1
|
Juillard S, Karakeussian-Rimbaud A, Normand MH, Turgeon J, Veilleux-Trinh C, C Robitaille A, Rauch J, Chruscinski A, Grandvaux N, Boilard É, Hébert MJ, Dieudé M. Vascular injury derived apoptotic exosome-like vesicles trigger autoimmunity. J Transl Autoimmun 2024; 9:100250. [PMID: 39286649 PMCID: PMC11402544 DOI: 10.1016/j.jtauto.2024.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/15/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
According to a central tenet of classical immune theory, a healthy immune system must avoid self-reactive lymphocyte clones but we now know that B cells repertoire exhibit some level of autoreactivity. These autoreactive B cells are thought to rely on self-ligands for their clonal selection and survival. Here, we confirm that healthy mice exhibit self-reactive B cell clones that can be stimulated in vitro by agonists of toll-like receptor (TLR) 1/2, TLR4, TLR7 and TLR9 to secrete anti-LG3/perlecan. LG3/perlecan is an antigen packaged in exosome-like structures released by apoptotic endothelial cells (ApoExos) upon vascular injury. We demonstrate that the injection of ApoExos in healthy animals activates the IL-23/IL-17 pro-inflammatory and autoimmune axis, and produces several autoantibodies, including anti-LG3 autoantibodies and hallmark autoantibodies found in systemic lupus erythematosus. We also identify γδT cells as key mediators of the maturation of ApoExos-induced autoantibodies in healthy mice. Altogether we show that ApoExos released by apoptotic endothelial cells display immune-mediating functions that can stimulate the B cells in the normal repertoire to produce autoantibodies. Our work also identifies TLR activation and γδT cells as important modulators of the humoral autoimmune response induced by ApoExos.
Collapse
Affiliation(s)
- Sandrine Juillard
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Annie Karakeussian-Rimbaud
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
| | - Marie-Hélène Normand
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Julie Turgeon
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Charlotte Veilleux-Trinh
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
| | - Alexa C Robitaille
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Joyce Rauch
- Division of Rheumatology, Research Institute of the McGill University Health Centre (RI MUHC), 1001 Bd Décarie, Montréal, QC, H4A 3J1, Canada
| | | | - Nathalie Grandvaux
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Éric Boilard
- Centre de Recherche Du CHU de Québec, Université Laval, 2705 Bd Laurier, Québec, QC, G1V 4G2, Canada
| | - Marie-Josée Hébert
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Mélanie Dieudé
- Centre de Recherche Du Centre Hospitalier de l'Université de Montréal (CRCHUM), Tour Viger, R12.218, 900 Rue St-Denis, Montréal, QC, H2X 0A9, Canada
- Université de Montréal, 2900 Bd Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), University of Alberta, Edmonton, AB, T6G 2E1, Canada
- Medical Affairs and Innovation, Héma-Québec, 1070 Avenue des Sciences-de-la-Vie, Québec, QC, G1V 5C3, Canada
| |
Collapse
|
2
|
Martini L, Mandoli GE, Pastore MC, Pagliaro A, Bernazzali S, Maccherini M, Henein M, Cameli M. Heart transplantation and biomarkers: a review about their usefulness in clinical practice. Front Cardiovasc Med 2024; 11:1336011. [PMID: 38327491 PMCID: PMC10847311 DOI: 10.3389/fcvm.2024.1336011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Advanced heart failure (AdvHF) can only be treated definitively by heart transplantation (HTx), yet problems such right ventricle dysfunction (RVD), rejection, cardiac allograft vasculopathy (CAV), and primary graft dysfunction (PGD) are linked to a poor prognosis. As a result, numerous biomarkers have been investigated in an effort to identify and prevent certain diseases sooner. We looked at both established biomarkers, such as NT-proBNP, hs-troponins, and pro-inflammatory cytokines, and newer ones, such as extracellular vesicles (EVs), donor specific antibodies (DSA), gene expression profile (GEP), donor-derived cell free DNA (dd-cfDNA), microRNA (miRNA), and soluble suppression of tumorigenicity 2 (sST2). These biomarkers are typically linked to complications from HTX. We also highlight the relationships between each biomarker and one or more problems, as well as their applicability in routine clinical practice.
Collapse
Affiliation(s)
- L. Martini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - G. E. Mandoli
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - M. C. Pastore
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - A. Pagliaro
- Cardio-Thoracic-Vascular Department, Siena University Hospital, Siena, Italy
| | - S. Bernazzali
- Cardio-Thoracic-Vascular Department, Siena University Hospital, Siena, Italy
| | - M. Maccherini
- Cardio-Thoracic-Vascular Department, Siena University Hospital, Siena, Italy
| | - M. Henein
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - M. Cameli
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| |
Collapse
|
3
|
Battle R, Pritchard D, Peacock S, Hastie C, Worthington J, Jordan S, McCaughlan JA, Barnardo M, Cope R, Collins C, Diaz-Burlinson N, Rosser C, Foster L, Kallon D, Shaw O, Briggs D, Turner D, Anand A, Akbarzad-Yousefi A, Sage D. BSHI and BTS UK guideline on the detection of alloantibodies in solid organ (and islet) transplantation. Int J Immunogenet 2023; 50 Suppl 2:3-63. [PMID: 37919251 DOI: 10.1111/iji.12641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023]
Abstract
Solid organ transplantation represents the best (and in many cases only) treatment option for patients with end-stage organ failure. The effectiveness and functioning life of these transplants has improved each decade due to surgical and clinical advances, and accurate histocompatibility assessment. Patient exposure to alloantigen from another individual is a common occurrence and takes place through pregnancies, blood transfusions or previous transplantation. Such exposure to alloantigen's can lead to the formation of circulating alloreactive antibodies which can be deleterious to solid organ transplant outcome. The purpose of these guidelines is to update to the previous BSHI/BTS guidelines 2016 on the relevance, assessment, and management of alloantibodies within solid organ transplantation.
Collapse
Affiliation(s)
- Richard Battle
- Scottish National Blood Transfusion Service, Edinburgh, UK
| | | | - Sarah Peacock
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | - Sue Jordan
- National Blood Service Tooting, London, UK
| | | | - Martin Barnardo
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Rebecca Cope
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | | | | | - Luke Foster
- Birmingham Blood Donor Centre, Birmingham, UK
| | | | - Olivia Shaw
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - David Turner
- Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Arthi Anand
- Imperial College Healthcare NHS Trust, London, UK
| | | | | |
Collapse
|
4
|
Liu Y, Herr AE. DropBlot: single-cell western blotting of chemically fixed cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556277. [PMID: 37732260 PMCID: PMC10508777 DOI: 10.1101/2023.09.04.556277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
To further realize proteomics of archived tissues for translational research, we introduce a hybrid microfluidic platform for high-specificity, high-sensitivity protein detection from individual chemically fixed cells. To streamline processing-to-analysis workflows and minimize signal loss, DropBlot serially integrates sample preparation using droplet-based antigen retrieval from single fixed cells with unified analysis-on-a-chip comprising microwell-based antigen extraction followed by chip-based single-cell western blotting. A water-in-oil droplet formulation proves robust to the harsh chemical (SDS, 6M urea) and thermal conditions (98°C, 1-2 hr.) required for sufficient antigen retrieval, and the electromechanical conditions required for electrotransfer of retrieved antigen from microwell-encapsulated droplets to single-cell electrophoresis. Protein-target retrieval was demonstrated for unfixed, paraformaldehyde-(PFA), and methanol-fixed cells. We observed higher protein electrophoresis separation resolution from PFA-fixed cells with sufficient immunoreactivity confirmed for key targets (HER2, GAPDH, EpCAM, Vimentin) from both fixation chemistries. Multiple forms of EpCAM and Vimentin were detected, a hallmark strength of western-blot analysis. DropBlot of PFA-fixed human-derived breast tumor specimens (n = 5) showed antigen retrieval from cells archived frozen for 6 yrs. DropBlot could provide a precision integrated workflow for single-cell resolution protein-biomarker mining of precious biospecimen repositories.
Collapse
|
5
|
Subburayalu J. Immune surveillance and humoral immune responses in kidney transplantation - A look back at T follicular helper cells. Front Immunol 2023; 14:1114842. [PMID: 37503334 PMCID: PMC10368994 DOI: 10.3389/fimmu.2023.1114842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
T follicular helper cells comprise a specialized, heterogeneous subset of immune-competent T helper cells capable of influencing B cell responses in lymphoid tissues. In physiology, for example in response to microbial challenges or vaccination, this interaction chiefly results in the production of protecting antibodies and humoral memory. In the context of kidney transplantation, however, immune surveillance provided by T follicular helper cells can take a life of its own despite matching of human leukocyte antigens and employing the latest immunosuppressive regiments. This puts kidney transplant recipients at risk of subclinical and clinical rejection episodes with a potential risk for allograft loss. In this review, the current understanding of immune surveillance provided by T follicular helper cells is briefly described in physiological responses to contrast those pathological responses observed after kidney transplantation. Sensitization of T follicular helper cells with the subsequent emergence of detectable donor-specific human leukocyte antigen antibodies, non-human leukocyte antigen antibodies their implication for kidney transplantation and lessons learnt from other transplantation "settings" with special attention to antibody-mediated rejection will be addressed.
Collapse
Affiliation(s)
- Julien Subburayalu
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies (CRTD), Technische Universität Dresden, Dresden, Germany
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Nair N. Vascular rejection in cardiac allograft vasculopathy: Impact on graft survival. Front Cardiovasc Med 2022; 9:919036. [PMID: 35990962 PMCID: PMC9386065 DOI: 10.3389/fcvm.2022.919036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022] Open
|
7
|
Increased Autoantibodies Against Ro/SS-A, CENP-B, and La/SS-B in Patients With Kidney Allograft Antibody-mediated Rejection. Transplant Direct 2021; 7:e768. [PMID: 34557585 PMCID: PMC8454907 DOI: 10.1097/txd.0000000000001215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/02/2021] [Indexed: 01/20/2023] Open
Abstract
Supplemental Digital Content is available in the text. Antibody-mediated rejection (AMR) causes more than 50% of late kidney graft losses. In addition to anti-human leukocyte antigen (HLA) donor-specific antibodies, antibodies against non-HLA antigens are also linked to AMR. Identifying key non-HLA antibodies will improve our understanding of AMR.
Collapse
|
8
|
McQuiston A, Emtiazjoo A, Angel P, Machuca T, Christie J, Atkinson C. Set Up for Failure: Pre-Existing Autoantibodies in Lung Transplant. Front Immunol 2021; 12:711102. [PMID: 34456920 PMCID: PMC8385565 DOI: 10.3389/fimmu.2021.711102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 11/17/2022] Open
Abstract
Lung transplant patients have the lowest long-term survival rates compared to other solid organ transplants. The complications after lung transplantation such as primary graft dysfunction (PGD) and ultimately chronic lung allograft dysfunction (CLAD) are the main reasons for this limited survival. In recent years, lung-specific autoantibodies that recognize non-HLA antigens have been hypothesized to contribute to graft injury and have been correlated with PGD, CLAD, and survival. Mounting evidence suggests that autoantibodies can develop during pulmonary disease progression before lung transplant, termed pre-existing autoantibodies, and may participate in allograft injury after transplantation. In this review, we summarize what is known about pulmonary disease autoantibodies, the relationship between pre-existing autoantibodies and lung transplantation, and potential mechanisms through which pre-existing autoantibodies contribute to graft injury and rejection.
Collapse
Affiliation(s)
- Alexander McQuiston
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States.,Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Amir Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Tiago Machuca
- Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Jason Christie
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Carl Atkinson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Kardol-Hoefnagel T, Otten HG. A Comprehensive Overview of the Clinical Relevance and Treatment Options for Antibody-mediated Rejection Associated With Non-HLA Antibodies. Transplantation 2021; 105:1459-1470. [PMID: 33208690 PMCID: PMC8221725 DOI: 10.1097/tp.0000000000003551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/06/2020] [Indexed: 12/24/2022]
Abstract
Although solid organ transplant results have improved significantly in recent decades, a pivotal cause of impaired long-term outcome is the development of antibody-mediated rejection (AMR), a condition characterized by the presence of donor-specific antibodies to HLA or non-HLA antigens. Highly HLA-sensitized recipients are treated with desensitization protocols to rescue the transplantation. These and other therapies are also applied for the treatment of AMR. Therapeutic protocols include removal of antibodies, depletion of plasma and B cells, inhibition of the complement cascade, and suppression of the T-cell-dependent antibody response. As mounting evidence illustrates the importance of non-HLA antibodies in transplant outcome, there is a need to evaluate the efficacy of treatment protocols on non-HLA antibody levels and graft function. Many reviews have been recently published that provide an overview of the literature describing the association of non-HLA antibodies with rejection in transplantation, whereas an overview of the treatment options for non-HLA AMR is still lacking. In this review, we will therefore provide such an overview. Most reports showed positive effects of non-HLA antibody clearance on graft function. However, monitoring non-HLA antibody levels after treatment along with standardization of therapies is needed to optimally treat solid organ transplant recipients.
Collapse
Affiliation(s)
- Tineke Kardol-Hoefnagel
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henny G. Otten
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Lefaucheur C, Louis K, Philippe A, Loupy A, Coates PT. The emerging field of non-human leukocyte antigen antibodies in transplant medicine and beyond. Kidney Int 2021; 100:787-798. [PMID: 34186057 DOI: 10.1016/j.kint.2021.04.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
The major medical advances in our knowledge of the human leukocyte antigen (HLA) system have allowed us to uncover several gaps in our understanding of alloimmunity. Although the non-HLA system has long sparked the interest of the transplant community, recognition of the role of immunity to non-HLA antigenic targets has only emerged recently. In this review, we will provide a comprehensive summary of the paradigm-changing concept of immunity to the non-HLA angiotensin II type 1 receptor (AT1R), discovered by Duška Dragun et al., that began from careful bedside clinical observations, to validated detection of anti-AT1R antibodies and lead to clinical intervention. This scientific approach has also allowed the recognition of broader pathogenicity of anti-AT1R antibodies across multiple organ transplants and in other human diseases, the integration of both non-HLA and HLA systems to understand their immunologic effects on organ allografts, and the identification of future directions for therapeutic intervention to modulate immunity to AT1R. Rationally designed successful interventions to target AT1R system provide an exemplar for other non-HLA antibodies to cross borders between medical specialties, will generate new avenues in translational research beyond transplantation, and will foster the development of new and reliable tools to improve our understanding of non-HLA immunity and ultimately allow us to improve patient care.
Collapse
Affiliation(s)
- Carmen Lefaucheur
- Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale UMR-S970, Université de Paris, Paris, France; Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Kevin Louis
- Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Human Immunology and Immunopathology, Institut National de la santé et de la recherche médicale UMR-976, Université de Paris, Paris, France
| | - Aurélie Philippe
- Department of Nephrology and Critical Care Medicine, Campus Virchow Klinikum, Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexandre Loupy
- Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale UMR-S970, Université de Paris, Paris, France; Department of Kidney Transplantation, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - P Toby Coates
- Discipline of Medicine, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia; Central Northern Adelaide Renal and Transplantation Service (CNARTS), The Royal Adelaide Hospital, Adelaide, South Australia, Australia
| |
Collapse
|
11
|
Histologic Antibody-Mediated Kidney Allograft Rejection in the Absence of Donor Specific HLA Antibodies. Transplantation 2021; 105:e181-e190. [PMID: 33901113 DOI: 10.1097/tp.0000000000003797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Histologic antibody-mediated rejection (hAMR) is defined as a kidney allograft biopsy satisfying the first 2 Banff criteria for diagnosing antibody-mediated rejection (AMR): tissue injury and evidence of current/recent antibody interaction with the endothelium. In approximately one-half of such cases, circulating HLA donor specific antibodies (DSA) are not detectable by current methodology at the time of biopsy. Some studies indicated a better prognosis for HLA-DSA-negative cases of hAMR compared to those with detectable HLA-DSA, whereas others found equally poor survival compared to hAMR-negative cases. We reviewed the literature regarding the pathophysiology of HLA-DSA-negative hAMR. We find 3 nonmutually exclusive possibilities: 1) HLA-DSA are involved, but just not detected; 2) non-HLA DSA (allo- or autoantibodies) are pathogenically involved; and/or 3) antibody-independent NK cell activation is mediating the process through "missing self" or other activating mechanisms. These possibilities are discussed in detail. Recommendations regarding the approach to such patients are made. Clearly, more research is necessary regarding the measurement of non-HLA antibodies, recipient/donor NK cell genotyping, and the use of antibody reduction therapy or other immunosuppression in any subset of patients with HLA-DSA-negative hAMR.
Collapse
|
12
|
Zhang X, Levine R, Patel JK, Kittleson M, Czer L, Kobashigawa JA. Association of vimentin antibody and other non-HLA antibodies with treated antibody mediated rejection in heart transplant recipients. Hum Immunol 2020; 81:671-674. [PMID: 33041085 DOI: 10.1016/j.humimm.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023]
Abstract
Non-human leukocyte antigen (HLA) antibodies have been implicated in heart transplantation rejection. However, targets of non-HLA antibodies remain elusive. Here, we utilized a panel of multiplex beads-based assay to determine the specificity of non-HLA antibodies following heart transplantation. We utilized a selected cohort of recipients who did not have HLA donor specific antibodies, but were diagnosed with antibody mediated rejection and treated for antibody mediated rejection. We found the presence of vimentin antibody was associated with treated antibody mediated rejection. Our results suggest that, in heart transplant recipients who are suspected of AMR but in the absence of HLA donor specific antibodies, non-HLA antibodies should be examined.
Collapse
Affiliation(s)
- Xiaohai Zhang
- HLA Laboratory, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| | - Ryan Levine
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jignesh K Patel
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Michelle Kittleson
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Lawrence Czer
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jon A Kobashigawa
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
13
|
Zhang X, Reinsmoen NL. Impact and production of Non-HLA-specific antibodies in solid organ transplantation. Int J Immunogenet 2020; 47:235-242. [PMID: 32426916 DOI: 10.1111/iji.12494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
Abstract
Organ transplantation is an effective way to treat end-stage organ disease. Extending the graft survival is one of the major goals in the modern era of organ transplantation. However, long-term graft survival has not significantly improved in recent years despite the improvement of patient management and advancement of immunosuppression regimen. Antibody-mediated rejection is a major obstacle for long-term graft survival. Donor human leucocyte antigen (HLA)-specific antibodies were initially identified as a major cause for antibody-mediated rejection. Recently, with the development of solid-phase-based assay reagents, the contribution of non-HLA antibodies in organ transplantation starts to be appreciated. Here, we review the role of most studied non-HLA antibodies, including angiotensin II type 1 receptor (AT1 R), K-α-tubulin and vimentin antibodies, in the solid organ transplant, and discuss the possible mechanism by which these antibodies are stimulated.
Collapse
Affiliation(s)
- Xiaohai Zhang
- HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars- Sinai Medical Center, Los Angeles, CA, USA
| | - Nancy L Reinsmoen
- HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars- Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
14
|
Dieudé M, Turgeon J, Karakeussian Rimbaud A, Beillevaire D, Qi S, Patey N, Gaboury LA, Boilard É, Hébert M. Extracellular vesicles derived from injured vascular tissue promote the formation of tertiary lymphoid structures in vascular allografts. Am J Transplant 2020; 20:726-738. [PMID: 31729155 PMCID: PMC7064890 DOI: 10.1111/ajt.15707] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/16/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023]
Abstract
Tertiary lymphoid structures (TLS) accumulate at sites of chronic injury where they function as an ectopic germinal center, fostering local autoimmune responses. Vascular injury leads to the release of endothelial-derived apoptotic exosome-like vesicles (ApoExo) that contribute to rejection in transplanted organs. The purpose of the study was to evaluate the impact of ApoExo on TLS formation in a model of vascular allograft rejection. Mice transplanted with an allogeneic aortic transplant were injected with ApoExo. The formation of TLS was significantly increased by ApoExo injection along with vascular remodeling and increased levels of antinuclear antibodies and anti-perlecan/LG3 autoantibodies. ApoExo also enhanced allograft infiltration by γδT17 cells. Recipients deficient in γδT cells showed reduced TLS formation and lower autoantibodies levels following ApoExo injection. ApoExo are characterized by proteasome activity, which can be blocked by bortezomib. Bortezomib treated ApoExo reduced the recruitment of γδT17 cells to the allograft, lowered TLS formation, and reduced autoantibody production. This study identifies vascular injury-derived extracellular vesicles (ApoExo), as initiators of TLS formation and demonstrates the pivotal role of γδT17 in coordinating TLS formation and autoantibody production. Finally, our results suggest proteasome inhibition with bortezomib as a potential option for controlling TLS formation in rejected allografts.
Collapse
Affiliation(s)
- Mélanie Dieudé
- Research CentreCentre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada,Université de MontréalMontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| | - Julie Turgeon
- Research CentreCentre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| | - Annie Karakeussian Rimbaud
- Research CentreCentre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| | - Déborah Beillevaire
- Research CentreCentre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| | - Shijie Qi
- Research CentreCentre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| | - Nathalie Patey
- Centre de recherche du CHU Ste‐JustineDépartement de pathologieUniversité de MontréalMontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| | - Louis A. Gaboury
- Institute for Research in Immunology and Cancer & Department of Pathology and Cell BiologyUniversity of MontrealMontréalQuébecCanada
| | - Éric Boilard
- Centre de Recherche du CHU de QuébecUniversité LavalMontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| | - Marie‐Josée Hébert
- Research CentreCentre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada,Université de MontréalMontréalQuébecCanada,Canadian National Transplantation Research ProgramEdmontonAlbertaCanada
| |
Collapse
|
15
|
Rampersad C, Shaw J, Gibson IW, Wiebe C, Rush DN, Nickerson PW, Ho J. Early Antibody-Mediated Kidney Transplant Rejection Associated With Anti-Vimentin Antibodies: A Case Report. Am J Kidney Dis 2020; 75:138-143. [DOI: 10.1053/j.ajkd.2019.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/29/2019] [Indexed: 11/11/2022]
|
16
|
|
17
|
Compelling scientific and clinical evidence that non-HLA specific antibodies impact graft outcome independently and in concert with donor HLA specific antibodies. Hum Immunol 2019; 80:555-560. [PMID: 31279533 DOI: 10.1016/j.humimm.2019.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Anti-vimentin antibodies in transplant and disease. Hum Immunol 2019; 80:602-607. [PMID: 30926354 DOI: 10.1016/j.humimm.2019.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
Non-HLA antibodies are recognized as a potential source of antibody mediated rejection following transplantation. The epitopes which lead to production of these antibodies are a result of tissue disruption, specifically endothelium, secondary to inflammation and injury. Vimentin is a cytoskeletal protein involved in many aspects of cellular organization, signaling, and proliferation. Recently, antivimentin antibodies have been shown to be important not only for rheumatological autoimmune diseases, but also cardiac and renal transplant dysfunction. In cardiac transplant recipients, antivimentin antibodies are associated with coronary artery vasculopathy and chronic graft loss. In renal transplantation, antivimentin antibodies are detected prior to transplantation and are also correlated with chronic graft dysfunction. In renal transplant recipients, antivimentin antibodies seen prior to transplantation are thought to be secondary to chronic endothelial injury during hemodialysis and therefore more prevalent prior to renal transplant than cardiac transplantation. In this review, we will examine the generation and pathogenesis of antivimentin antibodies. Given that these antibodies appear to be associated with both post-cardiac and -renal transplant dysfunction, developing standard detection paradigms may be important for risk stratification prior to transplantation. Finally, understanding the pathogenesis of antivimentin antibodies may lead to the development potential therapies in order to improve long-term survival.
Collapse
|
19
|
Doreille A, Dieudé M, Cardinal H. The determinants, biomarkers, and consequences of microvascular injury in kidney transplant recipients. Am J Physiol Renal Physiol 2018; 316:F9-F19. [PMID: 30379097 DOI: 10.1152/ajprenal.00163.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Independent of the initial cause of kidney disease, microvascular injury to the peritubular capillary network appears to play a central role in the development of interstitial fibrosis in both native and transplanted kidney disease. This association is explained by mechanisms such as the upregulation of profibrotic genes and epigenetic changes induced by hypoxia, capillary leakage, endothelial and pericyte transition to interstitial fibroblasts, as well as modifications in the secretome of endothelial cells. Alloimmune injury due to antibody-mediated rejection and ischemia-reperfusion injury are the two main etiologies of microvascular damage in kidney transplant recipients. The presence of circulating donor-specific anti-human leukocyte antigen (HLA) antibodies, histological findings, such as diffuse C4d staining in peritubular capillaries, and the extent and severity of peritubular capillaritis, are commonly used clinically to provide both diagnostic and prognostic information. Complement-dependent assays, circulating non-HLA antibodies, or evaluation of the microvasculature with novel imaging techniques are the subject of ongoing studies.
Collapse
Affiliation(s)
- Alice Doreille
- Research Centre, Centre Hospitalier de l'Université de Montréal , Montreal, Quebec , Canada.,Université Paris-Sud , Paris , France
| | - Mélanie Dieudé
- Research Centre, Centre Hospitalier de l'Université de Montréal , Montreal, Quebec , Canada.,Canadian Donation and Transplantation Research Program, Montreal, Quebec, Canada
| | - Heloise Cardinal
- Research Centre, Centre Hospitalier de l'Université de Montréal , Montreal, Quebec , Canada.,Canadian Donation and Transplantation Research Program, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Discovery of cell surface vimentin targeting mAb for direct disruption of GBM tumor initiating cells. Oncotarget 2018; 7:72021-72032. [PMID: 27713131 PMCID: PMC5342141 DOI: 10.18632/oncotarget.12458] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/29/2016] [Indexed: 01/10/2023] Open
Abstract
Intracellular vimentin overexpression has been associated with epithelial–mesenchymal transition, metastasis, invasion, and proliferation, but cell surface vimentin (CSV) is less understood. Furthermore, it remains unknown whether CSV can serve as a therapeutic target in CSV-expressing tumor cells. We found that CSV was present on glioblastoma multiforme (GBM) cancer stem cells and that CSV expression was associated with spheroid formation in those cells. A newly developed monoclonal antibody against CSV, 86C, specifically and significantly induced apoptosis and inhibited spheroid formation in GBM cells in vitro. The addition of 86C to GBM cells in vitro also led to rapid internalization of vimentin and decreased GBM cell viability. These findings were associated with an increase in caspase-3 activity, indicating activation of apoptosis. Finally, treatment with 86C inhibited GBM progression in vivo. In conclusion, CSV-expressing GBM cells have properties of tumor initiating cells, and targeting CSV with the monoclonal antibody 86C is a promising approach in the treatment of GBM.
Collapse
|
21
|
Jiang G, Zhang Y, Sun X. The relationship between the expression of TN and the efficiency of posterior spinal V osteotomy in patients with traumatic kyphosis. Medicine (Baltimore) 2018; 97:e9555. [PMID: 29384840 PMCID: PMC5805412 DOI: 10.1097/md.0000000000009555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND This study was conducted with the aim to investigate the relationship between Tetranectin (TN) and efficiency of posterior spinal V osteotomy in patients with traumatic kyphosis. METHODS Ninety-two patients with traumatic kyphosis admitted in our hospital from February 2014 to June 2016 were included whose serum TN levels were examined by ELISA. Using the mean level of TN as cut-off value, patients were classified into TN high level group (group I) and TN low level group (group II). The observation indexes, including operation time, intra-operational loss of blood, Cobb angle, postoperative complications and recurrence rate of kyphosis within post-operational 6 months were recorded for comparison. RESULTS TN level was significantly higher in group I [(6.19 ± 0.33) μmol/L] than that in group II [(5.29 ± 0.34) μmol/L] (P < .05). There was no significant difference in average age, sex, lesion site and average time from injury to operation between the two groups (all P > 0.05). Compared to group II, operation time in group I was significantly shortened (5.02 ± 1.15 VS 4.58 ± 0.53, P = .023), the intra-operational loss of blood decreased (2418.56 ± 362.06 VS 2235.84 ± 325.63, P = .013), post-operational Cobb angle decreased (11.10 ± 1.31 VS 6.93 ± 1.04, P = .000), and the incidence of postoperative complications (nail-breaking, rod-breaking and looseness) and recurrence rate decreased (18.8% VS 4.5%, P = .036; 10.4% VS 0.0%, P = .028). CONCLUSION Serum TN level is proved to be related to the efficiency of posterior spinal V osteotomy in patients with traumatic kyphosis, and may serve as a possible indicator for clinical treatment.
Collapse
Affiliation(s)
- Guohua Jiang
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang Province
| | - Yinshun Zhang
- Spine Orthopedics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, P.R. China
| | - Xianjie Sun
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang Province
| |
Collapse
|
22
|
Kim Y, Shim SC. Wolves Trapped in the NETs–The Pathogenesis of Lupus Nephritis. JOURNAL OF RHEUMATIC DISEASES 2018. [DOI: 10.4078/jrd.2018.25.2.81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Young Kim
- Division of Internal Medicine, Daejeon Veterans Hospital, Daejeon, Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Department of Internal Medicine, Daejeon Rheumatoid and Degenerative Arthritis Center, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
23
|
Alloimmune-induced intragraft lymphoid neogenesis promotes B-cell tolerance breakdown that accelerates chronic rejection. Curr Opin Organ Transplant 2017; 21:368-74. [PMID: 27258579 DOI: 10.1097/mot.0000000000000329] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Antibody-mediated rejection (AMR) has emerged as a leading cause of allograft loss in solid organ transplantation. A better understanding of AMR immunopathology is a prerequisite to improve its management. RECENT FINDINGS The prevalent dogma considers that AMR is the consequence of a thymo-dependent B-cell response against donor-specific polymorphic antigens (mainly mismatched human leukocyte antigen molecules).Nevertheless, antibodies directed against nonpolymorphic antigens expressed by the graft are also generated during chronic rejection and can contribute to allograft destruction. This implies that a breakdown of self-tolerance occurs during chronic rejection. Accumulating evidence suggests that this event occurs inside the ectopic 'tertiary' lymphoid tissue that develops within rejected allografts.Thus, AMR should be viewed as a complex interplay between allo- and autoimmune humoral responses. SUMMARY The interplay between allo- and autoimmune humoral responses in chronic rejection highlights several unmet medical issues like better diagnosis tools are needed to screen recipients for nonhuman leukocyte antigen alloantibodies and autoantibodies, therapeutic strategies shall aim at blocking the response against alloantigens but also the breakdown of self-tolerance that occurs within tertiary lymphoid tissue.
Collapse
|
24
|
Li FJ, Surolia R, Li H, Wang Z, Kulkarni T, Liu G, de Andrade JA, Kass DJ, Thannickal VJ, Duncan SR, Antony VB. Autoimmunity to Vimentin Is Associated with Outcomes of Patients with Idiopathic Pulmonary Fibrosis. THE JOURNAL OF IMMUNOLOGY 2017; 199:1596-1605. [PMID: 28754682 DOI: 10.4049/jimmunol.1700473] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/06/2017] [Indexed: 02/02/2023]
Abstract
Autoimmunity has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF); however, the repertoire of autoantigens involved in this disease and the clinical relevance of these autoimmune responses are still being explored. Our initial discovery assays demonstrated that circulating and intrapulmonary vimentin levels are increased in IPF patients. Subsequent studies showed native vimentin induced HLA-DR-dependent in vitro proliferation of CD4 T cells from IPF patients and enhanced the production of IL-4, IL-17, and TGF-β1 by these lymphocytes in contrast to normal control specimens. Vimentin supplementation of IPF PBMC cultures also resulted in HLA-DR-dependent production of IgG with anti-vimentin specificities. Circulating anti-vimentin IgG autoantibody levels were much greater in IPF subjects from the University of Alabama at Birmingham (n = 102) and the University of Pittsburgh (U. Pitt., n = 70) than in normal controls. Anti-vimentin autoantibody levels in IPF patients were HLA biased and inversely correlated with physiological measurements of lung function (i.e., forced expiratory volumes and diffusing capacities). Despite considerable intergroup differences in transplant-free survival between these two independent IPF cohorts, serious adverse outcomes were most frequent among the patients within each population that had the highest anti-vimentin autoantibody levels (University of Alabama at Birmingham: hazard ratio 2.5, 95% confidence interval 1.2-5.3, p = 0.012; University of Pittsburgh: hazard ratio 2.7, 95% confidence interval 1.3-5.5, p = 0.006). These data show that anti-vimentin autoreactivity is prevalent in IPF patients and is strongly associated with disease manifestations. These findings have implications with regard to the pathogenesis of this enigmatic disease and raise the possibility that therapies specifically directed at these autoimmune processes could have therapeutic efficacy.
Collapse
Affiliation(s)
- Fu Jun Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ranu Surolia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Huashi Li
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Zheng Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Tejaswini Kulkarni
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Joao A de Andrade
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294.,Birmingham VA Medical Center, Birmingham, AL 35233; and
| | - Daniel J Kass
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294.,Birmingham VA Medical Center, Birmingham, AL 35233; and
| | - Steven R Duncan
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Veena B Antony
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294;
| |
Collapse
|
25
|
Zhang X, Reinsmoen NL. Impact of Non-Human Leukocyte Antigen-Specific Antibodies in Kidney and Heart Transplantation. Front Immunol 2017; 8:434. [PMID: 28450866 PMCID: PMC5389972 DOI: 10.3389/fimmu.2017.00434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/28/2017] [Indexed: 12/17/2022] Open
Abstract
The presence of donor human leukocyte antigen (HLA)-specific antibodies has been shown to be associated with graft loss and decreased patient survival, but it is not uncommon that donor-specific HLA antibodies are absent in patients with biopsy-proven antibody-mediated rejection. In this review, we focus on the latest findings on antibodies against non-HLA antigens in kidney and heart transplantation. These non-HLA antigens include myosin, vimentin, Kα1 tubulin, collagen, and angiotensin II type 1 receptor. It is suggested that the detrimental effects of HLA antibodies and non-HLA antibodies synergize together to impact graft outcome. Injury of graft by HLA antibodies can cause the exposure of neo-antigens which in turn stimulate the production of antibodies against non-HLA antigens. On the other hand, the presence of non-HLA antibodies may increase the risk for a patient to develop HLA-specific antibodies. These findings indicate it is imperative to stratify the patient’s immunologic risk by assessing both HLA and non-HLA antibodies.
Collapse
Affiliation(s)
- Xiaohai Zhang
- HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nancy L Reinsmoen
- HLA and Immunogenetics Laboratory, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
26
|
Endothelial Cells in Antibody-Mediated Rejection of Kidney Transplantation: Pathogenesis Mechanisms and Therapeutic Implications. J Immunol Res 2017; 2017:8746303. [PMID: 28255564 PMCID: PMC5309424 DOI: 10.1155/2017/8746303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
Antibody-mediated rejection (AMR) has been identified as a main obstacle for stable immune tolerance and long survival of kidney allografts. In spite of new insights into the underlying mechanisms of AMR, accurate diagnosis and efficient treatment are still challenges in clinical practice. Endothelium is the first barrier between recipients' immune systems and grafts in vascularized organ transplants. Considering that endothelial cells express a number of antigens that can be attacked by various allo- and autoantibodies, endothelial cells act as main targets for the recipients' humoral immune responses. Importantly, emerging evidence has shown that endothelial cells in transplants could also initiate protective mechanisms in response to immune injuries. A better understanding of the role of endothelial cells during the pathogenesis of AMR might provide novel therapeutic targets. In the present review, we summarize the antigens expressed by endothelial cells and also discuss the activation and accommodation of endothelial cells as well as their clinical implications. Collectively, the progress discussed in this review indicates endothelial cells as promising targets to improve current diagnosis and therapeutic regimens for AMR.
Collapse
|
27
|
Cardinal H, Dieudé M, Hébert MJ. The Emerging Importance of Non-HLA Autoantibodies in Kidney Transplant Complications. J Am Soc Nephrol 2016; 28:400-406. [PMID: 27798244 DOI: 10.1681/asn.2016070756] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Antibodies that are specific to organ donor HLA have been involved in the majority of cases of antibody-mediated rejection in solid organ transplant recipients. However, recent data show that production of non-HLA autoantibodies can occur before transplant in the form of natural autoantibodies. In contrast to HLAs, which are constitutively expressed on the cell surface of the allograft endothelium, autoantigens are usually cryptic. Tissue damage associated with ischemia-reperfusion, vascular injury, and/or rejection creates permissive conditions for the expression of cryptic autoantigens, allowing these autoantibodies to bind antigenic targets and further enhance vascular inflammation and renal dysfunction. Antiperlecan/LG3 antibodies and antiangiotensin II type 1 receptor antibodies have been found before transplant in patients with de novo transplants and portend negative long-term outcome in patients with renal transplants. Here, we review mounting evidence suggesting an important role for autoantibodies to cryptic antigens as novel accelerators of kidney dysfunction and acute or chronic allograft rejection.
Collapse
Affiliation(s)
- Héloise Cardinal
- Research Centre, Infection, Inflammation, Immunity and Tissue Injury Axis, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada; and
| | - Mélanie Dieudé
- Research Centre, Infection, Inflammation, Immunity and Tissue Injury Axis, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, Canada; and
| | - Marie-Josée Hébert
- Research Centre, Infection, Inflammation, Immunity and Tissue Injury Axis, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada; .,Canadian National Transplant Research Program, Edmonton, Alberta, Canada; and.,Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
28
|
Clinical value of non-HLA antibodies in kidney transplantation: Still an enigma? Transplant Rev (Orlando) 2016; 30:195-202. [DOI: 10.1016/j.trre.2016.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/22/2016] [Accepted: 06/01/2016] [Indexed: 12/14/2022]
|
29
|
|
30
|
Non-human leukocyte antigen-specific antibodies in thoracic transplantation. Curr Opin Organ Transplant 2016; 21:350-4. [DOI: 10.1097/mot.0000000000000330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Abstract
The development of post-transplantation antibodies against non-HLA autoantigens is associated with rejection and decreased long-term graft survival. Although our knowledge of non-HLA antibodies is incomplete, compelling experimental and clinical findings demonstrate that antibodies directed against autoantigens such as angiotensin type 1 receptor, perlecan and collagen, contribute to the process of antibody-mediated acute and chronic rejection. The mechanisms that underlie the production of autoantibodies in the setting of organ transplantation is an important area of ongoing investigation. Ischaemia-reperfusion injury, surgical trauma and/or alloimmune responses can result in the release of organ-derived autoantigens (such as soluble antigens, extracellular vesicles or apoptotic bodies) that are presented to B cells in the context of the transplant recipient's antigen presenting cells and stimulate autoantibody production. Type 17 T helper cells orchestrate autoantibody production by supporting the proliferation and maturation of autoreactive B cells within ectopic tertiary lymphoid tissue. Conversely, autoantibody-mediated graft damage can trigger alloimmunity and the development of donor-specific HLA antibodies that can act in synergy to promote allograft rejection. Identification of the immunologic phenotypes of transplant recipients at risk of non-HLA antibody-mediated rejection, and the development of targeted therapies to treat such rejection, are sorely needed to improve both graft and patient survival.
Collapse
|
32
|
Abstract
Cardiac allograft vasculopathy (CAV) has a high prevalence among patients that have undergone heart transplantation. Cardiac allograft vasculopathy is a multifactorial process in which the immune system is the driving force. In this review, the data on the immunological and fibrotic processes that are involved in the development of CAV are summarized. Areas where a lack of knowledge exists and possible additional research can be completed are pinpointed. During the pathogenesis of CAV, cells from the innate and the adaptive immune system cooperate to reject the foreign heart. This inflammatory response results in dysfunction of the endothelium and migration and proliferation of smooth muscle cells (SMCs). Apoptosis and factors secreted by both the endothelium as well as the SMCs lead to fibrosis. The migration of SMCs together with fibrosis provoke concentric intimal thickening of the coronary arteries, which is the main characteristic of CAV.
Collapse
|
33
|
Lung Transplantation. PATHOLOGY OF TRANSPLANTATION 2016. [PMCID: PMC7153460 DOI: 10.1007/978-3-319-29683-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The therapeutic options for patients with advanced pulmonary parenchymal or vascular disorders are currently limited. Lung transplantation remains one of the few viable interventions, but on account of the insufficient donor pool only a minority of these patients actually undergo the procedure each year. Following transplantation there are a number of early and late allograft complications such as primary graft dysfunction, allograft rejection, infection, post-transplant lymphoproliferative disorder and late injury that is now classified as chronic lung allograft dysfunction. The pathologist plays an essential role in the diagnosis and classification of these myriad complications. Although the transplant procedures are performed in selected centers patients typically return to their local centers. When complications arise it is often the responsibility of the local pathologist to evaluate specimens. Therefore familiarity with the pathology of lung transplantation is important.
Collapse
|
34
|
Starling RC, Stehlik J, Baran DA, Armstrong B, Stone JR, Ikle D, Morrison Y, Bridges ND, Putheti P, Strom TB, Bhasin M, Guleria I, Chandraker A, Sayegh M, Daly KP, Briscoe DM, Heeger PS. Multicenter Analysis of Immune Biomarkers and Heart Transplant Outcomes: Results of the Clinical Trials in Organ Transplantation-05 Study. Am J Transplant 2016; 16:121-36. [PMID: 26260101 PMCID: PMC4948061 DOI: 10.1111/ajt.13422] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/20/2015] [Accepted: 06/14/2015] [Indexed: 01/25/2023]
Abstract
Identification of biomarkers that assess posttransplant risk is needed to improve long-term outcomes following heart transplantation. The Clinical Trials in Organ Transplantation (CTOT)-05 protocol was an observational, multicenter, cohort study of 200 heart transplant recipients followed for the first posttransplant year. The primary endpoint was a composite of death, graft loss/retransplantation, biopsy-proven acute rejection (BPAR), and cardiac allograft vasculopathy (CAV) as defined by intravascular ultrasound (IVUS). We serially measured anti-HLA- and auto-antibodies, angiogenic proteins, peripheral blood allo-reactivity, and peripheral blood gene expression patterns. We correlated assay results and clinical characteristics with the composite endpoint and its components. The composite endpoint was associated with older donor allografts (p < 0.03) and with recipient anti-HLA antibody (p < 0.04). Recipient CMV-negativity (regardless of donor status) was associated with BPAR (p < 0.001), and increases in plasma vascular endothelial growth factor-C (OR 20; 95%CI:1.9-218) combined with decreases in endothelin-1 (OR 0.14; 95%CI:0.02-0.97) associated with CAV. The remaining biomarkers showed no relationships with the study endpoints. While suboptimal endpoint definitions and lower than anticipated event rates were identified as potential study limitations, the results of this multicenter study do not yet support routine use of the selected assays as noninvasive approaches to detect BPAR and/or CAV following heart transplantation.
Collapse
Affiliation(s)
| | - Josef Stehlik
- University of Utah Health Sciences Center, Salt Lake City UT
| | | | | | | | | | - Yvonne Morrison
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD
| | - Nancy D. Bridges
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville MD
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Dieudé M, Bell C, Turgeon J, Beillevaire D, Pomerleau L, Yang B, Hamelin K, Qi S, Pallet N, Béland C, Dhahri W, Cailhier JF, Rousseau M, Duchez AC, Lévesque T, Lau A, Rondeau C, Gingras D, Muruve D, Rivard A, Cardinal H, Perreault C, Desjardins M, Boilard É, Thibault P, Hébert MJ. The 20
S
proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection. Sci Transl Med 2015; 7:318ra200. [DOI: 10.1126/scitranslmed.aac9816] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Abstract
Despite marked improvements in the survival of patients with severe lupus nephritis over the past 50 years, the rate of complete clinical remission after immune suppression therapy is <50% and renal impairment still occurs in 40% of affected patients. An appreciation of the factors that lead to the development of chronic kidney disease following acute or subacute renal injury in patients with systemic lupus erythematosus is beginning to emerge. Processes that contribute to end-stage renal injury include continuing inflammation, activation of intrinsic renal cells, cell stress and hypoxia, metabolic abnormalities, aberrant tissue repair and tissue fibrosis. A deeper understanding of these processes is leading to the development of novel or adjunctive therapies that could protect the kidney from the secondary non-immune consequences of acute injury. Approaches based on a molecular-proteomic-lipidomic classification of disease should yield new information about the functional basis of disease heterogeneity so that the most effective and least toxic treatment regimens can be formulated for individual patients.
Collapse
|
37
|
Young RK, Dale B, Russell SD, Zachary AA, Tedford RJ. Incidence and early outcomes associated with pre-transplant antivimentin antibodies in the cardiac transplantation population. Clin Transplant 2015; 29:685-8. [PMID: 25982351 DOI: 10.1111/ctr.12567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND In cardiac transplant recipients, the development of antibodies to the endothelial intermediate filament protein vimentin (antivimentin antibodies, AVA) has been associated with rejection and poor outcomes. However, the incidence of these antibodies prior to transplantation and their association with early rejection has not been investigated. METHODS Pre-transplant serum was analyzed from 50 patients who underwent de novo cardiac transplant at Johns Hopkins Hospital from 2004 to 2012. Demographic, one-yr rejection, and survival data were obtained from the transplant database. RESULTS The incidence of pre-transplant AVA was 34%. AVA-positive patients were younger (p = 0.03), and there was an a trend toward incidence in females (p = 0.08). Demographic data were similar among both groups. AVA positivity did not predict rejection in the first year post-transplant. There was no difference in rejection-free graft survival (53 vs. 52%, p = 0.85) at one yr. Similarly, there was no difference in graft survival at one yr (82 vs. 88%, p = 0.56) or graft survival at a median follow-up of 23 and 26 months, respectively (76 vs. 85%, p = 0.41). CONCLUSIONS AVA is common in the cardiac pre-transplant population with a higher incidence in the young. The presence of detectable AVA did not correlate with early post-transplant rejection or graft survival.
Collapse
Affiliation(s)
- Raymond K Young
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bethany Dale
- Division of Immunogenetics and Transplantation Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stuart D Russell
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrea A Zachary
- Division of Immunogenetics and Transplantation Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan J Tedford
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Filippone EJ, Farber JL. Humoral Immune Response and Allograft Function in Kidney Transplantation. Am J Kidney Dis 2015; 66:337-47. [PMID: 25987262 DOI: 10.1053/j.ajkd.2015.03.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/22/2015] [Indexed: 12/22/2022]
Abstract
HLA antibodies can damage a kidney transplant. In January 2013, consensus guidelines from The Transplantation Society were published regarding technical aspects of HLA antibody determination, as well as their potential significance in the pre- and posttransplantation periods. During the past 2 years, new studies have been reported, but controversies remain. In this article, these new data related to HLA antibodies in kidney transplantation are reviewed and compared to relevant prior research. Pretransplantation sensitization issues are discussed, including the new more sensitive assays (flow cytometry and solid-phase immunoassays such as Luminex single-antigen bead assays). A positive complement-dependent cytotoxicity crossmatch remains an absolute contraindication to transplantation, although a positive flow cytometry crossmatch is only a relative contraindication. Positivity only by solid-phase assays increases the risk for acute rejection and transplant loss, but acceptable cutoffs are not defined. The sensitizing effect of red blood cell transfusions is substantiated. Following allograft failure, continued immunosuppression decreases the risk of sensitization, whereas overall, the effect of nephrectomy remains uncertain. Regarding the posttransplantation period, new data are available concerning the timing and significance of donor-specific antibodies (DSA). Whereas some centers report DSA appearance after years, others detect DSA within months. The prominence of class II DSA, especially DQ, in the posttransplantation period is noted. The relevance of non-HLA antibodies is discussed, including anti-endothelial cell antibodies, major histocompatibility complex class I chain-related protein A antibodies, and angiotensin II type 1 receptor autoantibodies.
Collapse
Affiliation(s)
- Edward J Filippone
- Division of Nephrology, Department of Medicine, Thomas Jefferson University Hospital, Philadelphia, PA.
| | - John L Farber
- Department of Pathology, Thomas Jefferson University Hospital, Philadelphia, PA
| |
Collapse
|
39
|
Kimura A, Yoshikura N, Koumura A, Hayashi Y, Kobayashi Y, Kobayashi I, Yano T, Inuzuka T. Identification of target antigens of naturally occurring autoantibodies in cerebrospinal fluid. J Proteomics 2015; 128:450-7. [PMID: 25979775 DOI: 10.1016/j.jprot.2015.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/20/2015] [Accepted: 05/06/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED Naturally occurring autoantibodies have natural physiologic functions related to normal cell processes. However, the repertoire of naturally occurring autoantibodies against neuronal antigens in CSF is unclear. The purpose of this study was to identify naturally occurring autoantibodies against neuronal antigens in CSF from patients with various neurologic diseases by proteomics-based analysis. The CSF samples were collected from 77 patients with various neurologic disorders. The antigen source for 2-dimensional immunoblotting was the SH-SY5Y human neuroblastoma cell line. There were 8 spots recognized in CSF from more than one-fourth of the 77 patients including all patient groups and these spots were recognized in intravenous immunoglobulin preparations. These antigen spots were identified as heat shock 105-kDa/110-kDa protein 1, isoform CRA_b, 78-kDa glucose-regulated protein, heat shock cognate 71-kDa protein, tubulin beta chain, vimentin (2 spots), and 60-kDa heat shock protein, mitochondrial; we could not identify the protein name corresponding to 1 of the 8 spots. In summary, there were 6 proteins identified that were main target antigens that reacted with naturally occurring autoantibodies in CSF from patients with varied neurologic disorders; the functions of autoantibodies against the identified antigens are unknown and may be clarified with further studies. BIOLOGICAL SIGNIFICANCE Naturally occurring autoantibodies may have important functions in tissue homeostasis. In this study, we identified 6 common target antigens that reacted with autoantibodies in cerebrospinal fluid (CSF) from patients, independent of disease type. These findings may clarify the importance of naturally occurring autoantibodies in CSF and the use of these antibodies potentially may be a novel therapy for various neurologic disorders.
Collapse
Affiliation(s)
- Akio Kimura
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu City, Gifu, Japan.
| | - Nobuaki Yoshikura
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu City, Gifu, Japan
| | - Akihiro Koumura
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu City, Gifu, Japan
| | - Yuichi Hayashi
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu City, Gifu, Japan
| | - Yuko Kobayashi
- Life Science Research Center, Center for Molecular Biology and Genetics, Mie University, Tsu City, Mie, Japan
| | - Issei Kobayashi
- Life Science Research Center, Center for Molecular Biology and Genetics, Mie University, Tsu City, Mie, Japan
| | - Takeo Yano
- Graduate School of Regional Innovation Studies, Mie University, Tsu City, Mie, Japan
| | - Takashi Inuzuka
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu City, Gifu, Japan
| |
Collapse
|
40
|
Existence of circulating anti-endothelial cell antibodies after heart transplantation is associated with post-transplant acute allograft rejection. Heart Vessels 2015; 31:752-7. [DOI: 10.1007/s00380-015-0666-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/20/2015] [Indexed: 01/30/2023]
|
41
|
Shen H, Heuzey E, Mori DN, Wong CK, Colangelo CM, Chung LM, Bruce C, Slizovskiy IB, Booth CJ, Kreisel D, Goldstein DR. Haptoglobin enhances cardiac transplant rejection. Circ Res 2015; 116:1670-9. [PMID: 25801896 DOI: 10.1161/circresaha.116.305406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/23/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE Early graft inflammation enhances both acute and chronic rejection of heart transplants, but it is unclear how this inflammation is initiated. OBJECTIVE To identify specific inflammatory modulators and determine their underlying molecular mechanisms after cardiac transplantation. METHODS AND RESULTS We used a murine heterotopic cardiac transplant model to identify inflammatory modulators of early graft inflammation. Unbiased mass spectrometric analysis of cardiac tissue before and ≤72 hours after transplantation revealed that 22 proteins including haptoglobin, a known antioxidant, are significantly upregulated in our grafts. Through the use of haptoglobin-deficient mice, we show that 80% of haptoglobin-deficient recipients treated with perioperative administration of the costimulatory blocking agent CTLA4 immunoglobulin exhibited >100-day survival of full major histocompatibility complex mismatched allografts, whereas all similarly treated wild-type recipients rejected their transplants by 21 days after transplantation. We found that haptoglobin modifies the intra-allograft inflammatory milieu by enhancing levels of the inflammatory cytokine interleukin-6 and the chemokine MIP-2 (macrophage inflammatory protein 2) but impair levels of the immunosuppressive cytokine interleukin-10. Haptoglobin also enhances dendritic cell graft recruitment and augments antidonor T-cell responses. Moreover, we confirmed that the protein is present in human cardiac allograft specimens undergoing acute graft rejection. CONCLUSIONS Our findings provide new insights into the mechanisms of inflammation after cardiac transplantation and suggest that, in contrast to its prior reported antioxidant function in vascular inflammation, haptoglobin is an enhancer of inflammation after cardiac transplantation. Haptoglobin may also be a key component in other sterile inflammatory conditions.
Collapse
Affiliation(s)
- Hua Shen
- From the Department of Internal Medicine (H.S., E.H., D.N.M., C.K.W., D.R.G.), Department of Immunobiology (H.S., D.N.M., C.K.W., D.R.G.), W.M. Keck Biotechnology Resource Laboratory (C.M.C., L.M.C.), Center for Medical Informatics (C.B.), and Section of Comparative Medicine (I.B.S., C.J.B.), Yale School of Medicine, New Haven, CT; Sciomix, Woodbridge, CT (C.B.); Department of Surgery (D.K.) and Department of Immunology (D.K.), Washington University School of Medicine, St Louis, MO
| | - Elizabeth Heuzey
- From the Department of Internal Medicine (H.S., E.H., D.N.M., C.K.W., D.R.G.), Department of Immunobiology (H.S., D.N.M., C.K.W., D.R.G.), W.M. Keck Biotechnology Resource Laboratory (C.M.C., L.M.C.), Center for Medical Informatics (C.B.), and Section of Comparative Medicine (I.B.S., C.J.B.), Yale School of Medicine, New Haven, CT; Sciomix, Woodbridge, CT (C.B.); Department of Surgery (D.K.) and Department of Immunology (D.K.), Washington University School of Medicine, St Louis, MO
| | - Daniel N Mori
- From the Department of Internal Medicine (H.S., E.H., D.N.M., C.K.W., D.R.G.), Department of Immunobiology (H.S., D.N.M., C.K.W., D.R.G.), W.M. Keck Biotechnology Resource Laboratory (C.M.C., L.M.C.), Center for Medical Informatics (C.B.), and Section of Comparative Medicine (I.B.S., C.J.B.), Yale School of Medicine, New Haven, CT; Sciomix, Woodbridge, CT (C.B.); Department of Surgery (D.K.) and Department of Immunology (D.K.), Washington University School of Medicine, St Louis, MO
| | - Christine K Wong
- From the Department of Internal Medicine (H.S., E.H., D.N.M., C.K.W., D.R.G.), Department of Immunobiology (H.S., D.N.M., C.K.W., D.R.G.), W.M. Keck Biotechnology Resource Laboratory (C.M.C., L.M.C.), Center for Medical Informatics (C.B.), and Section of Comparative Medicine (I.B.S., C.J.B.), Yale School of Medicine, New Haven, CT; Sciomix, Woodbridge, CT (C.B.); Department of Surgery (D.K.) and Department of Immunology (D.K.), Washington University School of Medicine, St Louis, MO
| | - Christopher M Colangelo
- From the Department of Internal Medicine (H.S., E.H., D.N.M., C.K.W., D.R.G.), Department of Immunobiology (H.S., D.N.M., C.K.W., D.R.G.), W.M. Keck Biotechnology Resource Laboratory (C.M.C., L.M.C.), Center for Medical Informatics (C.B.), and Section of Comparative Medicine (I.B.S., C.J.B.), Yale School of Medicine, New Haven, CT; Sciomix, Woodbridge, CT (C.B.); Department of Surgery (D.K.) and Department of Immunology (D.K.), Washington University School of Medicine, St Louis, MO
| | - Lisa M Chung
- From the Department of Internal Medicine (H.S., E.H., D.N.M., C.K.W., D.R.G.), Department of Immunobiology (H.S., D.N.M., C.K.W., D.R.G.), W.M. Keck Biotechnology Resource Laboratory (C.M.C., L.M.C.), Center for Medical Informatics (C.B.), and Section of Comparative Medicine (I.B.S., C.J.B.), Yale School of Medicine, New Haven, CT; Sciomix, Woodbridge, CT (C.B.); Department of Surgery (D.K.) and Department of Immunology (D.K.), Washington University School of Medicine, St Louis, MO
| | - Can Bruce
- From the Department of Internal Medicine (H.S., E.H., D.N.M., C.K.W., D.R.G.), Department of Immunobiology (H.S., D.N.M., C.K.W., D.R.G.), W.M. Keck Biotechnology Resource Laboratory (C.M.C., L.M.C.), Center for Medical Informatics (C.B.), and Section of Comparative Medicine (I.B.S., C.J.B.), Yale School of Medicine, New Haven, CT; Sciomix, Woodbridge, CT (C.B.); Department of Surgery (D.K.) and Department of Immunology (D.K.), Washington University School of Medicine, St Louis, MO
| | - Ilya B Slizovskiy
- From the Department of Internal Medicine (H.S., E.H., D.N.M., C.K.W., D.R.G.), Department of Immunobiology (H.S., D.N.M., C.K.W., D.R.G.), W.M. Keck Biotechnology Resource Laboratory (C.M.C., L.M.C.), Center for Medical Informatics (C.B.), and Section of Comparative Medicine (I.B.S., C.J.B.), Yale School of Medicine, New Haven, CT; Sciomix, Woodbridge, CT (C.B.); Department of Surgery (D.K.) and Department of Immunology (D.K.), Washington University School of Medicine, St Louis, MO
| | - Carmen J Booth
- From the Department of Internal Medicine (H.S., E.H., D.N.M., C.K.W., D.R.G.), Department of Immunobiology (H.S., D.N.M., C.K.W., D.R.G.), W.M. Keck Biotechnology Resource Laboratory (C.M.C., L.M.C.), Center for Medical Informatics (C.B.), and Section of Comparative Medicine (I.B.S., C.J.B.), Yale School of Medicine, New Haven, CT; Sciomix, Woodbridge, CT (C.B.); Department of Surgery (D.K.) and Department of Immunology (D.K.), Washington University School of Medicine, St Louis, MO
| | - Daniel Kreisel
- From the Department of Internal Medicine (H.S., E.H., D.N.M., C.K.W., D.R.G.), Department of Immunobiology (H.S., D.N.M., C.K.W., D.R.G.), W.M. Keck Biotechnology Resource Laboratory (C.M.C., L.M.C.), Center for Medical Informatics (C.B.), and Section of Comparative Medicine (I.B.S., C.J.B.), Yale School of Medicine, New Haven, CT; Sciomix, Woodbridge, CT (C.B.); Department of Surgery (D.K.) and Department of Immunology (D.K.), Washington University School of Medicine, St Louis, MO
| | - Daniel R Goldstein
- From the Department of Internal Medicine (H.S., E.H., D.N.M., C.K.W., D.R.G.), Department of Immunobiology (H.S., D.N.M., C.K.W., D.R.G.), W.M. Keck Biotechnology Resource Laboratory (C.M.C., L.M.C.), Center for Medical Informatics (C.B.), and Section of Comparative Medicine (I.B.S., C.J.B.), Yale School of Medicine, New Haven, CT; Sciomix, Woodbridge, CT (C.B.); Department of Surgery (D.K.) and Department of Immunology (D.K.), Washington University School of Medicine, St Louis, MO.
| |
Collapse
|
42
|
Davidson A. Editorial: autoimmunity to vimentin and lupus nephritis. Arthritis Rheumatol 2015; 66:3251-4. [PMID: 25250522 DOI: 10.1002/art.38885] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Anne Davidson
- Feinstein Institute for Medical Research, Manhasset, New York
| |
Collapse
|
43
|
Piotti G, Palmisano A, Maggiore U, Buzio C. Vascular endothelium as a target of immune response in renal transplant rejection. Front Immunol 2014; 5:505. [PMID: 25374567 PMCID: PMC4204520 DOI: 10.3389/fimmu.2014.00505] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/28/2014] [Indexed: 12/28/2022] Open
Abstract
This review of clinical and experimental studies aims at analyzing the interplay between graft endothelium and host immune system in renal transplantation, and how it affects the survival of the graft. Graft endothelium is indeed the first barrier between self and non-self that is encountered by host lymphocytes upon reperfusion of vascularized solid transplants. Endothelial cells (EC) express all the major sets of antigens (Ag) that elicit host immune response, and therefore represent a preferential target in organ rejection. Some of the Ag expressed by EC are target of the antibody-mediated response, such as the AB0 blood group system, the human leukocyte antigens (HLA), and MHC class I related chain A antigens (MICA) systems, and the endothelial cell-restricted Ag; for each of these systems, the mechanisms of interaction and damage of both preformed and de novo donor-specific antibodies are reviewed along with their impact on renal graft survival. Moreover, the rejection process can force injured EC to expose cryptic self-Ag, toward which an autoimmune response mounts, overlapping to the allo-immune response in the damaging of the graft. Not only are EC a passive target of the host immune response but also an active player in lymphocyte activation; therefore, their interaction with allogenic T-cells is analyzed on the basis of experimental in vitro and in vivo studies, according to the patterns of expression of the HLA class I and II and the co-stimulatory molecules specific for cytotoxic and helper T-cells. Finally, as the response that follows transplantation has proven to be not necessarily destructive, the factors that foster graft endothelium functioning in spite of rejection, and how they could be therapeutically harnessed to promote long-term graft acceptance, are described: accommodation that is resistance of EC to donor-specific antibodies, and endothelial cell ability to induce Foxp3+ regulatory T-cells, that are crucial mediators of tolerance.
Collapse
Affiliation(s)
- Giovanni Piotti
- Kidney and Pancreas Transplantation Unit, Department of Clinical Medicine, Nephrology and Health Sciences, University Hospital of Parma , Parma , Italy
| | - Alessandra Palmisano
- Kidney and Pancreas Transplantation Unit, Department of Clinical Medicine, Nephrology and Health Sciences, University Hospital of Parma , Parma , Italy
| | - Umberto Maggiore
- Kidney and Pancreas Transplantation Unit, Department of Clinical Medicine, Nephrology and Health Sciences, University Hospital of Parma , Parma , Italy
| | - Carlo Buzio
- Kidney and Pancreas Transplantation Unit, Department of Clinical Medicine, Nephrology and Health Sciences, University Hospital of Parma , Parma , Italy
| |
Collapse
|
44
|
Gao B, Moore C, Porcheray F, Rong C, Abidoglu C, DeVito J, Paine R, Girouard TC, Saidman SL, Schoenfeld D, Levin B, Wong W, Elias N, Schuetz C, Rosales IA, Fu Y, Zorn E. Pretransplant IgG reactivity to apoptotic cells correlates with late kidney allograft loss. Am J Transplant 2014; 14:1581-91. [PMID: 24935695 PMCID: PMC4120834 DOI: 10.1111/ajt.12763] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 02/03/2014] [Accepted: 02/20/2014] [Indexed: 01/25/2023]
Abstract
Preexisting serum antibodies have long been associated with graft loss in transplant recipients. While most studies have focused on HLA-specific antibodies, the contribution of non-HLA-reactive antibodies has been largely overlooked. We have recently characterized mAbs secreted by B cell clones derived from kidney allograft recipients with rejection that bind to apoptotic cells. Here, we assessed the presence of such antibodies in pretransplant serum from 300 kidney transplant recipients and examined their contribution to the graft outcomes. Kaplan-Meier survival analysis revealed that patients with high pretransplant IgG reactivity to apoptotic cells had a significantly increased rate of late graft loss. The effect was only apparent after approximately 1 year posttransplant. Moreover, the association between pretransplant IgG reactivity to apoptotic cells and graft loss was still significant after excluding patients with high reactivity to HLA. This reactivity was almost exclusively mediated by IgG1 and IgG3 with complement fixing and activating properties. Overall, our findings support the view that IgG reactive to apoptotic cells contribute to presensitization. Taking these antibodies into consideration alongside anti-HLA antibodies during candidate evaluation would likely improve the transplant risk assessment.
Collapse
Affiliation(s)
- Baoshan Gao
- Transplant Center, The First Hospital of Jilin University, Changchun, China,Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carolina Moore
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fabrice Porcheray
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chunshu Rong
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Cem Abidoglu
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julie DeVito
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rosemary Paine
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy C. Girouard
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan L. Saidman
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David Schoenfeld
- Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston MA, USA
| | - Bruce Levin
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Waichi Wong
- Division of Nephrology, New York Presbyterian Hospital, Columbia University Medical Center, New York, NY, USA
| | - Nahel Elias
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Schuetz
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivy A. Rosales
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yaowen Fu
- Transplant Center, The First Hospital of Jilin University, Changchun, China
| | - Emmanuel Zorn
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Corresponding author: Emmanuel Zorn, Massachusetts General Hospital, Transplant Center, Thier 807, 55 Fruit Street, Boston, MA 02114, , Tel: (617) 643-3675, Fax: (617) 724-3471
| |
Collapse
|
45
|
Jiang X, Sung YK, Tian W, Qian J, Semenza GL, Nicolls MR. Graft microvascular disease in solid organ transplantation. J Mol Med (Berl) 2014; 92:797-810. [PMID: 24880953 PMCID: PMC4118041 DOI: 10.1007/s00109-014-1173-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/29/2014] [Accepted: 05/14/2014] [Indexed: 02/07/2023]
Abstract
Alloimmune inflammation damages the microvasculature of solid organ transplants during acute rejection. Although immunosuppressive drugs diminish the inflammatory response, they do not directly promote vascular repair. Repetitive microvascular injury with insufficient regeneration results in prolonged tissue hypoxia and fibrotic remodeling. While clinical studies show that a loss of the microvascular circulation precedes and may act as an initiating factor for the development of chronic rejection, preclinical studies demonstrate that improved microvascular perfusion during acute rejection delays and attenuates tissue fibrosis. Therefore, preservation of a functional microvasculature may represent an effective therapeutic strategy for preventing chronic rejection. Here, we review recent advances in our understanding of the role of the microvasculature in the long-term survival of transplanted solid organs. We also highlight microvessel-centered therapeutic strategies for prolonging the survival of solid organ transplants.
Collapse
Affiliation(s)
- Xinguo Jiang
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA,
| | | | | | | | | | | |
Collapse
|
46
|
Fhied C, Kanangat S, Borgia JA. Development of a bead-based immunoassay to routinely measure vimentin autoantibodies in the clinical setting. J Immunol Methods 2014; 407:9-14. [DOI: 10.1016/j.jim.2014.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
|
47
|
Banan B, Xu Z, Gunasekaran M, Mohanakumar T. Role of alloimmunity and autoimmunity in allograft rejection. CLINICAL TRANSPLANTS 2013:325-332. [PMID: 25095525 PMCID: PMC5595353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Pathophysiology of chronic rejection strongly supports that inflammation and subsequent tissue remodeling during the post-transplant period cause exposure of cryptic self-antigens (SAgs) or their determinants within the graft, which, along with a subsequent cytokine response, leads to loss of peripheral tolerance. These events lead to the activation of cell-mediated immunity towards development of de novo immune responses to SAgs. There is also evidence for a role for interplay between allo- and autoimmunity in the development of chronic rejection. Experimental results using murine models of Obliterative Airway Disease (OAD) akin to chronic lung allograft rejection have clearly demonstrated that autoimmune responses to Collagen V (ColV) and K-alpha 1 Tubulin (KalT) were induced by administration of antibodies (Abs) against class I major histocompatibility complex antigens. Further, inhibition of interleukin (IL)-17 abrogated the autoimmune response and development of OAD. This shows an important relationship between alloimmunity, autoimmunity to SAgs such as KalT, and a significant role for IL-17 pathway of immune activation. Recent reports demonstrate that in addition to lung transplant recipients, kidney transplant recipients diagnosed with transplant glomerulopathy can develop de novo Abs to Sags, including Col-IV and fibronectin and heart transplant recipients can develop immune responses to cardiac myosin and vimentin. Abs to SAgs were identified frequently with donor specific anti-human leukocyte antigen antibodies, supporting the concept of crosstalk between auto- and alloimmunity. The increased frequency of SAg specific interferon-gamma and IL-17 cells with reduction in IL-10 demonstrates tolerance breakdown to SAgs which may play a significant role in the pathogenesis of chronic rejection.
Collapse
|