1
|
Sotgiu S, Manca S, Gagliano A, Minutolo A, Melis MC, Pisuttu G, Scoppola C, Bolognesi E, Clerici M, Guerini FR, Carta A. Immune regulation of neurodevelopment at the mother-foetus interface: the case of autism. Clin Transl Immunology 2020; 9:e1211. [PMID: 33209302 PMCID: PMC7662086 DOI: 10.1002/cti2.1211] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder defined by deficits in social communication and stereotypical behaviours. ASD’s aetiology remains mostly unclear, because of a complex interaction between genetic and environmental factors. Recently, a strong consensus has developed around ASD’s immune‐mediated pathophysiology, which is the subject of this review. For many years, neuroimmunological studies tried to understand ASD as a prototypical antibody‐ or cell‐mediated disease. Other findings indicated the importance of autoimmune mechanisms such as familial and individual autoimmunity, adaptive immune abnormalities and the influence of infections during gestation. However, recent studies have challenged the idea that autism may be a classical autoimmune disease. Modern neurodevelopmental immunology shows the double‐edged nature of many immune effectors, which can be either beneficial or detrimental depending on tissue homeostasis, stressors, neurodevelopmental stage, inherited and de novo gene mutations and other variables. Nowadays, mother–child interactions in the prenatal environment appear to be crucial for the occurrence of ASD. Studies of animal maternal–foetal immune interaction are being fruitfully carried out using different combinations of type and timing of infection, of maternal immune response and foetal vulnerability and of resilience factors to hostile events. The derailed neuroimmune crosstalk through the placenta initiates and maintains a chronic foetal neuroglial activation, eventually causing the alteration of neurogenesis, migration, synapse formation and pruning. The importance of pregnancy can also allow early immune interventions, which can significantly reduce the increasing risk of ASD and its heavy social burden.
Collapse
Affiliation(s)
- Stefano Sotgiu
- Unit of Child Neuropsychiatry Department of Medical Surgical and Experimental Sciences University of Sassari Sassari Italy
| | - Salvatorica Manca
- Unità Operativa di Neuropsichiatria Infanzia e Adolescenza (UONPIA) ASSL Sassari Sassari Italy
| | - Antonella Gagliano
- Child & Adolescent Neuropsychiatry Unit Department of Biomedical Sciences University of Cagliari Cagliari Italy
| | - Alessandra Minutolo
- Child & Adolescent Neuropsychiatry Unit Department of Biomedical Sciences University of Cagliari Cagliari Italy
| | - Maria Clotilde Melis
- Unit of Child Neuropsychiatry Department of Medical Surgical and Experimental Sciences University of Sassari Sassari Italy
| | - Giulia Pisuttu
- Unit of Child Neuropsychiatry Department of Medical Surgical and Experimental Sciences University of Sassari Sassari Italy
| | - Chiara Scoppola
- Unit of Child Neuropsychiatry Department of Medical Surgical and Experimental Sciences University of Sassari Sassari Italy
| | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi - ONLUS Milan Italy.,Department of Pathophysiology and Transplantation University of Milano Milan Italy
| | | | - Alessandra Carta
- Unit of Child Neuropsychiatry Department of Medical Surgical and Experimental Sciences University of Sassari Sassari Italy
| |
Collapse
|
2
|
Zhu Y, Mordaunt CE, Durbin-Johnson BP, Caudill MA, Malysheva OV, Miller JW, Green R, James SJ, Melnyk SB, Fallin MD, Hertz-Picciotto I, Schmidt RJ, LaSalle JM. Expression Changes in Epigenetic Gene Pathways Associated With One-Carbon Nutritional Metabolites in Maternal Blood From Pregnancies Resulting in Autism and Non-Typical Neurodevelopment. Autism Res 2020; 14:11-28. [PMID: 33159718 PMCID: PMC7894157 DOI: 10.1002/aur.2428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
The prenatal period is a critical window for the development of autism spectrum disorder (ASD). The relationship between prenatal nutrients and gestational gene expression in mothers of children later diagnosed with ASD or non-typical development (Non-TD) is poorly understood. Maternal blood collected prospectively during pregnancy provides insights into the effects of nutrition, particularly one-carbon metabolites, on gene pathways and neurodevelopment. Genome-wide transcriptomes were measured with microarrays in 300 maternal blood samples in Markers of Autism Risk in Babies-Learning Early Signs. Sixteen different one-carbon metabolites, including folic acid, betaine, 5'-methyltretrahydrofolate (5-MeTHF), and dimethylglycine (DMG) were measured. Differential expression analysis and weighted gene correlation network analysis (WGCNA) were used to compare gene expression between children later diagnosed as typical development (TD), Non-TD and ASD, and to one-carbon metabolites. Using differential gene expression analysis, six transcripts (TGR-AS1, SQSTM1, HLA-C, and RFESD) were associated with child outcomes (ASD, Non-TD, and TD) with genome-wide significance. Genes nominally differentially expressed between ASD and TD significantly overlapped with seven high confidence ASD genes. WGCNA identified co-expressed gene modules significantly correlated with 5-MeTHF, folic acid, DMG, and betaine. A module enriched in DNA methylation functions showed a suggestive protective association with folic acid/5-MeTHF concentrations and ASD risk. Maternal plasma betaine and DMG concentrations were associated with a block of co-expressed genes enriched for adaptive immune, histone modification, and RNA processing functions. These results suggest that the prenatal maternal blood transcriptome is a sensitive indicator of gestational one-carbon metabolite status and changes relevant to children's later neurodevelopmental outcomes. LAY SUMMARY: Pregnancy is a time when maternal nutrition could interact with genetic risk for autism spectrum disorder. Blood samples collected during pregnancy from mothers who had a prior child with autism were examined for gene expression and nutrient metabolites, then compared to the diagnosis of the child at age three. Expression differences in gene pathways related to the immune system and gene regulation were observed for pregnancies of children with autism and non-typical neurodevelopment and were associated with maternal nutrients.
Collapse
Affiliation(s)
- Yihui Zhu
- Department of Medical Microbiology and Immunology, Genome Center, and Perinatal Origins of Disparities Center, University of California, Davis, California, USA.,MIND Institute, School of Medicine, University of California, Davis, California, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, Genome Center, and Perinatal Origins of Disparities Center, University of California, Davis, California, USA.,MIND Institute, School of Medicine, University of California, Davis, California, USA
| | | | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Olga V Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Ralph Green
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, California, USA
| | - S Jill James
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Stepan B Melnyk
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - M Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Irva Hertz-Picciotto
- MIND Institute, School of Medicine, University of California, Davis, California, USA.,Department of Public Health Sciences, University of California, Davis, California, USA
| | - Rebecca J Schmidt
- MIND Institute, School of Medicine, University of California, Davis, California, USA.,Department of Public Health Sciences, University of California, Davis, California, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and Perinatal Origins of Disparities Center, University of California, Davis, California, USA.,MIND Institute, School of Medicine, University of California, Davis, California, USA
| |
Collapse
|
3
|
Jia X, Shi N, Feng Y, Li Y, Tan J, Xu F, Wang W, Sun C, Deng H, Yang Y, Shi X. Identification of 67 Pleiotropic Genes Associated With Seven Autoimmune/Autoinflammatory Diseases Using Multivariate Statistical Analysis. Front Immunol 2020; 11:30. [PMID: 32117227 PMCID: PMC7008725 DOI: 10.3389/fimmu.2020.00030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/08/2020] [Indexed: 12/19/2022] Open
Abstract
Although genome-wide association studies (GWAS) have a dramatic impact on susceptibility locus discovery, this univariate approach has limitations in detecting complex genotype-phenotype correlations. Multivariate analysis is essential to identify shared genetic risk factors acting through common biological mechanisms of autoimmune/autoinflammatory diseases. In this study, GWAS summary statistics, including 41,274 single nucleotide polymorphisms (SNPs) located in 11,516 gene regions, were analyzed to identify shared variants of seven autoimmune/autoinflammatory diseases using the metaCCA method. Gene-based association analysis was used to refine the pleiotropic genes. In addition, GO term enrichment analysis and protein-protein interaction network analysis were applied to explore the potential biological functions of the identified genes. A total of 4,962 SNPs (P < 1.21 × 10-6) and 1,044 pleotropic genes (P < 4.34 × 10-6) were identified by metaCCA analysis. By screening the results of gene-based P-values, we identified the existence of 27 confirmed pleiotropic genes and highlighted 40 novel pleiotropic genes that achieved statistical significance in the metaCCA analysis and were also associated with at least one autoimmune/autoinflammatory in the VEGAS2 analysis. Using the metaCCA method, we identified novel variants associated with complex diseases incorporating different GWAS datasets. Our analysis may provide insights for the development of common therapeutic approaches for autoimmune/autoinflammatory diseases based on the pleiotropic genes and common mechanisms identified.
Collapse
Affiliation(s)
- Xiaocan Jia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Nian Shi
- Department of Physical Diagnosis, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Feng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yifan Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jiebing Tan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Fei Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Changqing Sun
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Hongwen Deng
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xuezhong Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Churchward MA, Michaud ER, Todd KG. Supporting microglial niches for therapeutic benefit in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94:109648. [PMID: 31078613 DOI: 10.1016/j.pnpbp.2019.109648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/27/2022]
Abstract
Inflammation is an essential tissue response to injury, stress, or infection resulting in debris and/or pathogen clearance intended to promote healing and recovery. Due to the status as an immune 'privileged' tissue, microglia serve as endogenous regulators of inflammation in the central nervous system, but maintain communication with peripheral immune system to enable recruitment of peripheral immune cells in case of injury or infection. While microglia retain the functional capacity for a full range of inflammatory functions - microglia express a range of pattern-recognition receptors and function as innate immune cells, carry out phagocytosis of pathogens, and act as antigen presenting cells - in the healthy central nervous system (CNS) these functions are rarely engaged. Subsequently microglia are being recognized to occupy an increasing number of homeostatic niches, and in many cases have adopted immune or inflammatory mechanisms to carry out these niche functions absent immune activation. These sterile inflammatory functions are challenging long-held views of the role of inflammation in the central nervous system while simultaneously expanding the potential for the development of truly novel therapeutic interventions for a range of neuroinflammatory, neurodegenerative, and neuropsychiatric disorders. In the present review we discuss recent preclinical evidence for conserved niche functions for microglia whose disruption may causally contribute to various psychiatric disorders, and prospective targets for restoring disrupted niches.
Collapse
Affiliation(s)
- M A Churchward
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada.
| | - E R Michaud
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - K G Todd
- Neurochemical Research Unit, Department of Psychiatry, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Neuroscience and Mental Health Institute, Faculty of Medicine, University of Alberta, Edmonton, AB T6G2R3, Canada; Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G2R3, Canada
| |
Collapse
|
5
|
Jia X, Yang Y, Chen Y, Cheng Z, Du Y, Xia Z, Zhang W, Xu C, Zhang Q, Xia X, Deng H, Shi X. Multivariate analysis of genome-wide data to identify potential pleiotropic genes for five major psychiatric disorders using MetaCCA. J Affect Disord 2019; 242:234-243. [PMID: 30212762 PMCID: PMC6343670 DOI: 10.1016/j.jad.2018.07.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Genome-wide association studies have been extensively applied in identifying SNP associated with major psychiatric disorders. However, the SNPs identified by the prevailing univariate approach only explain a small percentage of the genetic variance of traits, and the extensive data have shown the major psychiatric disorders have common biological mechanisms and the overlapping pathophysiological pathways. METHODS We applied the genetic pleiotropy-informed metaCCA method on summary statistics data from the Psychiatric Genomics Consortium Cross-Disorder Group to examine the overlapping genetic relations between the five major psychiatric disorders. Furthermore, to refine all genes, we performed gene-based association analyses for the five disorders respectively using VEGAS2. Gene enrichment analysis was applied to explore the potential functional significance of the identified genes. RESULTS After metaCCA analysis, 1147 SNPs reached the Bonferroni corrected threshold (p < 1.06 × 10-6) in the univariate SNP-multivariate phenotype analysis, and 246 genes with a significance threshold (p < 3.85 × 10-6) were identified as potentially pleiotropic genes in the multivariate SNP-multivariate phenotype analysis. By screening the results of gene-based p-values, we identified 37 putative pleiotropic genes which achieved significance threshold in metaCCA analyses and were also associated with at least one disorder in the VEGAS2 analyses. LIMITATIONS Alternative approaches and experimental studies may be applied to check whether novel genes could still be identified/substantiated with these methods. CONCLUSIONS The metaCCA method identified novel variants associated with psychiatric disorders by effectively incorporating information from different GWAS datasets. Our analyses may provide insights for some common therapeutic approaches of these five major psychiatric disorders based on the pleiotropic genes and common mechanisms identified.
Collapse
Affiliation(s)
- XiaoCan Jia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - YongLi Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - YuanCheng Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guang Zhou, Guangdong, China
| | - ZhiWei Cheng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuhui Du
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenhua Xia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Weiping Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Chao Xu
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Qiang Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Xia
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - HongWen Deng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| | - XueZhong Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Bennabi M, Gaman A, Delorme R, Boukouaci W, Manier C, Scheid I, Si Mohammed N, Bengoufa D, Charron D, Krishnamoorthy R, Leboyer M, Tamouza R. HLA-class II haplotypes and Autism Spectrum Disorders. Sci Rep 2018; 8:7639. [PMID: 29769579 PMCID: PMC5955937 DOI: 10.1038/s41598-018-25974-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023] Open
Abstract
Infections and autoimmunity are associated with autism spectrum disorders (ASD), with both strongly influenced by the genetic regulation of the human leukocyte antigen (HLA) system. The relationship between ASD and the HLA genetic diversity requires further investigation. Using a case control design, the distribution of HLA class II-DRB1 and DQB1 alleles, genotypes and haplotypes were investigated in ASD patients, versus healthy controls (HC). ASD patients meeting DSM-IV TR criteria and HC (474 and 350 respectively) were genotyped at medium resolution using a Luminex-based SSO technology. Comparisons of genotypes, allele frequencies associated with a haplotype analysis were performed. Results indicate: (i) the HLA-DRB1 *11-DQB1*07 haplotype was more prevalent in ASD patients, versus HC (Pc = 0.001), partially replicating previous data and possibly linking to gastro-intestinal (GI)-related pro-inflammatory processes, given that this haplotype associates with pediatric celiac disorders; (ii) the HLA-DRB1 *17-DQB1*02 haplotype was higher in HC, versus ASD patients (Pc = 0.002), indicating that this is a protective haplotype. Using the Autism Diagnostic Interview to assess clinical dimensions, higher scores on social (Pc = 0.006) and non-verbal functioning (Pc = 0.004) associated with the DRB1 *11 DQB1*07 haplotype. Our results support HLA involvement in ASD, with possible relevance to GI and gut-brain axis dysregulation.
Collapse
Affiliation(s)
- Meriem Bennabi
- INSERM, U1160, Hôpital Saint Louis, Paris, France.,INSERM, U955, Psychiatrie Translationnelle, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Alexandru Gaman
- INSERM, U955, Psychiatrie Translationnelle, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Richard Delorme
- Fondation FondaMental, Créteil, France.,DHU Protect, AP-HP, Service de psychiatrie de l'enfant et de l'adolescent, Hôpital Robert Debré, Paris, France.,Département de génétique humaine et fonctions cognitives, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris-Cité, Paris, France
| | | | | | - Isabelle Scheid
- INSERM, U955, Psychiatrie Translationnelle, Créteil, France.,Fondation FondaMental, Créteil, France
| | | | - Djaouida Bengoufa
- Laboratoire Jean Dausset and LabEx Transplantex, Hôpital Saint Louis, Paris, France
| | - Dominique Charron
- INSERM, U1160, Hôpital Saint Louis, Paris, France.,Université Paris Diderot, Sorbonne Paris-Cité, Paris, France.,Laboratoire Jean Dausset and LabEx Transplantex, Hôpital Saint Louis, Paris, France
| | - Rajagopal Krishnamoorthy
- INSERM, U955, Psychiatrie Translationnelle, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Marion Leboyer
- INSERM, U955, Psychiatrie Translationnelle, Créteil, France.,Fondation FondaMental, Créteil, France.,DHU PePSY, AP-HP, Pôle de Psychiatrie, Hôpitaux Universitaires Henri Mondor, Créteil, France.,Université Paris-Est-Créteil, Faculté de médecine, Créteil, France
| | - Ryad Tamouza
- INSERM, U1160, Hôpital Saint Louis, Paris, France. .,INSERM, U955, Psychiatrie Translationnelle, Créteil, France. .,Fondation FondaMental, Créteil, France. .,Université Paris Diderot, Sorbonne Paris-Cité, Paris, France. .,Laboratoire Jean Dausset and LabEx Transplantex, Hôpital Saint Louis, Paris, France. .,DHU PePSY, AP-HP, Pôle de Psychiatrie, Hôpitaux Universitaires Henri Mondor, Créteil, France.
| |
Collapse
|
7
|
Tye C, Runicles AK, Whitehouse AJO, Alvares GA. Characterizing the Interplay Between Autism Spectrum Disorder and Comorbid Medical Conditions: An Integrative Review. Front Psychiatry 2018; 9:751. [PMID: 30733689 PMCID: PMC6354568 DOI: 10.3389/fpsyt.2018.00751] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
Co-occurring medical disorders and associated physiological abnormalities in individuals with autism spectrum disorder (ASD) may provide insight into causal pathways or underlying biological mechanisms. Here, we review medical conditions that have been repeatedly highlighted as sharing the strongest associations with ASD-epilepsy, sleep, as well as gastrointestinal and immune functioning. We describe within each condition their prevalence, associations with behavior, and evidence for successful treatment. We additionally discuss research aiming to uncover potential aetiological mechanisms. We then consider the potential interaction between each group of conditions and ASD and, based on the available evidence, propose a model that integrates these medical comorbidities in relation to potential shared aetiological mechanisms. Future research should aim to systematically examine the interactions between these physiological systems, rather than considering these in isolation, using robust and sensitive biomarkers across an individual's development. A consideration of the overlap between medical conditions and ASD may aid in defining biological subtypes within ASD and in the development of specific targeted interventions.
Collapse
Affiliation(s)
- Charlotte Tye
- Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Abigail K Runicles
- Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Andrew J O Whitehouse
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, QLD, Australia
| | - Gail A Alvares
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Cooperative Research Centre for Living with Autism (Autism CRC), Brisbane, QLD, Australia
| |
Collapse
|
8
|
Guerini FR, Bolognesi E, Chiappedi M, Ghezzo A, Canevini MP, Mensi MM, Vignoli A, Agliardi C, Zanette M, Clerici M. An HLA-G(∗)14bp insertion/deletion polymorphism associates with the development of autistic spectrum disorders. Brain Behav Immun 2015; 44:207-12. [PMID: 25451607 DOI: 10.1016/j.bbi.2014.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/18/2014] [Accepted: 10/04/2014] [Indexed: 11/17/2022] Open
Abstract
HLA-G expressed by the trophoblast ligates KIR molecules expressed by maternal NK cells at the uterine fetal/maternal interface: this interaction is involved in generating immune tolerance during pregnancy. A 14-bp insertion in the HLA-G 3'-UTR associates with significantly reduced levels of both HLA-G mRNA and soluble HLA-G, thus hampering the efficacy of HLA-G-mediated immune tolerance during pregnancy. Because prenatal immune activation is suggested to play an important role in the onset of autistic spectrum disorders (ASD) we performed an in-depth evaluation of HLA-G polymorphisms in a well-characterized cohort of Italian families of ASD children. Results showed that frequency of both homozygous 14bp+/14bp+ genotype and 14bp+ allele was significantly higher in ASD children and their mothers compared to controls (p<0.05 in all cases); analysis of the frequency of transmission of the 14bp+ allele from parents to ASD children and their non-ASD siblings showed that the 14bp+ allele was more frequently transmitted (T) to ASD children, whereas it was preferentially not transmitted (NT) to the non-ASD siblings (overall discrepancy: p=0.02; OR: 2.6, 95% CI: 1.1-6.4). Results herein suggest that HLA-G polymorphisms are associated with ASD development, possibly as a consequence of prenatal immune activation. These data infer that the immune alterations seen in ASD are associated with the maternal-fetal interaction alone, and reinforce the observation that different genetic backgrounds characterize ASD children and their non-ASD siblings.
Collapse
Affiliation(s)
| | | | - Matteo Chiappedi
- Child Neurology and Psychiatry Unit, C. Mondino National Neurological Institute, Pavia, Italy
| | - Alessandro Ghezzo
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and Associazione Nazionale Famiglie di Persone con Disabilitá Intellettiva e/o Relazionale (ANFFAS), Macerata, Italy
| | | | - Martina M Mensi
- Child Neurology and Psychiatry Unit, C. Mondino National Neurological Institute, Pavia, Italy
| | - Aglaia Vignoli
- Department of Health Sciences, University of Milano, Milan, Italy
| | | | | | - Mario Clerici
- Don C. Gnocchi Foundation IRCCS, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| |
Collapse
|
9
|
Braida D, Guerini FR, Ponzoni L, Corradini I, De Astis S, Pattini L, Bolognesi E, Benfante R, Fornasari D, Chiappedi M, Ghezzo A, Clerici M, Matteoli M, Sala M. Association between SNAP-25 gene polymorphisms and cognition in autism: functional consequences and potential therapeutic strategies. Transl Psychiatry 2015; 5:e500. [PMID: 25629685 PMCID: PMC4312830 DOI: 10.1038/tp.2014.136] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/19/2014] [Indexed: 12/27/2022] Open
Abstract
Synaptosomal-associated protein of 25 kDa (SNAP-25) is involved in different neuropsychiatric disorders, including schizophrenia and attention-deficit/hyperactivity disorder. Consistently, SNAP-25 polymorphisms in humans are associated with hyperactivity and/or with low cognitive scores. We analysed five SNAP-25 gene polymorphisms (rs363050, rs363039, rs363043, rs3746544 and rs1051312) in 46 autistic children trying to correlate them with Childhood Autism Rating Scale and electroencephalogram (EEG) abnormalities. The functional effects of rs363050 single-nucleotide polymorphism (SNP) on the gene transcriptional activity, by means of the luciferase reporter gene, were evaluated. To investigate the functional consequences that SNAP-25 reduction may have in children, the behaviour and EEG of SNAP-25(+/-) adolescent mice (SNAP-25(+/+)) were studied. Significant association of SNAP-25 polymorphism with decreasing cognitive scores was observed. Analysis of transcriptional activity revealed that SNP rs363050 encompasses a regulatory element, leading to protein expression decrease. Reduction of SNAP-25 levels in adolescent mice was associated with hyperactivity, cognitive and social impairment and an abnormal EEG, characterized by the occurrence of frequent spikes. Both EEG abnormalities and behavioural deficits were rescued by repeated exposure for 21 days to sodium salt valproate (VLP). A partial recovery of SNAP-25 expression content in SNAP-25(+/-) hippocampi was also observed by means of western blotting. A reduced expression of SNAP-25 is responsible for the cognitive deficits in children affected by autism spectrum disorders, as presumably occurring in the presence of rs363050(G) allele, and for behavioural and EEG alterations in adolescent mice. VLP treatment could result in novel therapeutic strategies.
Collapse
Affiliation(s)
- D Braida
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy,Fondazione IRCCS Don Gnocchi, Milan, Italy
| | | | - L Ponzoni
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy,Fondazione Fratelli Confalonieri, Milan, Italy
| | | | - S De Astis
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - L Pattini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | | | - R Benfante
- CNR—Neuroscience Institute, Milan, Italy
| | - D Fornasari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy,CNR—Neuroscience Institute, Milan, Italy
| | - M Chiappedi
- Child Neuropsychiatry Unit, National Neurological Institute C. Mondino, Pavia, Italy
| | - A Ghezzo
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy,Associazione Nazionale Famiglie di Persone con Disabilitá Affettiva e/o Relazionale (ANFFAS), Macerata, Italy
| | - M Clerici
- Fondazione IRCCS Don Gnocchi, Milan, Italy,Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - M Matteoli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy,Humanitas Clinical and Research Center, Rozzano, Italy
| | - M Sala
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy,CNR—Neuroscience Institute, Milan, Italy,Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Vanvitelli 32, Milan 20129, Italy. E-mail:
| |
Collapse
|
10
|
The Relationship of HLA Class I and II Alleles and Haplotypes with Autism: A Case Control Study. AUTISM RESEARCH AND TREATMENT 2014; 2014:242048. [PMID: 24672722 PMCID: PMC3929985 DOI: 10.1155/2014/242048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 11/20/2022]
Abstract
Earlier reports showed the relationship between autism and immune genes located in the human leukocyte antigen (HLA). In this current study, we compared the HLA class I and class II alleles and haplotypes in 35 autistic children with 100 control subjects from Saudi Arabia, using PCR-SSP method and Luminex technology. In class I the HLA-A*01 (P = 0.03, OR 2.68), A*02 (P = 0.001, OR 3.02) and HLA-B*07 (P = 0.01, OR 3.27), were significantly associated with autism. Also, the haplotype A*02-B*07 was significantly higher in autistic patients than in controls (P = 0.007, OR 5.83). In class II, DRB1*1104 was significantly higher in patients than in controls (P = 0.001, OR 8.75). The DQB1*0202 (P = 0.001,
OR 0.24), DQB1*0302 (P = 0.001,
OR 0.14), and DQB1*0501 (P = 0.012, OR 0.25), were negatively associated with disease. While the four-loci genotype study showed that A*01-B*07-DRB1*0701-DQB1*0602 (P = 0.001, OR 41.9) and the A*31-B*51-DRB1*0103-DQB1*0302 (P = 0.012, OR 4.8) are positively associated with autism among Saudi patients. This is the first report on a foreseeable risk of association of HLA-B*07 allele with autism. Thus, HLA-B*07 allele and the closely linked haplotype A*01 B*07 DRB1*0701 DQB1*0602 may serve as a marker for genetic susceptibility to autism in Saudis.
Collapse
|
11
|
Gesundheit B, Rosenzweig JP, Naor D, Lerer B, Zachor DA, Procházka V, Melamed M, Kristt DA, Steinberg A, Shulman C, Hwang P, Koren G, Walfisch A, Passweg JR, Snowden JA, Tamouza R, Leboyer M, Farge-Bancel D, Ashwood P. Immunological and autoimmune considerations of Autism Spectrum Disorders. J Autoimmun 2013; 44:1-7. [PMID: 23867105 DOI: 10.1016/j.jaut.2013.05.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 05/26/2013] [Accepted: 05/30/2013] [Indexed: 12/22/2022]
Abstract
Autism Spectrum Disorders (ASD) are a group of heterogeneous neurodevelopmental conditions presenting in early childhood with a prevalence ranging from 0.7% to 2.64%. Social interaction and communication skills are impaired and children often present with unusual repetitive behavior. The condition persists for life with major implications for the individual, the family and the entire health care system. While the etiology of ASD remains unknown, various clues suggest a possible association with altered immune responses and ASD. Inflammation in the brain and CNS has been reported by several groups with notable microglia activation and increased cytokine production in postmortem brain specimens of young and old individuals with ASD. Moreover several laboratories have isolated distinctive brain and CNS reactive antibodies from individuals with ASD. Large population based epidemiological studies have established a correlation between ASD and a family history of autoimmune diseases, associations with MHC complex haplotypes, and abnormal levels of various inflammatory cytokines and immunological markers in the blood. In addition, there is evidence that antibodies that are only present in some mothers of children with ASD bind to fetal brain proteins and may be a marker or risk factor for ASD. Studies involving the injection of these ASD specific maternal serum antibodies into pregnant mice during gestation, or gestational exposure of Rhesus monkeys to IgG subclass of these antibodies, have consistently elicited behavioral changes in offspring that have relevance to ASD. We will summarize the various types of studies associating ASD with the immune system, critically evaluate the quality of these studies, and attempt to integrate them in a way that clarifies the areas of immune and autoimmune phenomena in ASD research that will be important indicators for future research.
Collapse
|
12
|
Needleman LA, McAllister AK. The major histocompatibility complex and autism spectrum disorder. Dev Neurobiol 2012; 72:1288-301. [PMID: 22760919 PMCID: PMC4365477 DOI: 10.1002/dneu.22046] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 01/02/2023]
Abstract
Autism spectrum disorder (ASD) is a complex disorder that appears to be caused by interactions between genetic changes and environmental insults during early development. A wide range of factors have been linked to the onset of ASD, but recently both genetic associations and environmental factors point to a central role for immune-related genes and immune responses to environmental stimuli. Specifically, many of the proteins encoded by the major histocompatibility complex (MHC) play a vital role in the formation, refinement, maintenance, and plasticity of the brain. Manipulations of levels of MHC molecules have illustrated how disrupted MHC signaling can significantly alter brain connectivity and function. Thus, an emerging hypothesis in our field is that disruptions in MHC expression in the developing brain caused by mutations and/or immune dysregulation may contribute to the altered brain connectivity and function characteristic of ASD. This review provides an overview of the structure and function of the three classes of MHC molecules in the immune system, healthy brain, and their possible involvement in ASD.
Collapse
|
13
|
Michel M, Schmidt MJ, Mirnics K. Immune system gene dysregulation in autism and schizophrenia. Dev Neurobiol 2012; 72:1277-87. [PMID: 22753382 PMCID: PMC3435446 DOI: 10.1002/dneu.22044] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/14/2012] [Accepted: 06/19/2012] [Indexed: 12/14/2022]
Abstract
Gene*environment interactions play critical roles in the emergence of autism and schizophrenia pathophysiology. In both disorders, recent genetic association studies have provided evidence for disease-linked variation in immune system genes and postmortem gene expression studies have shown extensive chronic immune abnormalities in brains of diseased subjects. Furthermore, peripheral biomarker studies revealed that both innate and adaptive immune systems are dysregulated. In both disorders symptoms of the disease correlate with the immune system dysfunction; yet, in autism this process appears to be chronic and sustained, while in schizophrenia it is exacerbated during acute episodes. Furthermore, since immune abnormalities endure into adulthood and anti-inflammatory agents appear to be beneficial, it is likely that these immune changes actively contribute to disease symptoms. Modeling these changes in animals provided further evidence that prenatal maternal immune activation alters neurodevelopment and leads to behavioral changes that are relevant for autism and schizophrenia. The converging evidence strongly argues that neurodevelopmental immune insults and genetic background critically interact and result in increased risk for either autism or schizophrenia. Further research in these areas may improve prenatal health screening in genetically at-risk families and may also lead to new preventive and/or therapeutic strategies.
Collapse
Affiliation(s)
- Maximilian Michel
- Vanderbilt University, Department of Psychiatry, Nashville, Tennessee, United States
| | - Martin J Schmidt
- Vanderbilt University, Department of Psychiatry, Nashville, Tennessee, United States
- Vanderbilt University, Neuroscience Graduate Program, Nashville, Tennessee, United States
| | - Karoly Mirnics
- Vanderbilt University, Department of Psychiatry, Nashville, Tennessee, United States
- Vanderbilt University, Vanderbilt Kennedy Center for Research on Human Development, Nashville, Tennessee, United States
| |
Collapse
|
14
|
HLA Immune Function Genes in Autism. AUTISM RESEARCH AND TREATMENT 2012; 2012:959073. [PMID: 22928105 PMCID: PMC3420779 DOI: 10.1155/2012/959073] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/11/2011] [Indexed: 12/13/2022]
Abstract
The human leukocyte antigen (HLA) genes on chromosome 6 are instrumental in many innate and adaptive immune responses. The HLA genes/haplotypes can also be involved in immune dysfunction and autoimmune diseases. It is now becoming apparent that many of the non-antigen-presenting HLA genes make significant contributions to autoimmune diseases. Interestingly, it has been reported that autism subjects often have associations with HLA genes/haplotypes, suggesting an underlying dysregulation of the immune system mediated by HLA genes. Genetic studies have only succeeded in identifying autism-causing genes in a small number of subjects suggesting that the genome has not been adequately interrogated. Close examination of the HLA region in autism has been relatively ignored, largely due to extraordinary genetic complexity. It is our proposition that genetic polymorphisms in the HLA region, especially in the non-antigen-presenting regions, may be important in the etiology of autism in certain subjects.
Collapse
|
15
|
Abstract
Autism spectrum disorders (ASD) are complex and heterogeneous with a spectrum of diverse symptoms. Mounting evidence from a number of disciplines suggests a link between immune function and ASD. Although the causes of ASD have yet to be identified, genetic studies have uncovered a host of candidate genes relating to immune regulation that are altered in ASD, while epidemiological studies have shown a relationship with maternal immune disturbances during pregnancy and ASD. Moreover, decades of research have identified numerous systemic and cellular immune abnormalities in individuals with ASD and their families. These include changes in immune cell number, differences in cytokine and chemokine production, and alterations of cellular function at rest and in response to immunological challenge. Many of these changes in immune responses are associated with increasing impairment in behaviors that are core features of ASD. Despite this evidence, much remains to be understood about the precise mechanism by which the immune system alters neurodevelopment and to what extent it is involved in the pathogenesis of ASD. With estimates of ASD as high as 1% of children, ASD is a major public health issue. Improvements in our understanding of the interactions between the nervous and immune system during early neurodevelopment and how this interaction is different in ASD will have important therapeutic implications with wide ranging benefits.
Collapse
Affiliation(s)
- Milo Careaga
- Department of Medical Microbiology and Immunology and the M.I.N.D. Institute, University of California at Davis, Davis, CA, USA
| | | |
Collapse
|
16
|
Crespi BJ, Thiselton DL. Comparative immunogenetics of autism and schizophrenia. GENES BRAIN AND BEHAVIOR 2011; 10:689-701. [DOI: 10.1111/j.1601-183x.2011.00710.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Guerini FR, Bolognesi E, Chiappedi M, Manca S, Ghezzo A, Agliardi C, Sotgiu S, Usai S, Matteoli M, Clerici M. SNAP-25 single nucleotide polymorphisms are associated with hyperactivity in autism spectrum disorders. Pharmacol Res 2011; 64:283-8. [PMID: 21497654 DOI: 10.1016/j.phrs.2011.03.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 12/26/2022]
Abstract
Synaptosomal-associated protein of 25kD (SNAP-25), a protein participating in the regulation of synaptic vesicle exocytosis and in calcium homeostasis, was recently involved in neuropsychiatric conditions. Because alterations affecting the homeostasis of calcium are described in patients affected by autism spectrum disorders (ASD) we investigated a possible involvement of SNAP-25 in ASD by evaluating five SNAP-25 gene polymorphisms in a cohort of 67 ASD children. Data analyzed in relationship with clinical outcomes and compared to those of 205 healthy sex-matched children did not reveal significant differences. Further analyses nevertheless showed the presence of highly significant associations of the rs363043 (CT) genotype, localized in the intron 1 region that affects the transcription factor binding sites of the SNAP-25 gene, with both increasing CARS (p=0.001) and hyperactivity scores (p=0.006). The finding that polymorphisms of the SNAP-25 gene, a gene involved in neurotransmission and regulation of calcium homeostasis, are associated with the degree of hyperactivity in children with ASD, reinforces the hypothesis that alterations of these mechanisms play a pivotal role in the events leading to ASD-associated behavioral impairment. Modulation of these processes could result in novel therapeutic strategies.
Collapse
Affiliation(s)
- Franca R Guerini
- Don C. Gnocchi Foundation ONLUS, P. le Morandi 6, 20121 Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Careaga M, Van de Water J, Ashwood P. Immune dysfunction in autism: a pathway to treatment. Neurotherapeutics 2010; 7:283-92. [PMID: 20643381 PMCID: PMC5084232 DOI: 10.1016/j.nurt.2010.05.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/18/2010] [Accepted: 05/18/2010] [Indexed: 11/22/2022] Open
Abstract
Autism is a complex and clinically heterogeneous disorder with a spectrum of symptoms. Clinicians, schools, and service agencies worldwide have reported a dramatic increase in the number of children identified with autism. Despite expanding research, the etiology and underlying biological processes of autism remain poorly understood, and the relative contribution from genetic, epigenetic, and environmental factors remains unclear. Although autism affects primarily brain function (especially affect, social functioning, and cognition), it is unknown to what extent other organs and systems are disrupted. Published findings have identified widespread changes in the immune systems of children with autism, at both systemic and cellular levels. Brain specimens from autism subjects exhibit signs of active, ongoing inflammation, as well as alterations in gene pathways associated with immune signaling and immune function. Moreover, many genetic studies have indicated a link between autism and genes that are relevant to both the nervous system and the immune system. Alterations in these pathways can affect function in both systems. Together, these reports suggest that autism may in fact be a systemic disorder with connections to abnormal immune responses. Such immune system dysfunction may represent novel targets for treatment. A better understanding of the involvement of the immune response in autism, and of how early brain development is altered, may have important therapeutic implications.
Collapse
Affiliation(s)
- Milo Careaga
- Department of Medical Microbiology and Immunology, University of California at Davis, 95817 Sacramento, California
- M.I.N.D. Institute, University of California at Davis, 2805 50th Street, 95817 Sacramento, CA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 95817 Sacramento, California
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California at Davis, 95817 Sacramento, California
- M.I.N.D. Institute, University of California at Davis, 2805 50th Street, 95817 Sacramento, CA
| |
Collapse
|