions, their affinities and interdependencies in the specific organ to decipher hitherto poorly understood signaling mechanisms through ion channels. Here we report the experimental identification of the ensemble of protein interactors for 13 types of ion channels in murine cardiac tissue. Of these, we validated the functional importance of ten interactors on cardiac electrophysiology through genetic knockouts in zebrafish, gene silencing in mice, super-resolution microscopy and patch clamp experiments. Furthermore, we establish a computational framework to reconstruct human cardiomyocyte ion channel networks from deep proteome mapping of human heart tissue and human heart single-cell gene expression data. Finally, we integrate the ion channel interactome with human population genetics data to identify proteins that influence the electrocardiogram (ECG). We demonstrate that the combined channel network is enriched for proteins influencing the ECG, with 44% of the network proteins significantly associated with an ECG phenotype. Altogether, we define interactomes of 13 major cardiac ion channels, contextualize their relevance to human electrophysiology and validate functional roles of ten interactors, including two regulators of the sodium current (epsin-2 and gelsolin). Overall, our data provide a roadmap for our understanding of the molecular machinery that regulates cardiac electrophysiology.
Collapse
Affiliation(s)
- Svetlana Maurya
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert W. Mills
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Konstantin Kahnert
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Y. Chiang
- Cardiovascular Medicine Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Giorgia Bertoli
- Division of Cardiology, NYU School of Medicine, New York, NY USA
| | - Pia R. Lundegaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mingliang Zhang
- Division of Cardiology, NYU School of Medicine, New York, NY USA
| | - Eli Rothenberg
- Division of Pharmacology, NYU School of Medicine, New York, NY USA
| | - Alfred L. George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Calum A. MacRae
- Cardiovascular Medicine Division, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA USA
| | - Mario Delmar
- Division of Cardiology, NYU School of Medicine, New York, NY USA
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Oh H, Lee S, Oh Y, Kim S, Kim YS, Yang Y, Choi W, Yoo YE, Cho H, Lee S, Yang E, Koh W, Won W, Kim R, Lee CJ, Kim H, Kang H, Kim JY, Ku T, Paik SB, Kim E. Kv7/KCNQ potassium channels in cortical hyperexcitability and juvenile seizure-related death in Ank2-mutant mice. Nat Commun 2023; 14:3547. [PMID: 37321992 PMCID: PMC10272139 DOI: 10.1038/s41467-023-39203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Autism spectrum disorders (ASD) represent neurodevelopmental disorders characterized by social deficits, repetitive behaviors, and various comorbidities, including epilepsy. ANK2, which encodes a neuronal scaffolding protein, is frequently mutated in ASD, but its in vivo functions and disease-related mechanisms are largely unknown. Here, we report that mice with Ank2 knockout restricted to cortical and hippocampal excitatory neurons (Ank2-cKO mice) show ASD-related behavioral abnormalities and juvenile seizure-related death. Ank2-cKO cortical neurons show abnormally increased excitability and firing rate. These changes accompanied decreases in the total level and function of the Kv7.2/KCNQ2 and Kv7.3/KCNQ3 potassium channels and the density of these channels in the enlengthened axon initial segment. Importantly, the Kv7 agonist, retigabine, rescued neuronal excitability, juvenile seizure-related death, and hyperactivity in Ank2-cKO mice. These results suggest that Ank2 regulates neuronal excitability by regulating the length of and Kv7 density in the AIS and that Kv7 channelopathy is involved in Ank2-related brain dysfunctions.
Collapse
Affiliation(s)
- Hyoseon Oh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Suho Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Yusang Oh
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Korea
| | - Seongbin Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Young Seo Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - Woochul Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Korea
| | - Ye-Eun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Heejin Cho
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Seungjoon Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Esther Yang
- Department of Anatomy and Brain Korea 21 Graduate Program, Biomedical Science, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, IBS, Daejeon, 34126, Korea
| | - Woojin Won
- Center for Cognition and Sociality, IBS, Daejeon, 34126, Korea
| | - Ryunhee Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - C Justin Lee
- Center for Cognition and Sociality, IBS, Daejeon, 34126, Korea
| | - Hyun Kim
- Department of Anatomy and Brain Korea 21 Graduate Program, Biomedical Science, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
10
|
Wallace MJ, Malhotra N, Mariángelo JIE, Stevens TL, Young LJ, Antwi-Boasiako S, Abdallah D, Takenaka SS, Cavus O, Murphy NP, Han M, Xu X, Mangoni ME, Hund TJ, Roberts JD, Györke S, Mohler PJ, El Refaey M. Impact of stress on cardiac phenotypes in mice harboring an ankyrin-B disease variant. J Biol Chem 2023; 299:104818. [PMID: 37182735 PMCID: PMC10318515 DOI: 10.1016/j.jbc.2023.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023] Open
Abstract
Encoded by ANK2, ankyrin-B (AnkB) is a multifunctional adapter protein critical for the expression and targeting of key cardiac ion channels, transporters, cytoskeletal-associated proteins, and signaling molecules. Mice deficient for AnkB expression are neonatal lethal, and mice heterozygous for AnkB expression display cardiac structural and electrical phenotypes. Human ANK2 loss-of-function variants are associated with diverse cardiac manifestations; however, human clinical 'AnkB syndrome' displays incomplete penetrance. To date, animal models for human arrhythmias have generally been knock-out or transgenic overexpression models and thus the direct impact of ANK2 variants on cardiac structure and function in vivo is not clearly defined. Here, we directly tested the relationship of a single human ANK2 disease-associated variant with cardiac phenotypes utilizing a novel in vivo animal model. At baseline, young AnkBp.E1458G+/+ mice lacked significant structural or electrical abnormalities. However, aged AnkBp.E1458G+/+ mice displayed both electrical and structural phenotypes at baseline including bradycardia and aberrant heart rate variability, structural remodeling, and fibrosis. Young and old AnkBp.E1458G+/+ mice displayed ventricular arrhythmias following acute (adrenergic) stress. In addition, young AnkBp.E1458G+/+ mice displayed structural remodeling following chronic (transverse aortic constriction) stress. Finally, AnkBp.E1458G+/+ myocytes harbored alterations in expression and/or localization of key AnkB-associated partners, consistent with the underlying disease mechanism. In summary, our findings illustrate the critical role of AnkB in in vivo cardiac function as well as the impact of single AnkB loss-of-function variants in vivo. However, our findings illustrate the contribution and in fact necessity of secondary factors (aging, adrenergic challenge, pressure-overload) to phenotype penetrance and severity.
Collapse
Affiliation(s)
- Michael J Wallace
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Nipun Malhotra
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA; Department of Surgery/Division of Cardiac Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Juan Ignacio Elio Mariángelo
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Tyler L Stevens
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Lindsay J Young
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Steve Antwi-Boasiako
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Danielle Abdallah
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sarah Sumie Takenaka
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Omer Cavus
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Nathaniel P Murphy
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Mei Han
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Xianyao Xu
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA; Department of Internal Medicine/Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jason D Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Sandor Györke
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA
| | - Peter J Mohler
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio, USA; Department of Internal Medicine/Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mona El Refaey
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA; Department of Surgery/Division of Cardiac Surgery, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
11
|
Liu Y, Liu Z, Xing T, Li J, Zhang L, Jiang Y, Gao F. Insight on the meat quality and carbonylation profile of breast muscle of broilers in response to chronic heat stress: A proteomic research. Food Chem 2023; 423:136437. [PMID: 37247527 DOI: 10.1016/j.foodchem.2023.136437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/06/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
This study was conducted to explore the influences of carbonyl modification on proteins within the breast muscle of heat-stressed broilers and their correlations to decreased meat quality. The results showed that birds that suffered from heat stress had higher lightness, drip loss, shear force value, and hardness, and lower redness and springiness of breast meat than those under normal control and pair fed treatments. Proteomic analysis identified a total of 921 differentially carbonylated sites, which were allocated to 419 proteins. The modified sites included Lys, Pro, Arg, Trp, Cys, His, and Met. Seven motif sequences were detected, where five motifs neighbored Lys and two neighbored Pro. The differentially carbonylated proteins in heat-stressed birds mainly participated in the glycolytic process, collagen fibril organization, calcium homeostasis, and apoptosis. This study provided a unique landscape of the muscular carbonyl modification rule and unraveled the potential impact of carbonylated protein on meat quality.
Collapse
Affiliation(s)
- Yingsen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaolong Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
12
|
Zhang XR, Ren H, Yao F, Liu Y, Song CL. Study of pathogenic genes in a pedigree with familial dilated cardiomyopathy. World J Clin Cases 2023; 11:2412-2422. [PMID: 37123301 PMCID: PMC10130982 DOI: 10.12998/wjcc.v11.i11.2412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/22/2023] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a genetically heterogeneous cardiac disorder characterized by left ventricular dilation and contractile dysfunction. The substantial genetic heterogeneity evident in patients with DCM contributes to variable disease severity and complicates overall prognosis, which can be very poor.
AIM To identify pathogenic genes in DCM through pedigree analysis.
METHODS Our research team identified a patient with DCM in the clinic. Through investigation, we found that the family of this patient has a typical DCM pedigree. High-throughput sequencing technology, next-generation sequencing, was used to sequence the whole exomes of seven samples in the pedigree.
RESULTS A novel and potentially pathogenic gene mutation-ANK2p.F3067L-was discovered. The mutation was completely consistent with the clinical information for this DCM pedigree. Sanger sequencing was used to further verify the locus of the mutation in pedigree samples. These results were consistent with those of high-throughput sequencing.
CONCLUSIONS ANK2p.F3067L is considered a novel and potentially pathogenic gene mutation in DCM.
Collapse
Affiliation(s)
- Xin-Ru Zhang
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Hang Ren
- Department of Cardiovascular Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Fang Yao
- Department of Cardiovascular Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Yang Liu
- Department of Cardiovascular Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Chun-Li Song
- Department of Cardiovascular Medicine, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
13
|
Zhang W, Shang X, Liu N, Ma X, Yang R, Xia H, Zhang Y, Zheng Q, Wang X, Liu Y. ANK2 as a novel predictive biomarker for immune checkpoint inhibitors and its correlation with antitumor immunity in lung adenocarcinoma. BMC Pulm Med 2022; 22:483. [PMID: 36539782 PMCID: PMC9768990 DOI: 10.1186/s12890-022-02279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been shown to significantly improve the survival of patients with advanced lung adenocarcinoma (LUAD). However, only limited proportion of patients could benefit from ICIs. Novel biomarkers with strong predictability are needed for clinicians to maximize the efficacy of ICIs. Our study aimed to identify potential biomarkers predicting ICIs efficacy in LUAD. METHODS The Cancer Genome Atlas (TCGA) PanCancer Atlas studies in cBioportal were used to evaluate the mutation frequency of ANK2 across multiple cancers. Clinical and mutational data for LUAD from ICIs-treated cohorts (Hellmann et al. and Rizvi et al.) were collected to explore the correlation between ANK2 mutation and clinical outcomes. In addition, the relationship between ANK2 expression and clinical outcomes was analyzed using LUAD data from TCGA and Gene Expression Omnibus. Furthermore, the impact of ANK2 mutation and expression on the tumor immune microenvironment of LUAD was analyzed using TCGA and TISIDB databases. RESULTS Patients with ANK2 mutation benefited more from ICIs. In ICIs-treated cohort, prolonged progression-free survival (PFS) (median PFS: NR (not reached) vs. 5.42 months, HR (hazard ratio) 0.31, 95% CI 0.18-0.54; P = 0.0037), improved complete response rate (17.65% vs. 1.85%, P = 0.0402), and improved objective response rate (64.71% vs. 24.07%, P = 0.0033) were observed in LUAD patients with ANK2 mutation compared to their wild-type counterparts. Regarding ANK2 expression, it was observed that ANK2 expression was decreased in LUAD (P < 0.05) and a higher level of ANK2 expression was associated with longer overall survival (HR 0.69, 95% CI 0.52-0.92; P = 0.012) in TCGA LUAD cohort. Moreover, ANK2 mutation or higher ANK2 expression correlated with enhanced antitumor immunity and "hot" tumor microenvironment in LUAD, which could be potential mechanisms that ANK2 mutation facilitated ICIs therapy and patients with higher ANK2 expression survived longer. CONCLUSION Our findings suggest that ANK2 mutation or increased ANK2 expression may serve as a favorable biomarker for the efficacy of ICIs in patients with LUAD.
Collapse
Affiliation(s)
- Wengang Zhang
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Xiaoling Shang
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Ni Liu
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Xinchun Ma
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Rui Yang
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Handai Xia
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Yuqing Zhang
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Qi Zheng
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Xiuwen Wang
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| | - Yanguo Liu
- grid.452402.50000 0004 1808 3430Department of Medical Oncology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012 Shandong China
| |
Collapse
|
14
|
York NS, Sanchez-Arias JC, McAdam ACH, Rivera JE, Arbour LT, Swayne LA. Mechanisms underlying the role of ankyrin-B in cardiac and neurological health and disease. Front Cardiovasc Med 2022; 9:964675. [PMID: 35990955 PMCID: PMC9386378 DOI: 10.3389/fcvm.2022.964675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The ANK2 gene encodes for ankyrin-B (ANKB), one of 3 members of the ankyrin family of proteins, whose name is derived from the Greek word for anchor. ANKB was originally identified in the brain (B denotes “brain”) but has become most widely known for its role in cardiomyocytes as a scaffolding protein for ion channels and transporters, as well as an interacting protein for structural and signaling proteins. Certain loss-of-function ANK2 variants are associated with a primarily cardiac-presenting autosomal-dominant condition with incomplete penetrance and variable expressivity characterized by a predisposition to supraventricular and ventricular arrhythmias, arrhythmogenic cardiomyopathy, congenital and adult-onset structural heart disease, and sudden death. Another independent group of ANK2 variants are associated with increased risk for distinct neurological phenotypes, including epilepsy and autism spectrum disorders. The mechanisms underlying ANKB's roles in cells in health and disease are not fully understood; however, several clues from a range of molecular and cell biological studies have emerged. Notably, ANKB exhibits several isoforms that have different cell-type–, tissue–, and developmental stage– expression profiles. Given the conservation within ankyrins across evolution, model organism studies have enabled the discovery of several ankyrin roles that could shed important light on ANKB protein-protein interactions in heart and brain cells related to the regulation of cellular polarity, organization, calcium homeostasis, and glucose and fat metabolism. Along with this accumulation of evidence suggesting a diversity of important ANKB cellular functions, there is an on-going debate on the role of ANKB in disease. We currently have limited understanding of how these cellular functions link to disease risk. To this end, this review will examine evidence for the cellular roles of ANKB and the potential contribution of ANKB functional variants to disease risk and presentation. This contribution will highlight the impact of ANKB dysfunction on cardiac and neuronal cells and the significance of understanding the role of ANKB variants in disease.
Collapse
Affiliation(s)
- Nicole S. York
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Alexa C. H. McAdam
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
| | - Joel E. Rivera
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Laura T. Arbour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
- *Correspondence: Laura T. Arbour
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Cellular and Physiological Sciences and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Leigh Anne Swayne
| |
Collapse
|
15
|
Theory and Applications of the (Cardio) Genomic Fabric Approach to Post-Ischemic and Hypoxia-Induced Heart Failure. J Pers Med 2022; 12:jpm12081246. [PMID: 36013195 PMCID: PMC9410512 DOI: 10.3390/jpm12081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
The genomic fabric paradigm (GFP) characterizes the transcriptome topology by the transcripts’ abundances, the variability of the expression profile, and the inter-coordination of gene expressions in each pathophysiological condition. The expression variability analysis provides an indirect estimate of the cell capability to limit the stochastic fluctuations of the expression levels of key genes, while the expression coordination analysis determines the gene networks in functional pathways. This report illustrates the theoretical bases and the mathematical framework of the GFP with applications to our microarray data from mouse models of post ischemic, and constant and intermittent hypoxia-induced heart failures. GFP analyses revealed the myocardium priorities in keeping the expression of key genes within narrow intervals, determined the statistically significant gene interlinkages, and identified the gene master regulators in the mouse heart left ventricle under normal and ischemic conditions. We quantified the expression regulation, alteration of the expression control, and remodeling of the gene networks caused by the oxygen deprivation and determined the efficacy of the bone marrow mono-nuclear stem cell injections to restore the normal transcriptome. Through the comprehensive assessment of the transcriptome, GFP would pave the way towards the development of personalized gene therapy of cardiac diseases.
Collapse
|
16
|
Huang J, Luo R, Zheng C, Cao X, Zhu Y, He T, Liu M, Yang Z, Wu X, Li X. Integrative Analyses Identify Potential Key Genes and Calcium-Signaling Pathway in Familial Atrioventricular Nodal Reentrant Tachycardia Using Whole-Exome Sequencing. Front Cardiovasc Med 2022; 9:910826. [PMID: 35924220 PMCID: PMC9339905 DOI: 10.3389/fcvm.2022.910826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/20/2022] [Indexed: 12/20/2022] Open
Abstract
Background Atrioventricular nodal reentrant tachycardia (AVNRT) is a common arrhythmia. Growing evidence suggests that family aggregation and genetic factors are involved in AVNRT. However, in families with a history of AVNRT, disease-causing genes have not been reported. Objective To investigate the genetic contribution of familial AVNRT using a whole-exome sequencing (WES) approach. Methods Blood samples were collected from 20 patients from nine families with a history of AVNRT and 100 control participants, and we systematically analyzed mutation profiles using WES. Gene-based burden analysis, integration of previous sporadic AVNRT data, pedigree-based co-segregation, protein-protein interaction network analysis, single-cell RNA sequencing, and confirmation of animal phenotype were performed. Results Among 95 related reference genes, seven candidate pathogenic genes have been identified both in sporadic and familial AVNRT, including CASQ2, AGXT, ANK2, SYNE2, ZFHX3, GJD3, and SCN4A. Among the 37 reference genes from sporadic AVNRT, five candidate pathogenic genes were identified in patients with both familial and sporadic AVNRT: LAMC1, ryanodine receptor 2 (RYR2), COL4A3, NOS1, and ATP2C2. To identify the common pathogenic mechanisms in all AVNRT cases, five pathogenic genes were identified in patients with both familial and sporadic AVNRT: LAMC1, RYR2, COL4A3, NOS1, and ATP2C2. Considering the unique internal candidate pathogenic gene within pedigrees, three genes, TRDN, CASQ2, and WNK1, were likely to be the pathogenic genes in familial AVNRT. Notably, the core calcium-signaling pathway may be closely associated with the occurrence of AVNRT, including CASQ2, RYR2, TRDN, NOS1, ANK2, and ATP2C2. Conclusion Our pedigree-based studies demonstrate that RYR2 and related calcium signaling pathway play a critical role in the pathogenesis of familial AVNRT using the WES approach.
Collapse
Affiliation(s)
- Jichang Huang
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu, China
| | - Rong Luo
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu, China
| | - Chenqing Zheng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xin Cao
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuncai Zhu
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Tao He
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjiang Liu
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory of Human Disease Study, Institute of Laboratory Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiushan Wu
- The Center for Heart Development, Hunan Normal University, Changsha, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, China
| | - Xiaoping Li
- Department of Cardiology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Xiaoping Li,
| |
Collapse
|
17
|
Fadel S, Walker AE. The Postmortem Interpretation of Cardiac Genetic Variants of Unknown Significance in Sudden Death in the Young: A Case Report and Review of the Literature. Acad Forensic Pathol 2021; 10:166-175. [PMID: 33815637 DOI: 10.1177/1925362120984868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/04/2020] [Indexed: 11/16/2022]
Abstract
Sudden cardiac death (SCD) in adolescents and young adults is a major traumatic event for families and communities. In these cases, it is not uncommon to have a negative autopsy with structurally and histologically normal heart. Such SCD cases are generally attributed to channelopathies, which include long QT syndrome, short QT syndrome, Brugada syndrome, and catecholaminergic polymorphic ventricular tachycardia. Our understanding of the causes for SCDs has changed significantly with the advancements in molecular and genetic studies, where many mutations are now known to be associated with certain channelopathies. Postmortem analysis provides great value in informing decision-making with regard to screening tests and prophylactic measures that should be taken to prevent sudden death in first degree relatives of the decedent. As this is a rapidly advancing field, our ability to identify genetic mutations has surpassed our ability to interpret them. This led to a unique challenge in genetic testing called variants of unknown significance (VUS). VUSs present a diagnostic dilemma and uncertainty for clinicians and patients with regard to next steps. Caution should be exercised when interpreting VUSs since misinterpretation can result in mismanagement of patients and their families. A case of a young adult man with drowning as his proximate cause of death is presented in circumstances where cardiac genetic testing was indicated and undertaken. Eight VUSs in genes implicated in inheritable cardiac dysfunction were identified and the interpretation of VUSs in this scenario is discussed.
Collapse
|
18
|
Iacobas S, Amuzescu B, Iacobas DA. Transcriptomic uniqueness and commonality of the ion channels and transporters in the four heart chambers. Sci Rep 2021; 11:2743. [PMID: 33531573 PMCID: PMC7854717 DOI: 10.1038/s41598-021-82383-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Myocardium transcriptomes of left and right atria and ventricles from four adult male C57Bl/6j mice were profiled with Agilent microarrays to identify the differences responsible for the distinct functional roles of the four heart chambers. Female mice were not investigated owing to their transcriptome dependence on the estrous cycle phase. Out of the quantified 16,886 unigenes, 15.76% on the left side and 16.5% on the right side exhibited differential expression between the atrium and the ventricle, while 5.8% of genes were differently expressed between the two atria and only 1.2% between the two ventricles. The study revealed also chamber differences in gene expression control and coordination. We analyzed ion channels and transporters, and genes within the cardiac muscle contraction, oxidative phosphorylation, glycolysis/gluconeogenesis, calcium and adrenergic signaling pathways. Interestingly, while expression of Ank2 oscillates in phase with all 27 quantified binding partners in the left ventricle, the percentage of in-phase oscillating partners of Ank2 is 15% and 37% in the left and right atria and 74% in the right ventricle. The analysis indicated high interventricular synchrony of the ion channels expressions and the substantially lower synchrony between the two atria and between the atrium and the ventricle from the same side.
Collapse
Affiliation(s)
- Sanda Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, 10595, USA
| | - Bogdan Amuzescu
- Department Biophysics and Physiology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Dumitru A Iacobas
- Personalized Genomics Laboratory, Center for Computational Systems Biology, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, TX, 77446, USA. .,DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, 10461, USA.
| |
Collapse
|
19
|
|
20
|
LaBella ML, Hujber EJ, Moore KA, Rawson RL, Merrill SA, Allaire PD, Ailion M, Hollien J, Bastiani MJ, Jorgensen EM. Casein Kinase 1δ Stabilizes Mature Axons by Inhibiting Transcription Termination of Ankyrin. Dev Cell 2020; 52:88-103.e18. [PMID: 31910362 DOI: 10.1016/j.devcel.2019.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/09/2019] [Accepted: 12/10/2019] [Indexed: 01/19/2023]
Abstract
After axon outgrowth and synapse formation, the nervous system transitions to a stable architecture. In C. elegans, this transition is marked by the appearance of casein kinase 1δ (CK1δ) in the nucleus. In CK1δ mutants, neurons continue to sprout growth cones into adulthood, leading to a highly ramified nervous system. Nervous system architecture in these mutants is completely restored by suppressor mutations in ten genes involved in transcription termination. CK1δ prevents termination by phosphorylating and inhibiting SSUP-72. SSUP-72 would normally remodel the C-terminal domain of RNA polymerase in anticipation of termination. The antitermination activity of CK1δ establishes the mature state of a neuron by promoting the expression of the long isoform of a single gene, the cytoskeleton protein Ankyrin.
Collapse
Affiliation(s)
- Matthew L LaBella
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Edward J Hujber
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Kristin A Moore
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Randi L Rawson
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sean A Merrill
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Patrick D Allaire
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Michael Ailion
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Julie Hollien
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | | - Erik M Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
21
|
50 Years of Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) – Time to Explore the Dark Side of the Moon. Heart Lung Circ 2020; 29:520-528. [DOI: 10.1016/j.hlc.2019.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/02/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
|
22
|
Giudicessi JR, Ackerman MJ. Established Loss-of-Function Variants in ANK2-Encoded Ankyrin-B Rarely Cause a Concerning Cardiac Phenotype in Humans. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002851. [PMID: 32164423 DOI: 10.1161/circgen.119.002851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- John R Giudicessi
- Department of Cardiovascular Medicine, Clinician-Investigator Training Program (J.R.G.)
| | - Michael J Ackerman
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine (M.J.A.).,Division of Heart Rhythm Services, Department of Cardiovascular Medicine (M.J.A.).,Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN. (M.J.A.)
| |
Collapse
|
23
|
Mechanisms and Alterations of Cardiac Ion Channels Leading to Disease: Role of Ankyrin-B in Cardiac Function. Biomolecules 2020; 10:biom10020211. [PMID: 32023981 PMCID: PMC7072516 DOI: 10.3390/biom10020211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/08/2023] Open
Abstract
Ankyrin-B (encoded by ANK2), originally identified as a key cytoskeletal-associated protein in the brain, is highly expressed in the heart and plays critical roles in cardiac physiology and cell biology. In the heart, ankyrin-B plays key roles in the targeting and localization of key ion channels and transporters, structural proteins, and signaling molecules. The role of ankyrin-B in normal cardiac function is illustrated in animal models lacking ankyrin-B expression, which display significant electrical and structural phenotypes and life-threatening arrhythmias. Further, ankyrin-B dysfunction has been associated with cardiac phenotypes in humans (now referred to as “ankyrin-B syndrome”) including sinus node dysfunction, heart rate variability, atrial fibrillation, conduction block, arrhythmogenic cardiomyopathy, structural remodeling, and sudden cardiac death. Here, we review the diverse roles of ankyrin-B in the vertebrate heart with a significant focus on ankyrin-B-linked cell- and molecular-pathways and disease.
Collapse
|
24
|
Chen L, Choi CSW, Sanchez-Arias JC, Arbour LT, Swayne LA. Ankyrin-B p.S646F undergoes increased proteasome degradation and reduces cell viability in the H9c2 rat ventricular cardiomyoblast cell line. Biochem Cell Biol 2020; 98:299-306. [PMID: 31965814 DOI: 10.1139/bcb-2019-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ankyrin-B (AnkB) is scaffolding protein that anchors integral membrane proteins to the cardiomyocyte cytoskeleton. We recently identified an AnkB variant, AnkB p.S646F (ANK2 c.1937 C>T) associated with a phenotype ranging from predisposition for cardiac arrhythmia to cardiomyopathy. AnkB p.S646F exhibited reduced expression levels in the H9c2 rat ventricular-derived cardiomyoblast cell line relative to wildtype AnkB. Here, we demonstrate that AnkB is regulated by proteasomal degradation and proteasome inhibition rescues AnkB p.S646F expression levels in H9c2 cells, although this effect is not conserved with differentiation. We also compared the impact of wildtype AnkB and AnkB p.S646F on cell viability and proliferation. AnkB p.S646F expression resulted in decreased cell viability at 30 h after transfection, whereas we observed a greater proportion of cycling, Ki67-positive cells at 48 h after transfection. Notably, the number of GFP-positive cells was low and was consistent between wildtype AnkB and AnkB p.S646F expressing cells, suggesting that AnkB and AnkB p.S646F affected paracrine communication between H9c2 cells differentially. This work reveals that AnkB levels are regulated by the proteasome and that AnkB p.S646F compromises cell viability. Together, these findings provide key new insights into the putative cellular and molecular mechanisms of AnkB-related cardiac disease.
Collapse
Affiliation(s)
- Lena Chen
- Divison of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Catherine S W Choi
- Divison of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Laura T Arbour
- Divison of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Island Medical Program, University of British Columbia, Victoria, BC, Canada.,Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
| | - Leigh Anne Swayne
- Divison of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Island Medical Program, University of British Columbia, Victoria, BC, Canada
| |
Collapse
|
25
|
Zhu W, Wang C, Hu J, Wan R, Yu J, Xie J, Ma J, Guo L, Ge J, Qiu Y, Chen L, Liu H, Yan X, Liu X, Ye J, He W, Shen Y, Wang C, Mohler PJ, Hong K. Ankyrin-B Q1283H Variant Linked to Arrhythmias Via Loss of Local Protein Phosphatase 2A Activity Causes Ryanodine Receptor Hyperphosphorylation. Circulation 2019; 138:2682-2697. [PMID: 30571258 PMCID: PMC6276866 DOI: 10.1161/circulationaha.118.034541] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Human loss-of-function variants of ANK2 (ankyrin-B) are linked to arrhythmias and sudden cardiac death. However, their in vivo effects and specific arrhythmogenic pathways have not been fully elucidated. Methods: We identified new ANK2 variants in 25 unrelated Han Chinese probands with ventricular tachycardia by whole-exome sequencing. The potential pathogenic variants were validated by Sanger sequencing. We performed functional and mechanistic experiments in ankyrin-B knockin (KI) mouse models and in single myocytes isolated from KI hearts. Results: We detected a rare, heterozygous ANK2 variant (p.Q1283H) in a proband with recurrent ventricular tachycardia. This variant was localized to the ZU5C region of ANK2, where no variants have been previously reported. KI mice harboring the p.Q1283H variant exhibited an increased predisposition to ventricular arrhythmias after catecholaminergic stress in the absence of cardiac structural abnormalities. Functional studies illustrated an increased frequency of delayed afterdepolarizations and Ca2+ waves and sparks accompanied by decreased sarcoplasmic reticulum Ca2+ content in KI cardiomyocytes on isoproterenol stimulation. The immunoblotting results showed increased levels of phosphorylated ryanodine receptor Ser2814 in the KI hearts, which was further amplified on isoproterenol stimulation. Coimmunoprecipitation experiments demonstrated dissociation of protein phosphatase 2A from ryanodine receptor in the KI hearts, which was accompanied by a decreased binding of ankyrin-B to protein phosphatase 2A regulatory subunit B56α. Finally, the administration of metoprolol or flecainide decreased the incidence of stress-induced ventricular arrhythmias in the KI mice. Conclusions: ANK2 p.Q1283H is a disease-associated variant that confers susceptibility to stress-induced arrhythmias, which may be prevented by the administration of metoprolol or flecainide. This variant is associated with the loss of protein phosphatase 2A activity, increased phosphorylation of ryanodine receptor, exaggerated delayed afterdepolarization-mediated trigger activity, and arrhythmogenesis.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Cen Wang
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jinzhu Hu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Rong Wan
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jianhua Yu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jinyan Xie
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jianyong Ma
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Linjuan Guo
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jin Ge
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Yumin Qiu
- Department of General Surgery (Y.Q., L.C.), Second Affiliated Hospital of Nanchang University, China
| | - Leifeng Chen
- Department of General Surgery (Y.Q., L.C.), Second Affiliated Hospital of Nanchang University, China
| | - Hualong Liu
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Xia Yan
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Xiuxia Liu
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Jin Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui (J.Y., C.W.)
| | - Wenfeng He
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| | - Chao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui (J.Y., C.W.)
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, College of Medicine, The Dorothy M. Davis Heart and Lung Research Institute, Departments of Physiology and Cell Biology and Internal Medicine, Columbus (P.J.M.)
| | - Kui Hong
- Department of Cardiovascular Medicine (W.Z., C.W., J.H., J.Y., J.M., L.G., J.G., H.L., K.H.), Second Affiliated Hospital of Nanchang University, China.,Jiangxi Key Laboratory of Molecular Medicine (R.W., J.X., X.Y., X.L., W.H., Y.S., K.H.), Second Affiliated Hospital of Nanchang University, China
| |
Collapse
|
26
|
Choi CSW, Souza IA, Sanchez-Arias JC, Zamponi GW, Arbour LT, Swayne LA. Ankyrin B and Ankyrin B variants differentially modulate intracellular and surface Cav2.1 levels. Mol Brain 2019; 12:75. [PMID: 31477143 PMCID: PMC6720858 DOI: 10.1186/s13041-019-0494-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Ankyrin B (AnkB) is an adaptor and scaffold for motor proteins and various ion channels that is ubiquitously expressed, including in the brain. AnkB has been associated with neurological disorders such as epilepsy and autism spectrum disorder, but understanding of the underlying mechanisms is limited. Cav2.1, the pore-forming subunit of P/Q type voltage gated calcium channels, is a known interactor of AnkB and plays a crucial role in neuronal function. Here we report that wildtype AnkB increased overall Cav2.1 levels without impacting surface Cav2.1 levels in HEK293T cells. An AnkB variant, p.S646F, which we recently discovered to be associated with seizures, further increased overall Cav2.1 levels, again with no impact on surface Cav2.1 levels. AnkB p.Q879R, on the other hand, increased surface Cav2.1 levels in the presence of accessory subunits α2δ1 and β4. Additionally, AnkB p.E1458G decreased surface Cav2.1 irrespective of the presence of accessory subunits. In addition, we found that partial deletion of AnkB in cortex resulted in a decrease in overall Cav2.1 levels, with no change to the levels of Cav2.1 detected in synaptosome fractions. Our work suggests that depending on the particular variant, AnkB regulates intracellular and surface Cav2.1. Notably, expression of the AnkB variant associated with seizure (AnkB p.S646F) caused further increase in intracellular Cav2.1 levels above that of even wildtype AnkB. These novel findings have important implications for understanding the role of AnkB and Cav2.1 in the regulation of neuronal function in health and disease.
Collapse
Affiliation(s)
- Catherine S. W. Choi
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia Canada
| | - Ivana A. Souza
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada
| | - Juan C. Sanchez-Arias
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia Canada
| | - Gerald W. Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta Canada
| | - Laura T. Arbour
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia Canada
| |
Collapse
|
27
|
Shen L, Li C, Zhang H, Qiu S, Fu T, Xu Y. Downregulation of miR-146a Contributes to Cardiac Dysfunction Induced by the Tyrosine Kinase Inhibitor Sunitinib. Front Pharmacol 2019; 10:914. [PMID: 31507414 PMCID: PMC6716347 DOI: 10.3389/fphar.2019.00914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
The main adverse effect of tyrosine kinase inhibitors, such as sunitinib, is cardiac contractile dysfunction; however, the molecular mechanisms of this effect remain largely obscure. MicroRNAs (miRNAs) are key regulatory factors in both cardiovascular diseases and the tyrosine kinase pathway. Therefore, we analyzed the differential expression of miRNAs in the myocardium in mice after exposure to sunitinib using miRNA microarray. A significant downregulation of miR-146a was observed in the myocardium of sunitinib-treated mice, along with a 20% decrease in left ventricle ejection fraction (LVEF). The downregulation of miR-146a was further validated by RT-qPCR. Among the potential targets of miR-146a, we focused on Pln and Ank2, which are closely related to cardiac contractile dysfunction. Results of luciferase reporter assay confirmed that miR-146a directly targeted the 3′ untranslated region of Pln and Ank2. Significant upregulation of PLN and ANK2 at the mRNA and protein levels was observed in the myocardium of sunitinib-treated mice. Cardiac-specific overexpression of miR-146a prevented the deteriorate effect of SNT on calcium transients, thereby alleviating the decreased contractility of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). SiRNA knockdown of PLN or ANK2 prevented sunitinib-induced suppression of contractility in hiPSC-CMs. Therefore, our in vivo and in vitro results showed that sunitinib downregulated miR-146a, which contributes to cardiac contractile dysfunction by regulating the downstream targets PLN and ANK2, and that upregulation of miR-146a alleviated the inhibitory effect of SNT on cardiac contractility. Thus, miR-146a could be a useful protective agent against sunitinib-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Li Shen
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Congxin Li
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Hua Zhang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Suhua Qiu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Tian Fu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| |
Collapse
|
28
|
Gessner G, Runge S, Koenen M, Heinemann SH, Koenen M, Haas J, Meder B, Thomas D, Katus HA, Schweizer PA. ANK2 functionally interacts with KCNH2 aggravating long QT syndrome in a double mutation carrier. Biochem Biophys Res Commun 2019; 512:845-851. [PMID: 30929919 DOI: 10.1016/j.bbrc.2019.03.162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/24/2019] [Indexed: 10/27/2022]
Abstract
Pathogenic long QT mutations often comprise high phenotypic variability and particularly variants in ANK2 (long QT syndrome 4) frequently lack QT prolongation. We sought to elucidate the genetic and functional background underlying the clinical diversity in a 3-generation family with different cardiac arrhythmias. Next-generation sequencing-based screening of patients with QT prolongation identified the index patient of the family carrying an ANK2-E1813K variant and a previously uncharacterized KCNH2-H562R mutation in a double heterozygous conformation. The patient presented with a severe clinical phenotype including a markedly prolonged QTc interval (544 ms), recurrent syncope due to Torsade de Pointes tachycardias, survived cardiopulmonary resuscitation, progressive cardiac conduction defect, and atrial fibrillation. Evaluation of other family members identified a sister and a niece solely carrying the ANK2-E1813K variant, who showed age-related conduction disease. An asymptomatic second sister solely carried the KCNH2-H562R mutation. Voltage-clamp recordings in Xenopus oocytes revealed that KCNH2-H562R subunits were non-functional but did not exert dominant-negative effects on wild-type subunits. Expression of KCNH2-H562R in HEK293 cells showed a trafficking deficiency. Co-expression of the C-terminal regulatory domain of ANK2 in Xenopus oocytes revealed that ANK2-E1813K diminished currents mediated by the combination of wild-type and H562R KCNH2 subunits. Our data suggest that ANK2 functionally interacts with KCNH2 leading to a stronger current suppression and marked aggravation of long QT syndrome in the patient carrying variants in both proteins.
Collapse
Affiliation(s)
- Guido Gessner
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-St. 2, D-07745, Jena, Germany
| | - Sarah Runge
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Michael Koenen
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany; Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Jahnstr. 29, D-69120, Heidelberg, Germany
| | - Stefan H Heinemann
- Center for Molecular Biomedicine, Department of Biophysics, Friedrich Schiller University Jena and Jena University Hospital, Hans-Knöll-St. 2, D-07745, Jena, Germany
| | - Mascha Koenen
- Institute for Comparative and Molecular Endocrinology, University of Ulm, Helmholtzstr. 8/1, D-89081, Ulm, Germany
| | - Jan Haas
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Benjamin Meder
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital Heidelberg, INF 410, D-69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, INF 410, D-69120, Heidelberg, Germany.
| |
Collapse
|
29
|
Vaidyanathan R, Reilly L, Eckhardt LL. Caveolin-3 Microdomain: Arrhythmia Implications for Potassium Inward Rectifier and Cardiac Sodium Channel. Front Physiol 2018; 9:1548. [PMID: 30473666 PMCID: PMC6238080 DOI: 10.3389/fphys.2018.01548] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/16/2018] [Indexed: 11/13/2022] Open
Abstract
In human cardiac ventricular myocytes, caveolin-3 functions as a scaffolding and regulatory protein for signaling molecules and compartmentalizes ion channels. Our lab has recently explored this sub-cellular microdomain and found that potassium inward rectifier Kir2.x is found in association with caveolin-3. The three cardiac Kir2.x isoforms (Kir2.1, Kir2.2, and Kir2.3) are the molecular correlates of IK1 in the heart, of which Kir2.1 is the dominant isoform in the ventricle. Kir2.1 channels assemble with Kir2.2 and Kir2.3 forming hetero-tetramers that modulate IK1. IK1 sets the resting membrane potential and assists with terminal phase 3 ventricular repolarization. In our studies using native human ventricular tissue, Kir2.x co-localizes with caveolin-3 and significance of the association between Kir2.x and caveolin-3 is emphasized in relation to mutations in the gene which encodes caveolin-3, CAV3, associated with Long QT Syndrome 9 (LQT9). LQT9-associated CAV3 mutations cause decreased current density in Kir2.1 and Kir2.2 as homomeric and heteromeric channels, which affects repolarization and membrane potential stability. A portion of Kir2.1 cardiac localization parallels that of the cardiac sodium channel (Nav1.5). This may have implications for Long QT9 in which CAV3 mutations cause an increase in the late current of Nav1.5 (INa-L) via nNOS mediated nitrosylation of Nav1.5. In iPS-CMs, expression of LQT9 CAV3 mutations resulted in action potential duration (APD) prolongation and early-after depolarizations (EADs), supporting the arrhythmogenicity of LQT9. To evaluate the combined effect of the CAV3 mutants on INa-L and IK1, we studied both ventricular and Purkinje myocyte mathematical modeling. Interestingly, mathematical ventricular myocytes, similar to iPS-CMs, demonstrated EADs but no sustained arrhythmia. In contrast, Purkinje modeling demonstrated delayed-after depolarizations (DADs) driven mechanism for sustained arrhythmia, dependent on the combined loss of IK1 and gain of INa-L. This finding changes the overall assumed arrhythmia phenotype for LQT9. In future studies, we are exploring caveolar micro-domain disruption in heart failure and how this effects Kir2.x and Nav1.5. Here we review the caveolae cardiac microdomain of Kir2.x and Nav1.5 and explore some of the downstream effects of caveolin-3 and caveolae disruption in specific clinical scenarios.
Collapse
Affiliation(s)
- Ravi Vaidyanathan
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Lee L Eckhardt
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
30
|
Garcia-Caballero A, Zhang FX, Hodgkinson V, Huang J, Chen L, Souza IA, Cain S, Kass J, Alles S, Snutch TP, Zamponi GW. T-type calcium channels functionally interact with spectrin (α/β) and ankyrin B. Mol Brain 2018; 11:24. [PMID: 29720258 PMCID: PMC5930937 DOI: 10.1186/s13041-018-0368-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
This study describes the functional interaction between the Cav3.1 and Cav3.2 T-type calcium channels and cytoskeletal spectrin (α/β) and ankyrin B proteins. The interactions were identified utilizing a proteomic approach to identify proteins that interact with a conserved negatively charged cytosolic region present in the carboxy-terminus of T-type calcium channels. Deletion of this stretch of amino acids decreased binding of Cav3.1 and Cav3.2 calcium channels to spectrin (α/β) and ankyrin B and notably also reduced T-type whole cell current densities in expression systems. Furthermore, fluorescence recovery after photobleaching analysis of mutant channels lacking the proximal C-terminus region revealed reduced recovery of both Cav3.1 and Cav3.2 mutant channels in hippocampal neurons. Knockdown of spectrin α and ankyrin B decreased the density of endogenous Cav3.2 in hippocampal neurons. These findings reveal spectrin (α/β) / ankyrin B cytoskeletal and signaling proteins as key regulators of T-type calcium channels expressed in the nervous system.
Collapse
Affiliation(s)
- Agustin Garcia-Caballero
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Fang-Xiong Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Victoria Hodgkinson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Junting Huang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Lina Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Ivana A Souza
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Stuart Cain
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Jennifer Kass
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Sascha Alles
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada.
| |
Collapse
|