1
|
Chen Z, Zhang T, Li W, Hu J, Ou Y, Ye F, Zhang J, Jiang H, Liu S. Single-cell RNA sequencing analysis reveals the dynamic changes in the tumor microenvironment during NMIBC recurrence. Apoptosis 2025; 30:282-296. [PMID: 39633115 DOI: 10.1007/s10495-024-02044-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Due to the clinical characteristic of frequent recurrence in urothelial bladder cancer (UBC), patients face significant health impacts and economic burdens. Therefore, understanding the molecular mechanisms involved in UBC recurrence is crucial for reducing its recurrence rate. The aim of our study is to help urologists and clinical researchers gain a deeper understanding of the changes in the tumor microenvironment (TME) during UBC recurrence. METHODS We collected 10 samples from primary and recurrent non-muscle-invasive bladder cancer (NMIBC) and performed single-cell RNA sequencing. By distinguishing and annotating cell subpopulations, we identified tissue preferences of some novel cell subgroups. Next, pseudotime trajectory analysis, cell-cell communication analysis, and function enrichment analysis were applied to evaluate the dynamic changes in the TME and biological functions. Finally, we validated the distribution of some of these cell subgroups using multiplex immunofluorescence experiments. RESULTS We identified a tumor-associated fibroblast (CAF) subtype with high COL18A1 expression that is highly expressed in recurrent NMIBC, suggesting that the stromal component of the tumor may play a crucial role in the recurrence process. Additionally, pseudotime trajectory analysis revealed a macrophage subtype with high IL-6 expression at the terminal stage of macrophage differentiation, exhibiting significant immunosuppressive features. This indicated the presence of immune exhaustion during NMIBC recurrence. Lastly, we found an upregulation of estrogen in recurrent urothelial cancer cells, which may partially explain the gender disparity observed in UBC. CONCLUSION This study identified several cell subpopulations influencing NMIBC recurrence, which were heavily infiltrated in the TME of recurrent NMIBC. Additionally, the enrichment of estrogen in urothelial cancer cells from various sources suggested a role of sex hormones in NMIBC recurrence.
Collapse
Affiliation(s)
- Ziang Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Hospital, Fudan Institute of Urology, Fudan University, Shanghai, China
| | - Tianxiang Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weijian Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Hospital, Fudan Institute of Urology, Fudan University, Shanghai, China
| | - Jia Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Hospital, Fudan Institute of Urology, Fudan University, Shanghai, China
| | - Fangdie Ye
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Hospital, Fudan Institute of Urology, Fudan University, Shanghai, China
| | - Jinhao Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Hospital, Fudan Institute of Urology, Fudan University, Shanghai, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Huashan Hospital, Fudan Institute of Urology, Fudan University, Shanghai, China.
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Shenghua Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Kemberi M, Minns AF, Santamaria S. Soluble Proteoglycans and Proteoglycan Fragments as Biomarkers of Pathological Extracellular Matrix Remodeling. PROTEOGLYCAN RESEARCH 2024; 2:e70011. [PMID: 39600538 PMCID: PMC11587194 DOI: 10.1002/pgr2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Proteoglycans and their proteolytic fragments diffuse into biological fluids such as plasma, serum, urine, or synovial fluid, where they can be detected by antibodies or mass-spectrometry. Neopeptides generated by the proteolysis of proteoglycans are recognized by specific neoepitope antibodies and can act as a proxy for the activity of certain proteases. Proteoglycan and proteoglycan fragments can be potentially used as prognostic, diagnostic, or theragnostic biomarkers for several diseases characterized by dysregulated extracellular matrix remodeling such as osteoarthritis, rheumatoid arthritis, atherosclerosis, thoracic aortic aneurysms, central nervous system disorders, viral infections, and cancer. Here, we review the main mechanisms accounting for the presence of soluble proteoglycans and their fragments in biological fluids, their potential application as diagnostic, prognostic, or theragnostic biomarkers, and highlight challenges and opportunities ahead of their clinical translation.
Collapse
Affiliation(s)
- Marsioleda Kemberi
- Barts and the London School of Medicine and DentistryQueen Mary University of LondonLondonEnglandUK
| | - Alexander F. Minns
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| | - Salvatore Santamaria
- Department of Biochemical SciencesSchool of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordSurreyUK
| |
Collapse
|
3
|
Berdiaki A, Neagu M, Tzanakakis P, Spyridaki I, Pérez S, Nikitovic D. Extracellular Matrix Components and Mechanosensing Pathways in Health and Disease. Biomolecules 2024; 14:1186. [PMID: 39334952 PMCID: PMC11430160 DOI: 10.3390/biom14091186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are essential components of the extracellular matrix (ECM) with pivotal roles in cellular mechanosensing pathways. GAGs, such as heparan sulfate (HS) and chondroitin sulfate (CS), interact with various cell surface receptors, including integrins and receptor tyrosine kinases, to modulate cellular responses to mechanical stimuli. PGs, comprising a core protein with covalently attached GAG chains, serve as dynamic regulators of tissue mechanics and cell behavior, thereby playing a crucial role in maintaining tissue homeostasis. Dysregulation of GAG/PG-mediated mechanosensing pathways is implicated in numerous pathological conditions, including cancer and inflammation. Understanding the intricate mechanisms by which GAGs and PGs modulate cellular responses to mechanical forces holds promise for developing novel therapeutic strategies targeting mechanotransduction pathways in disease. This comprehensive overview underscores the importance of GAGs and PGs as key mediators of mechanosensing in maintaining tissue homeostasis and their potential as therapeutic targets for mitigating mechano-driven pathologies, focusing on cancer and inflammation.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
| | - Petros Tzanakakis
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Ioanna Spyridaki
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| | - Serge Pérez
- Centre de Recherche sur les Macromolécules Végétales (CERMAV), Centre National de la Recherche Scientifique (CNRS), University Grenoble Alpes, 38000 Grenoble, France;
| | - Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 712 03 Heraklion, Greece; (A.B.); (P.T.); (I.S.)
| |
Collapse
|
4
|
Atique M, Javed R, Seerat I, Atique U, Bhatti T. The Intensity and Pattern of Syndecan-1 (CD138) Expression in Normal and Diseased Livers. Cureus 2023; 15:e46718. [PMID: 38022112 PMCID: PMC10630907 DOI: 10.7759/cureus.46718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Heparan sulfate proteoglycans (HSPGs) belong to the syndecan family, and syndecan-1 (CD138) is a heparan sulfate proteoglycan. Syndecan-1 has a potential role in cell-matrix and cell-cell communications as they are present in cell epithelium. Its expression is different in an extensive range of benign, inflammatory, and neoplastic diseases. In routine histopathology, it is used as a marker for plasma cells. However, it is expressed in a large variety of normal and neoplastic epithelia including squamous epithelium and gastric glandular epithelium expressed in other tissues, i.e., the liver. In the liver, variable expression is seen in cirrhosis, hepatitis, and carcinoma. The objective of this study was to investigate the expression of this marker in normal, inflammatory, and neoplastic lesions of the liver. This in turn may help clinicians to select patients who may benefit from anti-CD138 therapy. It is currently used in the diagnosis and management of plasma cell proliferations. Material and methods This is a retrospective study in which we retrieved 53 formalin-fixed paraffin-embedded (FFPE) liver specimen blocks and selected one block from each case by reviewing the hematoxylin and eosin (H&E) slides of each case. Syndecan-1 (CD138), pancytokeratin, and CD68 expression were analyzed immunohistochemically (IHC) to evaluate the percentage and intensity of CD138 expression in various hepatic entities and identify those entities where syndecan-1 can be consistently used to make a definitive diagnosis. Results The expression of pancytokeratin and CD68 was analyzed in hepatocytes and Kupffer cells, respectively. For syndecan-1 (CD138), 15.4% of cases showed basolateral membranous positivity, 44.6% of cases showed complete membranous positivity, and 40% of cases showed no positivity in hepatocytes. Cytokeratin (CK) was positive as expected in hepatocytes, and CD68 was expressed in Kupffer cells. Conclusion CD138 does not appear to be a reliable surrogate marker for liver disease. However, it may be included with other ancillary markers as a predictor of the stage of chronic liver disease and metastatic potential. The response to anti-CD138 therapy needs to be further studied.
Collapse
Affiliation(s)
- Muhammad Atique
- Histopathology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| | - Rabia Javed
- Histopathology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| | - Iqtadar Seerat
- Pediatric Gastroenterology and Hepatology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| | - Usman Atique
- Histopathology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| | - Tayyaba Bhatti
- Pathology, Pakistan Kidney and Liver Institute and Research Center, Lahore, PAK
| |
Collapse
|
5
|
Wang H, Zhang Y, Yang Z, Jiang Y, Wu L, Wang R, Zhang Z. Clinical/prognostic significance of Syndecan-1 expression in invasive breast carcinoma with distant metastasis and its correlation with tumor immunity. Pathol Res Pract 2023; 250:154787. [PMID: 37678063 DOI: 10.1016/j.prp.2023.154787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVE Breast Cancer (BC) is the most common malignant tumor for women in the world. 90% of BC-associated deaths are attributed to distant metastasis (DM). Therefore, there is an urgent need for a novel molecular target for the treatment of distant metastatic breast cancer (DMBC). Syndecan-1 (SDC-1) is a cell surface heparan sulfate proteoglycan (HSPG). This study aims to study the expression patterns of SDC-1 in invasive breast carcinoma (IBC) with DM and to analyze its relationship with different clinicopathologic features, stromal tumor infiltrating lymphocytes (sTILs) status and the clinical outcomes. METHODS A total of 50 DM breast cancer and 100 non-distant metastasis (non-DM) breast cancer patients in West China Hospital, Sichuan University from January 1, 2011 to December 31, 2011 were collected. Immunohistochemical (IHC) method was used to detect the expression of SDC-1, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor-2 (HER2), and Ki-67 in 150 specimens of patients with IBC. STILs were used to evaluate immune cells in the stromal tissue within the tumor. Various clinicopathologic characteristics were retrospectively analyzed, and follow-up information were collected for prognosis analyses. The expression pattern difference of SDC-1 in the DM group and the non-DM group and its correlation with clinicopathologic characteristics of IBC were analyzed. RESULTS Compared with the non-DM group, SDC-1 had higher cytoplasmic (90.0%) and stromal diffuse (70.0%) expressions and lower stromal peritumoral (18.0%) expression in the DM group. SDC-1 cytoplasmic expression was significantly associated with HER2-positive and high Ki-67 index in DM group, and with high histological grade and lymph node (LN) metastasis in non-DM group (P < 0.05). Compared with the non-DM group, the membranous expression of SDC-1 in the DM group was related to higher histological grade and T stage, higher frequency of LN involvement. Meanwhile, the expression pattern of SDC-1 in tumor stroma was associated with sTILs status (P < 0.05). The different combinations of SDC-1 staining patterns were correlated with clinicopathological features, biomarkers and sTILs status between DM group and non-DM group.There was no significant difference in overall survival between DMBC with different expression patterns of SDC-1. CONCLUSION The cytoplasmic and stromal expressions of SDC-1 in the primary lesion of IBC are closely associated with DM, and the stromal expression of SDC-1 is correlated with tumor immune microenvironment. SDC-1 is expected to be a potential new marker for predicting the risk of DM in IBC.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Pathology, Langzhong People's Hospital, Langzhong, Sichuan, China
| | - Yu Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziqi Yang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yong Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lixue Wu
- Department of Pathology, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Purushothaman A, Mohajeri M, Lele TP. The role of glycans in the mechanobiology of cancer. J Biol Chem 2023; 299:102935. [PMID: 36693448 PMCID: PMC9930169 DOI: 10.1016/j.jbc.2023.102935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Although cancer is a genetic disease, physical changes such as stiffening of the extracellular matrix also commonly occur in cancer. Cancer cells sense and respond to extracellular matrix stiffening through the process of mechanotransduction. Cancer cell mechanotransduction can enhance cancer-promoting cell behaviors such as survival signaling, proliferation, and migration. Glycans, carbohydrate-based polymers, have recently emerged as important mediators and/or modulators of cancer cell mechanotransduction. Stiffer tumors are characterized by increased glycan content on cancer cells and their associated extracellular matrix. Here we review the role of cancer-associated glycans in coupled mechanical and biochemical alterations during cancer progression. We discuss the recent evidence on how increased expression of different glycans, in the form of glycoproteins and proteoglycans, contributes to both mechanical changes in tumors and corresponding cancer cell responses. We conclude with a summary of emerging tools that can be used to modify glycans for future studies in cancer mechanobiology.
Collapse
Affiliation(s)
- Anurag Purushothaman
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA.
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Tanmay P Lele
- Department of Biomedical Engineering, Texas A&M University, Houston, Texas, USA; Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA; Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA; Department of Translational Medical Sciences, Texas A&M University, Houston, Texas, USA.
| |
Collapse
|
7
|
Yang H, Wang L. Heparan sulfate proteoglycans in cancer: Pathogenesis and therapeutic potential. Adv Cancer Res 2023; 157:251-291. [PMID: 36725112 DOI: 10.1016/bs.acr.2022.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The heparan sulfate proteoglycans (HSPGs) are glycoproteins that consist of a proteoglycan "core" protein and covalently attached heparan sulfate (HS) chain. HSPGs are ubiquitously expressed in mammalian cells on the cell surface and in the extracellular matrix (ECM) and secretory vesicles. Within HSPGs, the protein cores determine when and where HSPG expression takes place, and the HS chains mediate most of HSPG's biological roles through binding various protein ligands, including cytokines, chemokines, growth factors and receptors, morphogens, proteases, protease inhibitors, and ECM proteins. Through these interactions, HSPGs modulate cell proliferation, adhesion, migration, invasion, and angiogenesis to display essential functions in physiology and pathology. Under physiological conditions, the expression and localization of HSPGs are finely regulated to orchestrate their physiological functions, and this is disrupted in cancer. The HSPG dysregulation elicits multiple oncogenic signaling, including growth factor signaling, ECM and Integrin signaling, chemokine and immune signaling, cancer stem cell, cell differentiation, apoptosis, and senescence, to prompt cell transformation, proliferation, tumor invasion and metastasis, tumor angiogenesis and inflammation, and immunotolerance. These oncogenic roles make HSPGs an attractive pharmacological target for anti-cancer therapy. Several therapeutic strategies have been under development, including anti-HSPG antibodies, peptides and HS mimetics, synthetic xylosides, and heparinase inhibitors, and shown promising anti-cancer efficacy. Therefore, much progress has been made in this line of study. However, it needs to bear in mind that the roles of HSPGs in cancer can be either oncogenic or tumor-suppressive, depending on the HSPG and the cancer cell type with the underlying mechanisms that remain obscure. Further studies need to address these to fill the knowledge gap and rationalize more efficient therapeutic targeting.
Collapse
Affiliation(s)
- Hua Yang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Lianchun Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Bryd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
8
|
Mei Y, Zhao L, Jiang M, Yang F, Zhang X, Jia Y, Zhou N. Characterization of glucose metabolism in breast cancer to guide clinical therapy. Front Surg 2022; 9:973410. [PMID: 36277284 PMCID: PMC9580338 DOI: 10.3389/fsurg.2022.973410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Background Breast cancer (BRCA) ranks as a leading cause of cancer death in women worldwide. Glucose metabolism is a noticeable characteristic of the occurrence of malignant tumors. In this study, we aimed to construct a novel glycometabolism-related gene (GRG) signature to predict overall survival (OS), immune infiltration and therapeutic response in BRCA patients. Materials and methods The mRNA sequencing and corresponding clinical data of BRCA patients were obtained from public cohorts. Lasso regression was applied to establish a GRG signature. The immune infiltration was evaluated with the ESTIMATE and CIBERSORT algorithms. The drug sensitivity was estimated using the value of IC50, and further forecasted the therapeutic response of each patient. The candidate target was selected in Cytoscape. A nomogram was constructed via the R package of “rms”. Results We constructed a six-GRG signature based on CACNA1H, CHPF, IRS2, NT5E, SDC1 and ATP6AP1, and the high-risk patients were correlated with poorer OS (P = 2.515 × 10−7). M2 macrophage infiltration was considerably superior in high-risk patients, and CD8+ T cell infiltration was significantly higher in low-risk patients. Additionally, the high-risk group was more sensitive to Lapatinib. Fortunately, SDC1 was recognized as candidate target and patients had a better OS in the low-SDC1 group. A nomogram integrating the GRG signature was developed, and calibration curves were consistent between the actual and predicted OS. Conclusions We identified a novel GRG signature complementing the present understanding of the targeted therapy and immune biomarker in breast cancer. The GRGs may provide fresh insights for individualized management of BRCA patients.
Collapse
Affiliation(s)
- Yingying Mei
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lantao Zhao
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Man Jiang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fangfang Yang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yizhen Jia
- Core Laboratory, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Correspondence: Na Zhou Yizhen Jia
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Correspondence: Na Zhou Yizhen Jia
| |
Collapse
|
9
|
Lee YC, Lam HM, Rosser C, Theodorescu D, Parks WC, Chan KS. The dynamic roles of the bladder tumour microenvironment. Nat Rev Urol 2022; 19:515-533. [PMID: 35764795 PMCID: PMC10112172 DOI: 10.1038/s41585-022-00608-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
Bladder cancer is a prevalent but currently understudied cancer type and patient outcomes are poor when it progresses to the muscle-invasive stage. Current research in bladder cancer focuses on the genetic and epigenetic alterations occurring within the urothelial cell compartment; however, the stromal compartment receives less attention. Dynamic changes and intercellular communications occur in the tumour microenvironment (TME) of the bladder - a new concept and niche that we designate as the bladder TME (bTME) - during tumour evolution, metastatic progression and in the context of therapeutic response. Collagens and their cognate receptors, the discoidin domain receptors, have a role in various steps of the metastatic cascade and in immune checkpoint resistance. Furthermore, the presence of another TME niche, the metastatic TME (met-TME), is a novel concept that could support divergent progression of metastatic colonization in different organs, resulting in distant metastases with distinct characteristics and genetics from the primary tumour. The stroma has divergent roles in mediating therapeutic response to BCG immunotherapy and immune checkpoint inhibitors, as well as conventional chemotherapy or trimodality therapy (that is, maximal transurethral resection of bladder tumour, chemotherapy and radiotherapy). The local bTME and distant met-TME are currently conceptually and therapeutically unexploited niches that should be actively investigated. New biological insights from these TMEs will enable rational design of strategies that co-target the tumour and stroma, which are expected to improve the outcomes of patients with advanced bladder cancer.
Collapse
Affiliation(s)
- Yu-Cheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hung-Ming Lam
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Charles Rosser
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - William C Parks
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith Syson Chan
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Academic Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Viktorsson K, Hååg P, Shah CH, Franzén B, Arapi V, Holmsten K, Sandström P, Lewensohn R, Ullén A. Profiling of extracellular vesicles of metastatic urothelial cancer patients to discover protein signatures related to treatment outcome. Mol Oncol 2022; 16:3620-3641. [PMID: 35838333 PMCID: PMC9580890 DOI: 10.1002/1878-0261.13288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/21/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022] Open
Abstract
The prognosis of metastatic urothelial carcinoma (mUC) patients is poor, and early prediction of systemic therapy response would be valuable to improve outcome. In this exploratory study, we investigated protein profiles in sequential plasma‐isolated extracellular vesicles (EVs) from a subset of mUC patients treated within a Phase I trial with vinflunine combined with sorafenib. The isolated EVs were of exosome size and expressed exosome markers CD9, TSG101 and SYND‐1. We found, no association between EVs/ml plasma at baseline and progression‐free survival (PFS). Protein profiling of EVs, using an antibody‐based 92‐plex Proximity Extension Assay on the Oncology II® platform, revealed a heterogeneous protein expression pattern. Qlucore bioinformatic analyses put forward a protein signature comprising of SYND‐1, TNFSF13, FGF‐BP1, TFPI‐2, GZMH, ABL1 and ERBB3 to be putatively associated with PFS. Similarly, a protein signature from EVs that related to best treatment response was found, which included FR‐alpha, TLR 3, TRAIL and FASLG. Several of the markers in the PFS or best treatment response signatures were also identified by a machine learning classification algorithm. In conclusion, protein profiling of EVs isolated from plasma of mUC patients shows a potential to identify protein signatures that may associate with PFS and/or treatment response.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Carl-Henrik Shah
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Department of Pelvic cancer, Genitourinary oncology and urology unit, Karolinska University Hospital, SE-171 64, Solna, Sweden
| | - Bo Franzén
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Vasiliki Arapi
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Karin Holmsten
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Department of Oncology, Capio Sankt Görans Hospital, SE-112 19, Stockholm, Sweden
| | - Per Sandström
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Theme Cancer, Medical Unit head and neck, lung, and skin tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-171 64, Solna, Sweden
| | - Anders Ullén
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.,Department of Pelvic cancer, Genitourinary oncology and urology unit, Karolinska University Hospital, SE-171 64, Solna, Sweden
| |
Collapse
|
11
|
Yang Z, Chen S, Ying H, Yao W. Targeting syndecan-1: new opportunities in cancer therapy. Am J Physiol Cell Physiol 2022; 323:C29-C45. [PMID: 35584326 PMCID: PMC9236862 DOI: 10.1152/ajpcell.00024.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022]
Abstract
Syndecan-1 (SDC1, CD138) is one of the heparan sulfate proteoglycans and is essential for maintaining normal cell morphology, interacting with the extracellular and intracellular protein repertoire, as well as mediating signaling transduction upon environmental stimuli. The critical role of SDC1 in promoting tumorigenesis and metastasis has been increasingly recognized in various cancer types, implying a promising potential of utilizing SDC1 as a novel target for cancer therapy. This review summarizes the current knowledge on SDC1 structure and functions, including its role in tumor biology. We also discuss the highlights and limitations of current SDC1-targeted therapies as well as the obstacles in developing new therapeutic methods, offering our perspective on the future directions to target SDC1 for cancer treatment.
Collapse
Affiliation(s)
- Zecheng Yang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shuaitong Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wantong Yao
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
12
|
Cao G, Zhang C, Tian X, Jing G, Zhou X, Yan T. circCEP128 Knockdown Suppresses Bladder Cancer Progression via Regulating microRNA-515-5p/SDC1 Axis. Cancer Manag Res 2021; 13:2885-2896. [PMID: 33833571 PMCID: PMC8020055 DOI: 10.2147/cmar.s288229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
Background Dysregulation of circular RNAs (circRNAs) is associated with bladder cancer progression. Nevertheless, the mechanisms of circRNA centrosomal protein 128 (circCEP128) underlying bladder cancer progression remain poorly understood. Methods The levels of circCEP128, microRNA-515-5p (miR-515-5p) and syndecan-1 (SDC1) were determined via reverse transcription-quantitative polymerase chain reaction or Western blot. The effects of circCEP128, miR-515-5p and SDC1 on bladder cancer progression were investigated via MTT and colony formation assays, flow cytometry and transwell analysis and subcutaneous xenograft experiments. The interactions between miR-515-5p and circCEP128 or SDC1 were examined through bioinformatics prediction and luciferase reporter assay. Results circCEP128 and SDC1 were highly expressed and miR-515-5p was low expressed in bladder cancer tissues and cells. circCEP128 knockdown hindered cell proliferation, migration and invasion and promoted cell apoptosis in bladder cancer. circCEP128 loss increased miR-515-5p expression through direct interaction in bladder cancer cells. MiR-515-5p depletion mitigated the influences of circCEP128 knockdown on bladder cancer cell phenotypes. SDC1 was a direct target of miR-515-5p. circCEP128 positively regulated SDC1 expression via miR-515-5p. MiR-515-5p restrained the malignant progression of bladder cancer cells by decreasing SDC1 expression. circCEP128 knockdown hindered the growth of bladder cancer xenograft tumors by up-regulating miR-515-5p and down-regulating SDC1. Conclusion circCEP128 knockdown hampered the tumorigenesis and progression of bladder cancer by regulating miR-515-5p/SDC1 axis in vitro and in vivo, deepening our understanding on the molecular mechanisms of circCEP128 in bladder cancer.
Collapse
Affiliation(s)
- Guanghui Cao
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Chan Zhang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Xiangyong Tian
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Gaopeng Jing
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Xiaolin Zhou
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Tianzhong Yan
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| |
Collapse
|
13
|
Syndecan-4 as a Pathogenesis Factor and Therapeutic Target in Cancer. Biomolecules 2021; 11:biom11040503. [PMID: 33810567 PMCID: PMC8065655 DOI: 10.3390/biom11040503] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is an important cause of morbidity and mortality worldwide. Advances in research on the biology of cancer revealed alterations in several key pathways underlying tumorigenesis and provided molecular targets for developing new and improved existing therapies. Syndecan-4, a transmembrane heparan sulfate proteoglycan, is a central mediator of cell adhesion, migration and proliferation. Although several studies have demonstrated important roles of syndecan-4 in cell behavior and its interactions with growth factors, extracellular matrix (ECM) molecules and cytoskeletal signaling proteins, less is known about its role and expression in multiple cancer. The data summarized in this review demonstrate that high expression of syndecan-4 is an unfavorable biomarker for estrogen receptor-negative breast cancer, glioma, liver cancer, melanoma, osteosarcoma, papillary thyroid carcinoma and testicular, kidney and bladder cancer. In contrast, in neuroblastoma and colorectal cancer, syndecan-4 is downregulated. Interestingly, syndecan-4 expression is modulated by anticancer drugs. It is upregulated upon treatment with zoledronate and this effect reduces invasion of breast cancer cells. In our recent work, we demonstrated that the syndecan-4 level was reduced after trastuzumab treatment. Similarly, syndecan-4 levels are also reduced after panitumumab treatment. Together, the data found suggest that syndecan-4 level is crucial for understanding the changes involving in malignant transformation, and also demonstrate that syndecan-4 emerges as an important target for cancer therapy and diagnosis.
Collapse
|
14
|
Syndecans in cancer: A review of function, expression, prognostic value, and therapeutic significance. Cancer Treat Res Commun 2021; 27:100312. [PMID: 33485180 DOI: 10.1016/j.ctarc.2021.100312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
While our understanding of tumors and how to treat them has advanced significantly since the days of Aminopterin and the radical mastectomy, cancer remains among the leading causes of death worldwide. Despite innumerable advancements in medical technology the non-static and highly heterogeneous nature of a tumor can make characterization and treatment exceedingly difficult. Because of this complexity, the identification of new cellular constituents that can be used for diagnostic, prognostic, and therapeutic purposes is crucial in improving patient outcomes worldwide. Growing evidence has demonstrated that among the myriad of changes seen in cancer cells, the Syndecan family of proteins has been observed to undergo drastic alterations in expression. Syndecans are transmembrane heparan sulfate proteoglycans that are responsible for cell signaling, proliferation, and adhesion, and many studies have shed light on their unique involvement in both tumor progression and suppression. This review seeks to discuss Syndecan expression levels in various cancers, whether they make reliable biomarkers for detection and prognosis, and whether they may be viable targets for future cancer therapies. The conclusions drawn from the literature reviewed in this article indicate that changes in expression of Syndecan protein can have profound effects on tumor size, metastatic capability, and overall patient survival rate. Further, while data regarding the therapeutic targeting of Syndecan proteins is sparse, the available literature does demonstrate promise for their use in cancer treatment going forward.
Collapse
|
15
|
Hassan N, Greve B, Espinoza-Sánchez NA, Götte M. Cell-surface heparan sulfate proteoglycans as multifunctional integrators of signaling in cancer. Cell Signal 2020; 77:109822. [PMID: 33152440 DOI: 10.1016/j.cellsig.2020.109822] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022]
Abstract
Proteoglycans (PGs) represent a large proportion of the components that constitute the extracellular matrix (ECM). They are a diverse group of glycoproteins characterized by a covalent link to a specific glycosaminoglycan type. As part of the ECM, heparan sulfate (HS)PGs participate in both physiological and pathological processes including cell recruitment during inflammation and the promotion of cell proliferation, adhesion and motility during development, angiogenesis, wound repair and tumor progression. A key function of HSPGs is their ability to modulate the expression and function of cytokines, chemokines, growth factors, morphogens, and adhesion molecules. This is due to their capacity to act as ligands or co-receptors for various signal-transducing receptors, affecting pathways such as FGF, VEGF, chemokines, integrins, Wnt, notch, IL-6/JAK-STAT3, and NF-κB. The activation of those pathways has been implicated in the induction, progression, and malignancy of a tumor. For many years, the study of signaling has allowed for designing specific drugs targeting these pathways for cancer treatment, with very positive results. Likewise, HSPGs have become the subject of cancer research and are increasingly recognized as important therapeutic targets. Although they have been studied in a variety of preclinical and experimental models, their mechanism of action in malignancy still needs to be more clearly defined. In this review, we discuss the role of cell-surface HSPGs as pleiotropic modulators of signaling in cancer and identify them as promising markers and targets for cancer treatment.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Biotechnology Program, Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany
| | - Nancy A Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany; Department of Radiotherapy-Radiooncology, Münster University Hospital, Albert-Schweitzer-Campus 1, A1, 48149 Münster, Germany.
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
16
|
Soluble Syndecan-1 Levels Are Associated with Survival in Platinum-Treated Bladder Cancer Patients. Diagnostics (Basel) 2020; 10:diagnostics10110864. [PMID: 33114033 PMCID: PMC7690724 DOI: 10.3390/diagnostics10110864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 01/10/2023] Open
Abstract
Cisplatin-containing chemotherapy represents the first-line treatment for patients with locally advanced or metastatic muscle-invasive bladder cancer. Recently, novel therapies have become available for cisplatin-ineligible or -resistant patients. Therefore, prediction of cisplatin response is required to optimize therapy decisions. Syndecan-1 (SDC1) tissue expression and serum concentration may be associated with cisplatin resistance. Thus, pre-treatment serum levels of SDC1 and its expression in chemo-naïve tissues were assessed in 121 muscle-invasive bladder cancer patients who underwent postoperative platinum-based chemotherapy. SDC1 concentrations were evaluated by ELISA in 52 baseline and 90 follow-up serum samples and tissue expressions were analyzed by immunohistochemistry in an independent cohort of 69 formalin-fixed paraffin-embedded tumor samples. Pre-treatment SDC1 serum levels were significantly higher in lymph node metastatic (p = 0.009) and female patients (p = 0.026). SDC1 tissue expression did not correlate with clinicopathological parameters. High pre-treatment SDC1 serum level and the presence of distant metastasis were independent risk factors for overall survival (Hazard ratio (HR): 1.439, 95% Confidence interval (CI): 1.003–2.065, p = 0.048; HR: 2.269, 95%CI: 1.053–4.887, p = 0.036). Our results demonstrate an independent association between high baseline serum SDC1 concentration and poor survival in platinum-treated patients. Analyzing baseline serum SDC1 levels may help to predict platinum-containing chemotherapy and could help to optimize therapeutic decision-making.
Collapse
|
17
|
Syndecan-1 Promotes Hepatocyte-Like Differentiation of Hepatoma Cells Targeting Ets-1 and AP-1. Biomolecules 2020; 10:biom10101356. [PMID: 32977498 PMCID: PMC7598270 DOI: 10.3390/biom10101356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023] Open
Abstract
Syndecan-1 is a transmembrane heparan sulfate proteoglycan which is indispensable in the structural and functional integrity of epithelia. Normal hepatocytes display strong cell surface expression of syndecan-1; however, upon malignant transformation, they may lose it from their cell surfaces. In this study, we demonstrate that re-expression of full-length or ectodomain-deleted syndecan-1 in hepatocellular carcinoma cells downregulates phosphorylation of ERK1/2 and p38, with the truncated form exerting an even stronger effect than the full-length protein. Furthermore, overexpression of syndecan-1 in hepatoma cells is associated with a shift of heparan sulfate structure toward a highly sulfated type specific for normal liver. As a result, cell proliferation and proteolytic shedding of syndecan-1 from the cell surface are restrained, which facilitates redifferentiation of hepatoma cells to a more hepatocyte-like phenotype. Our results highlight the importance of syndecan-1 in the formation and maintenance of differentiated epithelial characteristics in hepatocytes partly via the HGF/ERK/Ets-1 signal transduction pathway. Downregulation of Ets-1 expression alone, however, was not sufficient to replicate the phenotype of syndecan-1 overexpressing cells, indicating the need for additional molecular mechanisms. Accordingly, a reporter gene assay revealed the inhibition of Ets-1 as well as AP-1 transcription factor-induced promoter activation, presumably an effect of the heparan sulfate switch.
Collapse
|
18
|
Teixeira FCOB, Götte M. Involvement of Syndecan-1 and Heparanase in Cancer and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:97-135. [PMID: 32274708 DOI: 10.1007/978-3-030-34521-1_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cell surface heparan sulfate proteoglycan Syndecan-1 acts as an important co-receptor for receptor tyrosine kinases and chemokine receptors, and as an adhesion receptor for structural glycoproteins of the extracellular matrix. It serves as a substrate for heparanase, an endo-β-glucuronidase that degrades specific domains of heparan sulfate carbohydrate chains and thereby alters the functional status of the proteoglycan and of Syndecan-1-bound ligands. Syndecan-1 and heparanase show multiple levels of functional interactions, resulting in mutual regulation of their expression, processing, and activity. These interactions are of particular relevance in the context of inflammation and malignant disease. Studies in animal models have revealed a mechanistic role of Syndecan-1 and heparanase in the regulation of contact allergies, kidney inflammation, multiple sclerosis, inflammatory bowel disease, and inflammation-associated tumorigenesis. Moreover, functional interactions between Syndecan-1 and heparanase modulate virtually all steps of tumor progression as defined in the Hallmarks of Cancer. Due to their prognostic value in cancer, and their mechanistic involvement in tumor progression, Syndecan-1 and heparanase have emerged as important drug targets. Data in preclinical models and preclinical phase I/II studies have already yielded promising results that provide a translational perspective.
Collapse
Affiliation(s)
- Felipe C O B Teixeira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
19
|
Niedworok C, Kempkensteffen C, Eisenhardt A, Tschirdewahn S, Rehme C, Panic A, Reis H, Baba H, Nyirády P, Hadaschik B, Kovalszky I, Szarvas T. Serum and tissue syndecan-1 levels in renal cell carcinoma. Transl Androl Urol 2020; 9:1167-1176. [PMID: 32676400 PMCID: PMC7354293 DOI: 10.21037/tau-19-787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background The proteoglycan syndecan-1 is involved in cell proliferation, adhesion and angiogenesis. It was shown to be involved in cancer progression in different tumor entities. So far, the role of syndecan-1 in renal cell carcinoma (RCC), one of the most common diseases in urologic oncology, was little described. Purpose of the present study was to obtain serum concentrations and tissue expression levels of syndecan-1 in a cohort of patients diagnosed with RCC. Methods Clinical and follow-up data were obtained from 413 RCC patients. SDC1 levels were determined in serum samples of 100 patients by enzyme-linked immunosorbent assay and tissue SDC1 expression was measured by immunohistochemistry (IHC) in 343 cases. Results were correlated with clinicopathological and follow-up data. Results Five and ten years overall and cancer specific survival were 67% and 56% [overall survival (OS)] and 79% and 76% [cancer-specific survival (CSS)]. In female patients and locally advanced disease (≥T3), tissue SDC1 expression was decreased (female 85.6% vs. male 71.1% low tissue SDC1 expression, P=0.0153 and ≤T2 70.0% vs. ≥T3 87.2% low tissue SDC1 expression, P=0.0055) compared to male patients and organ confined disease. Locally advanced tumor stage, presence of lymph node or distant metastases, high Fuhrman grading and clear cell carcinoma as histopathological subtype were independent prognostic factors for reduced CSS and OS. There was no impact of serum SDC1 (sSDC1) serum concentration or SDC1 tissue protein expression on OS, CSS or recurrence free survival (RFS) in uni- or multivariable analysis. Conclusions sSDC1 concentration or SDC1 tissue protein expression levels had no influence on patients' prognosis in the present cohort of patients diagnosed with RCC.
Collapse
Affiliation(s)
- Christian Niedworok
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Urology, Hermann-Josef-Krankenhaus Erkelenz, Erkelenz, Germany
| | | | - Andreas Eisenhardt
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephan Tschirdewahn
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Rehme
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrej Panic
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Henning Reis
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hideo Baba
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Peter Nyirády
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Boris Hadaschik
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ilona Kovalszky
- 1st Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Tibor Szarvas
- Department of Urology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Urology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
20
|
Mavrogonatou E, Pratsinis H, Kletsas D. The role of senescence in cancer development. Semin Cancer Biol 2020; 62:182-191. [DOI: 10.1016/j.semcancer.2019.06.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023]
|
21
|
Tsoyi K, Osorio JC, Chu SG, Fernandez IE, De Frias SP, Sholl L, Cui Y, Tellez CS, Siegfried JM, Belinsky SA, Perrella MA, El-Chemaly S, Rosas IO. Lung Adenocarcinoma Syndecan-2 Potentiates Cell Invasiveness. Am J Respir Cell Mol Biol 2020; 60:659-666. [PMID: 30562054 DOI: 10.1165/rcmb.2018-0118oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Altered expression of syndecan-2 (SDC2), a heparan sulfate proteoglycan, has been associated with diverse types of human cancers. However, the mechanisms by which SDC2 may contribute to the pathobiology of lung adenocarcinoma have not been previously explored. SDC2 levels were measured in human lung adenocarcinoma samples and lung cancer tissue microarrays using immunohistochemistry and real-time PCR. To understand the role of SDC2 in vitro, SDC2 was silenced or overexpressed in A549 lung adenocarcinoma cells. The invasive capacity of cells was assessed using Matrigel invasion assays and measuring matrix metalloproteinase (MMP) 9 expression. Finally, we assessed tumor growth and metastasis of SDC2-deficient A549 cells in a xenograft tumor model. SDC2 expression was upregulated in malignant epithelial cells and macrophages obtained from human lung adenocarcinomas. Silencing of SDC2 decreased MMP9 expression and attenuated the invasive capacity of A549 lung adenocarcinoma cells. The inhibitory effect of SDC2 silencing on MMP9 expression and cell invasion was reversed by overexpression of MMP9 and syntenin-1. SDC2 silencing attenuated NF-κB p65 subunit nuclear translocation and its binding to the MMP9 promoter, which were restored by overexpression of syntenin-1. SDC2 silencing in vivo reduced tumor mass volume and metastasis. These findings suggest that SDC2 plays an important role in the invasive properties of lung adenocarcinoma cells and that its effects are mediated by syntenin-1. Thus, inhibiting SDC2 expression or activity could serve as a potential therapeutic target to treat lung adenocarcinoma.
Collapse
Affiliation(s)
| | - Juan C Osorio
- 1 Division of Pulmonary and Critical Care Medicine, and.,2 Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medical College, New York, New York
| | - Sarah G Chu
- 1 Division of Pulmonary and Critical Care Medicine, and
| | - Isis E Fernandez
- 3 Comprehensive Pneumology Centre, Hospital of the Ludwig-Maximilians University of Munich, Munich, Germany
| | | | - Lynette Sholl
- 4 Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ye Cui
- 1 Division of Pulmonary and Critical Care Medicine, and
| | | | - Jill M Siegfried
- 6 Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | - Ivan O Rosas
- 1 Division of Pulmonary and Critical Care Medicine, and.,7 Pulmonary Fibrosis Group, Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| |
Collapse
|
22
|
Yang H, Xiong H, Mi K, Zhang Y, Zhang X, Chen G. The surface syndecan protein from Macrobrachium rosenbergii could function as mediator in bacterial infections. FISH & SHELLFISH IMMUNOLOGY 2020; 96:62-68. [PMID: 31704203 DOI: 10.1016/j.fsi.2019.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/26/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Due to the aquatic animal pathogens are numerous and specific, the pathogen invasion mechanisms are more complicated. The cell surface receptors play vital roles to understand these mechanisms. Syndecan is a cell surface protein and could function as a receptor involved bacteria and virus infections. But there are few studies on the function of syndecan in shrimp and their interaction with aquatic bacterial pathogens. In the present study, we identified a syndecan receptor gene from Macrobrachium rosenbergii and analyzed its functions during the bacterial infections. The MrSDC was expressed in various tissues and presented a constitutive expression distribution except in eyestalk. Recombinant MrSDC-his tag protein was expressed in the E. coli BL21 with pET30a/MrSDC plasmid and exhibited a broad bacterial binding activities. The inhibition of MrSDC expression by dsRNA interference and antibody blocked could significantly reduce the number of Aeromonas hydrophila in hepatopancreas compared with the control. The overexpression of MrSDC by mRNA injection could significantly increase the number of A. hydrophila. In addition, the functional role of syndecan heparan sulfate chains in bacterial recognition was also studied. After extra injection of heparan sulfate in vivo, the bacterial numbers and accumulative mortality of M. rosenbergii were significantly higher than control groups and exhibit a dose effect. All these data could indicate that the cell surface syndecan protein could function as mediator in bacterial infections by the heparan sulfate chains. Our present study will provide new insights into the functions of shrimp syndecan.
Collapse
Affiliation(s)
- Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Haoran Xiong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kaihang Mi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
23
|
Handra-Luca A. Syndecan-1 in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1272:39-53. [PMID: 32845501 DOI: 10.1007/978-3-030-48457-6_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Syndecan-1 along with the other three syndecan proteins is present in the varied components of the tumor microenvironment: fibroblasts, inflammatory tumor immunity-associated cells, vessels, and extracellular matrix. Epithelial and non-epithelial tumors may show stromal syndecans. The main relevance of stromal syndecans as tumor biomarker resides in the relationships to tumor features such as type and differentiation as well as to prognosis.
Collapse
Affiliation(s)
- Adriana Handra-Luca
- Service d'Anatomie pathologique; APHP GHU Avicenne, University Sorbonne Paris Nord, Bobigny, France.
| |
Collapse
|
24
|
Prevalence of Syndecan-1 (CD138) Expression in Different Kinds of Human Tumors and Normal Tissues. DISEASE MARKERS 2019; 2019:4928315. [PMID: 31976021 PMCID: PMC6954471 DOI: 10.1155/2019/4928315] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/07/2019] [Indexed: 12/28/2022]
Abstract
Syndecan-1 (CD138) is a transmembrane proteoglycan known to be expressed in various normal and malignant tissues. It is of interest because of a possible prognostic role of differential expression in tumors and its role as a target for indatuximab, a monoclonal antibody coupled with a cytotoxic agent. To comprehensively analyze CD138 in normal and neoplastic tissues, we used tissue microarrays (TMAs) for analyzing immunohistochemically detectable CD138 expression in 2,518 tissue samples from 85 different tumor entities and 76 different normal tissue types. The data showed that CD138 expression is abundant in tumors. At least an occasional weak CD138 immunostaining could be detected in 71 of 82 (87%) different tumor types, and 58 entities (71%) had at least one tumor with a strong positivity. In normal tissues, a particularly strong expression was found in normal squamous epithelium of various organs, goblet and columnar cells of the gastrointestinal tract, and in hepatocytes. The highly standardized analysis of most human cancer types resulted in a ranking order of tumors according to the frequency and levels of CD138 expression. CD138 immunostaining was highest in squamous cell carcinomas such as from the esophagus (100%), cervix uteri (79.5%), lung (85.7%), vagina (89.7%) or vulva (73.3%), and in invasive urothelial cancer (76.2%). In adenocarcinomas, CD138 was also high in lung (82.9%) and colorectal cancer (85.3%) but often lower in pancreas (73.3%), stomach (54.2% in intestinal type), or prostate carcinomas (16.3%). CD138 expression was usually low or absent in germ cell tumors, sarcomas, endocrine tumors including thyroid cancer, and neuroendocrine tumors. In summary, the preferential expression in squamous cell carcinomas of various sites makes these cancers prime targets for anti-CD138 treatments once these might become available. Abundant expression in many different normal tissues might pose obstacles to exploiting CD138 as a therapeutic target, however.
Collapse
|
25
|
Xu L, Tang L, Zhang L. Proteoglycans as miscommunication biomarkers for cancer diagnosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:59-92. [PMID: 30905465 DOI: 10.1016/bs.pmbts.2018.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Qiao W, Liu H, Guo W, Li P, Deng M. Prognostic and clinical significance of syndecan-1 expression in breast cancer: A systematic review and meta-analysis. Eur J Surg Oncol 2018; 45:1132-1137. [PMID: 30598194 DOI: 10.1016/j.ejso.2018.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/09/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The prognostic value of syndecan-1 (SDC1, also called CD138) in breast cancer remains controversial. Therefore, we performed a meta-analysis to assess the clinical significance of SDC1 expression in breast cancer. MATERIALS AND METHODS Various databases were searched to evaluate possible correlations between SDC1 protein or mRNA expression and prognostic significance in breast cancer. Pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs) were applied to perform a quantitative meta-analysis. RESULTS A total of 1305 breast cancer patients from 9 eligible studies were included in this meta-analysis. Significant associations between elevated SDC1 protein expression and poor disease-free survival (DFS) (HR = 1.55, 95% CI: 1.12-2.14; P = 0.007) and overall survival (OS) (HR = 2.08, 95% CI: 1.61-2.69; P < 0.001) were observed. In addition, enhanced SDC1 protein expression correlated with negative estrogen receptor (ER) expression (OR, 2.38; 95% CI, 1.64-3.44; P < 0.001) and positive human epidermal growth factor receptor 2 (HER2) expression (OR, 1.77; 95% CI, 1.14-2.76; P = 0.01). However, increased SDC1 protein expression did not correlate with relapse-free survival (RFS) (HR = 0.33, 95% CI: 0.03-3.13; P = 0.33). There were no additional significant correlations observed between SDC1 protein expression and other clinical factors, including tumor size, lymph node involvement, nuclear grade, and progesterone receptor (PR) expression. CONCLUSION The results of this meta-analysis demonstrate that increased SDC1 protein expression in breast cancer is significantly associated with worse prognosis in terms of DFS and OS, and an aggressive phenotype is associated with negative ER expression and positive HER2 expression.
Collapse
Affiliation(s)
- Weiqiang Qiao
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Heyang Liu
- Department of Oncology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Wanying Guo
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Peng Li
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Miao Deng
- Department of Breast Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
27
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [PMID: 30204432 DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
28
|
Kang H, Wu Q, Sun A, Liu X, Fan Y, Deng X. Cancer Cell Glycocalyx and Its Significance in Cancer Progression. Int J Mol Sci 2018; 19:ijms19092484. [PMID: 30135409 PMCID: PMC6163906 DOI: 10.3390/ijms19092484] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer is a malignant tumor that threatens the health of human beings, and has become the leading cause of death in urban and rural residents in China. The glycocalyx is a layer of multifunctional glycans that covers the surfaces of a variety of cells, including vascular endothelial cells, smooth muscle cells, stem cells, epithelial, osteocytes, as well as cancer cells. The glycosylation and syndecan of cancer cell glycocalyx are unique. However, heparan sulfate (HS), hyaluronic acid (HA), and syndecan are all closely associated with the processes of cancer progression, including cell migration and metastasis, tumor cell adhesion, tumorigenesis, and tumor growth. The possible underlying mechanisms may be the interruption of its barrier function, its radical role in growth factor storage, signaling, and mechanotransduction. In the later sections, we discuss glycocalyx targeting therapeutic approaches reported in animal and clinical experiments. The study concludes that cancer cells’ glycocalyx and its role in cancer progression are beginning to be known by more groups, and future studies should pay more attention to its mechanotransduction of interstitial flow-induced shear stress, seeking promising therapeutic targets with less toxicity but more specificity.
Collapse
Affiliation(s)
- Hongyan Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Qiuhong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Anqiang Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Xiao Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
- National Research Center for Rehabilitation Technical Aids, Beijing 100176, China.
| | - Xiaoyan Deng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 102402, China.
| |
Collapse
|
29
|
Zhao J, Shi L, Zeng S, Ma C, Xu W, Zhang Z, Liu Q, Zhang P, Sun Y, Xu C. Importin-11 overexpression promotes the migration, invasion, and progression of bladder cancer associated with the deregulation of CDKN1A and THBS1. Urol Oncol 2018; 36:311.e1-311.e13. [DOI: 10.1016/j.urolonc.2018.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/27/2018] [Accepted: 03/04/2018] [Indexed: 11/15/2022]
|
30
|
Xu W, Xia H, Liu W, Zheng W, Hua L. Exploration of genetics commonness between bladder cancer and breast cancer based on a silcio analysis on disease subtypes. Technol Health Care 2018; 26:361-377. [PMID: 29758961 PMCID: PMC6027900 DOI: 10.3233/thc-174699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Muscle-invasive bladder cancers (MIBCs) are heterogeneous cancers and can be grouped into basal-like and luminal subtypes that are highly reminiscent of those found in breast cancer. Like basal-like breast cancers, basal-like MIBCs are associated with advanced stage and metastatic disease. However, the biological and clinical significance of molecular subtypes of MIBCs remain unclear. Therefore, we implemented a serious of bioinformatics methods to explore genetic similarities between bladder and breast cancers. METHODS AND RESULTS In the current study, by the application of multiple levels data analysis including random forest analysis, PPI and transcription factor regulation network construction, Gene Ontology (GO) and KEGG pathway enrichment analysis, we explored the genetics commonness between MIBC and breast cancers from the molecular heterogeneity based on the disease subtypes. CONCLUSIONS Our study identified some basal-related and luminal-related genes shared by two cancers. These studies can help shed light on the potential relationships between MIBC and breast cancer as a whole.
Collapse
Affiliation(s)
- Wenbin Xu
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Hong Xia
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Wei Liu
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Weiying Zheng
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Lin Hua
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| |
Collapse
|
31
|
Kim YH, Nijst P, Kiefer K, Tang WHW. Endothelial Glycocalyx as Biomarker for Cardiovascular Diseases: Mechanistic and Clinical Implications. Curr Heart Fail Rep 2017; 14:117-126. [PMID: 28233259 DOI: 10.1007/s11897-017-0320-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The endothelial surface layer is covered with abundant proteoglycans, of which syndecans and glycosaminoglycans are major constituents. RECENT FINDINGS Among the endothelial glycocalyx (eGC) constituents, syndecan-1 (sdc1) is a main component, and an elevated serum level of sdc1 may indicate the degradation of eGC. In patients with ischemic heart disease or heart failure, elevation of serum sdc1 has been associated with worsening cardiac and renal function; however, the causal relationship between degradation of eGC and clinical outcomes is unclear. Herein, we review the previous literature on eGC in cardiovascular and noncardiovascular diseases and their clinical implications.
Collapse
Affiliation(s)
- Youn-Hyun Kim
- , 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA.,Cardiovascular Division, Department of Internal Medicine, Korea University Ansan Hospital, Ansan-si, Republic of Korea
| | - Petra Nijst
- , 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA
| | - Kathryn Kiefer
- , 9500 Euclid Avenue, Desk J3-4, Cleveland, OH, 44195, USA
| | | |
Collapse
|
32
|
Cui X, Jing X, Yi Q, Long C, Tian J, Zhu J. Clinicopathological and prognostic significance of SDC1 overexpression in breast cancer. Oncotarget 2017; 8:111444-111455. [PMID: 29340066 PMCID: PMC5762334 DOI: 10.18632/oncotarget.22820] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
Background Breast cancer is the leading cause of cancer death among global women, and its early diagnosis and treatment are very urgent. Syndecan-1 (SDC1) is a heparin sulfate proteoglycan, which has been linked with the prognosis and treatment response in a various tumor type. To investigate whether SDC1 can serve as a prognostic indictor in breast cancer, bioinformatic analyses were performed in the present study. Methods SDC1 expression was assessed using Oncomine analysis. Kaplan-Meier Plotter and bc-GenExMiner were performed to identify the prognostic roles of SDC1 in breast cancer. COSMIC analysis and cBioPortal database were performed to analysis the mutations of SDC1. The heat map and methylation status of SDC1 were identified by performing the UCSC. Results We found that SDC1 was more frequently overexpressed in breast cancer than their normal tissues and its expression might be negatively related with some CpG sites. Meanwhile, pooled data suggested that SDC1 mRNA expression is associated worse prognosis of breast cancer. Following data mining in multiple big databases confirmed a positive correlation between SDC1 mRNA expression and PLAU mRNA expression in breast cancer tissues. In addition, high SDC1 expression is associated with increased risked of age, nodal, HER2 and higher SBR grade status. Conclusion Our findings suggest that overexpressed SDC1 was identified in breast cancer than in matched normal tissues and is associated with methylation status of SDC1 promoter. Additionally, SDC1 is positively associated with PLAU and might act as a potential prognostic indicator for breast cancer.
Collapse
Affiliation(s)
- Xiangrong Cui
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xuan Jing
- Clinical Laboratory, Shanxi Province People's Hospital, Taiyuan 030000, China
| | - Qin Yi
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Chunlan Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jie Tian
- Cardiovascular Department (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Jing Zhu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China.,Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| |
Collapse
|
33
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
34
|
Azevedo R, Peixoto A, Gaiteiro C, Fernandes E, Neves M, Lima L, Santos LL, Ferreira JA. Over forty years of bladder cancer glycobiology: Where do glycans stand facing precision oncology? Oncotarget 2017; 8:91734-91764. [PMID: 29207682 PMCID: PMC5710962 DOI: 10.18632/oncotarget.19433] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/19/2017] [Indexed: 12/19/2022] Open
Abstract
The high molecular heterogeneity of bladder tumours is responsible for significant variations in disease course, as well as elevated recurrence and progression rates, thereby hampering the introduction of more effective targeted therapeutics. The implementation of precision oncology settings supported by robust molecular models for individualization of patient management is warranted. This effort requires a comprehensive integration of large sets of panomics data that is yet to be fully achieved. Contributing to this goal, over 40 years of bladder cancer glycobiology have disclosed a plethora of cancer-specific glycans and glycoconjugates (glycoproteins, glycolipids, proteoglycans) accompanying disease progressions and dissemination. This review comprehensively addresses the main structural findings in the field and consequent biological and clinical implications. Given the cell surface and secreted nature of these molecules, we further discuss their potential for non-invasive detection and therapeutic development. Moreover, we highlight novel mass-spectrometry-based high-throughput analytical and bioinformatics tools to interrogate the glycome in the postgenomic era. Ultimately, we outline a roadmap to guide future developments in glycomics envisaging clinical implementation.
Collapse
Affiliation(s)
- Rita Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- New Therapies Group, INEB-Institute for Biomedical Engineering, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Elisabete Fernandes
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Biomaterials for Multistage Drug and Cell Delivery, INEB-Institute for Biomedical Engineering, Porto, Portugal
| | - Manuel Neves
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Luís Lima
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Glycobiology in Cancer, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| |
Collapse
|
35
|
Mavrogonatou E, Pratsinis H, Papadopoulou A, Karamanos NK, Kletsas D. Extracellular matrix alterations in senescent cells and their significance in tissue homeostasis. Matrix Biol 2017; 75-76:27-42. [PMID: 29066153 DOI: 10.1016/j.matbio.2017.10.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 12/16/2022]
Abstract
Normal cells after a defined number of successive divisions or after exposure to genotoxic stresses are becoming senescent, characterized by a permanent growth arrest. In addition, they secrete increased levels of pro-inflammatory and catabolic mediators, collectively termed "senescence-associated secretory phenotype". Furthermore, senescent cells exhibit an altered expression and organization of many extracellular matrix components, leading to specific remodeling of their microenvironment. In this review we present the current knowledge on extracellular matrix alterations associated with cellular senescence and critically discuss certain characteristic examples, highlighting the ambiguous role of senescent cells in the homeostasis of various tissues under both normal and pathologic conditions.
Collapse
Affiliation(s)
- Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece.
| |
Collapse
|
36
|
Seiler R, Oo HZ, Tortora D, Clausen TM, Wang CK, Kumar G, Pereira MA, Ørum-Madsen MS, Agerbæk MØ, Gustavsson T, Nordmaj MA, Rich JR, Lallous N, Fazli L, Lee SS, Douglas J, Todenhöfer T, Esfandnia S, Battsogt D, Babcook JS, Al-Nakouzi N, Crabb SJ, Moskalev I, Kiss B, Davicioni E, Thalmann GN, Rennie PS, Black PC, Salanti A, Daugaard M. An Oncofetal Glycosaminoglycan Modification Provides Therapeutic Access to Cisplatin-resistant Bladder Cancer. Eur Urol 2017; 72:142-150. [PMID: 28408175 DOI: 10.1016/j.eururo.2017.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Although cisplatin-based neoadjuvant chemotherapy (NAC) improves survival of unselected patients with muscle-invasive bladder cancer (MIBC), only a minority responds to therapy and chemoresistance remains a major challenge in this disease setting. OBJECTIVE To investigate the clinical significance of oncofetal chondroitin sulfate (ofCS) glycosaminoglycan chains in cisplatin-resistant MIBC and to evaluate these as targets for second-line therapy. DESIGN, SETTING, AND PARTICIPANTS An ofCS-binding recombinant VAR2CSA protein derived from the malaria parasite Plasmodium falciparum (rVAR2) was used as an in situ, in vitro, and in vivo ofCS-targeting reagent in cisplatin-resistant MIBC. The ofCS expression landscape was analyzed in two independent cohorts of matched pre- and post-NAC-treated MIBC patients. INTERVENTION An rVAR2 protein armed with cytotoxic hemiasterlin compounds (rVAR2 drug conjugate [VDC] 886) was evaluated as a novel therapeutic strategy in a xenograft model of cisplatin-resistant MIBC. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Antineoplastic effects of targeting ofCS. RESULTS AND LIMITATIONS In situ, ofCS was significantly overexpressed in residual tumors after NAC in two independent patient cohorts (p<0.02). Global gene-expression profiling and biochemical analysis of primary tumors and cell lines revealed syndican-1 and chondroitin sulfate proteoglycan 4 as ofCS-modified proteoglycans in MIBC. In vitro, ofCS was expressed on all MIBC cell lines tested, and VDC886 eliminated these cells in the low-nanomolar IC50 concentration range. In vivo, VDC886 effectively retarded growth of chemoresistant orthotopic bladder cancer xenografts and prolonged survival (p=0.005). The use of cisplatin only for the generation of chemoresistant xenografts are limitations of our animal model design. CONCLUSIONS Targeting ofCS provides a promising second-line treatment strategy in cisplatin-resistant MIBC. PATIENT SUMMARY Cisplatin-resistant bladder cancer overexpresses particular sugar chains compared with chemotherapy-naïve bladder cancer. Using a recombinant protein from the malaria parasite Plasmodium falciparum, we can target these sugar chains, and our results showed a significant antitumor effect in cisplatin-resistant bladder cancer. This novel treatment paradigm provides therapeutic access to bladder cancers not responding to cisplatin.
Collapse
Affiliation(s)
- Roland Seiler
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Urology, University of Bern, Bern, Switzerland
| | - Htoo Zarni Oo
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Davide Tortora
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Thomas M Clausen
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Chris K Wang
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gunjan Kumar
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Marina Ayres Pereira
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maj S Ørum-Madsen
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Mette Ø Agerbæk
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada; Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tobias Gustavsson
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mie A Nordmaj
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Nada Lallous
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ladan Fazli
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Sherry S Lee
- Vancouver Prostate Centre, Vancouver, BC, Canada
| | - James Douglas
- Department of Urology, University Hospital of Southampton, Hampshire, UK
| | - Tilman Todenhöfer
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Shaghayegh Esfandnia
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada
| | | | | | - Nader Al-Nakouzi
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Simon J Crabb
- Department of Medical Oncology, University Hospital of Southampton, Hampshire, UK
| | | | - Bernhard Kiss
- Department of Urology, University of Bern, Bern, Switzerland
| | | | | | - Paul S Rennie
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ali Salanti
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, Vancouver, BC, Canada; Zymeworks Inc., Vancouver, BC, Canada.
| |
Collapse
|
37
|
Heyman B, Yang Y. Mechanisms of heparanase inhibitors in cancer therapy. Exp Hematol 2016; 44:1002-1012. [PMID: 27576132 DOI: 10.1016/j.exphem.2016.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/09/2016] [Accepted: 08/19/2016] [Indexed: 12/26/2022]
Abstract
Heparanase is an endo-β-D-glucuronidase capable of cleaving heparan sulfate side chains contributing to breakdown of the extracellular matrix. Increased expression of heparanase has been observed in numerous malignancies and is associated with a poor prognosis. It has generated significant interest as a potential antineoplastic target because of the multiple roles it plays in tumor growth and metastasis. The protumorigenic effects of heparanase are enhanced by the release of heparan sulfate side chains, with subsequent increase in bioactive fragments and cytokine levels that promote tumor invasion, angiogenesis, and metastasis. Preclinical experiments have found heparanase inhibitors to substantially reduce tumor growth and metastasis, leading to clinical trials with heparan sulfate mimetics. In this review, we examine the role of heparanase in tumor biology and its interaction with heparan surface proteoglycans, specifically syndecan-1, as well as the mechanism of action for heparanase inhibitors developed as antineoplastic therapeutics.
Collapse
Affiliation(s)
- Benjamin Heyman
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina, USA; Department of Immunology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
38
|
Jary M, Lecomte T, Bouché O, Kim S, Dobi E, Queiroz L, Ghiringhelli F, Etienne H, Léger J, Godet Y, Balland J, Lakkis Z, Adotevi O, Bonnetain F, Borg C, Vernerey D. Prognostic value of baseline seric Syndecan-1 in initially unresectable metastatic colorectal cancer patients: a simple biological score. Int J Cancer 2016; 139:2325-35. [PMID: 27472156 DOI: 10.1002/ijc.30367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/24/2016] [Accepted: 07/01/2016] [Indexed: 01/17/2023]
Abstract
In first-line metastatic colorectal cancer (mCRC), baseline prognostic factors allowing death risk and treatment strategy stratification are lacking. Syndecan-1 (CD138) soluble form was never described as a prognostic biomarker in mCRC. We investigated its additional prognostic value for overall survival (OS). mCRC patients with unresectable disease at diagnosis were treated with bevacizumab-based chemotherapy in two independent prospective clinical trials (development set: n = 126, validation set: n = 51, study NCT00489697 and study NCT00544011, respectively). Serums were collected at baseline for CD138 measurement. OS determinants were assessed and, based on the final multivariate model, a prognostic score was proposed. Two independent OS prognostic factors were identified: Lactate Dehydrogenase (LDH) high level (p = 0.0066) and log-CD138 high level (p = 0.0190). The determination of CD138 binary information (cutoff: 75 ng/mL) allowed the assessment of a biological prognostic score with CD138 and LDH values, identifying three risk groups for death (median OS= 38.9, 30.1 and 19.8 months for the low, intermediate and high risk groups, respectively; p < 0.0001). This score had a good discrimination ability (C-index = 0.63). These results were externally confirmed in the validation set. Our study provides robust evidence in favor of the additional baseline soluble CD138 prognostic value for OS, in mCRC patients. A simple biological scoring system is proposed including LDH and CD138 binary status values.
Collapse
Affiliation(s)
- Marine Jary
- Department of Medical Oncology, University Hospital, Besançon, France. .,INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France. .,Clinical Investigation Center 1431, EFS Bourgogne-Franche Comté, Besançon, France.
| | - Thierry Lecomte
- CNRS, Unit 7292, University François-Rabelais, Tours, France.,Department of HepatoGastroenterology and Digestive Oncology, University Hospital, Tours, France
| | - Olivier Bouché
- Department of HepatoGastroenterology and Digestive Oncology, University Hospital Robert Debré, Reims, France
| | - Stefano Kim
- Department of Medical Oncology, University Hospital, Besançon, France.,Clinical Investigation Center 1431, EFS Bourgogne-Franche Comté, Besançon, France
| | - Erion Dobi
- Department of Medical Oncology, University Hospital, Besançon, France
| | - Lise Queiroz
- INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France
| | | | - Hélène Etienne
- Department of Medical Oncology, University Hospital, Besançon, France.,Department of Gastroenterology, University Hospital, Besançon, France
| | - Julie Léger
- INSERM, Clinical Investigational Center CIC 1415, Tours, France
| | - Yann Godet
- INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France
| | - Jérémy Balland
- INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France
| | - Zaher Lakkis
- Department of Digestive Surgery and Liver Transplantation, University Hospital, Besançon, France
| | - Olivier Adotevi
- Department of Medical Oncology, University Hospital, Besançon, France.,INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France
| | - Franck Bonnetain
- INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France.,Clinical Investigation Center 1431, EFS Bourgogne-Franche Comté, Besançon, France.,Methodological and Quality of Life in Oncology Unit, EA 3181, University Hospital, Besançon, France
| | - Christophe Borg
- Department of Medical Oncology, University Hospital, Besançon, France.,INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France.,Clinical Investigation Center 1431, EFS Bourgogne-Franche Comté, Besançon, France
| | - Dewi Vernerey
- INSERM, Unit 1098, University of Bourgogne- Franche Comté, Besançon, France.,Clinical Investigation Center 1431, EFS Bourgogne-Franche Comté, Besançon, France.,Methodological and Quality of Life in Oncology Unit, EA 3181, University Hospital, Besançon, France
| |
Collapse
|
39
|
Szarvas T, Reis H, Vom Dorp F, Tschirdewahn S, Niedworok C, Nyirady P, Schmid KW, Rübben H, Kovalszky I. Soluble syndecan-1 (SDC1) serum level as an independent pre-operative predictor of cancer-specific survival in prostate cancer. Prostate 2016; 76:977-85. [PMID: 27062540 DOI: 10.1002/pros.23186] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/22/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND PSA-screening detects many cases of clinically non-aggressive prostate cancer (PC) leading to significant overtreatment. Therefore, pre-operatively available prognostic biomarkers are needed to help therapy decisions. Syndecan-1 (SDC1) is a promising prognostic tissue marker in several cancers including PC but serum levels of shedded SDC1-ectodomain (sSDC1) have not been assessed in PC. METHODS A total of 150 patients with PC were included in this study (n = 99 serum samples, n = 103 paraffin-embedded samples (FFPE), n = 52 overlap). SDC1 protein expression and cellular localization was evaluated by immunohistochemistry (IHC), while sSDC1 serum concentrations were measured by ELISA. Serum sSDC1 levels were compared to those of MMP7, which is known to be a protease involved in SDC1 ectodomain-shedding. Clinico-pathological and follow-up data were collected and correlated with SDC1 tissue and serum levels. Disease (PC)-specific (DSS) and overall-survival (OS) were primary endpoints. RESULTS Median follow-up was 167 months in the serum- and 146 months in the FFPE-group. SDC1-reactivity was higher in non-neoplastic prostate glands compared to PC. In addition, cytoplasmatic, but not membranous SDC1 expression was enhanced in PC patients with higher Gleason-score >6 PC (P = 0.016). Soluble SDC1-levels were higher in patients with Gleason-score >6 (P = 0.043) and metastatic disease (P = 0.022) as well as in patients with progressed disease treated with palliative transurethral resection (P = 0.002). In addition, sSDC1 levels were associated with higher MMP7 serum concentration (P = 0.005). In univariable analyses, only sSDC1-levels exhibited a trend to unfavorable DSS (P = 0.077). In a multivariable pre-operative model, high pre-operative sSDC1-level (>123 ng/ml) proved to be an independent marker of adverse OS (P = 0.048) and DSS (P = 0.020). CONCLUSIONS The present study does not confirm the prognostic relevance of SDC1-IHC. The significant higher sSDC1 serum levels in advanced cases of PC, suggest that SDC1 shedding might be involved in PC progression. Additionally, high sSDC1-level proved to be an independent factor of adverse OS and DSS in a multivariable pre-operative model, making evaluation of sSDC1-levels a promising tool for pre-operative risk-stratification and/or therapy monitoring. Prostate 76:977-985, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tibor Szarvas
- Department of Urology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Henning Reis
- Faculty of Medicine, Institute of Pathology, University Duisburg-Essen, Essen, Germany
| | - Frank Vom Dorp
- Department of Urology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Stephan Tschirdewahn
- Department of Urology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Christian Niedworok
- Department of Urology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Peter Nyirady
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Kurt W Schmid
- Faculty of Medicine, Institute of Pathology, University Duisburg-Essen, Essen, Germany
| | - Herbert Rübben
- Department of Urology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Ilona Kovalszky
- First Institute of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
40
|
Shed proteoglycans in tumor stroma. Cell Tissue Res 2016; 365:643-55. [DOI: 10.1007/s00441-016-2452-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/08/2016] [Indexed: 12/12/2022]
|
41
|
Abstract
BACKGROUND The histopathological structure of malignant tumours involves two essential compartments - the tumour parenchyma with the actual transformed cells, and the supportive tumour stroma. The latter consists of specialized mesenchymal cells, such as fibroblasts, macrophages, lymphocytes and vascular cells, as well as of their secreted products, including components of the extracellular matrix, matrix modifying enzymes and numerous regulatory growth factors and cytokines. In consequence, the tumour stroma has the ability to influence virtually all aspects of tumour development and progression, including therapeutic response. AIM In this article we review the current knowledge of tumor stroma interactions in urothelial carcinoma and present various experimental systems that are currently in use to unravel the biological basis of these heterotypic cell interactions. RESULTS For urothelial carcinoma, an extensive tumour stroma is quite typical and markers of activated fibroblasts correlate significantly with clinical parameters of advanced disease. Another clinically important variable is provided by the stromal expression of syndecan-1. CONCLUSION Integration of markers of activated stroma into clinical risk evaluation could aid to better stratification of urothelial bladder carcinoma patients. Elucidation of biological mechanisms underlying tumour-stroma interactions could provide new therapeutical targets.
Collapse
|
42
|
Alfano M, Canducci F, Nebuloni M, Clementi M, Montorsi F, Salonia A. The interplay of extracellular matrix and microbiome in urothelial bladder cancer. Nat Rev Urol 2016; 13:77-90. [PMID: 26666363 PMCID: PMC7097604 DOI: 10.1038/nrurol.2015.292] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many pathological changes in solid tumours are caused by the accumulation of genetic mutations and epigenetic molecular alterations. In addition, tumour progression is profoundly influenced by the environment surrounding the transformed cells. The interplay between tumour cells and their microenvironment has been recognized as one of the key determinants of cancer development and is being extensively investigated. Data suggest that both the extracellular matrix and the microbiota represent microenvironments that contribute to the onset and progression of tumours. Through the introduction of omics technologies and pyrosequencing analyses, a detailed investigation of these two microenvironments is now possible. In urological research, assessment of their dysregulation has become increasingly important to provide diagnostic, prognostic and predictive biomarkers for urothelial bladder cancer. Understanding the roles of the extracellular matrix and microbiota, two key components of the urothelial mucosa, in the sequelae of pathogenic events that occur in the development and progression of urothelial carcinomas will be important to overcome the shortcomings in current bladder cancer treatment strategies.
Collapse
Affiliation(s)
- Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan Italy
| | - Filippo Canducci
- Department of Biotechnology and Life Sciences, Università degli Studi dell'Insubria, Via Dunant 3, 21100 Varese Italy
| | - Manuela Nebuloni
- Department of Clinical Sciences, Pathology Unit, L. Sacco Hospital, Università degli Studi di Milano, Via Giovanni Battista Grassi 74, 20157 Milan Italy
| | - Massimo Clementi
- Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan Italy
| | - Francesco Montorsi
- Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan Italy
| | - Andrea Salonia
- Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan Italy
| |
Collapse
|
43
|
Kiselyov A, Bunimovich-Mendrazitsky S, Startsev V. Key signaling pathways in the muscle-invasive bladder carcinoma: Clinical markers for disease modeling and optimized treatment. Int J Cancer 2015; 138:2562-9. [PMID: 26547270 DOI: 10.1002/ijc.29918] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/03/2015] [Accepted: 11/04/2015] [Indexed: 02/01/2023]
Abstract
In this review, we evaluate key molecular pathways and markers of muscle-invasive bladder cancer (MIBC). Overexpression and activation of EGFR, p63, and EMT genes are suggestive of basal MIBC subtype generally responsive to chemotherapy. Alterations in PPARγ, ERBB2/3, and FGFR3 gene products and their signaling along with deregulated p53, cytokeratins KRT5/6/14 in combination with the cellular proliferation (Ki-67), and cell cycle markers (p16) indicate the need for more radical treatment protocols. Similarly, the "bell-shape" dynamics of Shh expression levels may suggest aggressive MIBC. A panel of diverse biological markers may be suitable for simulation studies of MIBC and development of an optimized treatment protocol. We conducted a critical evaluation of PubMed/Medline and SciFinder databases related to MIBC covering the period 2009-2015. The free-text search was extended by adding the following keywords and phrases: bladder cancer, metastatic, muscle-invasive, basal, luminal, epithelial-to-mesenchymal transition, cancer stem cell, mutations, immune response, signaling, biological markers, molecular markers, mathematical models, simulation, epigenetics, transmembrane, transcription factor, kinase, predictor, prognosis. The resulting selection of ca 500 abstracts was further analyzed in order to select the latest publications relevant to MIBC molecular markers of immediate clinical significance.
Collapse
Affiliation(s)
- Alex Kiselyov
- NBIC, Moscow Institute of Physics and Technology (MIPT), 9 Institutsky per, Dolgoprudny, Moscow Region, 141700, Russia
| | | | - Vladimir Startsev
- Department of Oncology, State Pediatric Medical University, St.-Petersburg, 194100, Russia
| |
Collapse
|
44
|
Wei HT, Guo EN, Dong BG, Chen LS. Prognostic and clinical significance of syndecan-1 in colorectal cancer: a meta-analysis. BMC Gastroenterol 2015; 15:152. [PMID: 26518017 PMCID: PMC4628393 DOI: 10.1186/s12876-015-0383-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/21/2015] [Indexed: 12/31/2022] Open
Abstract
Background Syndecan-1 plays a vital role in the suppression, transformation, and migration of several cancer types, including colorectal cancer (CRC). However, the prognostic and clinical significance of syndecan-1 in CRC remains conflicting. Therefore, we performed a meta-analysis to clarify this relationship. Methods A comprehensive literature search for relevant studies published up to December 2014 was performed using PubMed, EMBASE, and Ovid library database. The odds ratio (OR) and pooled hazard ratio (HR) with their 95 % confidence intervals (CI) were used to estimate the effects. Results Ten studies with 888 CRC patients were selected for evaluation. The results showed that syndecan-1 expression was lower in CRC tissue than in normal colorectal tissue (OR = 0.02, 95 % CI = 0.00–0.09), and lower in the advanced stage than in the early stage (OR = 2.24, 95 % CI = 1.14 − 4.42). Additionally, syndecan-1 expression was higher in well and moderately differentiated CRC than in poorly differentiated CRC (OR = 2.91, 95 % CI = 1.21–6.98); no significant difference was found in patients with or without lymph node metastasis (OR = 0.91, 95 % CI = 0.34–2.43) and distant metastasis (OR = 0.89, 95 % CI = 0.19-4.21). The pooled results showed that syndecan-1 expression was not associated with survival in CRC patients (HR = 0.93, 95 % CI = 0.86–1.01). Conclusion This meta-analysis indicated that loss of syndecan-1 expression is associated with CRC development, histological differentiation, and clinical stage, but not with lymph node metastasis and distant metastasis. In addition, these findings fail to support the prognostic significance of syndecan-1 in CRC.
Collapse
Affiliation(s)
- Hao-Tang Wei
- Department of Colorectal & Anal Surgery, the First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, China
| | - Er-Na Guo
- Institute of International Education, Guangxi Medical University, Nanning, 530021, China
| | - Bao-Guo Dong
- Department of gastrointestinal surgery, the Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, China
| | - Li-Sheng Chen
- Department of Colorectal & Anal Surgery, the First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, China.
| |
Collapse
|
45
|
Akl MR, Nagpal P, Ayoub NM, Prabhu SA, Gliksman M, Tai B, Hatipoglu A, Goy A, Suh KS. Molecular and clinical profiles of syndecan-1 in solid and hematological cancer for prognosis and precision medicine. Oncotarget 2015; 6:28693-715. [PMID: 26293675 PMCID: PMC4745686 DOI: 10.18632/oncotarget.4981] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/11/2015] [Indexed: 12/18/2022] Open
Abstract
Syndecan-1 (SDC1, CD138) is a key cell surface adhesion molecule essential for maintaining cell morphology and interaction with the surrounding microenvironment. Deregulation of SDC1 contributes to cancer progression by promoting cell proliferation, metastasis, invasion and angiogenesis, and is associated with relapse through chemoresistance. SDC1 expression level is also associated with responses to chemotherapy and with prognosis in multiple solid and hematological cancers, including multiple myeloma and Hodgkin lymphoma. At the tissue level, the expression levels of SDC1 and the released extracellular domain of SDC1 correlate with tumor malignancy, phenotype, and metastatic potential for both solid and hematological tumors in a tissue-specific manner. The SDC1 expression profile varies among cancer types, but the differential expression signatures between normal and cancer cells in epithelial and stromal compartments are directly associated with aggressiveness of tumors and patient's clinical outcome and survival. Therefore, relevant biomarkers of SDC signaling may be useful for selecting patients that would most likely respond to a particular therapy at the time of diagnosis or perhaps for predicting relapse. In addition, the reciprocal expression signature of SDC between tumor epithelial and stromal compartments may have synergistic value for patient selection and the prediction of clinical outcome.
Collapse
Affiliation(s)
- Mohamed R. Akl
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Poonam Nagpal
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Sathyen A. Prabhu
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Matthew Gliksman
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Betty Tai
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Ahmet Hatipoglu
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - Andre Goy
- Lymphoma Division, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| | - K. Stephen Suh
- Genomics and Biomarkers Program, The John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ, USA
| |
Collapse
|
46
|
Syndecan-1 in Cancer: Implications for Cell Signaling, Differentiation, and Prognostication. DISEASE MARKERS 2015; 2015:796052. [PMID: 26420915 PMCID: PMC4569789 DOI: 10.1155/2015/796052] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/16/2015] [Indexed: 11/17/2022]
Abstract
Syndecan-1, a cell surface heparan sulfate proteoglycan, is critically involved in the differentiation and prognosis of various tumors. In this review, we highlight the synthesis, cellular interactions, and the signalling pathways regulated by syndecan-1. The basal syndecan-1 level is also crucial for understanding the sequential changes involving malignant transformation, tumor progression, and advanced or disseminated cancer stages. Moreover, we focus on the cellular localization of this proteoglycan as cell membrane anchored and/or shed, soluble syndecan-1 with stromal or nuclear accumulation and how this may carry different, highly tissue specific prognostic information for individual tumor types.
Collapse
|
47
|
Hammond E, Khurana A, Shridhar V, Dredge K. The Role of Heparanase and Sulfatases in the Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and Opportunities for Novel Cancer Therapeutics. Front Oncol 2014; 4:195. [PMID: 25105093 PMCID: PMC4109498 DOI: 10.3389/fonc.2014.00195] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are an integral and dynamic part of normal tissue architecture at the cell surface and within the extracellular matrix. The modification of HSPGs in the tumor microenvironment is known to result not just in structural but also functional consequences, which significantly impact cancer progression. As substrates for the key enzymes sulfatases and heparanase, the modification of HSPGs is typically characterized by the degradation of heparan sulfate (HS) chains/sulfation patterns via the endo-6-O-sulfatases (Sulf1 and Sulf2) or by heparanase, an endo-glycosidase that cleaves the HS polymers releasing smaller fragments from HSPG complexes. Numerous studies have demonstrated how these enzymes actively influence cancer cell proliferation, signaling, invasion, and metastasis. The activity or expression of these enzymes has been reported to be modified in a variety of cancers. Such observations are consistent with the degradation of normal architecture and basement membranes, which are typically compromised in metastatic disease. Moreover, recent studies elucidating the requirements for these proteins in tumor initiation and progression exemplify their importance in the development and progression of cancer. Thus, as the influence of the tumor microenvironment in cancer progression becomes more apparent, the focus on targeting enzymes that degrade HSPGs highlights one approach to maintain normal tissue architecture, inhibit tumor progression, and block metastasis. This review discusses the role of these enzymes in the context of the tumor microenvironment and their promise as therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
| | - Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester, MN , USA
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester, MN , USA
| | - Keith Dredge
- Progen Pharmaceuticals Ltd. , Brisbane, QLD , Australia
| |
Collapse
|