1
|
Salminen A. Cooperation between inhibitory immune checkpoints of senescent cells with immunosuppressive network to promote immunosenescence and the aging process. Ageing Res Rev 2025:102694. [PMID: 39984130 DOI: 10.1016/j.arr.2025.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
The accumulation of senescent cells within tissues promotes the aging process by remodelling the functions of the immune system. For many years, it has been known that senescent cells secrete pro-inflammatory cytokines and chemokines, a phenotype called the senescence-associated secretory phenotype (SASP). Chemokines and colony-stimulating factors stimulate myelopoiesis and recruit myeloid cells into aging tissues. Interestingly, recent studies have demonstrated that senescent cells are not only secretory but they also express an increased level of ligand proteins for many inhibitory immune checkpoint receptors. These ligands represent "don't eat me" markers in senescent cells and moreover, they are able to induce an exhaustion of many immune cells, such as surveying natural killer (NK) cells, cytotoxic CD8+ T cells, and macrophages. The programmed cell death protein-1 (PD-1) and its ligand PD-L1 represent the best known inhibitory immune checkpoint pathway. Importantly, the activation of inhibitory checkpoint receptors, e.g., in chronic inflammatory states, can also induce certain immune cells to differentiate toward their immunosuppressive phenotype. This can be observed in myeloid derived suppressor cells (MDSC), tissue regulatory T cells (Treg), and M2 macrophages. Conversely, these immunosuppressive cells stimulate in senescent cells the expression of many ligand proteins for inhibitory checkpoint receptors. Paradoxically, senescent cells not only promote the pro-inflammatory state but they maintain it at a low-grade level by expressing ligands for inhibitory immune checkpoint receptors. Thus, the cooperation between senescent cells and immunosuppressive cells enhances the senescence state of immune cells, i.e., immune senescence/exhaustion, and cellular senescence within tissues via bystander effects.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
2
|
Zarobkiewicz M, Kowalska W, Szymańska A, Lehman N, Kowalczyk B, Tomczak W, Bojarska-Junak A. γδ T Are Significantly Impacted by CLL Burden but Only Mildly Influenced by M-MDSCs. Cancers (Basel) 2025; 17:254. [PMID: 39858035 PMCID: PMC11763719 DOI: 10.3390/cancers17020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The current study explores the impact of CLL on γδ T cells and, in an attempt to better understand the sources of immunosuppression, assesses the impact of M-MDSCs on γδ T cells in vitro. METHODS The study included 163 CLL patients and 34 healthy volunteers. γδ T cells were screened with flow cytometry, including NKG2D, Fas, FasL, and TRAIL staining. Additionally, to deepen understanding of the immunosuppressive impact of CLL on γδ T, a set of in vitro co-cultures of γδ T and M-MDSCs was performed. RESULTS RNAseq revealed significant, though relatively minor, changes in the transcriptome. Functional analyses showed a minor drop in cytotoxic potential against CLL cells. Finally, depletion of M-MDSCs from CLL-derived peripheral blood mononuclear cells did not restore γδ T cells' proliferative response. CONCLUSIONS Altogether, this suggests a minor impact of M-MDSCs on activated γδ T. Thus, it seems probable that other mechanisms than M-MDSCs mediate the negative impact of CLL on circulating γδ T cells.
Collapse
Affiliation(s)
- Michał Zarobkiewicz
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (N.L.); (A.B.-J.)
| | - Wioleta Kowalska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (N.L.); (A.B.-J.)
| | - Agata Szymańska
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (N.L.); (A.B.-J.)
| | - Natalia Lehman
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (N.L.); (A.B.-J.)
| | - Bożena Kowalczyk
- Department of Genetics and Microbiology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
| | - Waldemar Tomczak
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, 20-080 Lublin, Poland;
| | - Agnieszka Bojarska-Junak
- Department of Clinical Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (W.K.); (A.S.); (N.L.); (A.B.-J.)
| |
Collapse
|
3
|
Wang Z, Chen Y, Fang H, Xiao K, Wu Z, Xie X, Liu J, Chen F, He Y, Wang L, Yang C, Pei R, Shao D. Reprogramming cellular senescence in the tumor microenvironment augments cancer immunotherapy through multifunctional nanocrystals. SCIENCE ADVANCES 2024; 10:eadp7022. [PMID: 39485841 PMCID: PMC11529718 DOI: 10.1126/sciadv.adp7022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024]
Abstract
Harnessing the immunogenic potential of senescent tumor cells provides an opportunity to remodel tumor microenvironment (TME) and boost antitumor immunity. However, this potential needs to be sophisticatedly wielded to avoid additional immunosuppressive capacity of senescent cells. Our study shows that blocking the JAK2/STAT3 pathway enhances immunogenic efficacy of Aurora kinase inhibitor alisertib (Ali)-induced senescence by reducing immunosuppressive senescence-associated secretory phenotype (SASP) while preserving immunogenic SASP. Hypothesizing that SASP reprogramming with Ali and JAK2 inhibitor ruxolitinib (Rux) will benefit cancer immunotherapy, we create nanoparticulate crystals (Ali-Rux) composed of Ali and Rux with a fully active pharmaceutical ingredient. Immunization with Ali-Rux-orchestrated senescent cells promotes stronger activation of antigen-presenting cells, enhancing antitumor immune surveillance. This approach remodels the TME by increasing CD8+ T cell and NK recruitment and activation while decreasing MDSCs. Combined with PD-L1 blockade, Ali-Rux elicits a durable antitumor immune response, suggesting the TME reshaping approach as a potential cancer immunotherapy.
Collapse
Affiliation(s)
- Zheng Wang
- Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yinglu Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Hui Fang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Kai Xiao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Ziping Wu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jie Liu
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yi He
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Liang Wang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Renjun Pei
- Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Dan Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| |
Collapse
|
4
|
Whiteside TL. Tumor-derived Exosomes and Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:923-931. [PMID: 39284119 DOI: 10.4049/jimmunol.2400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/01/2024] [Indexed: 11/13/2024]
Abstract
Cancer immunotherapy, including immune checkpoint blockade, has been approved for treatment of patients with many cancer types. However, some patients fail to respond to immunotherapy, and emerging evidence indicates that tumor-derived exosomes (TEX) play a major role in reprogramming the host immune cells by inducing their dysfunction. Focusing on effector T cells, this review illustrates mechanisms of suppression that TEX use, thus promoting tumor escape from the host immune system. TEX carry multiple suppressive signals that drive T cell dysfunction and convert the tumor microenvironment into "an immune desert" in which activated T cells either die or are reprogrammed to mediate protumor functions. The reprogrammed T cells produce a new crop of CD3+ immunoinhibitory exosomes that further amplify suppression mediated by TEX. The result is a profound depletion of antitumor immune effector cells that reflects the defective immune competence of the cancer patient and partly explains why TEX are a significant barrier for cancer immunotherapy.
Collapse
Affiliation(s)
- Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA; and UPMC Hillman Cancer Center, Pittsburgh, PA
| |
Collapse
|
5
|
Coelho JQ, Ramos MJ, Ranchor R, Pichel R, Guerra L, Miranda H, Simões J, Azevedo SX, Febra J, Araújo A. What's new about the tumor microenvironment of urothelial carcinoma? Clin Transl Oncol 2024; 26:1549-1560. [PMID: 38332225 DOI: 10.1007/s12094-024-03384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
Urothelial carcinoma is a significant global health concern that accounts for a substantial part of cancer diagnoses and deaths worldwide. The tumor microenvironment is a complex ecosystem composed of stromal cells, soluble factors, and altered extracellular matrix, that mutually interact in a highly immunomodulated environment, with a prominent role in tumor development, progression, and treatment resistance. This article reviews the current state of knowledge of the different cell populations that compose the tumor microenvironment of urothelial carcinoma, its main functions, and distinct interactions with other cellular and non-cellular components, molecular alterations and aberrant signaling pathways already identified. It also focuses on the clinical implications of these findings, and its potential to translate into improved quality of life and overall survival. Determining new targets or defining prognostic signatures for urothelial carcinoma is an ongoing challenge that could be accelerated through a deeper understanding of the tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Ridhi Ranchor
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | - Rita Pichel
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | - Laura Guerra
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | - Hugo Miranda
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | - Joana Simões
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | | | - Joana Febra
- Unidade Local de Saúde de Santo António, Porto, Portugal
| | - António Araújo
- Unidade Local de Saúde de Santo António, Porto, Portugal
- Oncology Research Unit, UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
6
|
Hsu CY, Mustafa MA, Kumar A, Pramanik A, Sharma R, Mohammed F, Jawad IA, Mohammed IJ, Alshahrani MY, Ali Khalil NAM, Shnishil AT, Abosaoda MK. Exploiting the immune system in hepatic tumor targeting: Unleashing the potential of drugs, natural products, and nanoparticles. Pathol Res Pract 2024; 256:155266. [PMID: 38554489 DOI: 10.1016/j.prp.2024.155266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024]
Abstract
Hepatic tumors present a formidable challenge in cancer therapeutics, necessitating the exploration of novel treatment strategies. In recent years, targeting the immune system has attracted interest to augment existing therapeutic efficacy. The immune system in hepatic tumors includes numerous cells with diverse actions. CD8+ T lymphocytes, T helper 1 (Th1) CD4+ T lymphocytes, alternative M1 macrophages, and natural killer (NK) cells provide the antitumor immunity. However, Foxp3+ regulatory CD4+ T cells (Tregs), M2-like tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) are the key immune inhibitor cells. Tumor stroma can also affect these interactions. Targeting these cells and their secreted molecules is intriguing for eliminating malignant cells. The current review provides a synopsis of the immune system components involved in hepatic tumor expansion and highlights the molecular and cellular pathways that can be targeted for therapeutic intervention. It also overviews the diverse range of drugs, natural products, immunotherapy drugs, and nanoparticles that have been investigated to manipulate immune responses and bolster antitumor immunity. The review also addresses the potential advantages and challenges associated with these approaches.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Atreyi Pramanik
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Rajiv Sharma
- Institute of Pharma Sciences and Research, Chandigarh University, Mohali, India
| | - Faraj Mohammed
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Iraq
| | | | - Imad Jasim Mohammed
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | | | - Munther Kadhim Abosaoda
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| |
Collapse
|
7
|
Shi X, Pang S, Zhou J, Yan G, Gao R, Wu H, Wang Z, Wei Y, Liu X, Tan W. Bladder-cancer-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating fatty acid transporter protein 2 and down-regulating receptor-interacting protein kinase 3 in PMN-MDSCs. Mol Cancer 2024; 23:52. [PMID: 38461272 PMCID: PMC10924381 DOI: 10.1186/s12943-024-01968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
BACKGROUND Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) is one of the causes of tumor immune tolerance and failure of cancer immunotherapy. Here, we found that bladder cancer (BCa)-derived exosomal circRNA_0013936 could enhance the immunosuppressive activity of PMN-MDSCs by regulating the expression of fatty acid transporter protein 2 (FATP2) and receptor-interacting protein kinase 3 (RIPK3). However, the underlying mechanism remains largely unknown. METHODS BCa-derived exosomes was isolated and used for a series of experiments. RNA sequencing was used to identify the differentially expressed circRNAs. Western blotting, immunohistochemistry, immunofluorescence, qRT-PCR, ELISA and Flow cytometry were performed to reveal the potential mechanism of circRNA_0013936 promoting the immunosuppressive activity of PMN-MDSC. RESULTS CircRNA_0013936 enriched in BCa-derived exosomes could promote the expression of FATP2 and inhibit the expression of RIPK3 in PMN-MDSCs. Mechanistically, circRNA_0013936 promoted the expression of FATP2 and inhibited the expression of RIPK3 expression via sponging miR-320a and miR-301b, which directly targeted JAK2 and CREB1 respectively. Ultimately, circRNA_0013936 significantly inhibited the functions of CD8+ T cells by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway, and down-regulating RIPK3 through the circRNA_0013936/miR-301b/CREB1 pathway in PMN-MDSCs. CONCLUSIONS BCa-derived exosomal circRNA_0013936 promotes suppressive immunity by up-regulating FATP2 through the circRNA_0013936/miR-320a/JAK2 pathway and down-regulating RIPK3 through the circRNA_0013936/miR-301b-3p/CREB1 pathway in PMN-MDSCs. These findings help to find new targets for clinical treatment of human bladder cancer.
Collapse
Affiliation(s)
- Xiaojun Shi
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shiyu Pang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiawei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guang Yan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ruxi Gao
- Southern Medical University, Guangzhou, China
| | - Haowei Wu
- Southern Medical University, Guangzhou, China
| | - Zhou Wang
- Southern Medical University, Guangzhou, China
| | - Yuqing Wei
- Southern Medical University, Guangzhou, China
| | - Xinyu Liu
- Southern Medical University, Guangzhou, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Jiménez-Cortegana C, Salamanca E, Palazón-Carrión N, Sánchez-Jiménez F, Pérez-Pérez A, Vilariño-García T, Fuentes S, Martín S, Jiménez M, Galván R, Rodríguez-Chacón C, Sánchez-Mora C, Moreno-Mellado E, Gutiérrez-Gutiérrez B, Álvarez N, Sosa A, Garnacho-Montero J, de la Cruz-Merino L, Rodríguez-Baño J, Sánchez-Margalet V. Circulating myeloid-derived suppressor cells may be a useful biomarker in the follow-up of unvaccinated COVID-19 patients after hospitalization. Front Immunol 2023; 14:1266659. [PMID: 38035104 PMCID: PMC10685891 DOI: 10.3389/fimmu.2023.1266659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
SARS-CoV-2 infection is the cause of the disease named COVID-19, a major public health challenge worldwide. Differences in the severity, complications and outcomes of the COVID-19 are intriguing and, patients with similar baseline clinical conditions may have very different evolution. Myeloid-derived suppressor cells (MDSCs) have been previously found to be recruited by the SARS-CoV-2 infection and may be a marker of clinical evolution in these patients. We have studied 90 consecutive patients admitted in the hospital before the vaccination program started in the general population, to measure MDSCs and lymphocyte subpopulations at admission and one week after to assess the possible association with unfavorable outcomes (dead or Intensive Care Unit admission). We analyzed MDSCs and lymphocyte subpopulations by flow cytometry. In the 72 patients discharged from the hospital, there were significant decreases in the monocytic and total MDSC populations measured in peripheral blood after one week but, most importantly, the number of MDSCs (total and both monocytic and granulocytic subsets) were much higher in the 18 patients with unfavorable outcome. In conclusion, the number of circulating MDSCs may be a good marker of evolution in the follow-up of unvaccinated patients admitted in the hospital with the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Elena Salamanca
- Infectious Diseases and, Microbiology and Preventive Medicine Unit, Virgen Macarena University Hospital/Departments of Medicine and Microbiology, University of Seville/Biomedicine Institute of Seville (IBiS), Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Natalia Palazón-Carrión
- Clinical Oncology Service, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Sandra Fuentes
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Salomón Martín
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Marta Jiménez
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Raquel Galván
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | | | - Catalina Sánchez-Mora
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| | - Elisa Moreno-Mellado
- Infectious Diseases and, Microbiology and Preventive Medicine Unit, Virgen Macarena University Hospital/Departments of Medicine and Microbiology, University of Seville/Biomedicine Institute of Seville (IBiS), Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Gutiérrez-Gutiérrez
- Infectious Diseases and, Microbiology and Preventive Medicine Unit, Virgen Macarena University Hospital/Departments of Medicine and Microbiology, University of Seville/Biomedicine Institute of Seville (IBiS), Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Nerissa Álvarez
- Intensive Care Unit, Virgen Macarena University Hospital, Seville, Spain
| | - Alberto Sosa
- Intensive Care Unit, Virgen Macarena University Hospital, Seville, Spain
| | | | - Luis de la Cruz-Merino
- Clinical Oncology Service, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Jesús Rodríguez-Baño
- Infectious Diseases and, Microbiology and Preventive Medicine Unit, Virgen Macarena University Hospital/Departments of Medicine and Microbiology, University of Seville/Biomedicine Institute of Seville (IBiS), Seville, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, Seville, Spain
| |
Collapse
|
9
|
Tan Y, Wang Z, Xu M, Li B, Huang Z, Qin S, Nice EC, Tang J, Huang C. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci 2023; 15:44. [PMID: 37736748 PMCID: PMC10517027 DOI: 10.1038/s41368-023-00249-w] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) develops on the mucosal epithelium of the oral cavity. It accounts for approximately 90% of oral malignancies and impairs appearance, pronunciation, swallowing, and flavor perception. In 2020, 377,713 OSCC cases were reported globally. According to the Global Cancer Observatory (GCO), the incidence of OSCC will rise by approximately 40% by 2040, accompanied by a growth in mortality. Persistent exposure to various risk factors, including tobacco, alcohol, betel quid (BQ), and human papillomavirus (HPV), will lead to the development of oral potentially malignant disorders (OPMDs), which are oral mucosal lesions with an increased risk of developing into OSCC. Complex and multifactorial, the oncogenesis process involves genetic alteration, epigenetic modification, and a dysregulated tumor microenvironment. Although various therapeutic interventions, such as chemotherapy, radiation, immunotherapy, and nanomedicine, have been proposed to prevent or treat OSCC and OPMDs, understanding the mechanism of malignancies will facilitate the identification of therapeutic and prognostic factors, thereby improving the efficacy of treatment for OSCC patients. This review summarizes the mechanisms involved in OSCC. Moreover, the current therapeutic interventions and prognostic methods for OSCC and OPMDs are discussed to facilitate comprehension and provide several prospective outlooks for the fields.
Collapse
Affiliation(s)
- Yunhan Tan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Mengtong Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jing Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
10
|
Marín V, Burgos V, Pérez R, Maria DA, Pardi P, Paz C. The Potential Role of Epigallocatechin-3-Gallate (EGCG) in Breast Cancer Treatment. Int J Mol Sci 2023; 24:10737. [PMID: 37445915 DOI: 10.3390/ijms241310737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is one of the most diagnosed cancers worldwide, with an incidence of 47.8%. Its treatment includes surgery, radiotherapy, chemotherapy, and antibodies giving a mortality of 13.6%. Breast tumor development is driven by a variety of signaling pathways with high heterogeneity of surface receptors, which makes treatment difficult. Epigallocatechin-3-gallate (EGCG) is a natural polyphenol isolated as the main component in green tea; it has shown multiple beneficial effects in breast cancer, controlling proliferation, invasion, apoptosis, inflammation, and demethylation of DNA. These properties were proved in vitro and in vivo together with synergistic effects in combination with traditional chemotherapy, increasing the effectiveness of the treatment. This review focuses on the effects of EGCG on the functional capabilities acquired by breast tumor cells during its multistep development, the molecular and signal pathways involved, the synergistic effects in combination with current drugs, and how nanomaterials can improve its bioavailability on breast cancer treatment.
Collapse
Affiliation(s)
- Víctor Marín
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 02950, Chile
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco 4780000, Chile
| | - Rebeca Pérez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| | | | - Paulo Pardi
- Nucleo de Pesquisas NUPE/ENIAC University Center, Guarulhos 07012-030, Brazil
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
11
|
Liu Z, Xu X, Liu K, Zhang J, Ding D, Fu R. Immunogenic Cell Death in Hematological Malignancy Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207475. [PMID: 36815385 PMCID: PMC10161053 DOI: 10.1002/advs.202207475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/09/2023] [Indexed: 05/06/2023]
Abstract
Although the curative effect of hematological malignancies has been improved in recent years, relapse or drug resistance of hematological malignancies will eventually recur. Furthermore, the microenvironment disorder is an important mechanism in the pathogenesis of hematological malignancies. Immunogenic cell death (ICD) is a unique mechanism of regulated cell death (RCD) that triggers an intact antigen-specific adaptive immune response by firing a set of danger signals or damage-associated molecular patterns (DAMPs), which is an immunotherapeutic modality with the potential for the treatment of hematological malignancies. This review summarizes the existing knowledge about the induction of ICD in hematological malignancies and the current research on combining ICD inducers with other treatment strategies for hematological malignancies.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Xintong Xu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| | - Kaining Liu
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Jingtian Zhang
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical BiologyKey Laboratory of Bioactive, Materials, Ministry of Education and College of Life SciencesNankai UniversityTianjin300071P. R. China
| | - Rong Fu
- Department of HematologyTianjin Medical University General HospitalTianjin300052P. R. China
| |
Collapse
|
12
|
Li Y, Xiang S, Pan W, Wang J, Zhan H, Liu S. Targeting tumor immunosuppressive microenvironment for pancreatic cancer immunotherapy: Current research and future perspective. Front Oncol 2023; 13:1166860. [PMID: 37064113 PMCID: PMC10090519 DOI: 10.3389/fonc.2023.1166860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with increased incidence rate. The effect of surgery combined with chemoradiotherapy on survival of patients is unsatisfactory. New treatment strategy such as immunotherapy need to be investigated. The accumulation of desmoplastic stroma, infiltration of immunosuppressive cells including myeloid derived suppressor cells (MDSCs), tumor associated macrophages (TAMs), cancer‐associated fibroblasts (CAFs), and regulatory T cells (Tregs), as well as tumor associated cytokine such as TGF-β, IL-10, IL-35, CCL5 and CXCL12 construct an immunosuppressive microenvironment of pancreatic cancer, which presents challenges for immunotherapy. In this review article, we explore the roles and mechanism of immunosuppressive cells and lymphocytes in establishing an immunosuppressive tumor microenvironment in pancreatic cancer. In addition, immunotherapy strategies for pancreatic cancer based on tumor microenvironment including immune checkpoint inhibitors, targeting extracellular matrix (ECM), interfering with stromal cells or cytokines in TME, cancer vaccines and extracellular vesicles (EVs) are also discussed. It is necessary to identify an approach of immunotherapy in combination with other modalities to produce a synergistic effect with increased response rates in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Xiang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjun Pan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| |
Collapse
|
13
|
Li CY, Anuraga G, Chang CP, Weng TY, Hsu HP, Ta HDK, Su PF, Chiu PH, Yang SJ, Chen FW, Ye PH, Wang CY, Lai MD. Repurposing nitric oxide donating drugs in cancer therapy through immune modulation. J Exp Clin Cancer Res 2023; 42:22. [PMID: 36639681 PMCID: PMC9840268 DOI: 10.1186/s13046-022-02590-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/29/2022] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Nitric oxide-releasing drugs are used for cardiovascular diseases; however, their effects on the tumor immune microenvironment are less clear. Therefore, this study explored the impact of nitric oxide donors on tumor progression in immune-competent mice. METHODS The effects of three different nitric oxide-releasing compounds (SNAP, SNP, and ISMN) on tumor growth were studied in tumor-bearing mouse models. Three mouse tumor models were used: B16F1 melanoma and LL2 lung carcinoma in C57BL/6 mice, CT26 colon cancer in BALB/c mice, and LL2 lung carcinoma in NOD/SCID mice. After nitric oxide treatment, splenic cytokines and lymphocytes were analyzed by cytokine array and flow cytometry, and tumor-infiltrating lymphocytes in the TME were analyzed using flow cytometry and single-cell RNA sequencing. RESULTS Low doses of three exogenous nitric oxide donors inhibited tumor growth in two immunocompetent mouse models but not in NOD/SCID immunodeficient mice. Low-dose nitric oxide donors increase the levels of splenic cytokines IFN-γ and TNF-α but decrease the levels of cytokines IL-6 and IL-10, suggesting an alteration in Th2 cells. Nitric oxide donors increased the number of CD8+ T cells with activation gene signatures, as indicated by single-cell RNA sequencing. Flow cytometry analysis confirmed an increase in infiltrating CD8+ T cells and dendritic cells. The antitumor effect of nitric oxide donors was abolished by depletion of CD8+ T cells, indicating the requirement for CD8+ T cells. Tumor inhibition correlated with a decrease in a subtype of protumor macrophages and an increase in a subset of Arg1-positive macrophages expressing antitumor gene signatures. The increase in this subset of macrophages was confirmed by flow cytometry analysis. Finally, the combination of low-dose nitric oxide donor and cisplatin induced an additive cancer therapeutic effect in two immunocompetent animal models. The enhanced therapeutic effect was accompanied by an increase in the cells expressing the gene signature of NK cell. CONCLUSIONS Low concentrations of exogenous nitric oxide donors inhibit tumor growth in vivo by regulating T cells and macrophages. CD8+ T cells are essential for antitumor effects. In addition, low-dose nitric oxide donors may be combined with chemotherapeutic drugs in cancer therapy in the future.
Collapse
Affiliation(s)
- Chung-Yen Li
- College of Medicine, Institute of basic medical sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan, ROC
- Department of Statistics, Faculty of Science and Technology, Universitas PGRI Adi Buana, Surabaya, Indonesia
| | - Chih-Peng Chang
- College of Medicine, Institute of basic medical sciences, National Cheng Kung University, Tainan, Taiwan, ROC
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Tzu-Yang Weng
- College of Medicine, Institute of basic medical sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan, ROC
| | - Pei-Fang Su
- Department of Statistics, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Pin-Hsuan Chiu
- The Center for Quantitative Sciences, Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shiang-Jie Yang
- College of Medicine, Institute of basic medical sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Feng-Wei Chen
- College of Medicine, Institute of basic medical sciences, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Pei-Hsuan Ye
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan, ROC.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Derg Lai
- College of Medicine, Institute of basic medical sciences, National Cheng Kung University, Tainan, Taiwan, ROC.
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC.
| |
Collapse
|
14
|
Lee A, Park H, Lim S, Lim J, Koh J, Jeon YK, Yang Y, Lee MS, Lim JS. Novel role of microphthalmia-associated transcription factor in modulating the differentiation and immunosuppressive functions of myeloid-derived suppressor cells. J Immunother Cancer 2023; 11:jitc-2022-005699. [PMID: 36627143 PMCID: PMC9835954 DOI: 10.1136/jitc-2022-005699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Microphthalmia-associated transcription factor (MITF) is a master regulator of melanogenesis and is mainly expressed in melanoma cells. MITF has also been reported to be expressed in non-pigmented cells, such as osteoclasts, mast cells, and B cells. However, the roles of MITF in immunosuppressive myeloid cells, including myeloid-derived suppressor cells (MDSCs), remain unclear. Here, we investigated the role of MITF in the differentiation process of MDSCs during tumor development. METHODS In vitro-generated murine MDSCs and primary MDSCs from breast cancer-bearing mice or lung carcinoma-bearing mice were used to determine the expression level of MITF and the activity of MDSCs. Additionally, we investigated whether in vivo tumor growth can be differentially regulated by coinjection of MDSCs in which MITF expression is modulated by small molecules. Furthermore, the number of MITF+ monocytic (MO)-MDSCs was examined in human tumor tissues or tumor-free lymph nodes by immunohistochemistry (IHC). RESULTS The expression of MITF was strongly increased in MO-MDSCs from tumors of breast cancer-bearing mice compared with polymorphonuclear MDSCs. We found that MITF expression in MDSCs was markedly induced in the tumor microenvironment (TME) and related to the functional activity of MDSCs. MITF overexpression in myeloid cells increased the expression of MDSC activity markers and effectively inhibited T-cell proliferation compared with those of control MDSCs, whereas shRNA-mediated knockdown of MITF in myeloid cells altered the immunosuppressive function of MDSCs. Modulation of MITF expression by small molecules affected the differentiation and immunosuppressive function of MDSCs. While increased MITF expression in MDSCs promoted breast cancer progression and CD4+ or CD8+ T-cell dysfunction, decreased MITF expression in MDSCs suppressed tumor progression and enhanced T-cell activation. Furthermore, IHC staining of human tumor tissues revealed that MITF+ MO-MDSCs are more frequently observed in tumor tissues than in tumor-free draining lymph nodes obtained from patients with cancer. CONCLUSIONS Our results indicate that MITF regulates the differentiation and function of MDSCs and can be a novel therapeutic target for modulating MDSC activity in immunosuppressive s.
Collapse
Affiliation(s)
- Aram Lee
- Department of Biological Science, Sookmyung Women's University College of Science, Seoul, Korea
| | - Haesun Park
- Department of Biological Science, Sookmyung Women's University College of Science, Seoul, Korea
| | - Soyoung Lim
- Department of Biological Science, Sookmyung Women's University College of Science, Seoul, Korea
| | - Jihyun Lim
- Department of Biological Science, Sookmyung Women's University College of Science, Seoul, Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Young Yang
- Department of Biological Science, Sookmyung Women's University College of Science, Seoul, Korea
| | - Myeong-Sok Lee
- Department of Biological Science, Sookmyung Women's University College of Science, Seoul, Korea
| | - Jong-Seok Lim
- Department of Biological Science, Sookmyung Women's University College of Science, Seoul, Korea
| |
Collapse
|
15
|
Abstract
OBJECTIVES Immunoparalysis in children with septic shock is associated with increased risk of nosocomial infections and death. Myeloid-derived suppressor cells (MDSCs) potently suppress T cell function and may perpetuate immunoparalysis. Our goal was to test the hypothesis that children with septic shock would demonstrate increased proportions of MDSCs and impaired immune function compared with healthy controls. DESIGN Prospective observational study. SETTING Fifty-four bed PICU in a quaternary-care children's hospital. PATIENTS Eighteen children with septic shock and thirty age-matched healthy children. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood and stained for cell surface markers to identify MDSCs by flow cytometric analysis, including granulocytic and monocytic subsets. Adaptive and innate immune function was measured by ex vivo stimulation of whole blood with phytohemagglutinin-induced interferon (IFN) γ production and lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production, respectively. Prolonged organ dysfunction (OD) was defined as greater than 7 days. Children with septic shock had a higher percentage of circulating MDSCs, along with lower LPS-induced TNFα and phytohemagglutinin-induced IFNγ production capacities, compared with healthy controls. A cut-off of 25.2% MDSCs of total PBMCs in initial samples was optimal to discriminate children with septic shock who went on to have prolonged OD, area under the curve equal to 0.86. Children with prolonged OD also had decreased TNFα production capacity over time compared with those who recovered more quickly ( p = 0.02). CONCLUSIONS This article is the first to describe increased MDSCs in children with septic shock, along with an association between early increase in MDSCs and adverse OD outcomes in this population. It remains unclear if MDSCs play a causative role in sepsis-induced immune suppression in children. Additional studies are warranted to establish MDSC as a potential therapeutic target.
Collapse
|
16
|
Hasselbalch H, Skov V, Kjær L, Larsen MK, Knudsen TA, Lucijanić M, Kusec R. Recombinant Interferon-β in the Treatment of Polycythemia Vera and Related Neoplasms: Rationales and Perspectives. Cancers (Basel) 2022; 14:5495. [PMID: 36428587 PMCID: PMC9688061 DOI: 10.3390/cancers14225495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
About 30 years ago, the first clinical trials of the safety and efficacy of recombinant interferon-α2 (rIFN-α2) were performed. Since then, several single-arm studies have shown rIFN-α2 to be a highly potent anticancer agent against several cancer types. Unfortunately, however, a high toxicity profile in early studies with rIFN-α2 -among other reasons likely due to the high dosages being used-disqualified rIFN-α2, which was accordingly replaced with competitive drugs that might at first glance look more attractive to clinicians. Later, pegylated IFN-α2a (Pegasys) and pegylated IFN-α2b (PegIntron) were introduced, which have since been reported to be better tolerated due to reduced toxicity. Today, treatment with rIFN-α2 is virtually outdated in non-hematological cancers, where other immunotherapies-e.g., immune-checkpoint inhibitors-are routinely used in several cancer types and are being intensively investigated in others, either as monotherapy or in combination with immunomodulatory agents, although only rarely in combination with rIFN-α2. Within the hematological malignancies, rIFN-α2 has been used off-label for decades in patients with Philadelphia-negative chronic myeloproliferative neoplasms (MPNs)-i.e., essential thrombocythemia, polycythemia vera, and myelofibrosis-and in recent years rIFN-α2 has been revived with the marketing of ropeginterferon-α2b (Besremi) for the treatment of polycythemia vera patients. Additionally, rIFN-α2 has been revived for the treatment of chronic myelogenous leukemia in combination with tyrosine kinase inhibitors. Another rIFN formulation-recombinant interferon-β (rIFN-β)-has been used for decades in the treatment of multiple sclerosis but has never been studied as a potential agent to be used in patients with MPNs, although several studies and reviews have repeatedly described rIFN-β as an effective anticancer agent as well. In this paper, we describe the rationales and perspectives for launching studies on the safety and efficacy of rIFN-β in patients with MPNs.
Collapse
Affiliation(s)
- Hans Hasselbalch
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Vibe Skov
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Lasse Kjær
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | | | - Trine A. Knudsen
- Department of Hematology, Zealand University, 4000 Roskilde, Denmark
| | - Marko Lucijanić
- Department of Hematology, University Hospital Dubrava, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Rajko Kusec
- Department of Hematology, University Hospital Dubrava, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
17
|
Shi X, Pang S, Zhou J, Yan G, Sun J, Tan W. Feedback loop between fatty acid transport protein 2 and receptor interacting protein 3 pathways promotes polymorphonuclear neutrophil myeloid-derived suppressor cells-potentiated suppressive immunity in bladder cancer. Mol Biol Rep 2022; 49:11643-11652. [PMID: 36169895 DOI: 10.1007/s11033-022-07924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) promote tumor immune tolerance and cause tumor immunotherapy failure. In this study, we found that high PMN-MDSCs infiltration, overexpressed fatty acid transporter protein 2 (FATP2) and underexpressed receptor-interacting protein kinase 3 (RIPK3) existed in the mouse and human bladder cancer tissues. However, the related mechanisms remain largely unknown. METHODS AND RESULTS Both FATP2 and RIPK3 expressions were associated with clinical stage. FATP2 knockout or up-regulating RIPK3 reduced the synthesis of prostaglandin E2 (PGE2) in PMN-MDSCs, attenuated the suppressive activity of PMN-MDSCs on CD8+ T cells functions and inhibited the tumor growth. There was a PGE2-mediated feedback loop between FATP2 and RIPK3 pathways, which markedly promoted the immunosuppressive activity of PMN-MDSCs. Combination therapy with inhibition of FATP2 and activation of RIPK3 can effectively inhibit tumor growth. CONCLUSIONS This study demonstrated that a feedback loop between FATP2 and RIPK3 pathways in PMN-MDSCs significantly promoted the synthesis of PGE2, which severely impaired the CD8+ T cell functions. This study may provide new ideas for immunotherapy of human bladder cancer.
Collapse
Affiliation(s)
- Xiaojun Shi
- Department of Urology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| | - Shiyu Pang
- Department of Urology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Jiawei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Guang Yan
- Department of Urology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Jie Sun
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| |
Collapse
|
18
|
Xie Y, Yan F, Wang X, Yu L, Yan H, Pu Q, Li W, Yang Z. Mechanisms and network pharmacological analysis of Yangyin Fuzheng Jiedu prescription in the treatment of hepatocellular carcinoma. Cancer Med 2022; 12:3237-3259. [PMID: 36043445 PMCID: PMC9939140 DOI: 10.1002/cam4.5064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/22/2022] [Accepted: 07/03/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE To identify the key drugs of Yangyin Fuzheng Jiedu prescription (YFJP) and investigate their therapeutic effects against hepatocellular carcinoma (HCC) and the potential mechanism using network pharmacology. METHODS The H22 tumor-bearing mouse model was established. Thirty male BALB/c mice were divided randomly into five groups. The mice were orally treated with either disassembled prescriptions of YFJP or saline solution continuously for 14 days. The mice were weighed every 2 days during treatment and the appearance of tumors was observed by photographing. The tumor inhibition rate and the spleen and thymus indexes were calculated. Hematoxylin and eosin and immunohistochemical staining were performed to observe the histological changes and tumor-infiltrating lymphocytes. Cell apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining. The proportion of CD8+ T cells and the expression of programmed cell death protein 1 (PD-1), T cell immunoglobulin domain and mucin domain-3 (Tim-3), and T cell immunoreceptor with Ig and ITIM domains (TIGIT) were analyzed using flow cytometry. The production of serum cytokines was detected using the Milliplex® MAP mouse high sensitivity T cell panel kit. The active components of the key drugs and HCC-related target proteins were obtained from the corresponding databases. The putative targets for HCC treatment were screened by target mapping, and potential active components were screened by constructing a component-target network. The interactive targets of putative targets were obtained from the STRING database to construct the protein-protein interaction network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes pathway enrichment analyses were performed based on potential targets. The gene-gene inner and component-target-pathway networks were constructed and analyzed to screen the key targets. Western blotting was used to evaluate the protein expression of the key targets in the tumor-bearing mouse model. The binding activity of the key targets and compounds was verified by molecular docking. RESULTS Among the three disassembled prescriptions of YFJP, the Fuzheng prescription (FZP) showed significant antitumor effects and inhibited weight loss during the treatment of H22 tumor-bearing mice. FZP increased the immune organ index and the levels of CD8+ and CD3+ T cells in the spleen and peripheral blood of H22 tumor-bearing mice. FZP also reduced the expression of PD-1, TIGIT, and TIM3 in CD8+ T cells and the production of IL-10, IL-4, IL-6, and IL-1β. Network pharmacology and experimental validation showed that the key targets of FZP in the treatment of HCC were PIK3CA, TP53, MAPK1, MAPK3, and EGFR. The therapeutic effect on HCC was evaluated based on HCC-related signaling pathways, including the PIK3-Akt signaling pathway, PD-L1 expression, and PD-1 checkpoint pathway in cancer. GO enrichment analysis indicated that FZP positively regulated the molecular functions of transferases and kinases on the cell surface through membrane raft, membrane microarea, and other cell components to inhibit cell death and programmed cell death. CONCLUSION FZP was found to be the key disassembled prescription of YFJP that exerted antitumor and immunoregulatory effects against HCC. FZP alleviated T cell exhaustion and improved the immunosuppressive microenvironment via HCC-related targets, pathways, and biological processes.
Collapse
Affiliation(s)
- Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Fengna Yan
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Xinhui Wang
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Lihua Yu
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Qing Pu
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| | - Weihong Li
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingP.R. China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan HospitalCapital Medical UniversityBeijingP.R. China
| |
Collapse
|
19
|
Jiang S, Ma J, Li Y, Lu B, Du J, Xu J, Qin Z, Ning T, Dong C. A polysaccharide from native Curcuma kwangsiensis and its mechanism of reversing MDSC-induced suppressive function. Carbohydr Polym 2022; 297:120020. [DOI: 10.1016/j.carbpol.2022.120020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/02/2022]
|
20
|
Chong YP, Peter EP, Lee FJM, Chan CM, Chai S, Ling LPC, Tan EL, Ng SH, Masamune A, Ghafar SAA, Ismail N, Ho KL. Conditioned media of pancreatic cancer cells and pancreatic stellate cells induce myeloid-derived suppressor cells differentiation and lymphocytes suppression. Sci Rep 2022; 12:12315. [PMID: 35853996 PMCID: PMC9296552 DOI: 10.1038/s41598-022-16671-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
As pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) are the two major cell types that comprise the immunosuppressive tumor microenvironment of pancreatic cancer, we aimed to investigate the role of conditioned medium derived from PCCs and PSCs co-culture on the viability of lymphocytes. The conditioned medium (CM) collected from PCCs and/or PSCs was used to treat peripheral blood mononuclear cells (PBMCs) to determine CM ability in reducing lymphocytes population. A proteomic analysis has been done on the CM to investigate the differentially expressed protein (DEP) expressed by two PCC lines established from different stages of tumor. Subsequently, we investigated if the reduction of lymphocytes was directly caused by CM or indirectly via CM-induced MDSCs. This was achieved by isolating lymphocyte subtypes and treating them with CM and CM-induced MDSCs. Both PCCs and PSCs were important in suppressing lymphocytes, and the PCCs derived from a metastatic tumor appeared to have a stronger suppressive effect than the PCCs derived from a primary tumor. According to the proteomic profiles of CM, 416 secreted proteins were detected, and 13 DEPs were identified between PANC10.05 and SW1990. However, CM was found unable to reduce lymphocytes viability through a direct pathway. In contrast, CM that contains proteins secreted by PCC and/or PSC appear immunogenic as they increase the viability of lymphocytes subtypes. Lymphocyte subtype treated with CM-induced MDSCs showed reduced viability in T helper 1 (Th1), T helper 2 (Th2), and T regulatory (Treg) cells, but not in CD8+ T cells, and B cells. As a conclusion, the interplay between PCCs and PSCs is important as their co-culture displays a different trend in lymphocytes suppression, hence, their co-culture should be included in future studies to better mimic the tumor microenvironment.
Collapse
Affiliation(s)
- Yuen Ping Chong
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Evelyn Priya Peter
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Feon Jia Ming Lee
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Chu Mun Chan
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Shereen Chai
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lorni Poh Chou Ling
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Eng Lai Tan
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Sook Han Ng
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Siti Aisyah Abd Ghafar
- Department of Basic Science and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Seremban, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ket Li Ho
- School of Pharmacy, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
21
|
Cheng JN, Yuan YX, Zhu B, Jia Q. Myeloid-Derived Suppressor Cells: A Multifaceted Accomplice in Tumor Progression. Front Cell Dev Biol 2022; 9:740827. [PMID: 35004667 PMCID: PMC8733653 DOI: 10.3389/fcell.2021.740827] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Myeloid-derived suppressor cell (MDSC) is a heterogeneous population of immature myeloid cells, has a pivotal role in negatively regulating immune response, promoting tumor progression, creating pre-metastases niche, and weakening immunotherapy efficacy. The underlying mechanisms are complex and diverse, including immunosuppressive functions (such as inhibition of cytotoxic T cells and recruitment of regulatory T cells) and non-immunological functions (mediating stemness and promoting angiogenesis). Moreover, MDSC may predict therapeutic response as a poor prognosis biomarker among multiple tumors. Accumulating evidence indicates targeting MDSC can reverse immunosuppressive tumor microenvironment, and improve therapeutic response either single or combination with immunotherapy. This review summarizes the phenotype and definite mechanisms of MDSCs in tumor progression, and provide new insights of targeting strategies regarding to their clinical applications.
Collapse
Affiliation(s)
- Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Yi-Xiao Yuan
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China.,Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, China
| |
Collapse
|
22
|
Bline K, Andrews A, Moore-Clingenpeel M, Mertz S, Ye F, Best V, Sayegh R, Tomatis-Souverbielle C, Quintero AM, Maynard Z, Glowinski R, Mejias A, Ramilo O. Myeloid-Derived Suppressor Cells and Clinical Outcomes in Children With COVID-19. Front Pediatr 2022; 10:893045. [PMID: 35733812 PMCID: PMC9207271 DOI: 10.3389/fped.2022.893045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Although children with COVID-19 account for fewer hospitalizations than adults, many develop severe disease requiring intensive care treatment. Critical illness due to COVID-19 has been associated with lymphopenia and functional immune suppression. Myeloid-derived suppressor cells (MDSCs) potently suppress T cells and are significantly increased in adults with severe COVID-19. The role of MDSCs in the immune response of children with COVID-19 is unknown. AIMS We hypothesized that children with severe COVID-19 will have expansion of MDSC populations compared to those with milder disease, and that higher proportions of MDSCs will correlate with clinical outcomes. METHODS We conducted a prospective, observational study on a convenience sample of children hospitalized with PCR-confirmed COVID-19 and pre-pandemic, uninfected healthy controls (HC). Blood samples were obtained within 48 h of admission and analyzed for MDSCs, T cells, and natural killer (NK) cells by flow cytometry. Demographic information and clinical outcomes were obtained from the electronic medical record and a dedicated survey built for this study. RESULTS Fifty children admitted to the hospital were enrolled; 28 diagnosed with symptomatic COVID-19 (10 requiring ICU admission) and 22 detected by universal screening (6 requiring ICU admission). We found that children with severe COVID-19 had a significantly higher percentage of MDSCs than those admitted to the ward and uninfected healthy controls. Increased percentages of MDSCs in peripheral blood mononuclear cells (PBMC) were associated with CD4+ T cell lymphopenia. MDSC expansion was associated with longer hospitalizations and need for respiratory support in children admitted with acute COVID-19. CONCLUSION These findings suggest that MDSCs are part of the dysregulated immune responses observed in children with severe COVID-19 and may play a role in disease pathogenesis. Future mechanistic studies are required to further understand the function of MDSCs in the setting of SARS-CoV-2 infection in children.
Collapse
Affiliation(s)
- Katherine Bline
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Critical Care Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Angel Andrews
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, United States
| | | | - Sara Mertz
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, United States
| | - Fang Ye
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, United States
| | - Victoria Best
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Rouba Sayegh
- Division of Infectious Disease, Nationwide Children's Hospital, Columbus, OH, United States
| | - Cristina Tomatis-Souverbielle
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Infectious Disease, Nationwide Children's Hospital, Columbus, OH, United States
| | - Ana M Quintero
- Division of Infectious Disease, Nationwide Children's Hospital, Columbus, OH, United States
| | - Zachary Maynard
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Rebecca Glowinski
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, United States
| | - Asuncion Mejias
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Infectious Disease, Nationwide Children's Hospital, Columbus, OH, United States
| | - Octavio Ramilo
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH, United States.,Division of Infectious Disease, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
23
|
Xu W, Li S, Li M, Zhou H, Yang X. Upregulation of CD3ζ and L-selectin in antigen-specific cytotoxic T lymphocytes by eliminating myeloid-derived suppressor cells with doxorubicin to improve killing efficacy of neuroblastoma cells in vitro. J Clin Lab Anal 2021; 36:e24158. [PMID: 34861064 PMCID: PMC8761462 DOI: 10.1002/jcla.24158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/07/2021] [Accepted: 11/18/2021] [Indexed: 02/06/2023] Open
Abstract
Background Agglomeration of myeloid‐derived suppressor cells (MDSCs) in tumors impedes immunotherapeutic effects. Doxorubicin (DOX) is currently the most specific drug used for the selective removal of MDSCs. Here, we study the feasibility and mechanism of eliminating MDSCs by DOX to improve antigen‐specific cytotoxic T lymphocyte (CTL)‐killing neuroblastoma (NB) cells in vitro. Methods CTL and MDSC were prepared; then, CTLs, NB cells, MDSCs, and DOX were mixed and cultivated in different collocation patterns and divided into different groups. The levels of cluster of differentiation 3ζ chain (CD3ζ) and L‐selectin in CTL in different groups were detected. Thereafter, the killing rate of NB cells and secretion of interleukin‐2 and interferon‐γ were measured and compared. Results By real‐time polymerase chain reaction (PCR) and Western blot test respectively, the proliferation and killing effect of CTLs on NB cells were all inhibited by MDSC through downregulating CD3ζ (p = 0.002; p = 0.001) and L‐selectin (p = 0.006; p < 0.001). However, this inhibitory effect was reversed by DOX. Significant differences were observed in the levels of interleukin‐2 (p < 0.001), interferon‐γ (p < 0.001), and the killing rate (p < 0.001) among the groups, except between the CTL +SK‐N‐SH and CTL +SK‐N‐SH +DOX groups (p > 0.05). Conclusions Targeted elimination of MDSCs by DOX can improve Ag‐specific CTL killing of NB cells in vitro by upregulating CD3ζ and L‐selectin. This study provides a novel method to enhance the immunotherapeutic effects of NB.
Collapse
Affiliation(s)
- Weili Xu
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Suolin Li
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Li
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Zhou
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaofeng Yang
- Department of Pediatric Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
24
|
Carbon ion radiotherapy boosts anti-tumour immune responses by inhibiting myeloid-derived suppressor cells in melanoma-bearing mice. Cell Death Discov 2021; 7:332. [PMID: 34732697 PMCID: PMC8566527 DOI: 10.1038/s41420-021-00731-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023] Open
Abstract
Numerous studies have shown that carbon ion radiotherapy (CIRT) induces anti-cancer immune responses in melanoma patients, yet the mechanism remains elusive. The abundance of myeloid-derived suppressor cells (MDSC) in the tumour microenvironment is associated with therapeutic efficacy and disease outcome. This study analysed the changes in the immune contexture in response to the carbon ion treatment. The murine melanoma B16, MelanA, and S91 tumour models were established in syngeneic immunocompetent mice. Then, the tumours were irradiated with carbon ion beams, and flow cytometry was utilised to observe the immune contexture changes in the bone marrow, peripheral blood, spleen, and tumours. The immune infiltrates in the tumour tissues were further assessed using haematoxylin/eosin staining and immunohistochemistry. The immunoblot detected the expression of proteins associated with the JAK/STAT signalling pathway. The secretion of immune-related cytokines was examined using ELISA. Compared to conventional radiotherapy, particle beams have distinct advantages in cancer therapy. Here, the use of carbon ion beams (5 GyE) for melanoma-bearing mice was found to reduce the population of MDSC in the bone marrow, peripheral blood, and spleen of the animals via a JAK2/STAT3-dependent mechanism. The percentage of CD3+, CD4+, CD8+ T cells, macrophages, and natural killer cells increased after radiation, resulting in reduced tumour growth and prolonged overall survival in the three different mouse models of melanoma. This study, therefore, substantiated that CIRT boosts anti-tumour immune responses via the inhibition of MDSC.
Collapse
|
25
|
Ma F, Vayalil J, Lee G, Wang Y, Peng G. Emerging role of tumor-derived extracellular vesicles in T cell suppression and dysfunction in the tumor microenvironment. J Immunother Cancer 2021; 9:jitc-2021-003217. [PMID: 34642246 PMCID: PMC8513270 DOI: 10.1136/jitc-2021-003217] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapeutic drugs including immune checkpoint blockade antibodies have been approved to treat patients in many types of cancers. However, some patients have little or no reaction to the immunotherapy drugs. The mechanisms underlying resistance to tumor immunotherapy are complicated and involve multiple aspects, including tumor-intrinsic factors, formation of immunosuppressive microenvironment, and alteration of tumor and stromal cell metabolism in the tumor microenvironment. T cell is critical and participates in every aspect of antitumor response, and T cell dysfunction is a severe barrier for effective immunotherapy for cancer. Emerging evidence indicates that extracellular vesicles (EVs) secreted by tumor is one of the major factors that can induce T cell dysfunction. Tumor-derived EVs are widely distributed in serum, tissues, and the tumor microenvironment of patients with cancer, which serve as important communication vehicles for cancer cells. In addition, tumor-derived EVs can carry a variety of immune suppressive signals driving T cell dysfunction for tumor immunity. In this review, we explore the potential mechanisms employed by tumor-derived EVs to control T cell development and effector function within the tumor microenvironment. Especially, we focus on current understanding of how tumor-derived EVs molecularly and metabolically reprogram T cell fates and functions for tumor immunity. In addition, we discuss potential translations of targeting tumor-derived EVs to reconstitute suppressive tumor microenvironment or to develop antigen-based vaccines and drug delivery systems for cancer immunotherapy.
Collapse
Affiliation(s)
- Feiya Ma
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Jensen Vayalil
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Grace Lee
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Yuqi Wang
- Biology, Saint Louis University, Saint Louis, Missouri, USA
| | - Guangyong Peng
- Internal Medicine, Saint Louis University, Saint Louis, Missouri, USA
| |
Collapse
|
26
|
Park JA, Wang L, Cheung NKV. Modulating tumor infiltrating myeloid cells to enhance bispecific antibody-driven T cell infiltration and anti-tumor response. J Hematol Oncol 2021; 14:142. [PMID: 34496935 PMCID: PMC8424962 DOI: 10.1186/s13045-021-01156-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Tumor microenvironment (TME) is a dynamic cellular milieu to promote tumor angiogenesis, growth, proliferation, and metastasis, while derailing the host anti-tumor response. TME impedes bispecific antibody (BsAb) or chimeric antigen receptor (CAR)-driven T cells infiltration, survival, and cytotoxic efficacy. Modulating tumor infiltrating myeloid cells (TIMs) could potentially improve the efficacy of BsAb. METHODS We evaluated the effects of TIM modulation on BsAb-driven T cell infiltration into tumors, their persistence, and in vivo anti-tumor response. Anti-GD2 BsAb and anti-HER2 BsAb built on IgG-[L]-scFv platform were tested against human cancer xenografts in BALB-Rag2-/-IL-2R-γc-KO (BRG) mice. Depleting antibodies specific for polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC), monocytic MDSC (M-MDSC), and tumor associated macrophage (TAM) were used to study the role of each TIM component. Dexamethasone, an established anti-inflammatory agent, was tested for its effect on TIMs. RESULTS BsAb-driven T cells recruited myeloid cells into human tumor xenografts. Each TIM targeting therapy depleted cells of interest in blood and in tumors. Depletion of PMN-MDSCs, M-MDSCs, and particularly TAMs was associated with enhanced T cell infiltration into tumors, significantly improving tumor control and survival in multiple cancer xenograft models. Dexamethasone premedication depleted monocytes in circulation and TAMs in tumors, enhanced BsAb-driven T cell infiltration, and anti-tumor response with survival benefit. CONCLUSION Reducing TIMs markedly enhanced anti-tumor effects of BsAb-based T cell immunotherapy by improving intratumoral T cell infiltration and persistence. TAM depletion was more effective than PMN- or M-MDSCs depletion at boosting the anti-tumor response of T cell engaging BsAb.
Collapse
Affiliation(s)
- Jeong A Park
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Linlin Wang
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
27
|
Tengesdal IW, Dinarello A, Powers NE, Burchill MA, Joosten LAB, Marchetti C, Dinarello CA. Tumor NLRP3-Derived IL-1β Drives the IL-6/STAT3 Axis Resulting in Sustained MDSC-Mediated Immunosuppression. Front Immunol 2021; 12:661323. [PMID: 34531850 PMCID: PMC8438323 DOI: 10.3389/fimmu.2021.661323] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Tumors evade the immune system by inducing inflammation. In melanoma, tumor-derived IL-1β drives inflammation and the expansion of highly immunosuppressive myeloid-derived suppressor cells (MDSCs). Similar in many tumors, melanoma is also linked to the downstream IL-6/STAT3 axis. In this study, we observed that both recombinant and tumor-derived IL-1β specifically induce pSTAT3(Y705), creating a tumor-autoinflammatory loop, which amplifies IL-6 signaling in the human melanoma cell line 1205Lu. To disrupt IL-1β/IL-6/STAT3 axis, we suppressed IL-1β-mediated inflammation by inhibiting the NOD-like receptor protein 3 (NLRP3) using OLT1177, a safe-in-humans specific NLRP3 oral inhibitor. In vivo, using B16F10 melanoma, OLT1177 effectively reduced tumor progression (p< 0.01); in primary tumors, OLT1177 decreased pSTAT3(Y705) by 82% (p<0.01) and II6 expression by 53% (p<0.05). Disruption of tumor-derived NLRP3, either pharmacologically or genetically, reduced STAT3 signaling in bone marrow cells. In PMN-MDSCs isolated from tumor-bearing mice treated with OLT1177, we observed significant reductions in immunosuppressive genes such as Pdcd1l1, Arg1, Il10 and Tgfb1. In conclusion, the data presented here show that the inhibition of NLRP3 reduces IL-1β induction of pSTAT3(Y705) preventing expression of immunosuppressive genes as well as activity in PMN-MDSCs.
Collapse
Affiliation(s)
- Isak W. Tengesdal
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Alberto Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
- Dipartimento di Biologia, Università degli Studi di Padova, Padova, Italy
| | - Nicholas E. Powers
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Matthew A. Burchill
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Leo A. B. Joosten
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Carlo Marchetti
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Charles A. Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
- Department of Internal Medicine and Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
28
|
Salminen A. Immunosuppressive network promotes immunosenescence associated with aging and chronic inflammatory conditions. J Mol Med (Berl) 2021; 99:1553-1569. [PMID: 34432073 PMCID: PMC8384586 DOI: 10.1007/s00109-021-02123-w] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/21/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023]
Abstract
The functional competence of the immune system gradually declines with aging, a process called immunosenescence. The age-related remodelling of the immune system affects both adaptive and innate immunity. In particular, a chronic low-grade inflammation, termed inflammaging, is associated with the aging process. Immunosenescence not only is present in inflammaging state, but it also occurs in several pathological conditions in conjunction with chronic inflammation. It is known that persistent inflammation stimulates a counteracting compensatory immunosuppression intended to protect host tissues. Inflammatory mediators enhance myelopoiesis and induce the generation of immature myeloid-derived suppressor cells (MDSC) which in mutual cooperation stimulates the immunosuppressive network. Immunosuppressive cells, especially MDSCs, regulatory T cells (Treg), and M2 macrophages produce immunosuppressive factors, e.g., TGF-β, IL-10, ROS, arginase-1 (ARG1), and indoleamine 2,3-dioxygenase (IDO), which suppress the functions of CD4/CD8T and B cells as well as macrophages, natural killer (NK) cells, and dendritic cells. The immunosuppressive armament (i) inhibits the development and proliferation of immune cells, (ii) decreases the cytotoxic activity of CD8T and NK cells, (iii) prevents antigen presentation and antibody production, and (iv) suppresses responsiveness to inflammatory mediators. These phenotypes are the hallmarks of immunosenescence. Immunosuppressive factors are able to control the chromatin landscape, and thus, it seems that the immunosenescence state is epigenetically regulated.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
29
|
Zhang Y, Wang X, Zhang R, Wang X, Fu H, Yang W. MDSCs interactions with other immune cells and their role in maternal-fetal tolerance. Int Rev Immunol 2021; 41:534-551. [PMID: 34128752 DOI: 10.1080/08830185.2021.1938566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MDSCs (myeloid-derived suppressor cells) are a population of immature and heterogeneous bone marrow cells with immunosuppressive functions, and they are mainly divided into two subgroups: granulocytic MDSCs (G-MDSCs) and monocytic MDSCs (M-MDSCs). Immunosuppression is the main and most important function of MDSCs, and they mainly exert an inhibitory effect through endoplasmic reticulum stress and some enzymes related to inhibitors, as well as some cytokines and other factors. In addition, MDSCs also interact with other immune cells, especially NK cells, DCs and Tregs, to participate in immune regulation. A large number of MDSCs are found during normal pregnancy. Combined with their immunosuppressive effects, these results suggest that MDSCs are likely to be closely related to maternal-fetal immune tolerance. This review mainly shows the interaction of MDSCs with other immune cells and the important role of MDSCs in maternal-fetal tolerance. The current research shows that MDSCs are mainly mediated by STAT3, HLA-G, CXCR2, Arg-1 and HIF1-α in immune regulation during pregnancy. Interpreting maternal-fetal tolerance from the perspective of MDSCs provides a special perspective for research on immune regulation and maternal-fetal tolerance of MDSCs to obtain a more comprehensive understanding of immune regulation and immune tolerance.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoya Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Rongchao Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xi Wang
- Department of Clinical Laboratory, The first Hospital of Jilin University, Changchun, China
| | - Haiying Fu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
30
|
Seman BG, Vance JK, Akers SM, Robinson CM. Neonatal low-density granulocytes internalize and kill bacteria but suppress monocyte function using extracellular DNA. J Cell Sci 2021; 134:jcs.252528. [PMID: 33589502 DOI: 10.1242/jcs.252528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022] Open
Abstract
Low-density granulocytes (LDGs) are found abundantly in neonatal blood; however, there is limited mechanistic understanding of LDG interactions with bacteria and innate immune cells during acute infection. We aimed to determine how human neonatal LDGs may influence control of the bacterial burden at sites of infection, both individually and in the presence of mononuclear phagocytes. LDGs from human umbilical cord blood do phagocytose Escherichia coli O1:K1:H7 and traffic bacteria into acidic compartments. However, LDGs were significantly less efficient at bacterial uptake and killing compared to monocytes, and this activity was associated with a reduced inflammatory cytokine response. The presence of bacteria triggered the release of DNA (eDNA) from LDGs into the extracellular space that resembled neutrophil extracellular traps, but had limited anti-bacterial activity. Instead, eDNA significantly impaired monocyte control of bacteria during co-culture. These results suggest that LDG recruitment to sites of bacterial infection may compromise host protection in the neonate. Furthermore, our findings reveal novel insights into LDG activity during infection, clarify their inflammatory contributions relative to monocytes, and identify a novel LDG mechanism of immunosuppression.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Brittany G Seman
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Jordan K Vance
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Stephen M Akers
- Department of Pediatrics, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Cory M Robinson
- Department of Microbiology, Immunology, & Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA .,Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| |
Collapse
|
31
|
Wang Y, Ding Y, Deng Y, Zheng Y, Wang S. Role of myeloid-derived suppressor cells in the promotion and immunotherapy of colitis-associated cancer. J Immunother Cancer 2020; 8:jitc-2020-000609. [PMID: 33051339 PMCID: PMC7555106 DOI: 10.1136/jitc-2020-000609] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Colitis-associated cancer (CAC) is a specific type of colorectal cancer that develops from inflammatory bowel disease (IBD). Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells that are essential for the pathological processes of inflammation and cancer. Accumulating evidence indicates that MDSCs play different but vital roles during IBD and CAC development and impede CAC immunotherapy. New insights into the regulatory network of MDSCs in the CAC pathogenesis are opening new avenues for developing strategies to enhance the effectiveness of CAC treatment. In this review, we explore the role of MDSCs in chronic inflammation, dysplasia and CAC and summarize the potential CAC therapeutic strategies based on MDSC blockade.
Collapse
Affiliation(s)
- Yungang Wang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Yanxia Ding
- Department of Dermatology, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Yijun Deng
- Department of Critical Care Medicine, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Yu Zheng
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Nanjing University Medical School, Yancheng, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
| |
Collapse
|
32
|
Safarzadeh E, Asadzadeh Z, Safaei S, Hatefi A, Derakhshani A, Giovannelli F, Brunetti O, Silvestris N, Baradaran B. MicroRNAs and lncRNAs-A New Layer of Myeloid-Derived Suppressor Cells Regulation. Front Immunol 2020; 11:572323. [PMID: 33133086 PMCID: PMC7562789 DOI: 10.3389/fimmu.2020.572323] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) constitute an important component in regulating immune responses in several abnormal physiological conditions such as cancer. Recently, novel regulatory tumor MDSC biology modulating mechanisms, including differentiation, expansion and function, were defined. There is growing evidence that miRNAs and long non-coding RNAs (lncRNA) are involved in modulating transcriptional factors to become complex regulatory networks that regulate the MDSCs in the tumor microenvironment. It is possible that aberrant expression of miRNAs and lncRNA contributes to MDSC biological characteristics under pathophysiological conditions. This review provides an overview on miRNAs and lncRNAs epiregulation of MDSCs development and immunosuppressive functions in cancer.
Collapse
Affiliation(s)
- Elham Safarzadeh
- Department of Microbiology & Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Francesco Giovannelli
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit-Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy.,Department of Biomedical Sciences and Human Oncology, Department of Internal Medicine and Oncology (DIMO)-University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Attrill GH, Ferguson PM, Palendira U, Long GV, Wilmott JS, Scolyer RA. The tumour immune landscape and its implications in cutaneous melanoma. Pigment Cell Melanoma Res 2020; 34:529-549. [PMID: 32939993 DOI: 10.1111/pcmr.12926] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/01/2020] [Accepted: 08/23/2020] [Indexed: 12/21/2022]
Abstract
The field of tumour immunology has rapidly advanced in the last decade, leading to the advent of effective immunotherapies for patients with advanced cancers. This highlights the critical role of the immune system in determining tumour development and outcome. The tumour immune microenvironment (TIME) is highly heterogeneous, and the interactions between tumours and the immune system are vastly complex. Studying immune cell function in the TIME will provide an improved understanding of the mechanisms underpinning these interactions. This review examines the role of immune cell populations in the TIME based on their phenotype, function and localisation, as well as contextualising their position in the dynamic relationship between tumours and the immune system. We discuss the function of immune cell populations, examine their impact on patient outcome and highlight gaps in current understanding of their roles in the TIME, both in cancers in general and specifically in melanoma. Studying the TIME by evaluating both pro-tumour and anti-tumour effects may elucidate the conditions which lead to tumour growth and metastasis or immune-mediated tumour regression. Moreover, an in-depth understanding of these conditions could contribute to improved prognostication, more effective use of current immunotherapies and guide the development of novel treatment strategies and therapies.
Collapse
Affiliation(s)
- Grace H Attrill
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Peter M Ferguson
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| | - Umaimainthan Palendira
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Mater and North Shore Hospitals, Sydney, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Sydney Medical School, The University of Sydney, Sydney, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and New South Wales Health Pathology, Sydney, Australia
| |
Collapse
|
34
|
Tomela K, Pietrzak B, Schmidt M, Mackiewicz A. The Tumor and Host Immune Signature, and the Gut Microbiota as Predictive Biomarkers for Immune Checkpoint Inhibitor Response in Melanoma Patients. Life (Basel) 2020; 10:life10100219. [PMID: 32992737 PMCID: PMC7600343 DOI: 10.3390/life10100219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
There are various melanoma treatment strategies that are based on immunological responses, among which immune checkpoint inhibitors (ICI) are relatively novel form. Nowadays, anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death-1 (PD-1) antibodies represent a standard treatment for metastatic melanoma. Although there are remarkable curative effects in responders to ICI therapy, up to 70% of melanoma patients show resistance to this treatment. This low response rate is caused by innate as well as acquired resistance, and some aspects of treatment resistance are still unknown. Growing evidence shows that gut microbiota and bacterial metabolites, such as short-chain fatty acids (SCFAs), affect the efficacy of immunotherapy. Various bacterial species have been indicated as potential biomarkers of anti-PD-1 or anti-CTLA-4 therapy efficacy in melanoma, next to biomarkers related to molecular and genetic tumor characteristics or the host immunological response, which are detected in patients' blood. Here, we review the current status of biomarkers of response to ICI melanoma therapies, their pre-treatment predictive values, and their utility as on-treatment monitoring tools in order to select a relevant personalized therapy on the basis of probability of the best clinical outcome.
Collapse
Affiliation(s)
- Katarzyna Tomela
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland;
- Correspondence:
| | - Bernadeta Pietrzak
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland; (B.P.); (M.S.)
| | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland; (B.P.); (M.S.)
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland;
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| |
Collapse
|
35
|
Hossain MA, Liu G, Dai B, Si Y, Yang Q, Wazir J, Birnbaumer L, Yang Y. Reinvigorating exhausted CD8 + cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Med Res Rev 2020; 41:156-201. [PMID: 32844499 DOI: 10.1002/med.21727] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Immunotherapy has revolutionized the treatment of cancer in recent years and achieved overall success and long-term clinical benefit in patients with a wide variety of cancer types. However, there is still a large proportion of patients exhibiting limited or no responses to immunotherapeutic strategy, some of which were even observed with hyperprogressive disease. One major obstacle restricting the efficacy is that tumor-reactive CD8+ T cells, which are central for tumor control, undergo exhaustion, and lose their ability to eliminate cancer cells after infiltrating into the strongly immunosuppressive tumor microenvironment. Thus, as a potential therapeutic rationale in the development of cancer immunotherapy, targeting or reinvigorating exhausted CD8+ T cells has been attracting much interest. Hitherto, both intrinsic and extrinsic mechanisms that govern CD8+ T-cell exhaustion have been explored. Specifically, the transcriptional and epigenetic landscapes have been depicted utilizing single-cell RNA sequencing or mass cytometry (CyTOF). In addition, cellular metabolism dictating the tumor-infiltrating CD8+ T-cell fate is currently under investigation. A series of clinical trials are being carried out to further establish the current strategies targeting CD8+ T-cell exhaustion. Taken together, despite the proven benefit of immunotherapy in cancer patients, additional efforts are still needed to fully circumvent limitations of exhausted T cells in the treatment. In this review, we will focus on the current cellular and molecular understanding of metabolic changes, epigenetic remodeling, and transcriptional regulation in CD8+ T-cell exhaustion and describe hypothetical treatment approaches based on immunotherapy aiming at reinvigorating exhausted CD8+ T cells.
Collapse
Affiliation(s)
- Md Amir Hossain
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guilai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Beiying Dai
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yaxuan Si
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qitao Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junaid Wazir
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, USA.,Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
López González M, van de Ven R, de Haan H, van Eck van der Sluijs J, Dong W, van Beusechem VW, de Gruijl TD. Oncolytic adenovirus ORCA-010 increases the type 1 T cell stimulatory capacity of melanoma-conditioned dendritic cells. Clin Exp Immunol 2020; 201:145-160. [PMID: 32301504 PMCID: PMC7366753 DOI: 10.1111/cei.13442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoint blockade has resulted in durable responses in patients with metastatic melanoma, but only in a fraction of treated patients. For immune checkpoint inhibitors (ICI) to be effective, sufficient infiltration with tumor‐reactive T cells is essential. Oncolytic viruses (OV) selectively replicate in and lyse tumor cells and so induce an immunogenic form of cell death, providing at once a source of tumor‐associated (neo)antigens and of danger signals that together induce effective T cell immunity and tumor infiltration. Melanoma‐associated suppression of dendritic cell (DC) differentiation effectively hampers OV‐ or immune checkpoint inhibitor (ICI)‐induced anti‐tumor immunity, due to a consequent inability to prime and attract anti‐tumor effector T cells. Here, we set out to study the effect of ORCA‐010, a clinical stage oncolytic adenovirus, on DC differentiation and functionality in the context of human melanoma. In melanoma and monocyte co‐cultures, employing a panel of five melanoma cell lines with varying origins and oncogenic mutation status, we observed clear suppression of DC development with apparent skewing of monocyte differentiation to a more M2‐macrophage‐like state. We established the ability of ORCA‐010 to productively infect and lyse the melanoma cells. Moreover, although ORCA‐010 was unable to restore DC differentiation, it induced activation and an increased co‐stimulatory capacity of monocyte‐derived antigen‐presenting cells. Their subsequent ability to prime effector T cells with a type I cytokine profile was significantly increased in an allogeneic mixed leukocyte reaction. Our findings suggest that ORCA‐010 is a valuable immunotherapeutic agent for melanoma.
Collapse
Affiliation(s)
- M López González
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - R van de Ven
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.,Otolaryngology/Head-Neck Surgery, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - H de Haan
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - J van Eck van der Sluijs
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| | - W Dong
- ORCA Therapeutics, 's-Hertogenbosch, the Netherlands
| | - V W van Beusechem
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands.,ORCA Therapeutics, 's-Hertogenbosch, the Netherlands
| | - T D de Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam, the Netherlands
| |
Collapse
|
37
|
Green Tea Polyphenol EGCG Attenuates MDSCs-mediated Immunosuppression through Canonical and Non-Canonical Pathways in a 4T1 Murine Breast Cancer Model. Nutrients 2020; 12:nu12041042. [PMID: 32290071 PMCID: PMC7230934 DOI: 10.3390/nu12041042] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 01/12/2023] Open
Abstract
Several studies in the past decades have reported anti-tumor activity of the bioactive compounds extracted from tea leaves, with a focus on the compound epigallocatechin-3-gallate (EGCG). However, further investigations are required to unravel the underlying mechanisms behind the anti-tumor activity of EGCG. In this study, we demonstrate that EGCG significantly inhibits the growth of 4T1 breast cancer cells in vitro and in vivo. EGCG ameliorated immunosuppression by significantly decreasing the accumulation of myeloid-derived suppressor cells (MDSCs) and increasing the proportions of CD4+ and CD8+ T cells in spleen and tumor sites in 4T1 breast tumor-bearing mice. Surprisingly, a low dose of EGCG (0.5-5 μg/mL) effectively reduced the cell viability and increased the apoptosis rate of MDSCs in vitro. EGCG down-regulated the canonical pathways in MDSCs, mainly through the Arg-1/iNOS/Nox2/NF-κB/STAT3 signaling pathway. Moreover, transcriptomic analysis suggested that EGCG also affected the non-canonical pathways in MDSCs, such as ECM-receptor interaction and focal adhesion. qRT-PCR further validated that EGCG restored nine key genes in MDSCs, including Cxcl3, Vcan, Col4a1, Col8a1, Oasl2, Mmp12, Met, Itsnl and Acot1. Our results provide new insight into the mechanism of EGCG-associated key pathways/genes in MDSCs in the murine breast tumor model.
Collapse
|
38
|
Decoding the Role of Interleukin-30 in the Crosstalk Between Cancer and Myeloid Cells. Cells 2020; 9:cells9030615. [PMID: 32143355 PMCID: PMC7140424 DOI: 10.3390/cells9030615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
In the last few years, a new actor hit the scene of the tumor microenvironment, the p28 subunit of interleukin (IL)-27, known as IL-30. Its molecular structure allows it to function as an autonomous cytokine and, alternatively, to pair with other subunits to form heterodimeric complexes and enables it to play different, and not fully elucidated, roles in immunity. However, data from the experimental models and clinical samples, suggest IL-30′s engagement in the relationship between cancer and myeloid cells, which fosters the tumor microenvironment and the cancer stem cell niche, boosting the disease progression. Activated myeloid cells are the primary cellular source and one of the targets of IL-30, which can also be produced by cancer cells, especially, in aggressive tumors, as observed in the breast and prostate. This review briefly reports on the immunobiology of IL-30 and related cytokines, by comparing mouse and human counterparts, and then focuses on the mechanisms whereby IL-30 amplifies intratumoral myeloid cell infiltrate and triggers a vicious cycle that worsens immunosuppression in the tumor microenvironment (TME) and constitutes a real threat for a successful immunotherapeutic strategy.
Collapse
|
39
|
Zhang Z, Liu S, Zhang B, Qiao L, Zhang Y, Zhang Y. T Cell Dysfunction and Exhaustion in Cancer. Front Cell Dev Biol 2020; 8:17. [PMID: 32117960 PMCID: PMC7027373 DOI: 10.3389/fcell.2020.00017] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor immunotherapy is a promising therapeutic strategy for patients with advanced cancers. T cells are key mediators of antitumor function that specifically recognize and react to tumor-expressing antigens and have proven critical for cancer immunotherapy. However, T cells are not as effective against cancer as expected. This is partly because T cells enter a dysfunctional or exhausted state, which is characterized by sustained expression of inhibitory receptors and a transcriptional state distinct from that of functional effector or memory T cells. T cell dysfunction induces the out of control of tumors. Recently, T cell dysfunction has been investigated in many experimental and clinical settings. The molecular definition of T cell dysfunction and the underlying causes of the T cell dysfunction has been advanced regardless of the fact that the pathways involved are not well elucidated, which proposing promising therapeutic opportunities in clinic. In this review, we will discuss the recent advances in the molecular mechanisms that affect TME and induce T cell dysfunction, and the development of promising immunotherapies to counteract the mechanisms of tumor-induced T cell dysfunction. Better understanding these underlying mechanisms may lead to new strategies to improve the clinical outcome of patients with cancer.
Collapse
Affiliation(s)
- Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shasha Liu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zhang
- Department of Hematology/Oncology, School of Medicine, Northwestern University, Chicago, IL, United States
| | - Liang Qiao
- Department of Microbiology and Immunology, Stritch School of Medicine, Health Sciences Division, Loyola University Chicago, Maywood, IL, United States
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, China.,School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Turbitt WJ, Collins SD, Meng H, Rogers CJ. Increased Adiposity Enhances the Accumulation of MDSCs in the Tumor Microenvironment and Adipose Tissue of Pancreatic Tumor-Bearing Mice and in Immune Organs of Tumor-Free Hosts. Nutrients 2019; 11:nu11123012. [PMID: 31835454 PMCID: PMC6950402 DOI: 10.3390/nu11123012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022] Open
Abstract
Obesity is associated with increased risk and reduced survival for many types of cancer. Increasing adiposity may affect the balance between immunosuppressive and antitumor mechanisms critical for dictating cancer progression or remission. The goal of the current study was to determine if increased adiposity altered tumor growth, survival, and myeloid-derived suppressor cell (MDSC) accumulation in a subcutaneous murine model of pancreatic cancer. C57BL/6 mice were placed on a 30% kcal calorie-restricted diet, 10% kcal from fat diet fed ad libitum, or 60% kcal from fat diet fed ad libitum for 16 weeks to generate lean, overweight, and obese mice, respectively; followed by subcutaneous injection with 1 × 106 Panc.02 cells. We observed a significant linear relationship between increased adiposity and increased tumor growth and mortality; increased accumulation of Gr-1+CD11b+ MDSCs; and reduced CD8 T cell:MDSC ratio in multiple tissues, including tumor. Increased adiposity also increased the accumulation of MDSCs in the spleen and lymph node of tumor-free mice. These data suggest adiposity induces MDSC accumulation, which may contribute to an immunosuppressive environment promoting tumor growth. Overall, our findings provide a rationale to prevent or reverse increased body weight as a strategy to reduce the accumulation of immunosuppressive cell types.
Collapse
Affiliation(s)
- William J. Turbitt
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (W.J.T.); (S.D.C.); (H.M.)
| | - Shawntawnee D. Collins
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (W.J.T.); (S.D.C.); (H.M.)
| | - Huicui Meng
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (W.J.T.); (S.D.C.); (H.M.)
| | - Connie J. Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (W.J.T.); (S.D.C.); (H.M.)
- Penn State Cancer Institute, The Pennsylvania State University, Hershey, PA 16802, USA
- Correspondence: ; Tel.: +1-814-867-3716; Fax: +1-814-863-6103
| |
Collapse
|
41
|
Hellsten R, Lilljebjörn L, Johansson M, Leandersson K, Bjartell A. The STAT3 inhibitor galiellalactone inhibits the generation of MDSC-like monocytes by prostate cancer cells and decreases immunosuppressive and tumorigenic factors. Prostate 2019; 79:1611-1621. [PMID: 31348843 PMCID: PMC6771992 DOI: 10.1002/pros.23885] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/02/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The transcription factor signal transducer and activator of transcription 3 (STAT3) is implicated in cancer drug resistance, metastasis, and immunosuppression and has been identified as a promising therapeutic target for new anticancer drugs. Myeloid-derived suppressor cells (MDSCs) play a major role in the suppression of antitumor immunity and STAT3 is involved in the accumulation, generation, and function of MDSCs. Thus, targeting STAT3 holds the potential of reversing immunosuppression in cancer. This study aims to investigate the effect of the small molecule STAT3 inhibitor galiellalactone on prostate cancer cell- induced generation of MDSCs from monocytes and the effect on immunosuppressive factors and inflammatory cytokines. METHODS Primary human monocytes were cocultured with prostate cancer cells (DU145, PC3, and LNCaP-IL6) or with conditioned medium (CM) from prostate cancer cells in the presence or absence of the STAT3 inhibitor galiellalactone. Monocytes were analyzed by flow cytometry for an MDSC-like phenotype (CD14+ HLA-DR-/lo ). The secretion and gene expression of immunosuppressive factors and inflammatory cytokines from prostate cancer cells and monocytes were investigated. RESULTS Galiellalactone blocked the prostate cancer cell-induced generation of MDSC-like monocytes with an immunosuppressive phenotype ex vivo. Monocytes cultured with CM from prostate cancer cells showed increased expression of phosphorylated STAT3. Prostate cancer cells increased the expression of interleukin1β (IL1β), IL10, and IL6 in monocytes which was inhibited by galiellalactone. In addition, galiellalactone decreased indoleamine 2,3-dioxygenase gene expression in monocytes. Galiellalactone reduced the levels of IL8 and granulocyte macrophage-colony stimulating factor in prostate cancer cells per se. CONCLUSION The STAT3 inhibitor galiellalactone may prevent the prostate cancer cell-induced generation of MDSCs and reverse the immunosuppressive mechanisms caused by the interplay between prostate cancer cells and MDSCs. This is a potential new immunotherapeutic approach for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Rebecka Hellsten
- Division of Urological Cancers, Department of Translational MedicineLund UniversityMalmöSweden
| | - Lisa Lilljebjörn
- Division of Urological Cancers, Department of Translational MedicineLund UniversityMalmöSweden
| | | | - Karin Leandersson
- Cancer Immunology, Department of Translational MedicineLund UniversityMalmöSweden
| | - Anders Bjartell
- Division of Urological Cancers, Department of Translational MedicineLund UniversityMalmöSweden
| |
Collapse
|
42
|
Incio J, Ligibel JA, McManus DT, Suboj P, Jung K, Kawaguchi K, Pinter M, Babykutty S, Chin SM, Vardam TD, Huang Y, Rahbari NN, Roberge S, Wang D, Gomes-Santos IL, Puchner SB, Schlett CL, Hoffmman U, Ancukiewicz M, Tolaney SM, Krop IE, Duda DG, Boucher Y, Fukumura D, Jain RK. Obesity promotes resistance to anti-VEGF therapy in breast cancer by up-regulating IL-6 and potentially FGF-2. Sci Transl Med 2019. [PMID: 29540614 DOI: 10.1126/scitranslmed.aag0945] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Anti-vascular endothelial growth factor (VEGF) therapy has failed to improve survival in patients with breast cancer (BC). Potential mechanisms of resistance to anti-VEGF therapy include the up-regulation of alternative angiogenic and proinflammatory factors. Obesity is associated with hypoxic adipose tissues, including those in the breast, resulting in increased production of some of the aforementioned factors. Hence, we hypothesized that obesity could contribute to anti-VEGF therapy's lack of efficacy. We found that BC patients with obesity harbored increased systemic concentrations of interleukin-6 (IL-6) and/or fibroblast growth factor 2 (FGF-2), and their tumor vasculature was less sensitive to anti-VEGF treatment. Mouse models revealed that obesity impairs the effects of anti-VEGF on angiogenesis, tumor growth, and metastasis. In one murine BC model, obesity was associated with increased IL-6 production from adipocytes and myeloid cells within tumors. IL-6 blockade abrogated the obesity-induced resistance to anti-VEGF therapy in primary and metastatic sites by directly affecting tumor cell proliferation, normalizing tumor vasculature, alleviating hypoxia, and reducing immunosuppression. Similarly, in a second mouse model, where obesity was associated with increased FGF-2, normalization of FGF-2 expression by metformin or specific FGF receptor inhibition decreased vessel density and restored tumor sensitivity to anti-VEGF therapy in obese mice. Collectively, our data indicate that obesity fuels BC resistance to anti-VEGF therapy via the production of inflammatory and angiogenic factors.
Collapse
Affiliation(s)
- Joao Incio
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,I3S, Institute for Innovation and Research in Health, Metabolism, Nutrition, and Endocrinology Group, Biochemistry Department, Faculty of Medicine, Porto University, Porto 4200-135, Portugal.,Department of Internal Medicine, Hospital S. João, Porto 4200-319, Portugal
| | - Jennifer A Ligibel
- Dana-Farber Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel T McManus
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Priya Suboj
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Botany and Biotechnology, St. Xavier's College, Thumba, Trivandrum, Kerala 695586, India
| | - Keehoon Jung
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kosuke Kawaguchi
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Matthias Pinter
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna 1090, Austria
| | - Suboj Babykutty
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Department of Zoology, Mar Ivanios College, Nalanchira, Trivandrum, Kerala 695015, India
| | - Shan M Chin
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Trupti D Vardam
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yuhui Huang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Nuh N Rahbari
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sylvie Roberge
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dannie Wang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Igor L Gomes-Santos
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Heart Institute (Instituto do Coração-Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo), University of Sao Paulo Medical School, Sao Paulo 05403-900, Brazil
| | - Stefan B Puchner
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Christopher L Schlett
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Udo Hoffmman
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Marek Ancukiewicz
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Sara M Tolaney
- Dana-Farber Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ian E Krop
- Dana-Farber Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Dan G Duda
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yves Boucher
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
43
|
Jimenez RV, Kuznetsova V, Connelly AN, Hel Z, Szalai AJ. C-Reactive Protein Promotes the Expansion of Myeloid Derived Cells With Suppressor Functions. Front Immunol 2019; 10:2183. [PMID: 31620123 PMCID: PMC6759522 DOI: 10.3389/fimmu.2019.02183] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/29/2019] [Indexed: 01/18/2023] Open
Abstract
Previously we established that human C-reactive protein (CRP) exacerbates mouse acute kidney injury and that the effect was associated with heightened renal accumulation of myeloid derived cells with suppressor functions (MDSC). Herein we provide direct evidence that CRP modulates the development and suppressive actions of MDSCs in vitro. We demonstrate that CRP dose-dependently increases the generation of MDSC from wild type mouse bone marrow progenitors and enhances MDSC production of intracellular reactive oxygen species (iROS). When added to co-cultures, CRP significantly enhanced the ability of MDSCs to suppress CD3/CD28-stimulated T cell proliferation. Experiments using MDSCs from FcγRIIB deficient mice (FcγRIIB-/-) showed that CRP's ability to expand MDSCs and trigger their increased production of iROS was FcγRIIB-independent, whereas its ability to enhance the MDSC T cell suppressive action was FcγRIIB-dependent. Importantly, CRP also enabled freshly isolated primary human neutrophils to suppress proliferation of autologous T cells. These findings suggest that CRP might be an endogenous regulator of MDSC numbers and actions in vivo.
Collapse
Affiliation(s)
- Rachel V Jimenez
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Valeriya Kuznetsova
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ashley N Connelly
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alexander J Szalai
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
44
|
Comprehensive genomic profiling of glioblastoma tumors, BTICs, and xenografts reveals stability and adaptation to growth environments. Proc Natl Acad Sci U S A 2019; 116:19098-19108. [PMID: 31471491 DOI: 10.1073/pnas.1813495116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most deadly brain tumor, and currently lacks effective treatment options. Brain tumor-initiating cells (BTICs) and orthotopic xenografts are widely used in investigating GBM biology and new therapies for this aggressive disease. However, the genomic characteristics and molecular resemblance of these models to GBM tumors remain undetermined. We used massively parallel sequencing technology to decode the genomes and transcriptomes of BTICs and xenografts and their matched tumors in order to delineate the potential impacts of the distinct growth environments. Using data generated from whole-genome sequencing of 201 samples and RNA sequencing of 118 samples, we show that BTICs and xenografts resemble their parental tumor at the genomic level but differ at the mRNA expression and epigenomic levels, likely due to the different growth environment for each sample type. These findings suggest that a comprehensive genomic understanding of in vitro and in vivo GBM model systems is crucial for interpreting data from drug screens, and can help control for biases introduced by cell-culture conditions and the microenvironment in mouse models. We also found that lack of MGMT expression in pretreated GBM is linked to hypermutation, which in turn contributes to increased genomic heterogeneity and requires new strategies for GBM treatment.
Collapse
|
45
|
Lee JM, Botesteanu DA, Tomita Y, Yuno A, Lee MJ, Kohn EC, Annunziata CM, Matulonis U, MacDonald LA, Nair JR, Macneill KM, Trepel JB. Patients with BRCA mutated ovarian cancer may have fewer circulating MDSC and more peripheral CD8 + T cells compared with women with BRCA wild-type disease during the early disease course. Oncol Lett 2019; 18:3914-3924. [PMID: 31516602 DOI: 10.3892/ol.2019.10731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) are associated with immunologic tolerance and poor prognosis in ovarian cancer (OvCa). We hypothesized that women with germline BRCA1 and BRCA2 mutation-associated (gBRCAm) OvCa would have fewer circulating immunosuppressive immune cells compared to those with BRCA wild-type (BRCAwt) disease during their early disease course (<5 years post-diagnosis) where gBRCAm is a favorable prognostic factor. We collected and viably froze peripheral blood mononuclear cells (PBMCs) from patients with recurrent OvCa olaparib clinical trials (NCT01445418/NCT01237067). Immune subset analyses were performed using flow cytometry for Tregs, exhausted CD8+ T cells, monocytes and MDSCs. Functional marker expression, including cytotoxic T lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin domain 3 (TIM-3) and programmed cell death protein 1 (PD-1) was evaluated. Data were analyzed using FlowJo. Pretreatment PBMCs were collected from 41 patients (16 gBRCAm/25 BRCAwt). The percentage of MDSCs among viable CD45+ PBMC was lower in gBRCAm OvCa compared with BRCAwt OvCa (median 0.565 vs. 0.93%, P=0.0086) but this difference was not seen in those women >5 years post-diagnosis. CD8+ T cells among viable CD45+ PBMCs and CTLA-4+/CD8+ T cells were higher in gBRCAm carriers than patients with BRCAwt, in particular for those <5 years post-diagnosis (median 20.4 vs. 9.78%, P=0.031 and median MFI 0.19 vs. 0.22, P=0.0074, respectively). TIM-3 expression on Tregs was associated with poor progression-free survival, independent of gBRCAm status (P<0.001). Our pilot data suggested that patients with gBRCAm OvCa may have fewer circulating MDSCs but higher CD8+ T cells in PBMCs during their early disease course. This may contribute to the observed survival benefit for these women in their first post-diagnosis decade.
Collapse
Affiliation(s)
- Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Dana-Adriana Botesteanu
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Yusuke Tomita
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Akira Yuno
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Min-Jung Lee
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Elise C Kohn
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christina M Annunziata
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ursula Matulonis
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Lauren A MacDonald
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Jayakumar R Nair
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kimberley M Macneill
- Division of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Immunostimulatory functions of adoptively transferred MDSCs in experimental blunt chest trauma. Sci Rep 2019; 9:7992. [PMID: 31142770 PMCID: PMC6541619 DOI: 10.1038/s41598-019-44419-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/14/2019] [Indexed: 01/15/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) expand during inflammation and exhibit immunomodulatory functions on innate and adaptive immunity. However, their impact on trauma-induced immune responses, characterized by an early pro-inflammatory phase and dysregulated adaptive immunity involving lymphocyte apoptosis, exhaustion and unresponsiveness is less clear. Therefore, we adoptively transferred in vitro-generated MDSCs shortly before experimental blunt chest trauma (TxT). MDSCs preferentially homed into spleen and liver, but were undetectable in the injured lung, although pro-inflammatory mediators transiently increased in the bronchoalveolar lavage (BAL). Surprisingly, MDSC treatment strongly increased splenocyte numbers, however, without altering the percentage of splenic leukocyte populations. T cells of MDSC-treated TxT mice exhibited an activated phenotype characterized by expression of activation markers and elevated proliferative capacity in vitro, which was not accompanied by up-regulated exhaustion markers or unresponsiveness towards in vitro activation. Most importantly, also T cell expansion after staphylococcal enterotoxin B (SEB) stimulation in vivo was unchanged between MDSC-treated or untreated mice. After MDSC transfer, T cells preferentially exhibited a Th1 phenotype, a prerequisite to circumvent post-traumatic infectious complications. Our findings reveal a totally unexpected immunostimulatory role of adoptively transferred MDSCs in TxT and might offer options to interfere with post-traumatic malfunction of the adaptive immune response.
Collapse
|
47
|
de Aguiar RB, de Moraes JZ. Exploring the Immunological Mechanisms Underlying the Anti-vascular Endothelial Growth Factor Activity in Tumors. Front Immunol 2019; 10:1023. [PMID: 31156623 PMCID: PMC6530399 DOI: 10.3389/fimmu.2019.01023] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Several studies report the key role of the vascular endothelial growth factor (VEGF) signaling on angiogenesis and on tumor growth. This has led to the development of a number of VEGF-targeted agents to treat cancer patients by disrupting the tumor blood vessel supply. Of them, bevacizumab, an FDA-approved humanized monoclonal antibody against VEGF, is the most promising. Although the use of antibodies targeting the VEGF pathway has shown clinical benefits associated with a reduction in the tumor blood vessel density, the inhibition of VEGF-driven vascular effects is only part of the functional mechanism of these therapeutic agents in the tumor ecosystem. Compelling reports have demonstrated that VEGF confers, in addition to the activation of angiogenesis-related processes, immunosuppressive properties in tumors. It is also known that structural remodeling of the tumor blood vessel bed by anti-VEGF approaches affect the influx and activation of immune cells into tumors, which might influence the therapeutic results. Besides that, part of the therapeutic effects of antiangiogenic antibodies, including their role in the tumor vascular network, might be triggered by Fc receptors in an antigen-independent manner. In this mini-review, we explore the role of VEGF inhibitors in the tumor microenvironment with focus on the immune system, discussing around the functional contribution of both bevacizumab's Fab and Fc domains to the therapeutic results and the combination of bevacizumab therapy with other immune-stimulatory settings, including adjuvant-based vaccine approaches.
Collapse
|
48
|
Salminen A, Kaarniranta K, Kauppinen A. Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age-related immune deficiency. Cell Mol Life Sci 2019; 76:1901-1918. [PMID: 30788516 PMCID: PMC6478639 DOI: 10.1007/s00018-019-03048-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 12/17/2022]
Abstract
The aging process is associated with chronic low-grade inflammation in both humans and rodents, commonly called inflammaging. At the same time, there is a gradual decline in the functional capacity of adaptive and innate immune systems, i.e., immunosenescence, a process not only linked to the aging process, but also encountered in several pathological conditions involving chronic inflammation. The hallmarks of immunosenescence include a decline in the numbers of naïve CD4+ and CD8+ T cells, an imbalance in the T cell subsets, and a decrease in T cell receptor (TCR) repertoire and signaling. Correspondingly, there is a decline in B cell lymphopoiesis and a reduction in antibody production. The age-related changes are not as profound in innate immunity as they are in adaptive immunity. However, there are distinct functional deficiencies in dendritic cells, natural killer cells, and monocytes/macrophages with aging. Interestingly, the immunosuppression induced by myeloid-derived suppressor cells (MDSC) in diverse inflammatory conditions also targets mainly the T and B cell compartments, i.e., inducing very similar alterations to those present in immunosenescence. Here, we will compare the immune profiles induced by immunosenescence and the MDSC-driven immunosuppression. Given that the appearance of MDSCs significantly increases with aging and MDSCs are the enhancers of other immunosuppressive cells, e.g., regulatory T cells (Tregs) and B cells (Bregs), it seems likely that MDSCs might remodel the immune system, thus preventing excessive inflammation with aging. We propose that MDSCs are potent inducers of immunosenescence.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
- Department of Ophthalmology, Kuopio University Hospital, KYS, P.O. Box 100, 70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
49
|
Serrano-Del Valle A, Anel A, Naval J, Marzo I. Immunogenic Cell Death and Immunotherapy of Multiple Myeloma. Front Cell Dev Biol 2019; 7:50. [PMID: 31041312 PMCID: PMC6476910 DOI: 10.3389/fcell.2019.00050] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
Over the past decades, immunotherapy has demonstrated a prominent clinical efficacy in a wide variety of human tumors. For many years, apoptosis has been considered a non-immunogenic or tolerogenic process whereas necrosis or necroptosis has long been acknowledged to play a key role in inflammation and immune-related processes. However, the new concept of “immunogenic cell death” (ICD) has challenged this traditional view and has granted apoptosis with immunogenic abilities. This paradigm shift offers clear implications in designing novel anti-cancer therapeutic approaches. To date, several screening studies have been carried out to discover bona fide ICD inducers and reveal the inherent capacity of a wide variety of drugs to induce cell death-associated exposure of danger signals and to bring about in vivo anti-cancer immune responses. Recent shreds of evidence place ER stress at the core of all the scenarios where ICD occur. Furthermore, ER stress and the unfolded protein response (UPR) have emerged as important targets in different human cancers. Notably, in multiple myeloma (MM), a lethal plasma cell disorder, the elevated production of immunoglobulins leaves these cells heavily reliant on the survival arm of the UPR. For that reason, drugs that disrupt ER homeostasis and engage ER stress-associated cell death, such as proteasome inhibitors, which are currently used for the treatment of MM, as well as novel ER stressors are intended to be promising therapeutic agents in MM. This not only holds true for their capacity to induce cell death, but also to their potential ability to activate the immunogenic arm of the ER stress response, with the ensuing exposure of danger signals. We provide here an overview of the up-to-date knowledge regarding the cell death mechanisms involved in situations of ER stress with a special focus on the connections with the drug-induced ER stress pathways that evoke ICD. We will also discuss how this could assist in optimizing and developing better immunotherapeutic approaches, especially in MM treatment.
Collapse
Affiliation(s)
| | - Alberto Anel
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| | - Javier Naval
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| | - Isabel Marzo
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
50
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|