1
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
2
|
Abraham M, Wald H, Vaizel-Ohayon D, Grabovsky V, Oren Z, Karni A, Weiss L, Galun E, Peled A, Eizenberg O. Development of Novel Promiscuous Anti-Chemokine Peptibodies for Treating Autoimmunity and Inflammation. Front Immunol 2017; 8:1432. [PMID: 29218043 PMCID: PMC5703867 DOI: 10.3389/fimmu.2017.01432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022] Open
Abstract
Chemokines and their receptors play critical roles in the progression of autoimmunity and inflammation. Typically, multiple chemokines are involved in the development of these pathologies. Indeed, targeting single chemokines or chemokine receptors has failed to achieve significant clinical benefits in treating autoimmunity and inflammation. Moreover, the binding of host atypical chemokine receptors to multiple chemokines as well as the binding of chemokine-binding proteins secreted by various pathogens can serve as a strategy for controlling inflammation. In this work, promiscuous chemokine-binding peptides that could bind and inhibit multiple inflammatory chemokines, such as CCL2, CCL5, and CXCL9/10/11, were selected from phage display libraries. These peptides were cloned into human mutated immunoglobulin Fc-protein fusions (peptibodies). The peptibodies BKT120Fc and BKT130Fc inhibited the ability of inflammatory chemokines to induce the adhesion and migration of immune cells. Furthermore, BKT120Fc and BKT130Fc also showed a significant inhibition of disease progression in a variety of animal models for autoimmunity and inflammation. Developing a novel class of antagonists that can control the courses of diseases by selectively blocking multiple chemokines could be a novel way of generating effective therapeutics.
Collapse
Affiliation(s)
| | - Hanna Wald
- Biokine Therapeutics Ltd, Ness Ziona, Israel
| | | | | | - Zohar Oren
- Biokine Therapeutics Ltd, Ness Ziona, Israel
| | - Arnon Karni
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lola Weiss
- Goldyne Savad Institute of Gene Therapy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eithan Galun
- Goldyne Savad Institute of Gene Therapy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amnon Peled
- Biokine Therapeutics Ltd, Ness Ziona, Israel.,Goldyne Savad Institute of Gene Therapy, Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
3
|
Mousa AA, Roche DB, Terkawi MA, Kameyama K, Kamyingkird K, Vudriko P, Salama A, Cao S, Orabi S, Khalifa H, Ahmed M, Attia M, Elkirdasy A, Nishikawa Y, Xuan X, Cornillot E. Human babesiosis: Indication of a molecular mimicry between thrombospondin domains from a novel Babesia microti BmP53 protein and host platelets molecules. PLoS One 2017; 12:e0185372. [PMID: 29040286 PMCID: PMC5644982 DOI: 10.1371/journal.pone.0185372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/12/2017] [Indexed: 01/11/2023] Open
Abstract
Human babesiosis is caused by the apicomplexan parasite Babesia microti, which is of major public health concern in the United States and elsewhere, resulting in malaise and fatigue, followed by a fever and hemolytic anemia. In this paper we focus on the characterization of a novel B. microti thrombospondin domain (TSP1)-containing protein (BmP53) from the new annotation of the B. microti genome (locus 'BmR1_04g09041'). This novel protein (BmP53) had a single TSP1 and a transmembrane domain, with a short cytoplasmic tail containing a sub-terminal glutamine residue, but no signal peptide and Von Willebrand factor type A domains (VWA), which are found in classical thrombospondin-related adhesive proteins (TRAP). Co-localization assays of BmP53 and Babesia microti secreted antigen 1 (BmSA1) suggested that BmP53 might be a non-secretory membranous protein. Molecular mimicry between the TSP1 domain from BmP53 and host platelets molecules was indicated through different measures of sequence homology, phylogenetic analysis, 3D structure and shared epitopes. Indeed, hamster isolated platelets cross-reacted with mouse anti-BmP53-TSP1. Molecular mimicry are used to help parasites to escape immune defenses, resulting in immune evasion or autoimmunity. Furthermore, specific host reactivity was also detected against the TSP1-free part of BmP53 in infected hamster sera. In conclusion, the TSP1 domain mimicry might help in studying the mechanisms of parasite-induced thrombocytopenia, with the TSP1-free truncate of the protein representing a potential safe candidate for future vaccine studies.
Collapse
Affiliation(s)
- Ahmed Abdelmoniem Mousa
- Institut de Biologie Computationnelle (IBC), LIRMM, CNRS, Université de Montpellier, Montpellier, France
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Daniel Barry Roche
- Institut de Biologie Computationnelle (IBC), LIRMM, CNRS, Université de Montpellier, Montpellier, France
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS-UMR 5237, Montpellier, France
| | - Mohamad Alaa Terkawi
- Institut de Biologie Computationnelle (IBC), LIRMM, CNRS, Université de Montpellier, Montpellier, France
| | - Kyohko Kameyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Ketsarin Kamyingkird
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Patrick Vudriko
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Akram Salama
- Department of Animal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Shinuo Cao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Sahar Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Hanem Khalifa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Mohamed Ahmed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Mabrouk Attia
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Ahmed Elkirdasy
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Yoshifumi Nishikawa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Xuenan Xuan
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menoufia, Egypt
- * E-mail: (EC); (XX)
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle (IBC), LIRMM, CNRS, Université de Montpellier, Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM-INSERM U1194), Institut régional du Cancer Montpellier (ICM) and Université de Montpellier, Montpellier, France
- * E-mail: (EC); (XX)
| |
Collapse
|
4
|
Farré D, Engel P, Angulo A. Novel Role of 3'UTR-Embedded Alu Elements as Facilitators of Processed Pseudogene Genesis and Host Gene Capture by Viral Genomes. PLoS One 2016; 11:e0169196. [PMID: 28033411 PMCID: PMC5199112 DOI: 10.1371/journal.pone.0169196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/13/2016] [Indexed: 11/19/2022] Open
Abstract
Since the discovery of the high abundance of Alu elements in the human genome, the interest for the functional significance of these retrotransposons has been increasing. Primate Alu and rodent Alu-like elements are retrotransposed by a mechanism driven by the LINE1 (L1) encoded proteins, the same machinery that generates the L1 repeats, the processed pseudogenes (PPs), and other retroelements. Apart from free Alu RNAs, Alus are also transcribed and retrotranscribed as part of cellular gene transcripts, generally embedded inside 3' untranslated regions (UTRs). Despite different proposed hypotheses, the functional implication of the presence of Alus inside 3'UTRs remains elusive. In this study we hypothesized that Alu elements in 3'UTRs could be involved in the genesis of PPs. By analyzing human genome data we discovered that the existence of 3'UTR-embedded Alu elements is overrepresented in genes source of PPs. In contrast, the presence of other retrotransposable elements in 3'UTRs does not show this PP linked overrepresentation. This research was extended to mouse and rat genomes and the results accordingly reveal overrepresentation of 3'UTR-embedded B1 (Alu-like) elements in PP parent genes. Interestingly, we also demonstrated that the overrepresentation of 3'UTR-embedded Alus is particularly significant in PP parent genes with low germline gene expression level. Finally, we provide data that support the hypothesis that the L1 machinery is also the system that herpesviruses, and possibly other large DNA viruses, use to capture host genes expressed in germline or somatic cells. Altogether our results suggest a novel role for Alu or Alu-like elements inside 3'UTRs as facilitators of the genesis of PPs, particularly in lowly expressed genes. Moreover, we propose that this L1-driven mechanism, aided by the presence of 3'UTR-embedded Alus, may also be exploited by DNA viruses to incorporate host genes to their viral genomes.
Collapse
Affiliation(s)
- Domènec Farré
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- * E-mail:
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
5
|
Signaling Lymphocytic Activation Molecule Family Receptor Homologs in New World Monkey Cytomegaloviruses. J Virol 2015; 89:11323-36. [PMID: 26339044 DOI: 10.1128/jvi.01296-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/21/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Throughout evolution, large DNA viruses have been usurping genes from their hosts to equip themselves with proteins that restrain host immune defenses. Signaling lymphocytic activation molecule (SLAM) family (SLAMF) receptors are involved in the regulation of both innate and adaptive immunity, which occurs upon engagement with their ligands via homotypic or heterotypic interactions. Here we report a total of seven SLAMF genes encoded by the genomes of two cytomegalovirus (CMV) species, squirrel monkey CMV (SMCMV) and owl monkey CMV (OMCMV), that infect New World monkeys. Our results indicate that host genes were captured by retrotranscription at different stages of the CMV-host coevolution. The most recent acquisition led to S1 in SMCMV. S1 is a SLAMF6 homolog with an amino acid sequence identity of 97% to SLAMF6 in its ligand-binding N-terminal Ig domain. We demonstrate that S1 is a cell surface glycoprotein capable of binding to host SLAMF6. Furthermore, the OMCMV genome encodes A33, an LY9 (SLAMF3) homolog, and A43, a CD48 (SLAMF2) homolog, two soluble glycoproteins which recognize their respective cellular counterreceptors and thus are likely to be viral SLAMF decoy receptors. In addition, distinct copies of further divergent CD48 homologs were found to be encoded by both CMV genomes. Remarkably, all these molecules display a number of unique features, including cytoplasmic tails lacking characteristic SLAMF signaling motifs. Taken together, our findings indicate a novel immune evasion mechanism in which incorporation of host SLAMF receptors that retain their ligand-binding properties enables viruses to interfere with SLAMF functions and to supply themselves with convenient structural molds for expanding their immunomodulatory repertoires. IMPORTANCE The way in which viruses shape their genomes under the continual selective pressure exerted by the host immune system is central for their survival. Here, we report that New World monkey cytomegaloviruses have broadly captured and duplicated immune cell receptors of the signaling lymphocyte activation molecule (SLAM) family during host-virus coevolution. Notably, we demonstrate that several of these viral SLAMs exhibit exceptional preservation of their N-terminal immunoglobulin domains, which results in maintenance of their ligand-binding capacities. At the same time, these molecules present distinctive structural properties which include soluble forms and the absence of typical SLAM signaling motifs in their cytoplasmic domains, likely reflecting the evolutionary adaptation undergone to efficiently interfere with host SLAM family activities. The observation that the genomes of other large DNA viruses might bear SLAM family homologs further underscores the importance of these molecules as a novel class of immune regulators and as convenient scaffolds for viral evolution.
Collapse
|
6
|
Morris G, Berk M, Walder K, Maes M. The Putative Role of Viruses, Bacteria, and Chronic Fungal Biotoxin Exposure in the Genesis of Intractable Fatigue Accompanied by Cognitive and Physical Disability. Mol Neurobiol 2015; 53:2550-71. [PMID: 26081141 DOI: 10.1007/s12035-015-9262-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 05/28/2015] [Indexed: 01/08/2023]
Abstract
Patients who present with severe intractable apparently idiopathic fatigue accompanied by profound physical and or cognitive disability present a significant therapeutic challenge. The effect of psychological counseling is limited, with significant but very slight improvements in psychometric measures of fatigue and disability but no improvement on scientific measures of physical impairment compared to controls. Similarly, exercise regimes either produce significant, but practically unimportant, benefit or provoke symptom exacerbation. Many such patients are afforded the exclusionary, non-specific diagnosis of chronic fatigue syndrome if rudimentary testing fails to discover the cause of their symptoms. More sophisticated investigations often reveal the presence of a range of pathogens capable of establishing life-long infections with sophisticated immune evasion strategies, including Parvoviruses, HHV6, variants of Epstein-Barr, Cytomegalovirus, Mycoplasma, and Borrelia burgdorferi. Other patients have a history of chronic fungal or other biotoxin exposure. Herein, we explain the epigenetic factors that may render such individuals susceptible to the chronic pathology induced by such agents, how such agents induce pathology, and, indeed, how such pathology can persist and even amplify even when infections have cleared or when biotoxin exposure has ceased. The presence of active, reactivated, or even latent Herpes virus could be a potential source of intractable fatigue accompanied by profound physical and or cognitive disability in some patients, and the same may be true of persistent Parvovirus B12 and mycoplasma infection. A history of chronic mold exposure is a feasible explanation for such symptoms, as is the presence of B. burgdorferi. The complex tropism, life cycles, genetic variability, and low titer of many of these pathogens makes their detection in blood a challenge. Examination of lymphoid tissue or CSF in such circumstances may be warranted.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, SA15 2LW, Wales, UK
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia.,Orygen, The National Centre of Excellence in Youth Mental Health, Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia. .,Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
7
|
Huntsinger JR, Sinclair S, Kenrick AC, Ray C. Affiliative social tuning reduces the activation of prejudice. GROUP PROCESSES & INTERGROUP RELATIONS 2015. [DOI: 10.1177/1368430215583518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Past research on affiliative social tuning has shown that individuals who experience affiliative motivation toward another person come to exhibit implicit prejudice consistent with the apparent beliefs of that person. The present research seeks to elucidate the mechanism by which such malleability occurs. Is it interpersonally cued cognitive control, consistent with dual-process models of prejudice regulation, or a contextual change in automatic associations, consistent with shared reality theory? QUAD modeling of participants’ responses revealed that affiliative social tuning of implicit prejudice was solely a function of changing associations (Studies 1–3). Furthermore, instructions to try to inhibit prejudice within a particular interpersonal context did not yield implicit attitude change (Study 2).
Collapse
|
8
|
Naing Z, Webel R, Hamilton S, Schmeiser C, Scott G, Marschall M, Rawlinson W. Stimulatory effects of human cytomegalovirus tegument protein pp71 lead to increased expression of CCL2 (monocyte chemotactic protein-1) during infection. J Gen Virol 2015; 96:1855-62. [PMID: 25711967 DOI: 10.1099/vir.0.000101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human cytomegalovirus (CMV) is the most common infectious cause of congenital birth defects in developed countries. Studies of infected amniotic fluid and placentae show CMV infection leads to a pro-inflammatory shift in cytokine profiles with implications for pathogenesis of foetal disease. ELISA, immunofluorescence and real-time-PCR assays were used to investigate CCL2 (monocyte chemotactic protein-1) and TNF-α changes following CMV infection of human fibroblasts, as well as following transient expression of CMV gene products in HeLa cells. Infection of human fibroblasts with CMV AD169 resulted in increased cytoplasmic and extracellular expression of CCL2 during early stages of infection, followed by marked downregulation of the chemokine at late times. Induction of CCL2 was not observed with CMV clinical strain Merlin, consistent with the postulated immune-evasion potential of this genetically intact WT strain. Comparison between live and UV-irradiated virus infections showed that changes in CCL2 levels were a direct response to active CMV replication. There were no significant changes in TNF-α expression during a parallel time-course of CMV infection. In transient transfection assays, overexpression of CMV tegument protein pp71 resulted in intracellular and extracellular upregulation of CCL2 protein. mRNA analysis showed that pp71-induced elevation in CCL2 was mediated through transcriptional upregulation. The data showed that CMV-induced upregulation of CCL2 during early stages of infection was mediated, at least in part, by stimulation of viral pp71, which may contribute to viral pathogenesis through enhanced virus dissemination.
Collapse
Affiliation(s)
- Zin Naing
- 1Virology Research Laboratory, Department of Microbiology, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, NSW, Australia 2School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia 3Australian Centre for Perinatal Science, University of New South Wales, Sydney, NSW, Australia
| | - Rike Webel
- 4Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stuart Hamilton
- 1Virology Research Laboratory, Department of Microbiology, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, NSW, Australia 5School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Cathrin Schmeiser
- 4Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gillian Scott
- 1Virology Research Laboratory, Department of Microbiology, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, NSW, Australia 5School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Manfred Marschall
- 4Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Erlangen, Germany
| | - William Rawlinson
- 3Australian Centre for Perinatal Science, University of New South Wales, Sydney, NSW, Australia 2School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia 1Virology Research Laboratory, Department of Microbiology, South Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, NSW, Australia
| |
Collapse
|
9
|
Hurford A, Day T. Immune evasion and the evolution of molecular mimicry in parasites. Evolution 2013; 67:2889-904. [PMID: 24094341 DOI: 10.1111/evo.12171] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/08/2013] [Indexed: 12/26/2022]
Abstract
Parasites that are molecular mimics express proteins which resemble host proteins. This resemblance facilitates immune evasion because the immune molecules with the specificity to react with the parasite also cross-react with the host's own proteins, and these lymphocytes are rare. Given this advantage, why are not most parasites molecular mimics? Here we explore potential factors that can select against molecular mimicry in parasites and thereby limit its occurrence. We consider two hypotheses: (1) molecular mimics are more likely to induce autoimmunity in their hosts, and hosts with autoimmunity generate fewer new infections (the "costly autoimmunity hypothesis"); and (2) molecular mimicry compromises protein functioning, lowering the within-host replication rate and leading to fewer new infections (the "mimicry trade-off hypothesis"). Our analysis shows that although both hypotheses may select against molecular mimicry in parasites, unique hallmarks of protein expression identify whether selection is due to the costly autoimmunity hypothesis or the mimicry trade-off hypothesis. We show that understanding the relevant selective forces is necessary to predict how different medical interventions will affect the proportion of hosts that experience the different infection types, and that if parasite evolution is ignored, interventions aimed at reducing infection-induced autoimmunity may ultimately fail.
Collapse
Affiliation(s)
- Amy Hurford
- Department of Mathematics and Statistics, Queen's University, Kingston, Ontario, Canada; Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada; Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| | | |
Collapse
|
10
|
Xue M, Chen SJ, Wang LJ, Du Y, Si JM. Cytomegalovirus: a probable cause of steroid-refractory ulcerative colitis. J Dig Dis 2013; 14:160-5. [PMID: 23324050 DOI: 10.1111/1751-2980.12037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cytomegalovirus, regarded as a trigger of several autoimmune diseases, is an opportunistic pathogen. Patients with ulcerative colitis (UC) undergoing steroid treatment are susceptible to this infection. In the presence of cytomegalovirus, inflammation becomes more complex. Patients with active UC who are infected with cytomegalovirus are usually non-responders to steroid, while antiviral drugs could induce remission. Cytomegalovirus should be suggested as a probable cause of steroid-refractory UC based on the clinical data in the literatures.
Collapse
Affiliation(s)
- Meng Xue
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | | | | | | | | |
Collapse
|
11
|
Tugnet N, Rylance P, Roden D, Trela M, Nelson P. Human Endogenous Retroviruses (HERVs) and Autoimmune Rheumatic Disease: Is There a Link? Open Rheumatol J 2013; 7:13-21. [PMID: 23750183 PMCID: PMC3636489 DOI: 10.2174/1874312901307010013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 12/25/2022] Open
Abstract
Autoimmune rheumatic diseases, such as RA and SLE, are caused by genetic, hormonal and environmental factors. Human Endogenous Retroviruses (HERVs) may be triggers of autoimmune rheumatic disease. HERVs are fossil viruses that began to be integrated into the human genome some 30-40 million years ago and now make up 8% of the genome. Evidence suggests HERVs may cause RA and SLE, among other rheumatic diseases. The key mechanisms by which HERVS are postulated to cause disease include molecular mimicry and immune dysregulation. Identification of HERVs in RA and SLE could lead to novel treatments for these chronic conditions. This review summarises the evidence for HERVs as contributors to autoimmune rheumatic disease and the clinical implications and mechanisms of pathogenesis are discussed.
Collapse
Affiliation(s)
- Nicola Tugnet
- Department of Rheumatology, Royal Wolverhampton Hospitals NHS Trust, Wolverhampton, UK
| | | | | | | | | |
Collapse
|
12
|
Zheng Q, Tao R, Gao H, Xu J, Shang S, Zhao N. HCMV-encoded UL128 enhances TNF-α and IL-6 expression and promotes PBMC proliferation through the MAPK/ERK pathway in vitro. Viral Immunol 2012; 25:98-105. [PMID: 22486303 DOI: 10.1089/vim.2011.0064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cytomegalovirus (CMV) infection enhances expression of several cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), granulocyte macrophage colony-stimulating factor (GM-CSF), and IL-8, to the benefit of virus replication and dissemination. However, the stimulus for certain cytokine production remains unclear. CMV encodes a series of proteins that alter and/or mimic functions of leukocyte migration, activation, and cytokine responses. Our study revealed that human CMV (HCMV)-encoded UL128 protein, which contains signal peptides and has similar amino acid sequences to the CC chemokine, recruits monocytes as human β chemokine (microphage inflammatory protein 1α). Using RNA interference technology, we constructed an HCMV (UL128⁺/UL128⁻)-infected tissue cell (MRC-5) and peripheral blood mononuclear cell (PBMC) co-culture system. We measured 6 cytokine levels (IL-2, IL-4, IL-6, IL-10, TNF-α, and interferon-γ [IFN-γ]) in the supernatant, and found significantly elevated IL-6 and elevated TNF-α levels in the HCMV UL128⁺-infected group. Conversely, we observed decreased levels in the UL128-knockout supernatant. PBMCs presented with UL128 (50 ng/mL) demonstrated better cell viability than the UL128-absent group. Finally, the MAPK/ERK pathway was found to be involved in UL128 induction of cell proliferation. Selective induction of cytokine expression indicates that HCMV-encoded UL128 is a potent inducer of several inflammatory mediators.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Pediatrics, Children's Hospital Affiliated with the Medical College, Zhejiang University, Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Diseases, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
13
|
Engel P, Angulo A. Viral Immunomodulatory Proteins: Usurping Host Genes as a Survival Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:256-76. [DOI: 10.1007/978-1-4614-1680-7_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Engel P, Pérez-Carmona N, Albà MM, Robertson K, Ghazal P, Angulo A. Human cytomegalovirus UL7, a homologue of the SLAM-family receptor CD229, impairs cytokine production. Immunol Cell Biol 2011; 89:753-66. [PMID: 21670740 DOI: 10.1038/icb.2011.55] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Human cytomegalovirus (HCMV), the β-herpesvirus prototype, has evolved a wide spectrum of mechanisms to counteract host immunity. Among them, HCMV uses cellular captured genes encoding molecules capable of interfering with the original host function or of fulfilling new immunomodulatory tasks. Here, we report on UL7, a novel HCMV heavily glycosylated transmembrane protein, containing an Ig-like domain that exhibits remarkable amino acid similarity to CD229, a cell-surface molecule of the signalling lymphocyte-activation molecule (SLAM) family involved in leukocyte activation. The UL7 Ig-like domain, which is well-preserved in all HCMV strains, structurally resembles the SLAM-family N-terminal Ig-variable domain responsible for the homophilic and heterophilic interactions that trigger signalling. UL7 is transcribed with early-late kinetics during the lytic infectious cycle. Using a mAb generated against the viral protein, we show that it is constitutively shed, through its mucine-like stalk, from the cell-surface. Production of soluble UL7 is enhanced by PMA and reduced by a broad-spectrum metalloproteinase inhibitor. Although UL7 does not hold the ability to interact with CD229 or other SLAM-family members, it shares with them the capacity to mediate adhesion to leukocytes, specifically to monocyte-derived DCs. Furthermore, we demonstrate that UL7 expression attenuates the production of proinflammatory cytokines TNF, IL-8 and IL-6 in DCs and myeloid cell lines. Thus, the ability of UL7 to interfere with cellular proinflammatory responses may contribute to viral persistence. These results enhance our understanding of those HCMV-encoded molecules involved in sustaining the balance between HCMV and the host immune system.
Collapse
Affiliation(s)
- Pablo Engel
- Department of Cell Biology, Immunology, and Neurosciences, Medical School, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Varani S, Landini MP. Cytomegalovirus-induced immunopathology and its clinical consequences. HERPESVIRIDAE 2011; 2:6. [PMID: 21473750 PMCID: PMC3082217 DOI: 10.1186/2042-4280-2-6] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/07/2011] [Indexed: 12/23/2022]
Abstract
Human cytomegalovirus (CMV) is a ubiquitous DNA virus that causes severe disease in patients with immature or impaired immune systems. During active infection, CMV modulates host immunity, and CMV-infected patients often develop signs of immune dysfunction, such as immunosuppression and autoimmune phenomena. Furthermore, active viral infection has been observed in several autoimmune diseases, and case reports have linked primary CMV infection and the onset of autoimmune disorders. In addition, CMV infection promotes allograft rejection and graft-versus-host disease in solid organ and bone marrow transplant recipients, respectively, further implicating CMV in the genesis and maintenance of immunopathological phenomena. The mechanisms by which CMV could induce inhibition of host defense, inflammation, and autoimmunity are discussed, as is the treatment of virus-induced immunopathology with antivirals.
Collapse
Affiliation(s)
- Stefania Varani
- Section of Microbiology, Department of Hematology and Oncology, University of Bologna, Bologna, Italy.
| | | |
Collapse
|
16
|
Genome-wide identification of molecular mimicry candidates in parasites. PLoS One 2011; 6:e17546. [PMID: 21408160 PMCID: PMC3050887 DOI: 10.1371/journal.pone.0017546] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/08/2011] [Indexed: 11/25/2022] Open
Abstract
Among the many strategies employed by parasites for immune evasion and host manipulation, one of the most fascinating is molecular mimicry. With genome sequences available for host and parasite, mimicry of linear amino acid epitopes can be investigated by comparative genomics. Here we developed an in silico pipeline for genome-wide identification of molecular mimicry candidate proteins or epitopes. The predicted proteome of a given parasite was broken down into overlapping fragments, each of which was screened for close hits in the human proteome. Control searches were carried out against unrelated, free-living eukaryotes to eliminate the generally conserved proteins, and with randomized versions of the parasite proteins to get an estimate of statistical significance. This simple but computation-intensive approach yielded interesting candidates from human-pathogenic parasites. From Plasmodium falciparum, it returned a 14 amino acid motif in several of the PfEMP1 variants identical to part of the heparin-binding domain in the immunosuppressive serum protein vitronectin. And in Brugia malayi, fragments were detected that matched to periphilin-1, a protein of cell-cell junctions involved in barrier formation. All the results are publicly available by means of mimicDB, a searchable online database for molecular mimicry candidates from pathogens. To our knowledge, this is the first genome-wide survey for molecular mimicry proteins in parasites. The strategy can be adopted to any pair of host and pathogen, once appropriate negative control organisms are chosen. MimicDB provides a host of new starting points to gain insights into the molecular nature of host-pathogen interactions.
Collapse
|
17
|
Johnson CR, Griggs TF, Gnanandarajah J, Murtaugh MP. Novel structural protein in porcine reproductive and respiratory syndrome virus encoded by an alternative ORF5 present in all arteriviruses. J Gen Virol 2011; 92:1107-1116. [PMID: 21307222 PMCID: PMC3139420 DOI: 10.1099/vir.0.030213-0] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus that emerged in the late 1980s in both Europe and North America as the causative agent of porcine reproductive and respiratory syndrome (PRRS), now the most important disease of swine worldwide. Despite extensive characterization of PRRSV proteins by direct analysis and comparison with other arteriviruses, determinants of virulence, pathogenesis and protective immune recognition remain poorly understood. Thus, we hypothesized that additional ORFs are present in the PRRSV genome that may contribute to its biological properties, and so we screened highly purified virions of strain VR2332, the prototype type 2 PRRSV, for evidence of novel polypeptides. A 51 aa polypeptide was discovered that is encoded by an alternative ORF of the subgenomic mRNA encoding the major envelope glycoprotein, GP5, and which is incorporated into virions. The protein, referred to as ORF5a protein, is expressed in infected cells, and pigs infected with PRRSV express anti-ORF5a protein antibodies. A similar ORF is present as an alternative reading frame in all PRRSV subgenomic RNA5 genes and in all other arteriviruses, suggesting that this ORF5a protein plays a significant role in arterivirology. Its discovery also provides a new potential target for immunological and pharmacological intervention in PRRS.
Collapse
Affiliation(s)
- Craig R Johnson
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | - Theodor F Griggs
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | - Josephine Gnanandarajah
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | - Michael P Murtaugh
- Department of Veterinary & Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
18
|
Tschische P, Moser E, Thompson D, Vischer HF, Parzmair GP, Pommer V, Platzer W, Schwarzbraun T, Schaider H, Smit MJ, Martini L, Whistler JL, Waldhoer M. The G-protein coupled receptor associated sorting protein GASP-1 regulates the signalling and trafficking of the viral chemokine receptor US28. TRAFFIC (COPENHAGEN, DENMARK) 2010; 11:660-74. [PMID: 20102549 DOI: 10.1111/j.1600-0854.2010.1045.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human cytomegalovirus (HCMV) encodes the seven transmembrane(7TM)/G-protein coupled receptor (GPCR) US28, which signals and endocytoses in a constitutive, ligand-independent manner. Here we show that, following endocytosis, US28 is targeted to the lysosomes for degradation as a consequence of its interaction with the GPCR-associated sorting protein-1 (GASP-1). We find that GASP-1 binds to US28 in vitro and that disruption of the GASP-1/US28 interaction by either (i) overexpression of dominant negative cGASP-1 or by (ii) shRNA knock-down of endogenous GASP-1 is sufficient to inhibit the lysosomal targeting of US28 and slow its post-endocytic degradation. Furthermore, we found that GASP-1 affects US28-mediated signalling. The knock-down of endogenous GASP-1 impairs the US28-mediated Galphaq/PLC/inositol phosphate (IP) accumulation as well as the activation of the transcription factors Nuclear Factor-kappaB (NF-kappaB) and cyclic AMP responsive element binding protein (CREB). Overexpression of GASP-1 enhances both IP accumulation and transcription factor activity. Thus, GASP-1 is an important cellular determinant that not only regulates the post-endocytic trafficking of US28, but also regulates the signalling capacities of US28.
Collapse
Affiliation(s)
- Pia Tschische
- Institute for Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tschische P, Moser E, Thompson D, Vischer HF, Parzmair GP, Pommer V, Platzer W, Schwarzbraun T, Schaider H, Smit MJ, Martini L, Whistler JL, Waldhoer M. The G-protein Coupled Receptor Associated Sorting Protein GASP-1 Regulates the Signalling and Trafficking of the Viral Chemokine Receptor US28. Traffic 2010. [DOI: 10.1111/j.1600-0854.2010.01045.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Varani S, Frascaroli G, Landini MP, Söderberg-Nauclér C. Human cytomegalovirus targets different subsets of antigen-presenting cells with pathological consequences for host immunity: implications for immunosuppression, chronic inflammation and autoimmunity. Rev Med Virol 2009; 19:131-45. [DOI: 10.1002/rmv.609] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
The presence of p53 influences the expression of multiple human cytomegalovirus genes at early times postinfection. J Virol 2009; 83:4316-25. [PMID: 19224996 DOI: 10.1128/jvi.02075-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a common cause of morbidity and mortality in immunocompromised and immunosuppressed individuals. During infection, HCMV is known to employ host transcription factors to facilitate viral gene expression. To further understand the previously observed delay in viral replication and protein expression in p53 knockout cells, we conducted microarray analyses of p53(+/+) and p53(-/-) immortalized fibroblast cell lines. At a multiplicity of infection (MOI) of 1 at 24 h postinfection (p.i.), the expression of 22 viral genes was affected by the absence of p53. Eleven of these 22 genes (group 1) were examined by real-time reverse transcriptase, or quantitative, PCR (q-PCR). Additionally, five genes previously determined to have p53 bound to their nearest p53-responsive elements (group 2) and three control genes without p53 binding sites in their upstream sequences (group 3) were also examined. At an MOI of 1, >3-fold regulation was found for five group 1 genes. The expression of group 2 and 3 genes was not changed. At an MOI of 5, all genes from group 1 and four of five genes from group 2 were found to be regulated. The expression of control genes from group 3 remained unchanged. A q-PCR time course of four genes revealed that p53 influences viral gene expression most at immediate-early and early times p.i., suggesting a mechanism for the reduced and delayed production of virions in p53(-/-) cells.
Collapse
|
22
|
The human cytomegalovirus Fc receptor gp68 binds the Fc CH2-CH3 interface of immunoglobulin G. J Virol 2008; 82:3490-9. [PMID: 18216124 DOI: 10.1128/jvi.01476-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recognition of immunoglobulin G (IgG) by surface receptors for the Fc domain of immunoglobulin G (Fcgamma), FcgammaRs, can trigger both humoral and cellular immune responses. Two human cytomegalovirus (HCMV)-encoded type I transmembrane receptors with Fcgamma-binding properties (vFcgammaRs), gp34 and gp68, have been identified on the surface of HCMV-infected cells and are assumed to confer protection against IgG-mediated immunity. Here we show that Fcgamma recognition by both vFcgammaRs occurs independently of N-linked glycosylation of Fcgamma, in contrast with the properties of host FcgammaRs. To gain further insight into the interaction with Fcgamma, truncation mutants of the vFcgammaR gp68 ectodomain were probed for Fcgamma binding, resulting in localization of the Fcgamma binding site on gp68 to residues 71 to 289, a region including an immunoglobulin-like domain. Gel filtration and biosensor binding experiments revealed that, unlike host FcgammaRs but similar to the herpes simplex virus type 1 (HSV-1) Fc receptor gE-gI, gp68 binds to the C(H)2-C(H)3 interdomain interface of the Fcgamma dimer with a nanomolar affinity and a 2:1 stoichiometry. Unlike gE-gI, which binds Fcgamma at the slightly basic pH of the extracellular milieu but not at the acidic pH of endosomes, the gp68/Fcgamma complex is stable at pH values from 5.6 to pH 8.1. These data indicate that the mechanistic details of Fc binding by HCMV gp68 differ from those of host FcgammaRs and from that of HSV-1 gE-gI, suggesting distinct functional and recognition properties.
Collapse
|
23
|
Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors. Br J Pharmacol 2008; 153 Suppl 1:S154-66. [PMID: 18204488 DOI: 10.1038/sj.bjp.0707660] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A number of human and animal herpes viruses encode G-protein coupled receptors with seven transmembrane (7TM) segments-most of which are clearly related to human chemokine receptors. It appears, that these receptors are used by the virus for immune evasion, cellular transformation, tissue targeting, and possibly for cell entry. In addition, many virally-encoded chemokine 7TM receptors have been suggested to be causally involved in pathogenic phenotypes like Kaposi sarcoma, atherosclerosis, HIV-infection and tumour development. The role of these receptors during the viral life cycle and in viral pathogenesis is still poorly understood. Here we focus on the current knowledge of structure, function and trafficking patterns of virally encoded chemokine receptors and further address the putative roles of these receptors in virus survival and host -cell and/or -immune system modulation. Finally, we highlight the emerging impact of these receptor on virus-mediated diseases.
Collapse
|
24
|
Pauleau AL, Larochette N, Giordanetto F, Scholz SR, Poncet D, Zamzami N, Goldmacher VS, Kroemer G. Structure-function analysis of the interaction between Bax and the cytomegalovirus-encoded protein vMIA. Oncogene 2007; 26:7067-80. [PMID: 17496930 DOI: 10.1038/sj.onc.1210511] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The viral mitochondrial inhibitor of apoptosis (vMIA) encoded by the human cytomegalovirus exerts cytopathic effects and neutralizes the proapoptotic endogenous Bcl-2 family member Bax by recruiting it to mitochondria, inducing its oligomerization and membrane insertion. Using a combination of computational modeling and mutational analyses, we addressed the structure-function relationship of the molecular interaction between the protein Bax and the viral antiapoptotic protein vMIA. We propose a model in which vMIA exhibits an overall fold similar to Bcl-X(L). In contrast to Bcl-X(L), however, this predicted conformation of vMIA does not bind to the BH3 domain of Bax and rather engages in electrostatic interactions that involve a stretch of amino acids between the BH3 and BH2 domains of Bax and an alpha-helical domain located within the previously defined Bax-binding domain of vMIA, between the putative BH1-like and BH2-like domains. According to this model, vMIA is likely to bind Bax preferentially in its membrane-inserted conformation. The capacity of vMIA to cause fragmentation of the mitochondrial network and disorganization of the actin cytoskeleton is independent of its Bax-binding function. We found that Delta131-147 vMIA mutant, which lacks both the Bax-binding function and cell-death suppression but has intact mitochondria-targeting capacity, is similar to vMIA in its ability to disrupt the mitochondrial network and to disorganize the actin cytoskeleton. vMIADelta131-147 is a dominant-negative inhibitor of the antiapoptotic function of wild-type vMIA. Our experiments with vMIADelta131-147 suggest that vMIA forms homo-oligomers, which may engage in cooperative and/or multivalent interactions with Bax, leading to its functional neutralization.
Collapse
Affiliation(s)
- A-L Pauleau
- INSERM, U848, Pavillion de Recherche 1, Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Goffard A, Gault E, Rozenberg F, Moret N, Hober D, Dény P. Comparative sequence analysis of US28 gene of human cytomegalovirus strains isolated from HIV-positive patients. Virus Genes 2006; 33:175-81. [PMID: 16972032 DOI: 10.1007/s11262-005-0054-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 11/28/2005] [Indexed: 10/24/2022]
Abstract
Human Cytomegalovirus (HCVM) encodes several G-protein coupled receptors, such as US28 protein. We determined the US28 gene sequence from clinical isolates obtained from 17 Human Immunodeficiency Virus (HIV)-infected patients with HCMV infection. Two types of clinical specimens were collected: peripheral blood leucocytes (PBLs) from 12 patients with HCMV-positive viremia and cerebro-spinal fluids (CSF) from five patients with HCMV-encephalitis. Comparison of US28 nucleotide sequences between clinical specimens and several HCMV reference strains showed that mutations were clustered at both ends of the gene. The mutations observed at the C-terminus were observed at some sequences whereas the mutations observed at the N-terminus lead us to define five patterns of mutations. These patterns were equally distributed among isolates obtained from CSF or PBLs of HIV-infected patients. For each clinical isolate, the gB genotype was determined. There was no genetic association between gB genotype and US28 patterns. The comparison of the results of the present study and those published from sequences obtained from children with HCMV congenital disease (Arav-Boger, 2002) demonstrates that two motifs appear especifically either in US28 protein sequences obtained from HIV-positive patients (motif 4) or in US28 protein sequences obtained from patients with congenital HCMV infection (motif 5/genotype B). The appearance of these patterns of mutations in other clinical context needs to be studied.
Collapse
Affiliation(s)
- Anne Goffard
- Laboratoire de Bactériologie-Virologie-Hygiène, EA 3406, UFR Santé, Médecine, Biologie Humaine, Université Paris 13, Hôpital Avicenne, 125 rue de Stalingrad, 93009 Bobigny Cedex, France
| | | | | | | | | | | |
Collapse
|
26
|
Margulies BJ, Gibson W. The chemokine receptor homologue encoded by US27 of human cytomegalovirus is heavily glycosylated and is present in infected human foreskin fibroblasts and enveloped virus particles. Virus Res 2006; 123:57-71. [PMID: 16963142 PMCID: PMC2676329 DOI: 10.1016/j.virusres.2006.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 08/07/2006] [Accepted: 08/07/2006] [Indexed: 11/26/2022]
Abstract
Human cytomegalovirus (HCMV), a member of the beta-herpesvirus family, encodes four homologues of cellular G protein-coupled receptors (GPCRs). One of these, the protein product of HCMV open reading frame (ORF) UL33, has been identified in HCMV-infected cells and virus particles and shown to be heat-aggregatable and N-glycosylated. Another, the product of ORF US28, has been functionally characterized as a beta-chemokine receptor. Here we report the use of RT-PCR, coupled in vitro transcription-translation, immunoprecipitation, and Western immunoassays to (i) show that RNA from the open reading frame US27 appears predominantly during the late phase of replication; (ii) identify the protein encoded by HCMV US27 in infected cells and enveloped virus particles; (iii) demonstrate that the US27-encoded protein is heterogeneously N-glycosylated and resolves as two species following treatment with peptide N-glycosidase F; and (iv) show that both the recombinant and deglycoylated infected cell US27 protein aggregate when heated in the presence of SDS prior to electrophoresis in polyacrylamide gels, a property which is abrogated with the addition of urea to sample buffer.
Collapse
Affiliation(s)
- Barry J Margulies
- Towson University Herpes Virus Lab, Department of Biological Sciences, Towson University, Towson, MD 21252, USA.
| | | |
Collapse
|
27
|
Valés-Gómez M, Reyburn HT. Intracellular trafficking of the HCMV immunoevasin UL16 depends on elements present in both its cytoplasmic and transmembrane domains. J Mol Biol 2006; 363:908-17. [PMID: 16996537 DOI: 10.1016/j.jmb.2006.08.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/07/2006] [Accepted: 08/15/2006] [Indexed: 11/15/2022]
Abstract
Expression of the UL16 glycoprotein leads to down-regulation of NKG2D-ligands from the surface of the human cytomegalovirus (HCMV)-infected cell. The molecular elements responsible for UL16 trafficking and intracellular localization were investigated by preparing various chimeric proteins and mutants, using CD8 as a reporter molecule. A YQRL motif, present in UL16's cytoplasmic tail was functional for internalization, but the presence of the transmembrane domain modified the fate of the molecule after internalization. Various elements of the transmembrane domain that affected the trafficking of the protein were identified; however, their influence was modified in turn by the presence of the cytoplasmic tail of UL16. Strikingly, the extremely slow maturation rate of the native viral protein was only reproduced by the chimera that contained both transmembrane and cytoplasmic regions of UL16. These findings add data to a topic of increasing interest and importance: the role of the transmembrane domain of a protein in controlling its intracellular trafficking. In addition, they provide a new insight into the mechanism of action of the viral immunoevasin UL16.
Collapse
Affiliation(s)
- Mar Valés-Gómez
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| | | |
Collapse
|
28
|
Scott MS, Oomen R, Thomas DY, Hallett MT. Predicting the subcellular localization of viral proteins within a mammalian host cell. Virol J 2006; 3:24. [PMID: 16595001 PMCID: PMC1475561 DOI: 10.1186/1743-422x-3-24] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 04/04/2006] [Indexed: 11/19/2022] Open
Abstract
Background The bioinformatic prediction of protein subcellular localization has been extensively studied for prokaryotic and eukaryotic organisms. However, this is not the case for viruses whose proteins are often involved in extensive interactions at various subcellular localizations with host proteins. Results Here, we investigate the extent of utilization of human cellular localization mechanisms by viral proteins and we demonstrate that appropriate eukaryotic subcellular localization predictors can be used to predict viral protein localization within the host cell. Conclusion Such predictions provide a method to rapidly annotate viral proteomes with subcellular localization information. They are likely to have widespread applications both in the study of the functions of viral proteins in the host cell and in the design of antiviral drugs.
Collapse
Affiliation(s)
- MS Scott
- McGill Center for Bioinformatics, McGill University, 3775 University Street, Montreal, Quebec, Canada
| | - R Oomen
- Integrated Genomics, Sanofi Pasteur, 1755 Steeles Avenue West, Toronto, Ontario, Canada
| | - DY Thomas
- Biochemistry Department, McGill University, McIntyre Medical Sciences Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - MT Hallett
- McGill Center for Bioinformatics, McGill University, 3775 University Street, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Frascaroli G, Varani S, Mastroianni A, Britton S, Gibellini D, Rossini G, Landini MP, Söderberg-Nauclér C. Dendritic cell function in cytomegalovirus-infected patients with mononucleosis. J Leukoc Biol 2006; 79:932-40. [PMID: 16501053 DOI: 10.1189/jlb.0905499] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Dendritic cells (DCs) are important target cells for human cytomegalovirus (HCMV) infection, and the virus has been shown to hamper the differentiation and maturation pathways of these cells in vitro. In the present study, we examined the function of monocyte-derived DCs obtained from immunocompetent individuals undergoing symptomatic HCMV infection in terms of immunophenotypic characteristics, pinocytosis, lymphocyte stimulation capacity, and cyto-chemokine secretion in comparison with DCs obtained from healthy controls. Immature and lipopolysaccharide (LPS)-stimulated DCs obtained from patients actively infected with HCMV expressed significantly lower levels of major histocompatibility complex (MHC) class II molecules. The inhibition of expression of MHC class II molecules by HCMV appeared to be functionally relevant, as mature DCs obtained from patients with HCMV mononucleosis were inefficient in stimulating proliferation of allogenic lymphocytes. Finally, the pattern of cyto-chemokines secreted by DCs obtained from patients with HCMV mononucleosis was characterized by a proinflammatory profile with an increased production of interleukin (IL)-1beta, tumor necrosis factor alpha, CC chemokine ligand 2 (CCL2) and CCL3, and reduced secretion of IL-10 upon LPS stimulation. During symptomatic HCMV infection in the immunocompetent host, DCs exhibit an impaired immunophenotype and function. These effects may contribute to the viral-induced immunomodulation, which is often observed in HCMV-infected patients.
Collapse
Affiliation(s)
- Giada Frascaroli
- Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Halary F, Pitard V, Dlubek D, Krzysiek R, de la Salle H, Merville P, Dromer C, Emilie D, Moreau JF, Déchanet-Merville J. Shared reactivity of V{delta}2(neg) {gamma}{delta} T cells against cytomegalovirus-infected cells and tumor intestinal epithelial cells. ACTA ACUST UNITED AC 2005; 201:1567-78. [PMID: 15897274 PMCID: PMC2212929 DOI: 10.1084/jem.20041851] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Long-lasting expansion of Vdelta2(neg) gammadelta T cells is a hallmark of cytomegalovirus (CMV) infection in kidney transplant recipients. The ligands of these cells and their role remain elusive. To better understand their immune function, we generated gammadelta T cell clones from several transplanted patients. Numerous patient Vdelta1(+), Vdelta3(+), and Vdelta5(+) gammadelta T cell clones expressing diverse Vgamma chains, but not control Vgamma9Vdelta2(+) T clones, displayed strong reactivity against CMV-infected cells, as shown by their production of tumor necrosis factor-alpha. Vdelta2(neg) gammadelta T lymphocytes could also kill CMV-infected targets and limit CMV propagation in vitro. Their anti-CMV reactivity was specific for this virus among herpesviridae and required T cell receptor engagement, but did not involve major histocompatibility complex class I molecules or NKG2D. Vdelta2(neg) gammadelta T lymphocytes expressed receptors essential for intestinal homing and were strongly activated by intestinal tumor, but not normal, epithelial cell lines. High frequencies of CMV- and tumor-specific Vdelta2(neg) gammadelta T lymphocytes were found among patients' gammadelta T cells. In conclusion, Vdelta2(neg) gammadelta T cells may play a role in protecting against CMV and tumors, probably through mucosal surveillance of cellular stress, and represent a population that is largely functionally distinct from Vgamma9Vdelta2(+) T cells.
Collapse
MESH Headings
- Antigens, Neoplasm/immunology
- Antigens, Viral/immunology
- Cell Line
- Cytomegalovirus/immunology
- Cytomegalovirus Infections/immunology
- Cytotoxicity, Immunologic
- Epithelial Cells/immunology
- Epithelial Cells/pathology
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor/immunology
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor/immunology
- Genes, MHC Class I/immunology
- Humans
- Intestinal Mucosa/immunology
- Intestinal Mucosa/pathology
- Intestinal Neoplasms/immunology
- Intestinal Neoplasms/pathology
- Lymphocyte Activation
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Lymphocyte Homing/immunology
- T-Lymphocyte Subsets/immunology
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Franck Halary
- UMR 5164, Centre National de la Recherche Scientifique, IFR 66, Université Bordeaux 2, 33076 Bordeaux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Varani S, Frascaroli G, Homman-Loudiyi M, Feld S, Landini MP, Söderberg-Nauclér C. Human cytomegalovirus inhibits the migration of immature dendritic cells by down-regulating cell-surface CCR1 and CCR5. J Leukoc Biol 2004; 77:219-28. [PMID: 15522919 DOI: 10.1189/jlb.0504301] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dendritic cells (DC) play a key role in the host immune response to infections. Human cytomegalovirus (HCMV) infection can inhibit the maturation of DC and impair their ability to stimulate T cell proliferation and cytotoxicity. In this study, we assessed the effects of HCMV infection on the migratory behavior of human DC. The HCMV strain TB40/E inhibited the migration of immature monocyte-derived DC in response to inflammatory chemokines by 95% 1 day after infection. This inhibition was mediated by early viral replicative events, which significantly reduced the cell-surface expression of CC chemokine receptor 1 (CCR1) and CCR5 by receptor internalization. HCMV infection also induced secretion of the inflammatory chemokines CC chemokine ligand 3 (CCL3)/macrophage inflammatory protein-1alpha (MIP-1alpha), CCL4/MIP-1beta, and CCL5/regulated on activation, normal T expressed and secreted (RANTES). Neutralizing antibodies for these chemokines reduced the effects of HCMV on chemokine receptor expression and on DC migration by approximately 60%. Interestingly, the surface expression of the lymphoid chemokine receptor CCR7 was not up-regulated after HCMV infection on immature DC, and immature-infected DC did not migrate in response to CCL19/MIP-3beta. These findings suggest that blocking the migratory ability of DC may be a potent mechanism used by HCMV to paralyze the early immune response of the host.
Collapse
Affiliation(s)
- Stefania Varani
- Department of Medicine, Karolinska Systems Biomedicine Center, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|