1
|
Li H, Lin H, Yang H, Ren C, He Y, Jiang X, Chen T, Hu C. Molecular Characterization, Recombinant Expression, and Functional Analysis of Carboxypeptidase B in Litopenaeus vannamei. Genes (Basel) 2025; 16:69. [PMID: 39858615 PMCID: PMC11764914 DOI: 10.3390/genes16010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The Pacific white shrimp (L. vannamei) is economically significant, and its growth is regulated by multiple factors. Carboxypeptidase B (CPB) is related to protein digestion, but its gene sequence and features in L. vannamei are not fully understood. This study aimed to explore the molecular and functional properties of CPB in L. vannamei. Methods: The Lv-CPB gene was cloned, and bioinformatics analysis, qRT-PCR, in situ hybridization, recombinant protein expression in Escherichia coli, and an enzyme activity assay were performed. Results: The Lv-CPB gene is 1414 bp long with a 1263 bp ORF encoding a 420-amino-acid protein. It is stable, hydrophilic, and is highly expressed in the hepatopancreas. The recombinant protein was efficiently expressed with a molecular weight of about 47 kDa. The optimal pH and temperature for Lv-CPB were 8.0 and 50 °C, respectively. Conclusions: This study revealed the molecular and functional characteristics of Lv-CPB, providing insights into its role in shrimp digestion, as well as suggestions for improving aquaculture practices.
Collapse
Affiliation(s)
- Hongmei Li
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China; (H.L.); (H.L.)
| | - Hai Lin
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China; (H.L.); (H.L.)
| | - Hao Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| | - Chunhua Ren
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| | - Yi He
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou 510850, China; (H.L.); (H.L.)
| | - Xiao Jiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Key Laboratory of Applied Marine Biology of Guangdong Province and Chinese Academy of Sciences (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, China
| |
Collapse
|
2
|
Sakakura M, Takata Y, Kimura C, Matsuda S, Takamura T, Nagaoka S. Limited proteolysis by a prostatic endopeptidase, the sperm-activating factor initiatorin, regulates the activation of pro-carboxypeptidase B in the seminal fluid of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103819. [PMID: 35963292 DOI: 10.1016/j.ibmb.2022.103819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
A prostate trypsin-like serine endopeptidase called initiatorin (BmIni) is an essential factor in triggering the sperm maturation response of the silkworm, Bombyx mori. BmIni has been predicted to specifically cleave the carboxyl side of two consecutive arginine residues present in certain seminal plasma and sperm proteins, but the actual substrates are still unknown. In an attempt to elucidate the molecular mechanism underlying the sperm maturation signaling pathway, in this study, we examined whether BmIni activates the seminal carboxypeptidase B (BmCPB) protein through specific degradation. First, we confirmed in vitro that the inactive BmCPB present in unmated male vesicula (v.) seminalis is activated by treatment with BmIni or trypsin. Molecular cloning of the gene encoding the seminal BmCPB protein has shown that BmCPB is produced as a secreted proenzyme and may be activated after a trypsin-like protease cleaves the boundary between the prodomain and the enzyme site. In support of these findings, both trypsin and BmIni significantly activated recombinant Pro-BmCPB, which was successfully expressed and purified as a proenzyme in Escherichia coli; moreover, two specific cleavage forms appeared in the activation by BmIni that did not appear in that by trypsin. Therefore, a recombinant protein with a mutated diarginine motif (Arg109-Arg110), which is presumed to be a pre-cleavage site of BmCPB based on its high homology with bovine CPB, was prepared and treated with BmIni. As a result, the two specific degraded peptides were no longer observed, and simultaneously the activation was suppressed. Taken together, these findings lead to the conclusion that zymogen BmCPB, which is synthesized and secreted in male reproductive organs, is activated by sequence-dependent proteolysis by BmIni during ejaculation and in the female reproductive organs, providing a clue to the mechanism underlying seminal plasma and/or sperm protein degradation by BmIni in the sperm maturation cascade of B. mori.
Collapse
Affiliation(s)
- Miki Sakakura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuki Takata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Chikayo Kimura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Saki Matsuda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tomoko Takamura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Sumiharu Nagaoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Center for Bioresource Field Sciences, Kyoto Institute of Technology, 1 Saga-ippongi-cho, Ukyo-ku, Kyoto, 616-8354, Japan.
| |
Collapse
|
3
|
Zhang X, Zhao P, Li S, Ma S, Du J, Liang S, Yang X, Yao L, Duan J. Genome-Wide Identification of M14 Family Metal Carboxypeptidases in Antheraea pernyi (Lepidoptera: Saturniidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1285-1293. [PMID: 35640220 DOI: 10.1093/jee/toac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 06/15/2023]
Abstract
The M14 family metal carboxypeptidase genes play an important role in digestion and pathogenic infections in the gut of insects. However, the roles of these genes in Antheraea pernyi (Guérin-Méneville, 1855) remain to be analyzed. In the present study, we cloned a highly expressed M14 metal carboxypeptidase gene (ApMCP1) found in the gut and discovered that it contained a 1,194 bp open reading frame encoding a 397-amino acid protein with a predicted molecular weight of 45 kDa. Furthermore, 14 members of the M14 family metal carboxypeptidases (ApMCP1-ApMCP14) were identified in the A. pernyi genome, with typical Zn_pept domains and two Zn-anchoring motifs, and were further classified into M14A, M14B, and M14D subfamilies. Expression analysis indicated that ApMCP1 and ApMCP9 were mainly expressed in the gut. Additionally, we observed that ApMCP1 and ApMCP9 displayed opposite expression patterns after starvation, highlighting their functional divergence during digestion. Following natural infection with baculovirus NPV, their expression was significantly upregulated in the gut of A. pernyi. Our results suggest that the M14 family metal carboxypeptidase genes are conservatively digestive enzymes and evolutionarily involved in exogenous pathogenic infections.
Collapse
Affiliation(s)
- Xian Zhang
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Shanshan Li
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Sanyuan Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Jie Du
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Shimei Liang
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Xinfeng Yang
- Laboratory of Tussah Genetics and Breeding, Henan Institute of Sericulture Science, Zhengzhou 450008, PR China
| | - Lunguang Yao
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| | - Jianping Duan
- Henan Key Laboratory of Funiu Mountain Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang 473061, PR China
| |
Collapse
|
4
|
Murad NF, Silva-Brandão KL, Brandão MM. Mechanisms behind polyphagia in a pest insect: Responses of Spodoptera frugiperda (J.E. Smith) strains to preferential and alternative larval host plants assessed with gene regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194687. [PMID: 33561559 DOI: 10.1016/j.bbagrm.2021.194687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
A dataset of gene expression from Spodoptera frugiperda, a highly generalist pest moth, was used to understand how gene regulation is related to larval host plant preference. Transcriptomic data of corn and rice strains of S. frugiperda larvae, reared on different diets, were analysed with three different approaches of gene network inference, namely co-expression, weighted co-expression and Bayesian networks, since each methodology provides a different visualization of the data. Using these approaches, it was possible to identify two loosely interconnected co-expression networks, one of them responsible for fast response to herbivory and anti-herbivory mechanisms and the other related to housekeeping genes, which present slower response to environmental variations. Integrating different levels of information such as gene expression patterns, gene assembly, transcriptomics, relationship among genes and phenotypes, functional relationships, among other information, enabled a wider visualization of S. frugiperda response to diet stimuli. The biological properties in the proposed networks are here described and discussed, as well as patterns of gene expression related to larval performance attributes.
Collapse
Affiliation(s)
- Natália Faraj Murad
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP). Av. Cândido Rondon, 400. CEP 13083-875 Campinas, SP, Brazil
| | - Karina Lucas Silva-Brandão
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP). Av. Cândido Rondon, 400. CEP 13083-875 Campinas, SP, Brazil; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001. CEP 09210-580 Santo André, SP, Brazil
| | - Marcelo Mendes Brandão
- Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade de Campinas (UNICAMP). Av. Cândido Rondon, 400. CEP 13083-875 Campinas, SP, Brazil.
| |
Collapse
|
5
|
Wang S, Wang P. Functional redundancy of structural proteins of the peritrophic membrane in Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 125:103456. [PMID: 32814147 DOI: 10.1016/j.ibmb.2020.103456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The peritrophic membrane (or peritrophic matrix) (PM) in insects is formed by binding of PM proteins with multiple chitin binding domains (CBDs) to chitin fibrils. Multi-CBD chitin binding proteins (CBPs) and the insect intestinal mucin (IIM) are major PM structural proteins. To understand the biochemical and physiological role of IIM in structural formation and physiological function of the PM, Trichoplusia ni mutant strains lacking IIM were generated by CRISPR/Cas9 mutagenesis. The mutant T. ni larvae were confirmed to lack IIM, but PM formation was observed as in wild type larvae and lacking IIM in the PM did not result in changes of protease activities in the larval midgut. Larval growth and development of the mutant strains were similar to the wild type strain on artificial diet and cabbage leaves, but had a decreased survival in the 5th instar. The larvae of the mutant strains with the PM formed without IIM did not have a change of susceptibility to the infection of the baculovirus AcMNPV and the Bacillus thuringiensis (Bt) formulation Dipel, to the toxicity of the Bt toxins Cry1Ac and Cry2Ab and the chemical insecticide sodium aluminofluoride. Treatment of the mutant T. ni larvae with Calcofluor reduced the larval susceptibility to the toxicity of Bt Cry1Ac, as similarly observed in the wild type larvae. Overall, in the mutant T. ni larvae, the PM was formed without IIM and the lacking of IIM in the PM did not drastically impact the performance of larvae on diet or cabbage leaves under the laboratory conditions.
Collapse
Affiliation(s)
- Shaohua Wang
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ping Wang
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
6
|
Zhao G, Ding LL, Pan ZH, Kong DH, Hadiatullah H, Fan ZC. Proteinase and glycoside hydrolase production is enhanced in solid-state fermentation by manipulating the carbon and nitrogen fluxes in Aspergillus oryzae. Food Chem 2018; 271:606-613. [PMID: 30236722 DOI: 10.1016/j.foodchem.2018.07.199] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/07/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
Soy sauce materials of soybean meal and wheat bran were evaluated in solid-state (koji) fermentation (SSF) and submerged fermentation (SmF) by Aspergillus oryzae. Proteinase production in SSF (2331 ± 39 U g-1) was about 4.9 times higher than that in SmF (477 ± 13 U g-1), and glycoside hydrolase was approximately 2 times higher in SSF than that in SmF. In addition, protein expression of iTRAQ analysis deepens our understanding of the secreting mechanism. Abundant proteinases (dipeptidase, dipeptidyl aminopeptidase, puromycin-sensitive aminopeptidase, Xaa-pro aminopeptidase, neutral protease 2 and leucine aminopeptidase 2), along with the glycoside hydrolase (glycoamylase, glucosidase and β-xylanase) were secreted at the late stage of SSF, but tripeptidyl peptidase sed 2 was proposed as an indispensable protease in SmF or the early stage of SSF. Several metabolites associated with the carbon flux and amino acid biosynthesis were proved to be regulated by the proteinase and glycoside hydrolase production.
Collapse
Affiliation(s)
- Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, International Collaborative Research Center for Health Biotechnology, College of Food Science and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Bingjin 100048, China
| | - Li-Li Ding
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, International Collaborative Research Center for Health Biotechnology, College of Food Science and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhi-Hui Pan
- Guangzhou Jammy Chai Sauce Workshop Co., Ltd., Guangzhou 510403, China
| | - De-Hua Kong
- Guangzhou Jammy Chai Sauce Workshop Co., Ltd., Guangzhou 510403, China
| | - Hadiatullah Hadiatullah
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, International Collaborative Research Center for Health Biotechnology, College of Food Science and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhen-Chuan Fan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, International Collaborative Research Center for Health Biotechnology, College of Food Science and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
7
|
Zhang C, Wang Z, Zhang D, Zhou J, Lu C, Su X, Ding D. Proteomics and 1H NMR-based metabolomics analysis of pathogenic Vibrio vulnificus aquacultures isolated from sewage drains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:23704-23713. [PMID: 28864971 DOI: 10.1007/s11356-017-0007-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Vibrio bacteria live in both marine and freshwater habitats and are associated with aquatic animals. Vibrio vulnificus is a pathogenic bacterium that infects people and livestock. It is usually found in offshore waters or within fish and shellfish. This study presents a comparative proteomic analysis of the outer membrane protein (OMP) changes in V. vulnificus proteins after stimulation with sewage from sewage drains. Using two-dimensional electrophoresis followed by MALDI-TOF MS/MS, 32 protein spots with significant differences in abundance were identified and characterized. These identified proteins were found to be involved in various functional categories, including catalysis, transport, membrane proteins progresses, receptor activity, energy metabolism, cytokine activity, and protein metabolism. The mRNA expression levels of 12 differential proteins were further assessed by qRT-PCR. Seven genes including carboxypeptidase, hemoglobin receptor, succinate dehydrogenase iron-sulfur subunit, ATP synthase subunit alpha, thioredoxin, succinyl-CoA synthetase subunit, and alanine dehydrogenase were downregulated upon stimulation, whereas the protein expression levels HupA receptor, type I secretion outer membrane protein, glutamine synthetase, superoxide dismutase, OmpU, and VuuA were upregulated. 1H NMR spectra showed 18 dysregulated metabolites from V. vulnificus after the sewage stimulation and the pathogenicity was enhanced after that.
Collapse
Affiliation(s)
- Chundan Zhang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Zhonghua Wang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Dijun Zhang
- School of Marine Science, Ningbo University, Ningbo, China
| | - Jun Zhou
- School of Marine Science, Ningbo University, Ningbo, China
| | - Chenyang Lu
- School of Marine Science, Ningbo University, Ningbo, China
| | - Xiurong Su
- School of Marine Science, Ningbo University, Ningbo, China.
| | - Dewen Ding
- School of Marine Science, Ningbo University, Ningbo, China.
| |
Collapse
|
8
|
Toprak U, Erlandson M, Baldwin D, Karcz S, Wan L, Coutu C, Gillott C, Hegedus DD. Identification of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix proteins and enzymes involved in peritrophic matrix chitin metabolism. INSECT SCIENCE 2016; 23:656-674. [PMID: 25846407 DOI: 10.1111/1744-7917.12225] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
The peritrophic matrix (PM) is essential for insect digestive system physiology as it protects the midgut epithelium from damage by food particles, pathogens, and toxins. The PM is also an attractive target for development of new pest control strategies due to its per os accessibility. To understand how the PM performs these functions, the molecular architecture of the PM was examined using genomic and proteomic approaches in Mamestra configurata (Lepidoptera: Noctuidae), a major pest of cruciferous oilseed crops in North America. Liquid chromatography-tandem mass spectrometry analyses of the PM identified 82 proteins classified as: (i) peritrophins, including a new class with a CBDIII domain; (ii) enzymes involved in chitin modification (chitin deacetylases), digestion (serine proteases, aminopeptidases, carboxypeptidases, lipases and α-amylase) or other reactions (β-1,3-glucanase, alkaline phosphatase, dsRNase, astacin, pantetheinase); (iii) a heterogenous group consisting of polycalin, REPATs, serpin, C-Type lectin and Lsti99/Lsti201 and 3 novel proteins without known orthologs. The genes encoding PM proteins were expressed predominantly in the midgut. cDNAs encoding chitin synthase-2 (McCHS-2), chitinase (McCHI), and β-N-acetylglucosaminidase (McNAG) enzymes, involved in PM chitin metabolism, were also identified. McCHS-2 expression was specific to the midgut indicating that it is responsible for chitin synthesis in the PM, the only chitinous material in the midgut. In contrast, the genes encoding the chitinolytic enzymes were expressed in multiple tissues. McCHS-2, McCHI, and McNAG were expressed in the midgut of feeding larvae, and NAG activity was present in the PM. This information was used to generate an updated model of the lepidopteran PM architecture.
Collapse
Affiliation(s)
- Umut Toprak
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Plant Protection, Faculty of Agriculture, University of Ankara, Ankara, Turkey
| | - Martin Erlandson
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Doug Baldwin
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Steve Karcz
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Lianglu Wan
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, SK, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Cedric Gillott
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
9
|
Genome-Wide Identification and Characterization of Carboxypeptidase Genes in Silkworm (Bombyx mori). Int J Mol Sci 2016; 17:ijms17081203. [PMID: 27483237 PMCID: PMC5000601 DOI: 10.3390/ijms17081203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 11/17/2022] Open
Abstract
The silkworm (Bombyx mori) is an economically-important insect that can secrete silk. Carboxypeptidases have been found in various metazoan species and play important roles in physiological and biochemical reactions. Here, we analyzed the silkworm genome database and characterized 48 carboxypeptidases, including 34 metal carboxypeptidases (BmMCP1-BmMCP34) and 14 serine carboxypeptidases (BmSCP1-BmSCP14), to better understand their diverse functions. Compared to other insects, our results indicated that carboxypeptidases from silkworm have more family members. These silkworm carboxypeptidases could be divided into four families: Peptidase_M2 carboxypeptidases, Peptidase_M14 carboxypeptidases, Peptidase_S10 carboxypeptidases and Peptidase_S28 carboxypeptidases. Microarray analysis showed that the carboxypeptidases had distinct expression patterns, whereas quantitative real-time PCR demonstrated that the expression level of 13 carboxypeptidases significantly decreased after starvation and restored after re-feeding. Overall, our study provides new insights into the functional and evolutionary features of silkworm carboxypeptidases.
Collapse
|
10
|
Afshar K, Dufresne PJ, Pan L, Merkx-Jacques M, Bede JC. Diet-specific salivary gene expression and glucose oxidase activity in Spodoptera exigua (Lepidoptera: Noctuidae) larvae. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1798-1806. [PMID: 20688075 DOI: 10.1016/j.jinsphys.2010.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 05/29/2023]
Abstract
Saliva secreted during caterpillar feeding contains enzymes to initiate digestion or detoxify noxious plant compounds. Activity of some salivary enzymes is diet-dependent and may be transcriptionally regulated. In this study, cDNA-amplified fragment length polymorphism was used to identify beet armyworm, Spodoptera exigua Hübner, labial salivary genes that are differentially expressed in response to diet. In addition, SeGOX was sequenced based on homology and characterized to confirm that the transcript encodes a functional enzyme. Three labial salivary transcripts, encoding glucose oxidase (GOX) and two proteins of unknown function (Se1H and Se2J), were expressed in a diet-specific manner. Since diet, particularly the protein to digestible carbohydrate levels and ratio, may affect labial salivary enzyme activity, the influence of nutritional quality on gene expression was determined. Transcript levels of the labial salivary genes Se1H, Se2J and SeGOX increased with dietary carbohydrate levels, regardless of protein concentrations. In contrast GOX enzymatic activity increased with increasing dietary carbohydrates when caterpillars were fed protein-rich diets, but not when caterpillars were fed protein-poor diets. Our results suggest that dietary carbohydrates affect SeGOX, Se1H and Se2J transcription, but dietary protein or amino acid levels affect translational and/or post-translational regulation of the enzyme GOX.
Collapse
Affiliation(s)
- Khashayar Afshar
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, Québec, Canada.
| | | | | | | | | |
Collapse
|
11
|
Lwalaba D, Weidlich S, Hoffmann KH, Woodring J. Exogenous and endogenous protease inhibitors in the gut of the fall armyworm larvae, Spodoptera frugiperda. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:114-126. [PMID: 20513059 DOI: 10.1002/arch.20366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A dose-dependent inhibition of endogenous trypsin and aminopeptidase occurs in the lumen of Spodoptera frugiperda after feeding L6 larvae exogenous inhibitors soybean trypsin inhibitor (SBTI), tosyl-L-lysine chloromethyl ketone-HCl (TLCK), or bestatin, respectively, for 3 days. TLCK inhibits trypsin in tissue extracts and in secretions more strongly than SBTI. The aminopeptidase released into the lumen (containing the peritrophic membrane) is strongly inhibited by bestatin, but the membrane-bound enzyme is not. A bound enzyme may be more resistant to an inhibitor than unbound. A cross-class elevation of aminopeptidase activity occurs in response to ingested trypsin inhibitor, but there was no cross-class effect of aminopeptidase inhibitor (bestatin) on trypsin activity. An endogenous trypsin and aminopeptidase inhibitor is present in the lumen and ventricular cells. The strength of the endogenous trypsin inhibition seems to be in the same range as that resulting from ingestion of the exogenous inhibitor SBTI. In some insect species, considerable trypsin secretion occurs in unfed as well as in fed animals, and endogenous protease inhibitors might function to protect the ventricular epithelium by inactivation of trypsin when less food is available.
Collapse
Affiliation(s)
- Digali Lwalaba
- Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | | | | | | |
Collapse
|
12
|
Sui YP, Liu XB, Chai LQ, Wang JX, Zhao XF. Characterization and influences of classical insect hormones on the expression profiles of a molting carboxypeptidase A from the cotton bollworm (Helicoverpa armigera). INSECT MOLECULAR BIOLOGY 2009; 18:353-363. [PMID: 19523067 DOI: 10.1111/j.1365-2583.2009.00879.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molting is a very important physiological behavior to arthropods. During molting, integument apolysis occurs, which is the digestion and absorption of the old endocuticle for new cuticle formation. Proteases play critical roles in this process. Molting carboxypeptidase A (Ha-CPA) is characterized from Helicoverpa armigera. The Ha-CPA transcript was mainly present in the integument from the 5th instar larvae. In the integument, the transcription level of the gene reached its peak at the 5th instar molting stage and the 6th instar prepupal stage, respectively. The examination of immunohistochemistry revealed that Ha-CPA could distribute into the molting fluid in the molting- and prepupal-stage larvae. The expression of Ha-CPA could be up-regulated by 20-hydroxyecdysone (20E). These facts indicate that Ha-CPA participates in the apolysis of the integument during larval molting and metamorphosis.
Collapse
Affiliation(s)
- Y-P Sui
- Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
13
|
Matthews HJ, Audsley N, Weaver RJ. Degradation of leucomyosuppressin by enzymes in the hemolymph and midgut of Lacanobia oleracea and Spodoptera littoralis (Lepidoptera: Noctuidae) larvae. Peptides 2009; 30:565-70. [PMID: 19154766 DOI: 10.1016/j.peptides.2008.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 12/11/2008] [Accepted: 12/15/2008] [Indexed: 11/21/2022]
Abstract
The degradation of 2 nmol synthetic leucomyosuppressin (LMS) by enzymes of the hemolymph, midgut lumen and midgut tissues of both Lacanobia oleracea and Spodoptera littoralis was investigated using reversed-phase high-performance liquid chromatography together with matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Degradation of LMS in diluted hemolymph of L. oleracea and S. littoralis was not rapid, t(1/2)=65.4 and 13.1 min, respectively, due to carboxypeptidase(s) and endopeptidase(s) present in the hemolymph. There was also some aminopeptidase activity in the hemolymph of both species. However, LMS was rapidly degraded by the diluted contents of the midgut lumen of L. oleracea and S. littoralis, t(1/2)=0.5 and 2.2 min, respectively. The enzymes most likely responsible were trypsin-like serine protease(s) and carboxypeptidase(s). Degradation of LMS by midgut tissues containing 5 microg protein was not rapid in L. oleracea or S. littoralis, t(1/2)=40.7 and 69.8 min, respectively. The most abundant degradation products probably resulted from carboxypeptidase activity, but some aminopeptidase activity was also detected.
Collapse
Affiliation(s)
- H J Matthews
- Central Science Laboratory, Sand Hutton, York YO41 1LZ, UK.
| | | | | |
Collapse
|
14
|
Simpson RM, Newcomb RD, Gatehouse HS, Crowhurst RN, Chagné D, Gatehouse LN, Markwick NP, Beuning LL, Murray C, Marshall SD, Yauk YK, Nain B, Wang YY, Gleave AP, Christeller JT. Expressed sequence tags from the midgut of Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae). INSECT MOLECULAR BIOLOGY 2007; 16:675-690. [PMID: 18092997 DOI: 10.1111/j.1365-2583.2007.00763.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The midgut is a key tissue in insect science. Physiological roles include digestion and peritrophic membrane function, as well as being an important target for insecticides. We used an expressed sequence tag (EST) approach to identify candidate genes and gene families involved in these processes in the light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae). Two cDNA libraries were constructed from dissected midgut of third to fifth instar larvae. Clustering analysis of 6416 expressed sequence tags produced 1178 tentative unique genes comprising 725 tentative contigs and 453 singletons. The sequences show similar codon usage to sequences from other lepidopterans, a Kozak consensus sequence similar to Drosophila and single nucleotide polymorphisms (SNPs) were detected at a frequency of 1.35/kb. The identity of the most common Interpro families correlates well with major known functions of the midgut. Phylogenetic analysis was conducted on representative sequences from selected multigene families. Gene families include a broad range of digestive proteases, lipases and carbohydrases that appear to have degradative capacity against the major food components found in leaves, the diet of these larvae; and carboxylesterases, glutathione-S-transferases and cytochrome P450 monooxygenases, potentially involved in xenobiotic degradation. Two of the larger multigene families, serine proteases and lipases, expressed a high proportion of genes that are likely to be catalytically inactive.
Collapse
Affiliation(s)
- R M Simpson
- Horticulture and Food Research Institute, Palmerston North, New Zealand
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Prabhakar S, Chen MS, Elpidina EN, Vinokurov KS, Smith CM, Marshall J, Oppert B. Sequence analysis and molecular characterization of larval midgut cDNA transcripts encoding peptidases from the yellow mealworm, Tenebrio molitor L. INSECT MOLECULAR BIOLOGY 2007; 16:455-68. [PMID: 17651235 DOI: 10.1111/j.1365-2583.2007.00740.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Peptidase sequences were analysed in randomly picked clones from cDNA libraries of the anterior or posterior midgut or whole larvae of the yellow mealworm, Tenebrio molitor Linnaeus. Of a total of 1528 sequences, 92 encoded potential peptidases, from which 50 full-length cDNA sequences were obtained, including serine and cysteine proteinases and metallopeptidases. Serine proteinase transcripts were predominant in the posterior midgut, whereas transcripts encoding cysteine and metallopeptidases were mainly found in the anterior midgut. Alignments with other proteinases indicated that 40% of the serine proteinase sequences were serine proteinase homologues, and the remaining ones were identified as either trypsin, chymotrypsin or other serine proteinases. Cysteine proteinase sequences included cathepsin B- and L-like proteinases, and metallopeptidase transcripts were similar to carboxypeptidase A. Northern blot analysis of representative sequences demonstrated the differential expression profile of selected transcripts across five developmental stages of Te. molitor. These sequences provide insights into peptidases in coleopteran insects as a basis to study the response of coleopteran larvae to external stimuli and to evaluate regulatory features of the response.
Collapse
Affiliation(s)
- S Prabhakar
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Hosseininaveh V, Bandani A, Azmayeshfard P, Hosseinkhani S, Kazzazi M. Digestive proteolytic and amylolytic activities in Trogoderma granarium Everts (Dermestidae: Coleoptera). JOURNAL OF STORED PRODUCTS RESEARCH 2007; 43:515-522. [PMID: 0 DOI: 10.1016/j.jspr.2007.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
17
|
Ote M, Mita K, Kawasaki H, Daimon T, Kobayashi M, Shimada T. Identification of molting fluid carboxypeptidase A (MF-CPA) in Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2005; 141:314-22. [PMID: 15936966 DOI: 10.1016/j.cbpc.2005.04.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 04/08/2005] [Accepted: 04/10/2005] [Indexed: 11/21/2022]
Abstract
Using microarray analyses, we identified carboxypeptidase A (MF-CPA), which was induced during pupal ecdysis in the wing discs of Bombyx mori. Here, we report the functional characterization of MF-CPA. MF-CPA has amino acid sequence similarities with the proteins in the carboxypeptidase A/B subfamily, from human to nematode. The MF-CPA gene is expressed during the molting periods in the epithelial tissues. MF-CPA is detected in the molting fluid, which fills the space between the old and new cuticle during molting. By Western blot analysis, we show that MF-CPA is secreted as a zymogen and processed in the molting fluid. Recombinant MF-CPA expressed in the insect cells has carboxypeptidase A activity. We propose that MF-CPA degrades the proteins from the old cuticle during the molting periods and contributes to recycling of the amino acids.
Collapse
Affiliation(s)
- Manabu Ote
- Department of Agricultural and Environmental Biology, University of Tokyo Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Wang P, Zhang X, Zhang J. Molecular characterization of four midgut aminopeptidase N isozymes from the cabbage looper, Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:611-620. [PMID: 15857766 DOI: 10.1016/j.ibmb.2005.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 02/16/2005] [Accepted: 02/23/2005] [Indexed: 05/24/2023]
Abstract
Four aminopeptidase N (APN) isoforms, TnAPN1, TnAPN2, TnAPN3 and TnAPN4, were identified from the cabbage looper, Trichoplusia ni, by cDNA cloning. The deduced amino acid sequences of the four APNs indicate that TnAPN1, TnAPN2, TnAPN3 and TnAPN4 are synthesized as pre-proteins of 110, 106, 114 and 108 kDa, respectively. Sequence features of the T. ni APNs include the presence of a signal peptide at their N-termini and a prepeptide at the C-termini for the GPI anchor, the zinc binding/gluzincin motif HEX2HX18E, the gluzincin aminopeptidase motif GAMENWG and the presence of glycosylation sites. After removal of the signal peptide and the C-terminal prepeptide, the predicted molecular weights of TnAPN1, TnAPN2, TnAPN3 and TnAPN4 are 106, 102, 110 and 104 kDa, respectively. Enzymatic activity assays of various larval tissues showed that aminopeptidase activities were mainly localized in the midgut and the specific enzyme activity per mg of midgut tissue proteins was constant in T. ni larvae regardless of the composition of dietary proteins and amino acids. Both enzyme activity assays and RT-PCR analyses for the expression of the APN genes in T. ni larval tissues demonstrated that APN genes were expressed in Malphigian tubules in addition to the midgut, which was the first observation that APNs were also synthesized in insect Malphigian tubules. The finding of APN gene expression and enzyme activity in the Malphigian tubules indicated the biochemical and functional similarity of the insect Malphigian tubules to the mammalian counterpart, the kidney, in which APNs are known to play important functions.
Collapse
Affiliation(s)
- Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA.
| | | | | |
Collapse
|
19
|
Chougule NP, Giri AP, Sainani MN, Gupta VS. Gene expression patterns of Helicoverpa armigera gut proteases. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:355-367. [PMID: 15763471 DOI: 10.1016/j.ibmb.2005.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2004] [Revised: 01/14/2005] [Accepted: 01/17/2005] [Indexed: 05/24/2023]
Abstract
Relative quantification of reported gut proteinase cDNAs from Helicoverpa armigera larvae fed on various host plants (cotton, chickpea, pigeonpea, tomato and okra), non-host plant PIs (winged bean, bitter gourd, ground nut, and capsicum) and during larval development has been carried out using semi-quantitative RT-PCR. Five trypsin-like and three chymotrypsin-like proteinases were categorized as insensitive or sensitive to most of the proteinase inhibitors (PIs) and insensitive/sensitive to specific PIs based on their expression analysis. These results were supported by amino acid sequence analysis, where diverged amino acids were observed in the regions, which are reported to be involved in typical trypsin-trypsin inhibitor interactions and critical for proteinase inhibitor resistance. Among exopeptidases (five aminopeptidase and three carboxypeptidase), HaAmi4 and HaAmi5 of aminopeptidase and HaCar1 of carboxypeptidase exhibited considerable differential expression. Elastase and cathepsin B-like proteinases were expressed at negligible levels. The proteases identified in the study would be ideal candidates for further interactions studies with protease inhibitors to understand the structural reasons of protease inhibitor insensitivity.
Collapse
Affiliation(s)
- Nanasaheb P Chougule
- National Chemical Laboratory, Plant Molecular Biology Unit, Division of Biochemical Sciences, Dr. Homi Bhabha Road, Pune 411 008 (MS), India
| | | | | | | |
Collapse
|