1
|
Filippone RT, Dargahi N, Eri R, Uranga JA, Bornstein JC, Apostolopoulos V, Nurgali K. Potent CCR3 Receptor Antagonist, SB328437, Suppresses Colonic Eosinophil Chemotaxis and Inflammation in the Winnie Murine Model of Spontaneous Chronic Colitis. Int J Mol Sci 2022; 23:ijms23147780. [PMID: 35887133 PMCID: PMC9317166 DOI: 10.3390/ijms23147780] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Eosinophils and their regulatory molecules have been associated with chronic intestinal inflammation and gastrointestinal dysfunctions; eosinophil accumulation in the gut is prominent in inflammatory bowel disease (IBD). The chemokine receptor CCR3 plays a pivotal role in local and systemic recruitment and activation of eosinophils. In this study, we targeted CCR3-ligand interactions with a potent CCR3 receptor antagonist, SB328437, to alleviate eosinophil-associated immunological responses in the Winnie model of spontaneous chronic colitis. Winnie and C57BL/6 mice were treated with SB328437 or vehicle. Clinical and histopathological parameters of chronic colitis were assessed. Flow cytometry was performed to discern changes in colonic, splenic, circulatory, and bone marrow-derived leukocytes. Changes to the serum levels of eosinophil-associated chemokines and cytokines were measured using BioPlex. Inhibition of CCR3 receptors with SB328437 attenuated disease activity and gross morphological damage to the inflamed intestines and reduced eosinophils and their regulatory molecules in the inflamed colon and circulation. SB328437 had no effect on eosinophils and their progenitor cells in the spleen and bone marrow. This study demonstrates that targeting eosinophils via the CCR3 axis has anti-inflammatory effects in the inflamed intestine, and also contributes to understanding the role of eosinophils as potential end-point targets for IBD treatment.
Collapse
Affiliation(s)
- Rhiannon T. Filippone
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, VIC 3021, Australia; (R.T.F.); (N.D.); (K.N.)
| | - Narges Dargahi
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, VIC 3021, Australia; (R.T.F.); (N.D.); (K.N.)
| | - Rajaraman Eri
- School of Health Sciences, The University of Tasmania, Launceston, TAS 7248, Australia;
| | - Jose A. Uranga
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain;
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Joel C. Bornstein
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, VIC 3021, Australia; (R.T.F.); (N.D.); (K.N.)
- Immunology Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
- Correspondence:
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Western Centre for Health Research and Education, Sunshine Hospital, Melbourne, VIC 3021, Australia; (R.T.F.); (N.D.); (K.N.)
- Department of Medicine-Western Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3010, Australia
- Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| |
Collapse
|
2
|
Elucidating the Role of Innate and Adaptive Immune Responses in the Pathogenesis of Canine Chronic Inflammatory Enteropathy-A Search for Potential Biomarkers. Animals (Basel) 2022; 12:ani12131645. [PMID: 35804545 PMCID: PMC9264988 DOI: 10.3390/ani12131645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Canine chronic inflammatory enteropathy (CIE) is a chronic disease affecting the small or large intestine and, in some cases, the stomach of dogs. This gastrointestinal disorder is common and is characterized by recurrent vomiting, diarrhea, and weight loss in affected dogs. The pathogenesis of IBD is not completely understood. Similar to human IBD, potential disease factors include genetics, environmental exposures, and dysregulation of the microbiota and the immune response. Some important components of the innate and adaptive immune response involved in CIE pathogenesis have been described. However, the immunopathogenesis of the disease has not been fully elucidated. In this review, we summarized the literature associated with the different cell types and molecules involved in the immunopathogenesis of CIE, with the aim of advancing the search for biomarkers with possible diagnostic, prognostic, or therapeutic utility. Abstract Canine chronic inflammatory enteropathy (CIE) is one of the most common chronic gastrointestinal diseases affecting dogs worldwide. Genetic and environmental factors, as well as intestinal microbiota and dysregulated host immune responses, participate in this multifactorial disease. Despite advances explaining the immunological and molecular mechanisms involved in CIE development, the exact pathogenesis is still unknown. This review compiles the latest reports and advances that describe the main molecular and cellular mechanisms of both the innate and adaptive immune responses involved in canine CIE pathogenesis. Future studies should focus research on the characterization of the immunopathogenesis of canine CIE in order to advance the establishment of biomarkers and molecular targets of diagnostic, prognostic, or therapeutic utility.
Collapse
|
3
|
Krupa A, Kowalska I. The Kynurenine Pathway-New Linkage between Innate and Adaptive Immunity in Autoimmune Endocrinopathies. Int J Mol Sci 2021; 22:9879. [PMID: 34576041 PMCID: PMC8469440 DOI: 10.3390/ijms22189879] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells' differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies-type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
4
|
Liu C, Liu X, Zhang Y, Liu J, Yang C, Luo S, Liu T, Wang Y, Lindholt JS, Diederichsen A, Rasmussen LM, Dahl M, Sukhova GK, Lu G, Upchurch GR, Libby P, Guo J, Zhang J, Shi GP. Eosinophils Protect Mice From Angiotensin-II Perfusion-Induced Abdominal Aortic Aneurysm. Circ Res 2021; 128:188-202. [PMID: 33153394 PMCID: PMC7855167 DOI: 10.1161/circresaha.120.318182] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RATIONALE Blood eosinophil count and ECP (eosinophil cationic protein) associate with human cardiovascular diseases. Yet, whether eosinophils play a role in cardiovascular disease remains untested. The current study detected eosinophil accumulation in human and murine abdominal aortic aneurysm (AAA) lesions, suggesting eosinophil participation in this aortic disease. OBJECTIVE To test whether and how eosinophils affect AAA growth. METHODS AND RESULTS Population-based randomized clinically controlled screening trials revealed higher blood eosinophil count in 579 male patients with AAA than in 5063 non-AAA control (0.236±0.182 versus 0.211±0.154, 109/L, P<0.001). Univariate (odds ratio, 1.381, P<0.001) and multivariate (odds ratio, 1.237, P=0.031) logistic regression analyses indicated that increased blood eosinophil count in patients with AAA served as an independent risk factor of human AAA. Immunostaining and immunoblot analyses detected eosinophil accumulation and eosinophil cationic protein expression in human and murine AAA lesions. Results showed that eosinophil deficiency exacerbated AAA growth with increased lesion inflammatory cell contents, matrix-degrading protease activity, angiogenesis, cell proliferation and apoptosis, and smooth muscle cell loss using angiotensin-II perfusion-induced AAA in Apoe-/- and eosinophil-deficient Apoe-/-ΔdblGATA mice. Eosinophil deficiency increased lesion chemokine expression, muted lesion expression of IL (interleukin) 4 and eosinophil-associated-ribonuclease-1 (mEar1 [mouse EOS-associated-ribonuclease-1], human ECP homolog), and slanted M1 macrophage polarization. In cultured macrophages and monocytes, eosinophil-derived IL4 and mEar1 polarized M2 macrophages, suppressed CD11b+Ly6Chi monocytes, and increased CD11b+Ly6Clo monocytes. mEar1 treatment or adoptive transfer of eosinophil from wild-type and Il13-/- mice, but not eosinophil from Il4-/- mice, blocked AAA growth in Apoe-/-ΔdblGATA mice. Immunofluorescent staining and immunoblot analyses demonstrated a role for eosinophil IL4 and mEar1 in blocking NF-κB (nuclear factor-κB) activation in macrophages, smooth muscle cells, and endothelial cells. CONCLUSIONS Eosinophils play a protective role in AAA by releasing IL4 and cationic proteins such as mEar1 to regulate macrophage and monocyte polarization and to block NF-κB activation in aortic inflammatory and vascular cells.
Collapse
MESH Headings
- Adoptive Transfer
- Aged
- Angiotensin II
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Cells, Cultured
- Dilatation, Pathologic
- Disease Models, Animal
- Eosinophils/metabolism
- Eosinophils/transplantation
- Female
- Humans
- Inflammation Mediators/metabolism
- Interleukin-10/genetics
- Interleukin-10/metabolism
- Interleukin-4/genetics
- Interleukin-4/metabolism
- Macrophages/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Monocytes/metabolism
- NF-kappa B/metabolism
- Phenotype
- Ribonucleases/metabolism
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Conglin Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Xin Liu
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yuanyuan Zhang
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research & Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou 571199, China
| | - Jing Liu
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Chongzhe Yang
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Songyuan Luo
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tianxiao Liu
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yunzhe Wang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jes S. Lindholt
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
- Elitary Research Centre of personalised medicine in arterial disease (CIMA), Odense University Hospital, Odense, Denmark
- Cardiovascular Research Unit, Viborg Hospital, Denmark
| | - Axel Diederichsen
- Elitary Research Centre of personalised medicine in arterial disease (CIMA), Odense University Hospital, Odense, Denmark
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Lars M. Rasmussen
- Elitary Research Centre of personalised medicine in arterial disease (CIMA), Odense University Hospital, Odense, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Marie Dahl
- Cardiovascular Research Unit, Viborg Hospital, Denmark
| | - Galina K. Sukhova
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Guanyi Lu
- Department of Surgery, University of Florida Health System, Gainesville, FL, USA
| | - Gilbert R. Upchurch
- Department of Surgery, University of Florida Health System, Gainesville, FL, USA
| | - Peter Libby
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Junli Guo
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research & Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou 571199, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guo-Ping Shi
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Kuck K, Jürgenliemk G, Lipowicz B, Heilmann J. Sesquiterpenes from Myrrh and Their ICAM-1 Inhibitory Activity In Vitro. Molecules 2020; 26:E42. [PMID: 33374825 PMCID: PMC7796156 DOI: 10.3390/molecules26010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
By using various chromatographic steps (silica flash, CPC, preparative HPLC), 16 sesquiterpenes could be isolated from an ethanolic extract of myrrh resin. Their chemical structures were elucidated by 1D and 2D NMR spectroscopy and HRESIMS. Among them, six previously unknown compounds (1-6) and another four metabolites previously not described for the genus Commiphora (7, 10, 12, 13) could be identified. Sesquiterpenes 1 and 2 are novel 9,10-seco-eudesmanes and exhibited an unprecedented sesquiterpene carbon skeleton, which is described here for the first time. New compound 3 is an 9,10 seco-guaian and the only peroxide isolated from myrrh so far. Compounds 1, 2, 4, 7-9, 11, 13-16 were tested in an ICAM-1 in vitro assay. Compound 7, as well as the reference compound furanoeudesma-1,3-diene, acted as moderate inhibitors of this adhesion molecule ICAM-1 (IC50: 44.8 and 46.3 μM, respectively). These results give new hints on the activity of sesquiterpenes with regard to ICAM-1 inhibition and possible modes of action of myrrh in anti-inflammatory processes.
Collapse
Affiliation(s)
- Katrin Kuck
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany; (K.K.); (G.J.)
| | - Guido Jürgenliemk
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany; (K.K.); (G.J.)
| | - Bartosz Lipowicz
- Repha GmbH Biologische Arzneimittel, Alt-Godshorn 87, D-30855 Langenhagen, Germany;
| | - Jörg Heilmann
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany; (K.K.); (G.J.)
| |
Collapse
|
6
|
Maggi L, Rocha IC, Camelo GMA, Fernandes VR, Negrão-Corrêa D. The IL-33/ST2 pathway is not essential to Th2 stimulation but is key for modulation and survival during chronic infection with Schistosoma mansoni in mice. Cytokine 2020; 138:155390. [PMID: 33341001 DOI: 10.1016/j.cyto.2020.155390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/11/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
Morbidity during chronic schistosomiasis has been associated with the induction and modulation of type-2 granulomatous inflammatory response induced by antigens secreted by the eggs, which become trapped in capillary venules of the host tissues, especially in the liver and intestines. IL-33, an alarmin released after cell damage, binds to its ST2 (suppressor of tumorigenicity 2) receptor, expressed in an variety of immune cells, including ILC2 and macrophages, and stimulates the early production of IL-5 and IL-13, which leads to eosinophil infiltration and activation of a Th2 response. However, the role of IL-33/ST2 activation on Schistosoma-induced granuloma formation and modulation is mostly unknown. In the current work, we comparatively evaluated the immune response and granuloma formation in wild-type BALB/c (WT) and BALB/c mice genetically deficient in the IL-33 receptor (ST2-/-) experimentally infected with Schistosoma mansoni. Mice were infected with 25 or 50 S. mansoni cercariae and followed for up to 14 weeks to assess mortality. Mice from each experimental group were comparatively evaluated for parasite burden, liver immune response, and granuloma appearance during acute and chronic schistosomiasis. Our data showed that the number of circulating worms and eggs retained in the liver and eliminated in the feces was similar in WT and ST2-/- infected mice, but infected ST2-/- mice presented an enhanced rate of mortality. Interestingly, the production of type-2 cytokines by soluble egg antigens (SEA)-stimulated spleen cells, the serum concentrations of IL-5 and Immunoglobulin (Ig)-E, and the level of parasite-reactive IgG1 were similar in infected mice of both experimental groups. The concentrations of IL-4, IL-5, IL-13, and IFN-γ in liver homogenate of infected mice also did not differ between the strains at acute schistosomiasis, but there was a significant increase in IL-17 levels in ST2-/- infected mice at this phase. On the other hand, IL-4, IL-13, IL-10, IL-17, and IFN-γ concentrations were reduced and the ratios of IL-4/IFN-γ and IL-17/IFN-γ were higher in liver homogenate of chronically infected ST2-/- mice, suggesting unbalanced Th2 and Th17 responses. Moreover, liver granulomas of ST2-/- mice were larger and disorganized, showing an intense cellular infiltrate, rich in eosinophils and neutrophils. Our results suggest that the absence of the IL-33/ST2 pathway is not essential for the Schistosoma-induced Th2 response, but is necessary to prevent host mortality by modulating granuloma-mediated pathology.
Collapse
Affiliation(s)
- Laura Maggi
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabella Chrystina Rocha
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Curso de Enfermagem, Instituto de Ciências Biológicas e Saúde, Universidade Federal de Mato Grosso, Barra do Garça, Brazil
| | - Genil Mororó Araújo Camelo
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Rodrigues Fernandes
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Deborah Negrão-Corrêa
- Laboratório de Esquistossomose e Imunohelmintologia, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
7
|
Kim EM, Randall C, Betancourt R, Keene S, Lilly A, Fowler M, Dellon ES, Herfarth HH. Mucosal Eosinophilia Is an Independent Predictor of Vedolizumab Efficacy in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2020; 26:1232-1238. [PMID: 31633167 PMCID: PMC7365808 DOI: 10.1093/ibd/izz251] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Peripheral and mucosal eosinophilia may be associated with more aggressive disease in inflammatory bowel disease (IBD) patients. Vedolizumab blocks T lymphocytes, eosinophil adhesion, and extravasation in the gastrointestinal tract. It is not known if mucosal eosinophilia is a predictor for the therapeutic efficacy of vedolizumab. METHODS This was a retrospective cohort study of IBD patients with ileal or colonic biopsies who were off steroids before starting vedolizumab. Biopsies were rereviewed by pathologists, and mean eosinophil density was quantified. Patient characteristics and steroid-free clinical response 6 months after beginning vedolizumab were determined. Features were compared between nonresponders and responders, and multivariable logistic regression was performed to identify predictors of clinical response. RESULTS Of 251 IBD patients starting vedolizumab therapy, 65 patients (48% Crohn's disease, 52% ulcerative colitis) met inclusion criteria. All IBD patients not responding to vedolizumab were more likely to have a higher baseline mean eosinophil count (340 ± 156 vs 236 ± 124; P = 0.004), be previously exposed to an anti-TNF (96% vs 56%; P = 0.001), and be male (58% vs 28%; P = 0.02). Mean eosinophil counts were significantly increased in colonic biopsies in UC nonresponders (438 ± 149 vs 299 ± 145; P = 0.01). A similar trend was seen in CD nonresponders. On multivariable analysis, colonic eosinophil density and prior anti-TNF exposure-and the combination of both-were independent predictors of response. CONCLUSION In ulcerative colitis, colonic eosinophilia and prior anti-TNF exposure were independent predictors of 6-month clinical nonresponse to vedolizumab. Mucosal eosinophil density as a novel biomarker should be explored in larger patient cohorts.Aside from the previous anti-TNF exposure, eosinophil density in the colon of patients with UC is a negative predictor for a steroid-free long-term response to vedolizumab. The degree colonic eosinophilia may be a novel biomarker that should be further explored.
Collapse
Affiliation(s)
- Erin M Kim
- Multidisciplinary Center for Inflammatory Bowel Disease, Chapel Hill, NC, USA
| | - Cara Randall
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Renee Betancourt
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Staci Keene
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy Lilly
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark Fowler
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Evan S Dellon
- Multidisciplinary Center for Inflammatory Bowel Disease, Chapel Hill, NC, USA,Center for Esophageal Diseases and Swallowing, Chapel Hill, NC, USA
| | - Hans H Herfarth
- Multidisciplinary Center for Inflammatory Bowel Disease, Chapel Hill, NC, USA,Division of Gastroenterology and Hepatology, Chapel Hill, NC, USA,Address correspondence to: Hans H. Herfarth, MD, PhD, Division of Gastroenterology and Hepatology, University of North Carolina, Bioinformatics Building, CB#7080, Chapel Hill, NC, 27599 USA. E-mail:
| |
Collapse
|
8
|
Filippone RT, Sahakian L, Apostolopoulos V, Nurgali K. Eosinophils in Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:1140-1151. [PMID: 30856253 DOI: 10.1093/ibd/izz024] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Clinical investigations in inflammatory bowel disease (IBD) patients have provided increasing evidence that eosinophils contribute to chronic intestinal inflammation. Accumulation of eosinophils in the gastrointestinal tract correlates with the variations of eosinophil regulatory molecules; however, their role in gastrointestinal dysfunction in IBD has not been fully elucidated. This review will describe the development and characterization of gastrointestinal eosinophils, mechanisms of eosinophil recruitment to the gastrointestinal tract. Moreover, the eosinophil-induced changes to the enteric nervous system associated with disease severity and gastrointestinal dysfunction will be analyzed with suggestive molecular pathways for enteric neuronal injury. Current and potential therapeutic interventions targeting eosinophils will be discussed.
Collapse
Affiliation(s)
- Rhiannon T Filippone
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Lauren Sahakian
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Australia.,Department of Medicine Western Health, Melbourne University, Melbourne, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Australia
| |
Collapse
|
9
|
Abo H, Flannigan KL, Geem D, Ngo VL, Harusato A, Denning TL. Combined IL-2 Immunocomplex and Anti-IL-5 mAb Treatment Expands Foxp3 + Treg Cells in the Absence of Eosinophilia and Ameliorates Experimental Colitis. Front Immunol 2019; 10:459. [PMID: 30930900 PMCID: PMC6428029 DOI: 10.3389/fimmu.2019.00459] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/20/2019] [Indexed: 01/08/2023] Open
Abstract
Interleukin (IL)-2 is expressed during T cell activation and induces the proliferation and differentiation of T cells. CD4+Foxp3+ regulatory T cells (Tregs) constitutively express the high affinity IL-2 receptor (CD25/IL-2Rα) and rapidly respond to IL-2 to elaborate numerous suppressive mechanisms that limit immune-mediated pathologies. Accumulating evidence supports the concept that an aberrant balance between Tregs and Teff contribute to the pathology of intestinal inflammation and that the IL-2/Treg axis is a potential pathway to exploit for the treatment of inflammatory bowel disease (IBD). Here, we show that treatment of mice with IL-2/IL-2 antibody (JES6-1) immunocomplex during DSS-induced colitis induced Foxp3+ Treg expansion, but also potently stimulated GATA3+ type 2 innate lymphoid cell (ILC2) proliferation and high-level expression of IL-5. Furthermore, IL-2/JES6-1 treatment resulted in massive eosinophil accumulation and activation in the inflamed colon, and afforded only modest protection from colitis. In light of these findings, we observed that combined IL-2/JES6-1 and anti-IL-5 mAb treatment was most effective at ameliorating DSS-induced colitis compared to either treatment alone and that this regimen allowed for Foxp3+ Treg expansion without concomitant eosinophilia. Collectively, our findings provide insight into how blockade of IL-5 may aid in optimizing IL-2 immunotherapy for the treatment of intestinal inflammation.
Collapse
Affiliation(s)
- Hirohito Abo
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Kyle L Flannigan
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Duke Geem
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Vu L Ngo
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Akihito Harusato
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Timothy L Denning
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| |
Collapse
|
10
|
Bastan I, Rendahl AK, Seelig D, Day MJ, Hall EJ, Rao SP, Washabau RJ, Sriramarao P. Assessment of eosinophils in gastrointestinal inflammatory disease of dogs. J Vet Intern Med 2018; 32:1911-1917. [PMID: 30294803 PMCID: PMC6271348 DOI: 10.1111/jvim.15310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/17/2018] [Accepted: 07/31/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Accurate identification of eosinophils in the gastrointestinal (GI) tract of dogs with eosinophilic GI disease (EGID) by histological evaluation is challenging. The currently used hematoxylin and eosin (H&E) staining method detects intact eosinophils but does not detect degranulated eosinophils, thus potentially underrepresenting the number of infiltrating eosinophils. OBJECTIVE To develop a more sensitive method for identifying and quantifying both intact and degranulated eosinophils to diagnose EGID more accurately. METHODS Endoscopically obtained paraffin-embedded intestinal biopsy specimens from dogs with GI signs were examined. The study groups were dogs with eosinophilic enteritis (EE), lymphoplasmacytic and mixed enteritis, and control dogs with GI signs but no histologic changes on tissue sections. Consecutive sections were immunolabeled with monoclonal antibodies (mAbs) against the eosinophil granule protein eosinophil peroxidase (Epx) and stained by H&E, respectively. The number of eosinophils was manually quantified and classified as intact or degranulated. RESULTS The number of intact eosinophils detected in Epx mAb-labeled duodenal sections was significantly higher compared with that in H&E-stained sections, with a similar relationship noted in the colon and stomach. The Epx mAb allowed the unique assessment of eosinophil degranulation. The number of intact and degranulated eosinophils was significantly higher in duodenal lamina propria of the EE and mixed group compared to the control group. CONCLUSION Immunohistochemical detection of Epx provides a more precise method to detect GI tract eosinophils compared to H&E staining and could be used as an alternative and reliable diagnostic tool for assessment of biopsy tissues from dogs with EGID.
Collapse
Affiliation(s)
- Idil Bastan
- Department of Veterinary Clinical SciencesUniversity of MinnesotaSt. PaulMinnesota
| | - Aaron K. Rendahl
- Department of Veterinary and Biomedical SciencesUniversity of MinnesotaSt. PaulMinnesota
| | - Davis Seelig
- Department of Veterinary Clinical SciencesUniversity of MinnesotaSt. PaulMinnesota
| | - Michael J. Day
- Bristol Veterinary SchoolUniversity of BristolBristolUnited Kingdom
| | - Edward J. Hall
- Bristol Veterinary SchoolUniversity of BristolBristolUnited Kingdom
| | - Savita P. Rao
- Department of Veterinary and Biomedical SciencesUniversity of MinnesotaSt. PaulMinnesota
| | - Robert J. Washabau
- Department of Veterinary Clinical SciencesUniversity of MinnesotaSt. PaulMinnesota
| | - P. Sriramarao
- Department of Veterinary and Biomedical SciencesUniversity of MinnesotaSt. PaulMinnesota
| |
Collapse
|
11
|
Filippone RT, Robinson AM, Jovanovska V, Stavely R, Apostolopoulos V, Bornstein JC, Nurgali K. Targeting eotaxin-1 and CCR3 receptor alleviates enteric neuropathy and colonic dysfunction in TNBS-induced colitis in guinea pigs. Neurogastroenterol Motil 2018; 30:e13391. [PMID: 29968270 DOI: 10.1111/nmo.13391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/14/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND The accumulation of eosinophils is mediated by the chemokine receptor-3 (CCR3)-eotaxin axis. Increased expression of eotaxin and its receptor is associated with inflammatory bowel disease (IBD). Activation of eosinophils causes the release of cationic proteins that are neurotoxic such as eosinophil-derived neurotoxin (EDN). Damage to enteric neurons alters neurally controlled functions of the gut correlated with intestinal inflammation. We hypothesized that inhibition of the CCR3-eotaxin axis will prevent inflammation-induced functional changes to the gastrointestinal tract. METHODS Hartley guinea pigs were administered with trinitrobenzene sulfonate (TNBS; 30 mg/kg in 30% ethanol) intrarectally to induce colitis. A CCR3 receptor antagonist (SB 328437 [SB3]) was injected intraperitoneally 1 hour postinduction of colitis. Animals were euthanized 7 days post-treatment and colon tissues were collected for ex vivo studies. The EDN-positive eosinophils in the colon, indicating eosinophil activation, were quantified by immunohistochemistry. Effects of SB3 treatment on gross morphological damage, enteric neuropathy, and colonic dysmotility were determined by histology, immunohistochemistry, and organ bath experiments. KEY RESULTS The number of EDN-positive eosinophils was significantly increased in the lamina propria in close proximity to myenteric ganglia in inflamed colon. The TNBS-induced inflammation caused significant damage to colonic architecture and inhibition of colonic motility. Treatment with SB3 antagonist attenuated inflammation-associated morphological damage in the colon, reduced infiltration of EDN-positive eosinophils and restored colonic motility to levels comparable to control and sham-treated guinea pigs. CONCLUSION & INFERENCES This is the first study demonstrating that inhibition of CCR3-eotaxin axis alleviates enteric neuropathy and restores functional changes in the gut associated with TNBS-induced colitis.
Collapse
Affiliation(s)
- R T Filippone
- College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - A M Robinson
- College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - V Jovanovska
- College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - R Stavely
- College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - V Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia
| | - J C Bornstein
- Department of Physiology, Melbourne University, Melbourne, Vic., Australia
| | - K Nurgali
- College of Health and Biomedicine, Victoria University, Melbourne, Vic., Australia.,Institute for Health and Sport, Victoria University, Melbourne, Vic., Australia.,Regenerative, Medicine and Stem Cells Program, Department of Medicine Western Health, Melbourne University, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Vic., Australia
| |
Collapse
|
12
|
Hanifeh M, Rajamäki MM, Syrjä P, Mäkitalo L, Kilpinen S, Spillmann T. Identification of matrix metalloproteinase-2 and -9 activities within the intestinal mucosa of dogs with chronic enteropathies. Acta Vet Scand 2018. [PMID: 29530095 PMCID: PMC5848456 DOI: 10.1186/s13028-018-0371-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) 2 and 9 are zinc- and calcium-dependent endopeptidases involved in the breakdown and reconstitution of extracellular matrix under both physiological and pathological conditions. Mucosal MMP-2 and -9 activities have been reported to be upregulated in the intestine of humans with inflammatory bowel disease (IBD), and in animal models of IBD. However, their involvement in the pathogenesis of canine chronic enteropathies (CE) is unknown. This study investigated mucosal pro- and active MMP-2 and -9 activities in dogs with CE and healthy dogs using gelatin zymography, and also to determine the association of their activities in dogs with CE with the canine IBD activity index (CIBDAI), histopathologic findings, the clinical outcome, and hypoalbuminemia. Intestinal mucosal samples from duodenum, ileum, colon, and cecum were collected from 40 dogs with CE and 18 healthy Beagle dogs. RESULTS In dogs with CE, the number of samples positive for mucosal pro- and active MMP-2 was significantly higher in the duodenum (P < 0.0001 and P = 0.011, respectively), ileum (P = 0.002 and P = 0.018, respectively), and colon (P < 0.0001 and P = 0.002, respectively), compared with healthy controls. Mucosal pro-MMP-9-positive samples in the duodenum and colon were significantly more frequent in dogs with CE than in healthy dogs (P = 0.0004 and P = 0.001, respectively). Despite the presence of mucosal samples positive for active MMP-9 in the intestinal segments of dogs with CE, the difference compared to healthy controls did not reach statistical significance. None of the intestinal mucosal samples in healthy dogs showed gelatinolytic activity corresponding to the control bands of active MMP-2 and -9. Mucosal active MMP-9 activities displayed a significant positive association with the severity of neutrophil infiltration in the duodenum (P = 00.040), eosinophils in the cecum (P = 00.037), and the CIBDAI score for ileum samples (P = 0.023). There was no significant association of pro- and active MMP-2 and -9 levels with the clinical outcome or hypoalbuminemia. CONCLUSIONS This study is the first to demonstrate upregulation of mucosal pro- and active MMP-2 and pro-MMP-9 in the intestine of dogs with CE compared to healthy dogs. The results provide supporting evidence for the possible involvement of MMP-2 and -9 in the pathogenesis of canine CE.
Collapse
|
13
|
Bastan I, Ge XN, Dileepan M, Greenberg YG, Guedes AG, Hwang SH, Hammock BD, Washabau RJ, Rao SP, Sriramarao P. Inhibition of soluble epoxide hydrolase attenuates eosinophil recruitment and food allergen-induced gastrointestinal inflammation. J Leukoc Biol 2018; 104:109-122. [PMID: 29345370 DOI: 10.1002/jlb.3ma1017-423r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
Prevalence of food allergies in the United States is on the rise. Eosinophils are recruited to the intestinal mucosa in substantial numbers in food allergen-driven gastrointestinal (GI) inflammation. Soluble epoxide hydrolase (sEH) is known to play a pro-inflammatory role during inflammation by metabolizing anti-inflammatory epoxyeicosatrienoic acids (EETs) to pro-inflammatory diols. We investigated the role of sEH in a murine model of food allergy and evaluated the potential therapeutic effect of a highly selective sEH inhibitor (trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]-cyclohexyloxy}-benzoic acid [t-TUCB]). Oral exposure of mice on a soy-free diet to soy protein isolate (SPI) induced expression of intestinal sEH, increased circulating total and antigen-specific IgE levels, and caused significant weight loss. Administration of t-TUCB to SPI-challenged mice inhibited IgE levels and prevented SPI-induced weight loss. Additionally, SPI-induced GI inflammation characterized by increased recruitment of eosinophils and mast cells, elevated eotaxin 1 levels, mucus hypersecretion, and decreased epithelial junction protein expression. In t-TUCB-treated mice, eosinophilia, mast cell recruitment, and mucus secretion were significantly lower than in untreated mice and SPI-induced loss of junction protein expression was prevented to variable levels. sEH expression in eosinophils was induced by inflammatory mediators TNF-α and eotaxin-1. Treatment of eosinophils with t-TUCB significantly inhibited eosinophil migration, an effect that was mirrored by treatment with 11,12-EET, by inhibiting intracellular signaling events such as ERK (1/2) activation and eotaxin-1-induced calcium flux. These studies suggest that sEH induced by soy proteins promotes allergic responses and GI inflammation including eosinophilia and that inhibition of sEH can attenuate these responses.
Collapse
Affiliation(s)
- Idil Bastan
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Xiao Na Ge
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Yana G Greenberg
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Alonso G Guedes
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Sung Hee Hwang
- Department of Entomology, Nematology and Comprehensive Cancer Center, University of California, Davis, California, USA
| | - Bruce D Hammock
- Department of Entomology, Nematology and Comprehensive Cancer Center, University of California, Davis, California, USA
| | - Robert J Washabau
- Department of Veterinary Clinical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - Savita P Rao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| | - P Sriramarao
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
14
|
Abstract
Eosinophils are a minority circulating granulocyte classically viewed as being involved in host defense against parasites and promoting allergic reactions. However, a series of new regulatory functions for these cells have been identified in the past decade. During homeostasis, eosinophils develop in the bone marrow and migrate from the blood into target tissues following an eotaxin gradient, with interleukin-5 being a key cytokine for eosinophil proliferation, survival, and priming. In multiple target tissues, eosinophils actively regulate a variety of immune functions through their vast arsenal of granule products and cytokines, as well as direct cellular interaction with cells in proximity. The immunologic regulation of eosinophils extends from innate immunity to adaptive immunity and also involves non-immune cells. Herein, we summarize recent findings regarding novel roles of murine and human eosinophils, focusing on interactions with other hematopoietic cells. We also review new experimental tools available and remaining questions to uncover a greater understanding of this enigmatic cell.
Collapse
|
15
|
Flores C, Francesconi CF, Meurer L. Quantitative assessment of CD30+ lymphocytes and eosinophils for the histopathological differential diagnosis of inflammatory bowel disease. J Crohns Colitis 2015; 9:763-8. [PMID: 26048916 DOI: 10.1093/ecco-jcc/jjv097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/20/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS The histopathological discrimination of Crohn's disease [CD] and ulcerative colitis [UC] can be challenging. The aim of this study was to evaluate if quantification of CD30(+) lymphocytes and eosinophils in histopathological material improves the accuracy of diagnosis of inflammatory bowel disease. METHODS A total of 156 patients were diagnosed with IBD by a gastroenterologist and corroborated by 5 years of follow-up. Patients were treatment naïve at the time of biopsy. Samples were taken from diseased areas of the colon and examined by a gastrointestinal pathologist. RESULTS The median number of eosinophils in biopsies from affected segments was 42/high power field [hpf] [25.5-63.5] in CD and 98/hpf [67-123] in UC [p < 0.001]. Biopsies containing ≥ 70 eosinophils/hpf field had a sensitivity of 78.3% and a specificity of 71% for the diagnosis of UC ({area under the receiver operating characteristic (ROC) curve 0.767 (95% confidence interval [CI] 0.696-0.838)}. There was a median of three CD30(+) cells/hpf [range 2-6] in diseased CD biopsies and 33 cells/hpf [24-52] in diseased UC biopsies [p < 0.001]. The cut-off determined by the ROC curve was 15 (sensitivity 97.4%, specificity 97.4%, positive likelihood ratio (PLR) 17.1, Negative likelihood ratio (NLR) 0.03, area under the curve [AUC]: 0.978; 95% CI 0.95310.999). CONCLUSIONS Routine histopathological assessment with quantification of CD30+ cells is highly accurate at discriminating CD and UC. All the measured parameters are easy to perform, low-cost, and available in most pathological laboratories.
Collapse
Affiliation(s)
- Cristina Flores
- Gastroenterology and Hepatology Sciences, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Carlos Fernando Francesconi
- Gastroenterology and Hepatology Sciences, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | - Luíse Meurer
- Gastroenterology and Hepatology Sciences, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| |
Collapse
|
16
|
Masterson JC, McNamee EN, Fillon SA, Hosford L, Harris R, Fernando SD, Jedlicka P, Iwamoto R, Jacobsen E, Protheroe C, Eltzschig HK, Colgan SP, Arita M, Lee JJ, Furuta GT. Eosinophil-mediated signalling attenuates inflammatory responses in experimental colitis. Gut 2015; 64:1236-47. [PMID: 25209655 PMCID: PMC4515997 DOI: 10.1136/gutjnl-2014-306998] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/19/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Eosinophils reside in the colonic mucosa and increase significantly during disease. Although a number of studies have suggested that eosinophils contribute to the pathogenesis of GI inflammation, the expanding scope of eosinophil-mediated activities indicate that they also regulate local immune responses and modulate tissue inflammation. We sought to define the impact of eosinophils that respond to acute phases of colitis in mice. DESIGN Acute colitis was induced in mice by administration of dextran sulfate sodium, 2,4,6-trinitrobenzenesulfonic acid or oxazolone to C57BL/6J (control) or eosinophil deficient (PHIL) mice. Eosinophils were also depleted from mice using antibodies against interleukin (IL)-5 or by grafting bone marrow from PHIL mice into control mice. Colon tissues were collected and analysed by immunohistochemistry, flow cytometry and reverse transcription PCR; lipids were analysed by mass spectroscopy. RESULTS Eosinophil-deficient mice developed significantly more severe colitis, and their colon tissues contained a greater number of neutrophils, than controls. This compensatory increase in neutrophils was accompanied by increased levels of the chemokines CXCL1 and CXCL2, which attract neutrophils. Lipidomic analyses of colonic tissue from eosinophil-deficient mice identified a deficiency in the docosahexaenoic acid-derived anti-inflammatory mediator 10, 17- dihydroxydocosahexaenoic acid (diHDoHE), namely protectin D1 (PD1). Administration of an exogenous PD1-isomer (10S, 17S-DiHDoHE) reduced the severity of colitis in eosinophil-deficient mice. The PD1-isomer also attenuated neutrophil infiltration and reduced levels of tumour necrosis factor-α, IL-1β, IL-6 and inducible NO-synthase in colons of mice. Finally, in vitro assays identified a direct inhibitory effect of PD1-isomer on neutrophil transepithelial migration. CONCLUSIONS Eosinophils exert a protective effect in acute mouse colitis, via production of anti-inflammatory lipid mediators.
Collapse
Affiliation(s)
- Joanne C Masterson
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics; Digestive Health Institute, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA,University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eóin N McNamee
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA,University of Colorado School of Medicine, Aurora, Colorado, USA,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sophie A Fillon
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics; Digestive Health Institute, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA,University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lindsay Hosford
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics; Digestive Health Institute, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA,University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rachel Harris
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics; Digestive Health Institute, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA,University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Shahan D Fernando
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics; Digestive Health Institute, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA,University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Paul Jedlicka
- University of Colorado School of Medicine, Aurora, Colorado, USA,Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ryo Iwamoto
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Elizabeth Jacobsen
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan,Department of Biochemistry and Molecular Biology, Mayo Clinic Scottsdale, Scottsdale, Arizona, USA
| | - Cheryl Protheroe
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan,Department of Biochemistry and Molecular Biology, Mayo Clinic Scottsdale, Scottsdale, Arizona, USA
| | - Holger K Eltzschig
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA,University of Colorado School of Medicine, Aurora, Colorado, USA,Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA,University of Colorado School of Medicine, Aurora, Colorado, USA,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Makoto Arita
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic Scottsdale, Scottsdale, Arizona, USA
| | - Glenn T Furuta
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Gastrointestinal Eosinophilic Diseases Program, Department of Pediatrics; Digestive Health Institute, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA,Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado, USA,University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
17
|
Wahidi LS, Sherman J, Miller MM, Zaghouani H, Sherman MP. Early Persistent Blood Eosinophilia in Necrotizing Enterocolitis Is a Predictor of Late Complications. Neonatology 2015; 108:137-42. [PMID: 26159186 PMCID: PMC4540631 DOI: 10.1159/000431305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/12/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND Eosinophils infiltrate intestinal tissue during necrotizing enterocolitis (NEC) and adult bowel diseases. We theorized that epithelial damage causes eosinophilic activation and recruitment at NEC onset. OBJECTIVE We studied the relationship between persistent blood eosinophilia and medical or surgical complications during NEC. METHODS NEC cases and controls at MU Children's Hospital (2008-2013) underwent review. A Likert scale measured NEC severity. We utilized an SPSS database for statistical analyses. RESULTS Of 50 NEC cases, infants in group 1 (n = 15) had eosinophilia <2 days after onset and those in group 2 (n = 25) had NEC but no persistent eosinophilia. Group 3 (n = 46) consisted of controls, i.e. infants without NEC matched for birth weight and gestational age and group 4 (n = 4) of preterm infants with infection and ≤5 days of eosinophilia. Hematologic assessment defined persistent eosinophilia as ≥5% eosinophils for ≥5 days after NEC onset. Absolute eosinophil counts were 2 times higher in group 1 than in group 2 (p = 0.002). The mean duration of eosinophilia was 8 days in group 1 versus 1 day in group 2 (p < 0.001). A Likert score of NEC severity was 3-fold higher in group 1 than in group 2 (p < 0.001). Compared to group 2, group 1 infants were 8 times more likely to have hepatic fibrosis or intestinal strictures. CONCLUSIONS Early persistent blood eosinophilia is not currently a predictor of complications after the onset of NEC. This biomarker identifies immature infants at a high risk for adverse outcomes during NEC convalescence.
Collapse
Affiliation(s)
- Lila S Wahidi
- Department of Child Health, School of Medicine, University of Missouri, Columbia, Mo., USA
| | | | | | | | | |
Collapse
|
18
|
HANIFEH M, RAJAMÄKI MM, MÄKITALO L, SYRJÄ P, SANKARI S, KILPINEN S, SPILLMANN T. Identification of matrix metalloproteinase-2 and -9 activities within intestinal mucosa of clinically healthy beagle dogs. J Vet Med Sci 2014; 76:1079-85. [PMID: 24748420 PMCID: PMC4155186 DOI: 10.1292/jvms.13-0578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/01/2014] [Indexed: 01/20/2023] Open
Abstract
Matrix metalloproteinases (MMPs) 2 and 9 are zinc-dependent endopeptidases that contribute to the control of breakdown and reconstitution of extracellular matrix under both normal and pathological conditions. The main objective of this study was to identify the presence of MMP-2 and -9 in the mucosa of the small and large intestines of clinically healthy beagle dogs using gelatin zymography technique. Intestinal mucosa samples from four different parts of the intestine (duodenum, jejunum, ileum and colon) were taken from 12 healthy laboratory beagle dogs and examined histologically. Based on WSAVA histology standards, recorded findings of all samples were considered insignificant. Pro-MMP-2 and -9 activities were found in 17/48 (35%) and 25/48 (52%) of the samples, respectively. Among four different parts of the intestine of 12 dogs, the ileum had the highest positivity rates of 7/12 (58.3%) and 8/12 (66.7%) for pro-MMP-2 and -9 activities, respectively. However, statistical analysis showed no significant difference of pro-MMP-2 and -9 activities between the separate parts of the intestine (P>0.05). None of the intestinal samples showed gelatinolytic activity corresponding to the control bands of active MMP-2 and MMP-9. This study showed that pro-MMP-2 and -9 could be detected in the intestinal mucosa of healthy dogs using zymography, which seems to be a useful tool to evaluate the role of MMP-2 and -9 in the pathogenesis of canine chronic enteropathies, including inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mohsen HANIFEH
- Department of Equine and Small Animal Medicine, Faculty of
Veterinary Medicine, University of Helsinki, P.O. Box 57 (Viikintie 49), 00014 Helsinki,
Finland
- Department of Clinical Sciences, Faculty of Veterinary
Medicine, University of Tabriz, Postal Code 5166616471, Tabriz, Iran
| | - Minna M RAJAMÄKI
- Department of Equine and Small Animal Medicine, Faculty of
Veterinary Medicine, University of Helsinki, P.O. Box 57 (Viikintie 49), 00014 Helsinki,
Finland
| | - Laura MÄKITALO
- Children’s Hospital, Helsinki University Central Hospital
and University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), 00014 Helsinki, Finland
| | - Pernilla SYRJÄ
- Department of Veterinary Biosciences, Faculty of Veterinary
Medicine, University of Helsinki, P.O. Box 66 (Agnes Sjöbergin katu 2), 00014 Helsinki,
Finland
| | - Satu SANKARI
- Department of Equine and Small Animal Medicine, Faculty of
Veterinary Medicine, University of Helsinki, P.O. Box 57 (Viikintie 49), 00014 Helsinki,
Finland
| | - Susanne KILPINEN
- Department of Equine and Small Animal Medicine, Faculty of
Veterinary Medicine, University of Helsinki, P.O. Box 57 (Viikintie 49), 00014 Helsinki,
Finland
| | - Thomas SPILLMANN
- Department of Equine and Small Animal Medicine, Faculty of
Veterinary Medicine, University of Helsinki, P.O. Box 57 (Viikintie 49), 00014 Helsinki,
Finland
| |
Collapse
|
19
|
Abstract
AbstractEosinophils play a crucial role in the inflammatory response in conjunction with both innate and adaptive immunity. Eosinophils have long been recognized as inflammatory leukocytes that are particularly important in patients with parasitic infestations. However, recent studies in veterinary medicine demonstrate a number of canine eosinophilic gastrointestinal (GI) disorders unrelated to a parasitic infestation. Although the underlying pathophysiology behind eosinophilic infiltration of the canine GI tract remains uncertain, medical intervention aiming to decrease the activation of eosinophils seems effective in reducing symptoms and preventing organ damage. This review focuses on the biology of eosinophils and their products. It describes, the composition of eosinophil granules, mechanisms of eosinophil activation, and eosinophil-related disease processes leading to organ damage. Even though the main clinical signs of canine eosinophilic gastroenteritis, vomiting and diarrhea, are similar to those of other types of gastroenteritis, the clinical response and prognosis are worse for this condition. The clinical signs and diagnostic approach for eosinophilic GI disorders are described and compared between canine and human patients for each region of GI tract, from the esophagus to the colon. Moreover, the current treatments for this syndrome in canine and human patients are summarized and paralleled. The comparative study of canine and human patients with eosinophilic gastroenteritis will advance the understanding of this syndrome in both species and may lead to the development of novel treatment strategies.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Inflammatory bowel diseases (IBDs, e.g., Crohn's disease and ulcerative colitis) are thought to be a consequence of an uncontrolled inflammatory response against luminal antigens, including commensal bacteria. The observed link between eosinophil levels and severity and remission rates in IBD has led to speculation that eosinophils may contribute to the antimicrobial inflammatory response in IBD. RECENT FINDINGS Eosinophils express the necessary cellular machinery (innate immune receptors, proinflammatory cytokines, antibacterial proteins, and DNA traps) to mount an efficient antibacterial response; however, the rapid decline in eosinophil numbers following acute systemic bacterial infection suggests a very limited role for eosinophils in bacterial responses. SUMMARY We describe the clinical evidence of eosinophil involvement in IBD, summarize the in-vitro and in-vivo evidence of eosinophil antibacterial activity and the biology of eosinophils focusing on eosinophil-mediated bactericidal mechanisms and the involvement of eosinophil-derived granule proteins in this response, and conceptualize the contribution of eosinophils to a response against commensal bacteria in IBD.
Collapse
Affiliation(s)
- Simon P Hogan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
| | | | | |
Collapse
|
21
|
Abstract
Eosinophilic esophagitis (EoE) is a recently recognized, immune-mediated disease characterized clinically by symptoms of esophageal dysfunction and histologically by eosinophil-predominant inflammation. The chronic esophageal eosinophilia of EoE is associated with tissue remodeling that includes epithelial hyperplasia, subepithelial fibrosis, and hypertrophy of esophageal smooth muscle. This remodeling causes the esophageal rings and strictures that frequently complicate EoE and underlies the mucosal fragility that predisposes to painful mucosal tears in the EoE esophagus. The pathogenesis of tissue remodeling in EoE is not completely understood, but emerging studies suggest that secretory products of eosinophils and mast cells, as well as cytokines produced by other inflammatory cells, epithelial cells, and stromal cells in the esophagus, all contribute to the process. Interleukin (IL)-4 and IL-13, Th2 cytokines overproduced in allergic disorders, have direct profibrotic and remodeling effects in EoE. The EoE esophagus exhibits increased expression of transforming growth factor (TGF)-β1, which is a potent activator of fibroblasts and a strong inducer of epithelial-mesenchymal transition. In addition, IL-4, IL-13, and TGF-β all have a role in regulating periostin, an extracellular matrix protein that might influence remodeling by acting as a ligand for integrins, by its effects on eosinophils or by activating fibrogenic genes in the esophagus. Presently, few treatments have been shown to affect the tissue remodeling that causes EoE complications. This report reviews the potential roles of fibroblasts, eosinophils, mast cells, and profibrotic cytokines in esophageal remodeling in EoE and identifies potential targets for future therapies that might prevent EoE complications.
Collapse
Affiliation(s)
| | - Rhonda F. Souza
- 2Internal Medicine, Children's Medical Center and the VA North Texas Health Care System, Harold C. Simmons Comprehensive Cancer Center, and the University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stuart J. Spechler
- 2Internal Medicine, Children's Medical Center and the VA North Texas Health Care System, Harold C. Simmons Comprehensive Cancer Center, and the University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
22
|
Abstract
BACKGROUND Activated eosinophils can infiltrate the intestinal mucosa in patients with inflammatory bowel disease (IBD), and eosinophils are also implicated in the histological damage seen in allergic diseases. AIM To assess, in a group of patients with IBD in remission or with a mild disease activity, whether serological markers of eosinophil activation, eosinophil cationic protein (ECP) and eosinophil protein X (EPX), are related to evidence of IgE hypersensitivity and to the eosinophilia in gut mucosa. METHODS Sixty-one patients with IBD (21 Crohn's disease and 40 ulcerative colitis) in remission or with a mild disease activity were screened for IgE hypersensitivity and serological levels of ECP and EPX. Colonic biopsies were taken to assess mucosal eosinophilic infiltration. RESULTS Skin prick test were positive in 31.1% of the patients with IBD, showing skin reactions to food allergens in 17.7%. Skin prick test findings were unrelated to ECP or EPX levels, or to clinical activity or eosinophil counts in the gut mucosa. A significant correlation was found between ECP and EPX levels (r=0.77; P<0.0001). CONCLUSION Serological ECP and EPX findings did not correlate with IgE hypersensitivity findings or eosinophilic colonic infiltration in patients with IBD in remission or with mild disease activity. The role of eosinophils in IBD needs to be better characterized in the colonic mucosa, instead of relying on serological tests.
Collapse
|
23
|
Masterson JC, McNamee EN, Jedlicka P, Fillon S, Ruybal J, Hosford L, Rivera-Nieves J, Lee JJ, Furuta GT. CCR3 Blockade Attenuates Eosinophilic Ileitis and Associated Remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2302-14. [PMID: 21945903 DOI: 10.1016/j.ajpath.2011.07.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/07/2011] [Accepted: 07/26/2011] [Indexed: 01/12/2023]
Abstract
Intestinal remodeling and stricture formation is a complication of inflammatory bowel disease (IBD) that often requires surgical intervention. Although eosinophils are associated with mucosal remodeling in other organs and are increased in IBD tissues, their role in IBD-associated remodeling is unclear. Histological and molecular features of ileitis and remodeling were assessed using immunohistochemical, histomorphometric, flow cytometric, and molecular analysis (real-time RT-PCR) techniques in a murine model of chronic eosinophilic ileitis. Collagen protein was assessed by Sircol assay. Using a spontaneous eosinophilic Crohn's-like mouse model SAMP1/SkuSlc, we demonstrate an association between ileitis progression and remodeling over the course of 40 weeks. Mucosal and submucosal eosinophilia increased over the time course and correlated with increased histological inflammatory indices. Ileitis and remodeling increased over the 40 weeks, as did expression of fibronectin. CCR3-specific antibody-mediated reduction of eosinophils resulted in significant decrease in goblet cell hyperplasia, muscularis propria hypertrophy, villus blunting, and expression of inflammatory and remodeling genes, including fibronectin. Cellularity of local mesenteric lymph nodes, including T- and B-lymphocytes, was also significantly reduced. Thus, eosinophils participate in intestinal remodeling, supporting eosinophils as a novel therapeutic target.
Collapse
Affiliation(s)
- Joanne C Masterson
- Section of Pediatric Gastroenterology, Hepatology and Nutrition-Digestive Health Institute, Children's Hospital Colorado, Aurora, Colorado, USA
| | | | | | | | | | | | | | | | | |
Collapse
|