1
|
Inwood SN, Harrop TWR, Shields MW, Goldson SL, Dearden PK. Immune system modulation & virus transmission during parasitism identified by multi-species transcriptomics of a declining insect biocontrol system. BMC Genomics 2024; 25:311. [PMID: 38532315 DOI: 10.1186/s12864-024-10215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The Argentine stem weevil (ASW, Listronotus bonariensis) is a significant pasture pest in Aotearoa New Zealand, primarily controlled by the parasitoid biocontrol agent Microctonus hyperodae. Despite providing effective control of ASW soon after release, M. hyperodae parasitism rates have since declined significantly, with ASW hypothesised to have evolved resistance to its biocontrol agent. While the parasitism arsenal of M. hyperodae has previously been investigated, revealing many venom components and an exogenous novel DNA virus Microctonus hyperodae filamentous virus (MhFV), the effects of said arsenal on gene expression in ASW during parasitism have not been examined. In this study, we performed a multi-species transcriptomic analysis to investigate the biology of ASW parasitism by M. hyperodae, as well as the decline in efficacy of this biocontrol system. RESULTS The transcriptomic response of ASW to parasitism by M. hyperodae involves modulation of the weevil's innate immune system, flight muscle components, and lipid and glucose metabolism. The multispecies approach also revealed continued expression of venom components in parasitised ASW, as well as the transmission of MhFV to weevils during parasitism and some interrupted parasitism attempts. Transcriptomics did not detect a clear indication of parasitoid avoidance or other mechanisms to explain biocontrol decline. CONCLUSIONS This study has expanded our understanding of interactions between M. hyperodae and ASW in a biocontrol system of critical importance to Aotearoa-New Zealand's agricultural economy. Transmission of MhFV to ASW during successful and interrupted parasitism attempts may link to a premature mortality phenomenon in ASW, hypothesised to be a result of a toxin-antitoxin system. Further research into MhFV and its potential role in ASW premature mortality is required to explore whether manipulation of this viral infection has the potential to increase biocontrol efficacy in future.
Collapse
Affiliation(s)
- Sarah N Inwood
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand
| | - Thomas W R Harrop
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Morgan W Shields
- BioProtection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Stephen L Goldson
- Biocontrol and Biosecurity Group, AgResearch Limited, Lincoln, Aotearoa, New Zealand
| | - Peter K Dearden
- Bioprotection Aotearoa, Genomics Aotearoa, and the Biochemistry Department, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
2
|
Stanley D, Haas E, Kim Y. Beyond Cellular Immunity: On the Biological Significance of Insect Hemocytes. Cells 2023; 12:cells12040599. [PMID: 36831266 PMCID: PMC9954174 DOI: 10.3390/cells12040599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Insect immunity is assorted into humoral and cellular immune reactions. Humoral reactions involve the regulated production of anti-microbial peptides, which directly kill microbial invaders at the membrane and intracellular levels. In cellular immune reactions, millions of hemocytes are mobilized to sites of infection and replaced by hematopoiesis at a high biological cost after the immune defense. Here, we considered that the high biological costs of maintaining and replacing hemocytes would be a better investment if hemocytes carried out meaningful biological actions unrelated to cellular immunity. This idea allows us to treat a set of 10 hemocyte actions that are not directly involved in immunity, some of which, so far, are known only in Drosophila melanogaster. These include (1) their actions in molting and development, (2) in surviving severe hypoxia, (3) producing phenoloxidase precursor and its actions beyond immunity, (4) producing vitellogenin in a leafhopper, (5) recognition and responses to cancer in Drosophila, (6) non-immune actions in Drosophila, (7) clearing apoptotic cells during development of the central nervous system, (8) developing hematopoietic niches in Drosophila, (9) synthesis and transport of a lipoprotein, and (10) hemocyte roles in iron transport. We propose that the biological significance of hemocytes extends considerably beyond immunity.
Collapse
Affiliation(s)
- David Stanley
- Biological Control of Insect Research Laboratory, USDA/ARS, 1503 S Providence Road, Columbia, MO 65203, USA
- Correspondence: (D.S.); (Y.K.)
| | - Eric Haas
- Department of Chemistry and Biochemistry, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
- Correspondence: (D.S.); (Y.K.)
| |
Collapse
|
3
|
Paget BW, Kleffmann T, Whiteman KE, Thomas MF, McMahon CD. Quantitative comparison of manuka and clover honey proteomes with royal jelly. PLoS One 2023; 18:e0272898. [PMID: 36763642 PMCID: PMC9916596 DOI: 10.1371/journal.pone.0272898] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/26/2023] [Indexed: 02/12/2023] Open
Abstract
Royal jelly and honey are two substances produced successively by the worker bee caste. Modern proteomics approaches have been used to explore the protein component of each substance independently, but to date none have quantitatively compared the protein profile of honey and royal jelly directly. Sequential window acquisition of all theoretical fragment-ion spectra mass spectrometry (SWATH-MS) was used to compare protein quantities of bee origin in mānuka and clover honey to royal jelly. Two analysis techniques identified 76 proteins in total. Peptide intensity was directly compared for a subset of 31 proteins that were identified with high confidence, and the relative changes in protein abundance were compared between each honey type and royal jelly. Major Royal Jelly Proteins (MRJPs) had similar profiles in both honeys, except MRJP6, which was significantly more abundant in clover honey. Proteins involved in nectar metabolism were more abundant in honey than in royal jelly as expected. However, the trend revealed a potential catalytic role for MRJP6 in clover honey and a nectar- or honey-specific role for uncharacterised protein LOC408608. The abundance of MRJP6 in mānuka honey was equivalent to royal jelly suggesting a potential effect of nectar type on expression of this protein. Data are available via ProteomeXchange with identifier PXD038889.
Collapse
Affiliation(s)
- Blake W. Paget
- Hamilton Laboratory, ManukaMed LP, Masterton, New Zealand
- * E-mail:
| | - Torsten Kleffmann
- Division of Health Sciences, Research Infrastructure Centre, University of Otago, Dunedin, New Zealand
| | | | - Mark F. Thomas
- Hamilton Laboratory, ManukaMed LP, Masterton, New Zealand
| | | |
Collapse
|
4
|
Toopaang W, Bunnak W, Srisuksam C, Wattananukit W, Tanticharoen M, Yang YL, Amnuaykanjanasin A. Microbial polyketides and their roles in insect virulence: from genomics to biological functions. Nat Prod Rep 2022; 39:2008-2029. [PMID: 35822627 DOI: 10.1039/d1np00058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: May 1966 up to January 2022Entomopathogenic microorganisms have potential for biological control of insect pests. Their main secondary metabolites include polyketides, nonribosomal peptides, and polyketide-nonribosomal peptide (PK-NRP) hybrids. Among these secondary metabolites, polyketides have mainly been studied for structural identification, pathway engineering, and for their contributions to medicine. However, little is known about the function of polyketides in insect virulence. This review focuses on the role of bacterial and fungal polyketides, as well as PK-NRP hybrids in insect infection and killing. We also discuss gene distribution and evolutional relationships among different microbial species. Further, the role of microbial polyketides and the hybrids in modulating insect-microbial symbiosis is also explored. Understanding the mechanisms of polyketides in insect pathogenesis, how compounds moderate the host-fungus interaction, and the distribution of PKS genes across different fungi and bacteria will facilitate the discovery and development of novel polyketide-derived bio-insecticides.
Collapse
Affiliation(s)
- Wachiraporn Toopaang
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand. .,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Warapon Bunnak
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Chettida Srisuksam
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Wilawan Wattananukit
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| | - Morakot Tanticharoen
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan. .,Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan 711010, Taiwan
| | - Alongkorn Amnuaykanjanasin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
5
|
Ward R, Coffey M, Kavanagh K. Proteomic analysis of summer and winter Apis mellifera workers shows reduced protein abundance in winter samples. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104397. [PMID: 35537525 DOI: 10.1016/j.jinsphys.2022.104397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 05/04/2022] [Indexed: 05/27/2023]
Abstract
Apis mellifera workers display two stages; short lived summer bees that engage in nursing, hive maintenance and foraging, and long lived winter bees (diutinus bees) which remain within the hive and are essential for thermoregulation and rearing the next generation of bees in spring before dying. Label free quantitative proteomic analysis was conducted on A. mellifera workers sampled in June and December to compare the proteomes of summer and winter bees. Proteomic analysis was performed on head, abdominal and venom sac samples and revealed an elevated level of protein abundance in summer bees. Head and abdominal samples displayed an increased abundance in cuticular proteins in summer samples whereas an increase in xenobiotic proteins was observed in winter samples. Several carbohydrate metabolism pathways which have been linked to energy production and longevity in insects were increased in abundance in winter samples in comparison to summer samples. Proteomic analysis of the venom sacs of summer samples showed an increased abundance of bee venom associated proteins in comparison to winter workers. These data provides an insight into the adaptions of A. mellifera workers in summer and winter and may aid in future treatment and disease studies on honeybee colonies. Data are available via ProteomeXchange with identifier PXD030483.
Collapse
Affiliation(s)
- Rachel Ward
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Mary Coffey
- Plant Health Laboratories, Plant Science Division (Bee Health), Department of Agriculture, Celbridge, Co Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
6
|
Praça YR, Santiago PB, Charneau S, Mandacaru SC, Bastos IMD, Bentes KLDS, Silva SMM, da Silva WMC, da Silva IG, de Sousa MV, Soares CMDA, Ribeiro JMC, Santana JM, de Araújo CN. An Integrative Sialomic Analysis Reveals Molecules From Triatoma sordida (Hemiptera: Reduviidae). Front Cell Infect Microbiol 2022; 11:798924. [PMID: 35047420 PMCID: PMC8762107 DOI: 10.3389/fcimb.2021.798924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Triatomines have evolved salivary glands that produce versatile molecules with various biological functions, including those leading their interactions with vertebrate hosts’ hemostatic and immunological systems. Here, using high-throughput transcriptomics and proteomics, we report the first sialome study on the synanthropic triatomine Triatoma sordida. As a result, 57,645,372 reads were assembled into 26,670 coding sequences (CDS). From these, a total of 16,683 were successfully annotated. The sialotranscriptomic profile shows Lipocalin as the most abundant protein family within putative secreted transcripts. Trialysins and Kazal-type protease inhibitors have high transcript levels followed by ubiquitous protein families and enzyme classes. Interestingly, abundant trialysin and Kazal-type members are highlighted in this triatomine sialotranscriptome. Furthermore, we identified 132 proteins in T. sordida salivary gland soluble extract through LC-MS/MS spectrometry. Lipocalins, Hemiptera specific families, CRISP/Antigen-5 and Kazal-type protein inhibitors proteins were identified. Our study provides a comprehensive description of the transcript and protein compositions of the salivary glands of T. sordida. It significantly enhances the information in the Triatominae sialome databanks reported so far, improving the understanding of the vector’s biology, the hematophagous behaviour, and the Triatominae subfamily’s evolution.
Collapse
Affiliation(s)
- Yanna Reis Praça
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Paula Beatriz Santiago
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Samuel Coelho Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Kaio Luís da Silva Bentes
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | | | | | | | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - José Marcos Chaves Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil.,Faculty of Ceilândia, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
7
|
Wang Z, Feng K, Tang F, Xu M. Activation of the Host Immune Response in Hyphantria cunea (Drury) (Lepidoptera: Noctuidae) Induced by Serratia marcescens Bizio. INSECTS 2021; 12:insects12110983. [PMID: 34821784 PMCID: PMC8617612 DOI: 10.3390/insects12110983] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 01/07/2023]
Abstract
Simple Summary Hyphantria cunea (Drury) is a quarantine pest, due to its extensive host, leading to serious economic losses in the agricultural and forestry industries. To control this pest, it is increasingly important to use microbial pesticides because they are biologically active and ecologically safe. Serratia marcescens Bizio (SM1) is a potential biocontrol bacterium. Although SM1 has a pathogenic role in H. cunea, H. cunea self-defense reduces the pathogenic effect of SM1. In this study, immune-related differentially expressed genes (DEGs) in H. cunea were first identified after SM1 infection, and the immune regulation mode of H. cunea in response to SM1, including antimicrobial peptide synthesis pathways, melanization and cellular immunity, was revealed. According to the analysis, the immune system of H. cunea was induced by SM1. In summary, our study demonstrates how the immune systems of the H. cunea work to resist the infection of SM1, which provides the theoretical basis for researching more efficient microbial pesticides for H. cunea. Abstract Host–pathogen interactions are essential to our understanding of biological pesticides. Hyphantria cunea (Drury) is an important forest pest worldwide. The immune mechanism of the interaction between H. cunea and Serratia marcescens Bizio (SM1) is unclear. First, transcriptome sequencing and quantitative real-time PCR (qRT-PCR) analysis described the H. cunea immune response to SM1. A total of 234 immune-related differentially expressed genes (DEGs) were found. Many immune regulatory genes in three classical pathways were found. Antimicrobial peptides, including attacin B, cecropin A, gloverin, lebocin and diapausin, are involved in defending against SM1 challenge, and are mainly produced by Toll and immune deficiency (IMD) pathways. Some melanization genes were changed in H. cunea, which suggested that H. cunea melanization was activated by SM1. Furthermore, phagocytosis, autophagolysosome and apoptosis pathways in cellular immunity were activated in H. cunea against SM1. Finally, the expression patterns of 10 immune genes were analyzed systematically by qRT-PCR, and most of the genes were upregulated compared to the control. Our studies provide useful information about the immune response of H. cunea under the stress of SM1, which is important to understand how SM1 affects the immune system of H. cunea and provides new ideas to control H. cunea by using SM1.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-13813966269
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.W.); (K.F.); (M.X.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Stączek S, Zdybicka-Barabas A, Wiater A, Pleszczyńska M, Cytryńska M. Activation of cellular immune response in insect model host Galleria mellonella by fungal α-1,3-glucan. Pathog Dis 2021; 78:6000214. [PMID: 33232457 PMCID: PMC7726367 DOI: 10.1093/femspd/ftaa062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/06/2020] [Indexed: 12/26/2022] Open
Abstract
Alpha-1,3-glucan, in addition to β-1,3-glucan, is an important polysaccharide component of fungal cell walls. It is reported for many fungal species, including human pathogenic genera: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, Histoplasma and Pneumocystis, plant pathogens, e.g. Magnaporthe oryzae and entomopathogens, e.g. Metarhizium acridum. In human and plant pathogenic fungi, α-1,3-glucan is considered as a shield for the β-1,3-glucan layer preventing recognition of the pathogen by the host. However, its role in induction of immune response is not clear. In the present study, the cellular immune response of the greater wax moth Galleria mellonella to Aspergillus niger α-1,3-glucan was investigated for the first time. The changes detected in the total hemocyte count (THC) and differential hemocyte count (DHC), formation of hemocyte aggregates and changes in apolipophorin III localization indicated activation of G. mellonella cellular mechanisms in response to immunization with A. niger α-1,3-glucan. Our results, which have clearly demonstrated the response of the insect immune system to this fungal cell wall component, will help in understanding the α-1,3-glucan role in immune response against fungal pathogens not only in insects but also in mammals, including humans.
Collapse
Affiliation(s)
- Sylwia Stączek
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Immunobiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Immunobiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Adrian Wiater
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Industrial and Environmental Microbiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Małgorzata Pleszczyńska
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Industrial and Environmental Microbiology, Akademicka 19 St., 20-033 Lublin, Poland
| | - Małgorzata Cytryńska
- Maria Curie-Skłodowska University, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Department of Immunobiology, Akademicka 19 St., 20-033 Lublin, Poland
| |
Collapse
|
9
|
Wu W, Lin S, Zhao Z, Su Y, Li R, Zhang Z, Guo X. Bombyx mori Apolipophorin-III inhibits Beauveria bassiana directly and through regulating expression of genes relevant to immune signaling pathways. J Invertebr Pathol 2021; 184:107647. [PMID: 34303711 DOI: 10.1016/j.jip.2021.107647] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/26/2022]
Abstract
Insect Apolipophorin-III is a multifunctional protein and also plays an important role in insect innate immunity. Early transcriptome and proteome studies indicated that the gene expression level of Bombyx mori Apolipophorin-III (BmApoLp-III) in silkworm larvae infected with Beauveria bassiana was significantly up-regulated. In this study, BmApoLp-III gene was cloned, its expression patterns in different larval tissues investigated, the BmApoLp-III protein was successfully expressed with prokaryotic expression system and its antifungal effect was verified. The results showed that the BmApoLp-III gene was expressed in all the tested tissues of the 5th instar larvae infected by B. bassiana, with the highest expression in fat body. The fungistatic zone test showed that the recombinant BmApoLp-III has a significant antifungal effect on B. bassiana. Injecting purified BmApoLp-III to the larvae delayed the onset and death of the infected larvae. Conversely, silencing BmApoLp-III gene by RNAi resulted in early morbidity and death of the infected larvae. At the same time, injecting BmApoLp-III up-regulated the expression of genes including BmβGRP4 and BmMyd88 in the Toll signaling pathway, BmCTL5 and BmHOP in the Jak/STAT signaling pathway, serine proteinase inhibitor BmSerpin5, and antimicrobial peptide BmCecA, but down-regulated the expression of BmTak1 of Imd signaling pathway; while silencing BmApoLp-III gene down-regulated the expression of BmβGRP1 and BmSpaetzle, BmCTL5 and BmHOP, BmSerpin2 and BmSerpin5, BmBAEE and BmPPO2 of relevant pathways and BmCecA, but up-regulated the expression of BmPGRP-Lc and BmTak1 of Imd pathway. These results indicate that the BmApoLp-III could not only directly inhibit B. bassiana, but also participate in regulation of the expression of immune signaling pathway related genes, promote the expression of immune effectors, and indirectly inhibit the reproduction of B. bassiana in the silkworm.
Collapse
Affiliation(s)
- Wanming Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ze Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yun Su
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ruilin Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
10
|
Andrejko M, Mak P, Siemińska-Kuczer A, Iwański B, Wojda I, Suder P, Kuleta P, Regucka K, Cytryńska M. A comparison of the production of antimicrobial peptides and proteins by Galleria mellonella larvae in response to infection with two Pseudomonas aeruginosa strains differing in the profile of secreted proteases. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104239. [PMID: 33845095 DOI: 10.1016/j.jinsphys.2021.104239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
The work presents identification of antimicrobial peptides and proteins (AMPs) in the hemolymph of Galleria mellonella larvae infected with two Pseudomonas aeruginosa strains (ATCC 27,853 and PA18), differing in the profile of secreted proteases. The insects were immunized with bacteria cultivated in rich (LB) and minimal (M9) media, which resulted in appearance of a similar broad set of AMPs in the hemolymph. Among them, 13 peptides and proteins were identified, i.e. proline-rich peptides 1 and 2, lebocin-like anionic peptide 1 and anionic peptide 2, defensin/galiomicin, cecropin, cecropin D-like peptide, apolipophoricin, gallerimycin, moricin-like peptide B, lysozyme, apolipophorin III, and superoxide dismutase. Bacterial strain- and/or medium-dependent changes in the level of proline-rich peptide 1, anionic peptide 1 and 2, moricin-like peptide B, cecropin D-like and gallerimycin were observed. The analysis of the expression of genes encoding cecropin, gallerimycin, and galiomicin indicated that they were differently affected by the bacterial strain but mainly by the medium used for bacterial culture. The highest expression was found for the LB medium. In addition to the antibacterial and antifungal activity, proteolytic activity was detected in the hemolymph of the P. aeruginosa-infected insects. Based on these results and those presented in our previous reports, it can be postulated that the appearance of AMPs in G. mellonella hemolymph can be triggered not only by P. aeruginosa pathogen associated molecular patterns (PAMPs) but also by bacterial extracellular proteases secreted during infection. However, although there were no qualitative differences in the set of AMPs depending on the P. aeruginosa strain and medium, differences in the level of particular AMPs synthesized in response to the bacteria used were observed.
Collapse
Affiliation(s)
- Mariola Andrejko
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland
| | - Anna Siemińska-Kuczer
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Bartłomiej Iwański
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Iwona Wojda
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Piotr Suder
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Sciences and Ceramics, AGH University of Science and Technology, Mickiewicza 30 Ave., 30-059 Krakow, Poland
| | - Paula Kuleta
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland
| | - Karolina Regucka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| |
Collapse
|
11
|
Huang HJ, Yan XT, Wang X, Qi YH, Lu G, Chen JP, Zhang CX, Li JM. Proteomic analysis of Laodelphax striatellus in response to Rice stripe virus infection reveal a potential role of ZFP36L1 in restriction of viral proliferation. J Proteomics 2021; 239:104184. [PMID: 33711487 DOI: 10.1016/j.jprot.2021.104184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Persistent plant viruses multiply and circulate inside insect vectors following the route of midgut-hemolymph-salivary gland. Currently, how viruses interact with insect vectors after they are released into hemolymph is not entirely clear. In this study, we found that the hemolymph and fat body (HF) contained the highest Rice stripe virus (RSV) levels. Proteomic analysis on RSV-free and RSV-infected HF identified 156 differentially expressed proteins (DEPs), with the majority of them participating in metabolism, transportation, and detoxification. The RNA binding protein esf2 was the most downregulated protein. Knocking down the expression of esf2 did not influence the RSV burden, but caused the lethal effect to L. striatellus. In contrast, the mRNA decay protein ZFP36L1 was 69% more abundant upon RSV infection, and suppression of ZFP36L1 significantly increased the RSV burden. Our results reveal the potential role of ZFP36L1 in restricting the viral proliferation, and provide valuable clues for unravelling the interaction between RSV and L. striatellus in HF. SIGNIFICANCE: More than 76% of plant viruses are transmitted by insect vectors. For persistent propagative transmission, plant viruses multiply and circulate inside insects following the route of midgut-hemolymph-salivary gland. However, how viruses interact with vector insects after they are released into hemolymph is not entirely clear. Our study investigated the influence of rice stripe virus (RSV) on insect hemolymph and fat body by iTRAQ labeling method. Among the 156 differentially expressed proteins (DEPs) identified, two proteins associated with mRNA metabolism were selected for function analysis. We found that the mRNA decay activator protein ZFP36L1 influenced the RSV proliferation, and RNA binding protein esf2 caused the lethal effect to L. striatellus. Our results provide valuable clues for unveiling the interaction between RSV and L. striatellus, and might be useful in pest management.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiao-Tian Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
12
|
Pinos D, Andrés-Garrido A, Ferré J, Hernández-Martínez P. Response Mechanisms of Invertebrates to Bacillus thuringiensis and Its Pesticidal Proteins. Microbiol Mol Biol Rev 2021; 85:e00007-20. [PMID: 33504654 PMCID: PMC8549848 DOI: 10.1128/mmbr.00007-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on Bacillus thuringiensis This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of B. thuringiensis-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are responsible for conferring resistance to B. thuringiensis Nevertheless, other mechanisms may also contribute to the reduction of the effectiveness of B. thuringiensis-based products for managing insect pests and even to the acquisition of resistance. Here, we review the relevant literature reporting how invertebrates (mainly insects and Caenorhabditis elegans) respond to exposure to B. thuringiensis as either whole bacteria, spores, and/or its pesticidal proteins.
Collapse
Affiliation(s)
- Daniel Pinos
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Ascensión Andrés-Garrido
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Juan Ferré
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Patricia Hernández-Martínez
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| |
Collapse
|
13
|
Santiago PB, Charneau S, Mandacaru SC, Bentes KLDS, Bastos IMD, de Sousa MV, Ricart CAO, de Araújo CN, Santana JM. Proteomic Mapping of Multifunctional Complexes Within Triatomine Saliva. Front Cell Infect Microbiol 2020; 10:459. [PMID: 32984079 PMCID: PMC7492717 DOI: 10.3389/fcimb.2020.00459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/27/2020] [Indexed: 11/26/2022] Open
Abstract
Triatomines are hematophagous insects that transmit Trypanosoma cruzi, the etiological agent of Chagas disease. This neglected tropical disease represents a global health issue as it is spreading worldwide. The saliva of Triatominae contains miscellaneous proteins crucial for blood feeding acquisition, counteracting host's hemostasis while performing vasodilatory, anti-platelet and anti-coagulant activities, besides modulating inflammation and immune responses. Since a set of biological processes are mediated by protein complexes, here, the sialocomplexomes (salivary protein complexes) of five species of Triatominae were studied to explore the protein-protein interaction networks. Salivary multiprotein complexes from Triatoma infestans, Triatoma dimidiata, Dipetalogaster maxima, Rhodnius prolixus, and Rhodnius neglectus were investigated by Blue-Native- polyacrylamide gel electrophoresis coupled with liquid chromatography tandem mass spectrometry. More than 70 protein groups, uncovering the landscape of the Triatominae salivary interactome, were revealed. Triabin, actin, thioredoxin peroxidase and an uncharacterized protein were identified in sialocomplexes of the five species, while hexamerin, heat shock protein and histone were identified in sialocomplexes of four species. Salivary proteins related to triatomine immunity as well as those required during blood feeding process such as apyrases, antigen 5, procalins, and nitrophorins compose different complexes. Furthermore, unique proteins for each triatomine species were revealed. This study represents the first Triatominae sialocomplexome reference to date and shows that the approach used is a reliable tool for the analysis of Triatominae salivary proteins assembled into complexes.
Collapse
Affiliation(s)
- Paula Beatriz Santiago
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Samuel Coelho Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Kaio Luís da Silva Bentes
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | | | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Carlos André O Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, The University of Brasilia, Brasilia, Brazil
| |
Collapse
|
14
|
Palusińska-Szysz M, Zdybicka-Barabas A, Frąc M, Gruszecki WI, Wdowiak-Wróbel S, Reszczyńska E, Skorupska D, Mak P, Cytryńska M. Identification and characterization of Staphylococcus spp. and their susceptibility to insect apolipophorin III. Future Microbiol 2020; 15:1015-1032. [PMID: 32811181 DOI: 10.2217/fmb-2019-0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study investigated the effect of an insect antimicrobial protein, apolipophorin III (apoLp-III), against two newly isolated, identified and characterized clinical strains of Staphylococcus spp. Materials & methods: Both strains were identified by 16S rRNA sequencing and metabolic and phenotypic profiling. The antibacterial activity of apoLp-III was tested using a colony counting assay. ApoLp-III interaction with bacterial cell surface was analyzed by Fourier transform IR spectroscopy. Results: Staphylococcus epidermidis and Staphylococcus capitis were identified. ApoLp-III exerted a dose-dependent bactericidal effect on the tested strains. The differences in the Staphylococcus spp. surface components may contribute to the various sensitivities of these strains to apoLp-III. Conclusion: ApoLp-III may provide a baseline for development of antibacterial preparations against Staphylococcus spp. involved in dermatological problems.
Collapse
Affiliation(s)
- Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology & Biotechnology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology & Biotechnology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4 St., 20-290 Lublin, Poland
| | - Wiesław I Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Square 1, 20-031 Lublin, Poland
| | - Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology & Biotechnology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Emilia Reszczyńska
- Department of Plant Physiology & Biophysics, Institute of Biological Sciences, Faculty of Biology & Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | | | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics & Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology & Biotechnology, Maria Curie-Sklodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| |
Collapse
|
15
|
Pinto CPG, Azevedo EB, Dos Santos ALZ, Cardoso CP, Fernandes FO, Rossi GD, Polanczyk RA. Immune response and susceptibility to Cotesia flavipes parasitizing Diatraea saccharalis larvae exposed to and surviving an LC 25 dosage of Bacillus thuringiensis. J Invertebr Pathol 2019; 166:107209. [PMID: 31201787 DOI: 10.1016/j.jip.2019.107209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/29/2023]
Abstract
Biological control using entomopathogens and natural enemies is an ecofriendly method for pest management in agriculture. Biological control agents often can be simultaneously employed and compatibility between agents may improve pest suppression. We investigated the influence of the entomopathogen Bacillus thuringiensis (Bt) on the immune system of the sugarcane borer Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae) to determine if such changes impact parasitization by Cotesia flavipes Cameron, 1891 (Hymenoptera: Braconidae). The immune response of surviving D. saccharalis larvae fed with an LC25 dosage of a Bt-based biopesticide (Dipel®) was analyzed (total hemocyte count, hemocyte adhesion, and activities of phenoloxidase and lysozyme). Furthermore, the suitability of surviving Bt-fed larvae as hosts for C. flavipes was assessed by measuring parasitoid attributes such as number and size of teratocytes, weight of pupae, length of adult female tibia and number of emerged adults. Total hemocyte count, but not hemocyte adhesion, total protein content and phenoloxidase activity increased in the hemolymph of non-parasitized Bt-fed larvae (Bt-NP) compared to control larvae (NBt-NP). Lysozyme activity increased only after parasitization without Bt exposure (NBt-P). After parasitization, the immunological parameters activated in Bt-NP larvae decreased to levels at or below those observed in control larvae, showing that C. flavipes can regulate the activated immune response of Bt-fed larvae. The development of C. flavipes was not impaired in Bt-fed larval hosts (Bt-P); no changes were observed for teratocyte size, weight of pupal mass, length of hind tibia and number of adults emerged.
Collapse
Affiliation(s)
- Ciro Pedro Guidotti Pinto
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | - Emiliano Brandão Azevedo
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | | | - Camila Pires Cardoso
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | | | - Guilherme Duarte Rossi
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil
| | - Ricardo Antônio Polanczyk
- São Paulo State University (Unesp), School of Agricultural and Veterinarian Sciences, Jaboticabal, Brazil.
| |
Collapse
|
16
|
Yu HZ, Wang J, Zhang SZ, Toufeeq S, Li B, Li Z, Yang LA, Hu P, Xu JP. Molecular characterisation of Apolipophorin-III gene in Samia cynthia ricini and its roles in response to bacterial infection. J Invertebr Pathol 2018; 159:61-70. [PMID: 30347207 DOI: 10.1016/j.jip.2018.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023]
Abstract
Apolipophorin-III (ApoLp-III) is an abundant hemolymph protein mainly involved in lipid transport and innate immunity in insects. In the present study, the gene Samia cynthia ricini ApoLp-III (ScApoLp-III) was identified from a transcriptome database, and contained 790 nucleotides with a putative open reading frame (ORF) of 561 bp encoding 186 amino acid residues. Phylogenetic analysis revealed that ScApoLp-III had significant homology with ApoLp-III protein from Antheraea pernyi. Higher ScApoLp-III expression levels were found in the fat body and silk gland by reverse transcription quantitative PCR (RT-qPCR). Injection of Staphylococcus aureus induced up-regulation of ScApoLp-III in the midgut, fat body and hemocytes. However, ScApoLp-III was down-regulated in the midgut and fat body after Pseudomonas aeruginosa injection, indicating that ScApoLp-III may contribute to the host's defense against invading pathogens. Additionally, recombinant ScApoLp-III was found to bind different bacteria, including E. coli, P. aeruginosa, S. aureus and B. subtilis. Bactericidal tests showed that recombinant ScApoLp-III strongly inhibited Gram-negative bacteria, including Escherichia coli and P. aeruginosa. However, it had no obvious influence on Gram-positive bacteria. Taken together, our results suggest that the ScApoLp-III might play an important role in the innate immunity of S. c. ricini.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China; National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Zhen Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Li-Ang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Pei Hu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China.
| |
Collapse
|
17
|
Stączek S, Zdybicka-Barabas A, Mak P, Sowa-Jasiłek A, Kedracka-Krok S, Jankowska U, Suder P, Wydrych J, Grygorczuk K, Jakubowicz T, Cytryńska M. Studies on localization and protein ligands of Galleria mellonella apolipophorin III during immune response against different pathogens. JOURNAL OF INSECT PHYSIOLOGY 2018; 105:18-27. [PMID: 29289504 DOI: 10.1016/j.jinsphys.2017.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/28/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
A lipid-binding protein apolipophorin III (apoLp-III), an exchangeable component of lipophorin particles, is involved in lipid transport and immune response in insects. In Galleria mellonella, apoLp-III binding to high-density lipophorins and formation of low-density lipophorin complexes upon immune challenge was reported. However, an unanswered question remains whether apoLp-III could form different complexes in a pathogen-dependent manner. Here we report on pathogen- and time-dependent alterations in the level of apoLp-III free and lipophorin-bound form that occur in the hemolymph and hemocytes shortly after immunization of G. mellonella larvae with different pathogens, i.e. Gram-negative bacterium Escherichia coli, Gram-positive bacterium Micrococcus luteus, yeast-like fungus Candida albicans, and filamentous fungus Fusarium oxysporum. These changes were accompanied by differently persistent re-localization of apoLp-III in the hemocytes. The apoLp-III-interacting proteins were recovered from immune hemolymph by affinity chromatography on a Sepharose bed with immobilized anti-apoLp-III antibodies. ApoLp-I, apoLp-II, hexamerin, and arylphorin were identified as main components that bound to apoLp-III; the N-terminal amino acid sequences of G. mellonella apoLp-I and apoLp-II were determined for the first time. In the recovered complexes, the pathogen-dependent differences in the content of individual apolipophorins were detected. Apolipophorins may thus be postulated as signaling molecules responding in an immunogen-dependent manner in early steps of G. mellonella immune response.
Collapse
Affiliation(s)
- Sylwia Stączek
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Gronostajowa 7A St., 30-387 Krakow, Poland
| | - Aneta Sowa-Jasiłek
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Gronostajowa 7A St., 30-387 Krakow, Poland
| | - Urszula Jankowska
- Malopolska Centre of Biotechnology, Gronostajowa 7A St., 30-387 Krakow, Poland
| | - Piotr Suder
- Biochemistry and Neurobiology Department, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 ave., 30-059 Krakow, Poland
| | - Jerzy Wydrych
- Department of Comparative Anatomy and Anthropology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Katarzyna Grygorczuk
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Teresa Jakubowicz
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
18
|
Dhawan R, Gupta K, Kajla M, Kakani P, Choudhury TP, Kumar S, Kumar V, Gupta L. Apolipophorin-III Acts as a Positive Regulator of Plasmodium Development in Anopheles stephensi. Front Physiol 2017; 8:185. [PMID: 28439240 PMCID: PMC5383653 DOI: 10.3389/fphys.2017.00185] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/10/2017] [Indexed: 01/30/2023] Open
Abstract
Apolipophorin III (ApoLp-III) is a well-known hemolymph protein having a functional role in lipid transport and immune responses of insects. Here we report the molecular and functional characterization of Anopheles stephensi Apolipophorin-III (AsApoLp-III) gene. This gene consists of 679 nucleotides arranged into two exons of 45 and 540 bp that give an ORF encoding 194 amino acid residues. Excluding a putative signal peptide of the first 19 amino acid residues, the 175-residues in mature AsApoLp-III protein has a calculated molecular mass of 22 kDa. Phylogenetic analysis revealed the divergence of mosquitoes (Order Diptera) ApoLp-III from their counterparts in moths (Order: Lepidoptera). Also, it revealed a close relatedness of AsApoLp-III to ApoLp-III of An. gambiae. AsApoLp-III mRNA expression is strongly induced in Plasmodium berghei infected mosquito midguts suggesting its crucial role in parasite development. AsApoLp-III silencing decreased P. berghei oocysts numbers by 7.7 fold against controls. These effects might be due to the interruption of AsApoLp-III mediated lipid delivery to the developing oocysts. In addition, nitric oxide synthase (NOS), an antiplasmodial gene, is also highly induced in AsApoLp-III silenced midguts suggesting that this gene acts like an agonist and protects Plasmodium against the mosquito immunity.
Collapse
Affiliation(s)
- Rini Dhawan
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Kuldeep Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Mithilesh Kajla
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Parik Kakani
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Tania P Choudhury
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Sanjeev Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India.,Department of Biotechnology, Chaudhary Bansi Lal UniversityBhiwani, India
| | - Vikas Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Lalita Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India.,Department of Zoology, Chaudhary Bansi Lal UniversityBhiwani, India
| |
Collapse
|
19
|
Woestmann L, Kvist J, Saastamoinen M. Fight or flight? - Flight increases immune gene expression but does not help to fight an infection. J Evol Biol 2016; 30:501-511. [PMID: 27864861 PMCID: PMC5347902 DOI: 10.1111/jeb.13007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/31/2016] [Indexed: 12/31/2022]
Abstract
Flight represents a key trait in most insects, being energetically extremely demanding, yet often necessary for foraging and reproduction. Additionally, dispersal via flight is especially important for species living in fragmented landscapes. Even though, based on life‐history theory, a negative relationship may be expected between flight and immunity, a number of previous studies have indicated flight to induce an increased immune response. In this study, we assessed whether induced immunity (i.e. immune gene expression) in response to 15‐min forced flight treatment impacts individual survival of bacterial infection in the Glanville fritillary butterfly (Melitaea cinxia). We were able to confirm previous findings of flight‐induced immune gene expression, but still observed substantially stronger effects on both gene expression levels and life span due to bacterial infection compared to flight treatment. Even though gene expression levels of some immunity‐related genes were elevated due to flight, these individuals did not show increased survival of bacterial infection, indicating that flight‐induced immune activation does not completely protect them from the negative effects of bacterial infection. Finally, an interaction between flight and immune treatment indicated a potential trade‐off: flight treatment increased immune gene expression in naïve individuals only, whereas in infected individuals no increase in immune gene expression was induced by flight. Our results suggest that the up‐regulation of immune genes upon flight is based on a general stress response rather than reflecting an adaptive response to cope with potential infections during flight or in new habitats.
Collapse
Affiliation(s)
- L Woestmann
- Metapopulation Research Centre, University of Helsinki, Helsinki, Finland
| | - J Kvist
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - M Saastamoinen
- Metapopulation Research Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Zdybicka-Barabas A, Sowa-Jasiłek A, Stączek S, Jakubowicz T, Cytryńska M. Different forms of apolipophorin III in Galleria mellonella larvae challenged with bacteria and fungi. Peptides 2015; 68:105-12. [PMID: 25579437 DOI: 10.1016/j.peptides.2014.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 01/08/2023]
Abstract
Apolipophorin III (apoLp-III), a lipid-binding protein and an insect homolog of human apolipoprotein E, plays an important role in lipid transport and immune response in insects. In the present study, we have demonstrated a correlation in time between changes in the apoLp-III abundance occurring in the hemolymph, hemocytes, and fat body after immunization of Galleria mellonella larvae with Gram-negative bacteria Escherichia coli, Gram-positive bacteria Micrococcus luteus, yeast Candida albicans, and a filamentous fungus Fusarium oxysporum. Using two-dimensional electrophoresis (IEF/SDS-PAGE) and immunoblotting with anti-apoLp-III antibodies, the profile of apoLp-III forms in G. mellonella larvae challenged with the bacteria and fungi has been analyzed. Besides the major apoLp-III protein (pI=6.5), one and three additional apoLp-III forms differing in the pI value have been detected, respectively, in the hemolymph, hemocytes, and fat body of non-immunized insects. Also, evidence has been provided that particular apoLp-III-derived polypeptides appear after the immune challenge and are present mainly in the hemolymph and hemocytes. The time of their appearance and persistence in the hemolymph was dependent on the pathogen used. At least two of the apoLp-III forms detected in hemolymph bound to the microbial cell surface. The increasing number of hemolymph apoLp-III polypeptides and differences in their profiles observed in time after the challenge with different immunogens confirmed the important role of apoLp-III in discriminating between pathogens by the insect defense system and in antibacterial as well as antifungal immune response.
Collapse
Affiliation(s)
- Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland.
| | - Aneta Sowa-Jasiłek
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Sylwia Stączek
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Teresa Jakubowicz
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland
| |
Collapse
|
21
|
Kim BY, Jin BR. Apolipophorin III from honeybees (Apis cerana) exhibits antibacterial activity. Comp Biochem Physiol B Biochem Mol Biol 2015; 182:6-13. [DOI: 10.1016/j.cbpb.2014.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 12/15/2022]
|
22
|
Liu QN, Lin KZ, Yang LN, Dai LS, Wang L, Sun Y, Qian C, Wei GQ, Liu DR, Zhu BJ, Liu CL. Molecular characterization of an Apolipophorin-III gene from the Chinese oak silkworm, Antheraea pernyi (Lepidoptera: Saturniidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:155-167. [PMID: 25348706 DOI: 10.1002/arch.21210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Apolipophorin-III (ApoLp-III) acts in lipid transport, lipoprotein metabolism, and innate immunity in insects. In this study, an ApoLp-III gene of Antheraea pernyi pupae (Ap-ApoLp-III) was isolated and characterized. The full-length cDNA of Ap-ApoLp-III is 687 bp, including a 5'-untranslated region (UTR) of 40 bp, 3'-UTR of 86 bp and an open reading frame of 561 bp encoding a polypeptide of 186 amino acids that contains an Apolipophorin-III precursor domain (PF07464). The deduced Ap-apoLp-III protein sequence has 68, 59, and 23% identity with its orthologs of Manduca sexta, Bombyx mori, and Aedes aegypti, respectively. Phylogenetic analysis showed that the Ap-apoLp-III was close to that of Bombycoidea. qPCR analysis revealed that Ap-ApoLp-III expressed during the four developmental stages and in integument, fat body, and ovaries. After six types of microorganism infections, expression levels of the Ap-ApoLp-III gene were upregulated significantly at different time points compared with control. RNA interference (RNAi) of Ap-ApoLp-III showed that the expression of Ap-ApoLp-III was significantly downregulated using qPCR after injection of E. coli. We infer that the Ap-ApoLp-III gene acts in the innate immunity of A. pernyi.
Collapse
Affiliation(s)
- Qiu-Ning Liu
- College of Life Sciences, Anhui Agricultural University, Hefei, P. R.China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Noh JY, Patnaik BB, Tindwa H, Seo GW, Kim DH, Patnaik HH, Jo YH, Lee YS, Lee BL, Kim NJ, Han YS. Genomic organization, sequence characterization and expression analysis of Tenebrio molitor apolipophorin-III in response to an intracellular pathogen, Listeria monocytogenes. Gene 2013; 534:204-17. [PMID: 24200961 DOI: 10.1016/j.gene.2013.10.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/21/2013] [Accepted: 10/26/2013] [Indexed: 11/29/2022]
Abstract
Apolipophorin III (apoLp-III) is a well-known hemolymph protein having a functional role in lipid transport and immune response of insects. We cloned full-length cDNA encoding putative apoLp-III from larvae of the coleopteran beetle, Tenebrio molitor (TmapoLp-III), by identification of clones corresponding to the partial sequence of TmapoLp-III, subsequently followed with full length sequencing by a clone-by-clone primer walking method. The complete cDNA consists of 890 nucleotides, including an ORF encoding 196 amino acid residues. Excluding a putative signal peptide of the first 20 amino acid residues, the 176-residue mature apoLp-III has a calculated molecular mass of 19,146Da. Genomic sequence analysis with respect to its cDNA showed that TmapoLp-III was organized into four exons interrupted by three introns. Several immune-related transcription factor binding sites were discovered in the putative 5'-flanking region. BLAST and phylogenetic analyses reveal that TmapoLp-III has high sequence identity (88%) with Tribolium castaneum apoLp-III but shares little sequence homologies (<26%) with other apoLp-IIIs. Homology modeling of Tm apoLp-III shows a bundle of five amphipathic alpha helices, including a short helix 3'. The 'helix-short helix-helix' motif was predicted to be implicated in lipid binding interactions, through reversible conformational changes and accommodating the hydrophobic residues to the exterior for stability. Highest level of TmapoLp-III mRNA was detected at late pupal stages, albeit it is expressed in the larval and adult stages at lower levels. The tissue specific expression of the transcripts showed significantly higher numbers in larval fat body and adult integument. In addition, TmapoLp-III mRNA was found to be highly upregulated in late stages of L. monocytogenes or E. coli challenge. These results indicate that TmapoLp-III may play an important role in innate immune responses against bacterial pathogens in T. molitor.
Collapse
Affiliation(s)
- Ju Young Noh
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Bharat Bhusan Patnaik
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hamisi Tindwa
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Gi Won Seo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Dong Hyun Kim
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hongray Howrelia Patnaik
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yong Hun Jo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan City 336-745 Republic of Korea
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Jangjeon Dong, Kumjeong Ku, Busan, 609-735, Republic of Korea
| | - Nam Jung Kim
- Division of Applied Entomology, National Academy of Agricultural Science, Rural Development, 61th, Seodun-dong, Gwonseon-gu, Suwon, Gyeonggi-do, 441-853, Republic of Korea
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
24
|
Contreras E, Rausell C, Real MD. Tribolium castaneum Apolipophorin-III acts as an immune response protein against Bacillus thuringiensis Cry3Ba toxic activity. J Invertebr Pathol 2013; 113:209-13. [DOI: 10.1016/j.jip.2013.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 12/24/2022]
|
25
|
Dheilly NM, Raftos DA, Haynes PA, Smith LC, Nair SV. Shotgun proteomics of coelomic fluid from the purple sea urchin, Strongylocentrotus purpuratus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 40:35-50. [PMID: 23353016 DOI: 10.1016/j.dci.2013.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/03/2013] [Accepted: 01/04/2013] [Indexed: 05/20/2023]
Abstract
The purple sea urchin has a complex immune system that is likely mediated by gene expression in coelomocytes (blood cells). A broad array of potential immune receptors and immune response proteins has been deduced from their gene models. Here we use shotgun mass spectrometry to describe 307 proteins with possible immune function in sea urchins including proteins involved in the complement pathway and numerous SRCRs. The relative abundance of dual oxidase 1, ceruloplasmin, ferritin and transferrin suggests the production of reactive oxygen species in coelomocytes and the sequestration of iron. Proteins such as selectin, cadherin, talin, galectin, amassin and the Von Willebrand factor may be involved in generating a strong clotting reaction. Cell signaling proteins include a guanine nucleotide binding protein, the Rho GDP dissociation factor, calcium storage molecules and a variety of lipoproteins. However, based on this dataset, the expression of TLRs, NLRs and fibrinogen domain containing proteins in coelomic fluid and coelomocytes could not be verified.
Collapse
Affiliation(s)
- Nolwenn M Dheilly
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | | | | | | | | |
Collapse
|
26
|
Lourenço AP, Martins JR, Guidugli-Lazzarini KR, Macedo LMF, Bitondi MMG, Simões ZLP. Potential costs of bacterial infection on storage protein gene expression and reproduction in queenless Apis mellifera worker bees on distinct dietary regimes. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1217-1225. [PMID: 22732231 DOI: 10.1016/j.jinsphys.2012.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 06/01/2023]
Abstract
Insects are able to combat infection by initiating an efficient immune response that involves synthesizing antimicrobial peptides and a range of other defense molecules. These responses may be costly to the organism, resulting in it exploiting endogenous resources to maintain homeostasis or support defense to the detriment of other physiological needs. We used queenless worker bees on distinct dietary regimes that may alter hemolymph protein storage and ovary activation to investigate the physiological costs of infection with Serratia marcescens. The expression of the genes encoding the storage proteins vitellogenin and hexamerin 70a, the vitellogenin receptor, and vasa (which has a putative role in reproduction), was impaired in the infected bees. This impairment was mainly evident in the bees fed beebread, which caused significantly higher expression of these genes than did royal jelly or syrup, and this was confirmed at the vitellogenin and hexamerin 70a protein levels. Beebread was also the only diet that promoted ovary activation in the queenless bees, but this activation was significantly impaired by the infection. The expression of the genes encoding the storage proteins apolipophorins-I and -III and the lipophorin receptor was not altered by infection regardless the diet provided to the bees. Similarly, the storage of apolipophorin-I in the hemolymph was only slightly impaired by the infection, independently of the supplied diet. Taken together these results indicate that, infection demands a physiological cost from the transcription of specific protein storage-related genes and from the reproductive capacity.
Collapse
Affiliation(s)
- Anete Pedro Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
27
|
Malik ZA, Amir S, Venekei I. SERINE proteinase like activity in apolipophorin III from the hemolymph of desert locust, Schistocerca gregaria. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 80:26-41. [PMID: 22499434 DOI: 10.1002/arch.21020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Apolipophorin III (apoLp-III) has been known as a lipid transport protein of insects. Recent studies indicated the involvement of apoLp-III in immune reactions and in the control of cell destruction, but no enzymatic activity has so far been detected. In the present study, a protease from the hemolymph of Schistocerca gregaria was purified to homogeneity and its enzymatic activity was examined. Identity as chymotrypsin-like proteinase was established by its high affinity toward bulky aromatic substrates and its catalytic specificity for amide or ester bonds on the synthetic substrates, Suc-Ala-Ala-Pro-Xaa-AMC (where Xaa was Phe, Tyr, Trp, and Lys, and AMC is 7-amino-4-methyl-coumarin) and thiolbenzyl ester substrate Suc-Ala-Ala-Pro-Phe-SBzl. The sensitivity for serine protease and chymotrypsin-specific covalent inhibitors, PMSF, TPCK, and noncovalent inhibitors SGCI, showed that it is a chymotrypsin-like proteinase. It showed its maximum activity at pH 8.0 and 55°C for the hydrolysis of Suc-Ala-Ala-Pro-Tyr-AMC. According to similarities in the amino terminal sequence, molar mass (19 kDa) and retention on reversed-phase analytical high-performance liquid chromatography (HPLC) column, this protein is S. gregaria homologue of Locusta migratoria apoLp-III. Our data suggest that apoLp-III also has an inherent proteolytic activity. Results indicated that S. gregaria apoLp-III is a good catalyst and could be used as a biotechnological tool in food processing and in agricultural biotechnology.
Collapse
Affiliation(s)
- Zulfiqar A Malik
- Department of Medical Pharmacology, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
28
|
Sun Z, Yu J, Wu W, Zhang G. Molecular characterization and gene expression of apolipophorin III from the ghost moth, Thitarodes pui (Lepidoptera, Hepialidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 80:1-14. [PMID: 22128070 DOI: 10.1002/arch.20456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Apolipophorin III (apoLp-III) functions in lipid transport and immune activation in insects. We cloned a cDNA encoding putative apoLp-III from larvae of Thitarodes pui, a host species of Ophiocordyceps sinensis, with great economic importance in the Tibetan Plateau. Excluding a putative signal peptide of the first 20 amino acid residues, the 171-residue mature apoLp-III has a calculated molecular mass of 18,606 Da. T. pui apoLp-III shares little sequence homologies (<36%) with other apoLp-IIIs. Phylogenetic analysis reveals that T. pui apoLp-III belongs to a distinct, early diverging lineage of lepidopteran apoLp-IIIs. Homology modeling of T. pui apoLp-III shows a bundle of five amphipathic α-helices, including a short helix 3'. T. pui apoLp-III was constitutively expressed in larval fat body at lower levels than pupal and adult fat body. Significant induction of apoLp-III expression, associated with strongest nodulation response, was observed in both sixth and eighth instar larvae challenged with Beauveria bassiana conidia at 1 hr after inoculation, compared with saline-injected controls. The inoculation experiment as well as previous field studies revealed the relative susceptibility of the sixth instar to the entomopathogenic fungus. ApoLp-III transcripts in the infected sixth and eighth instars were found to be induced highest 2- and 14.7-fold, respectively, during the first 12 hr. In late-stage infection, the infected susceptible sixth instar showed decrease in apoLp-III expression followed by production of B. bassiana hyphal bodies, whereas the infected eighth instar showed longer lasting increase in the expression. These results suggest that apoLp-III might contribute to T. pui immune response against fungal pathogens.
Collapse
Affiliation(s)
- Zixuan Sun
- State Key Laboratory for Biological Control/Institute of Entomology, Sun Yat-Sen University, Guangzhou, People' Republic of China
| | | | | | | |
Collapse
|
29
|
Dheilly NM, Haynes PA, Raftos DA, Nair SV. Time course proteomic profiling of cellular responses to immunological challenge in the sea urchin, Heliocidaris erythrogramma. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 37:243-56. [PMID: 22446733 DOI: 10.1016/j.dci.2012.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/09/2012] [Accepted: 03/12/2012] [Indexed: 05/20/2023]
Abstract
Genome sequences and high diversity cDNA arrays have provided a detailed molecular understanding of immune responses in a number of invertebrates, including sea urchins. However, complementary analyses have not been undertaken at the level of proteins. Here, we use shotgun proteomics to describe changes in the abundance of proteins from coelomocytes of sea urchins after immunological challenge and wounding. The relative abundance of 345 reproducibly identified proteins were measured 6, 24 and 48 h after injection. Significant changes in the relative abundance of 188 proteins were detected. These included pathogen-binding proteins, such as the complement component C3 and scavenger receptor cysteine rich proteins, as well as proteins responsible for cytoskeletal remodeling, endocytosis and intracellular signaling. An initial systemic reaction to wounding was followed by a more specific response to immunological challenge involving proteins such as apolipophorin, dual oxidase, fibrocystin L, aminopeptidase N and α-2-macroglobulin.
Collapse
Affiliation(s)
- Nolwenn M Dheilly
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | | | | | | |
Collapse
|
30
|
Zdybicka-Barabas A, Stączek S, Mak P, Piersiak T, Skrzypiec K, Cytryńska M. The effect of Galleria mellonella apolipophorin III on yeasts and filamentous fungi. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:164-177. [PMID: 22100292 DOI: 10.1016/j.jinsphys.2011.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 05/31/2023]
Abstract
Galleria mellonella apolipophorin III (apoLp-III) has been implicated in the innate immune response against bacterial infections. The protein binds components of bacterial cell wall and inhibits growth of selected Gram-positive and Gram-negative bacteria. Interaction of apoLp-III with fungal β-1,3-glucan suggests antifungal properties of the protein. In the present study, the effect of apoLp-III on the growth, metabolic activity and cell surface characteristics of selected yeasts and filamentous fungi was investigated using light, confocal and atomic force microscopy. ApoLp-III bound to the cell surface of different yeasts and filamentous fungi as confirmed by immunoblotting with anti-apoLp-III antibodies. Incubation of the fungi in the presence of apoLp-III induced alterations in growth morphology. Candida albicans underwent transition from yeast-like to hyphal growth with formation of true hyphae, whereas Fusarium oxysporum hyphae exhibited decreased metabolic activity, increased vacuolization and appearance of numerous monophialids with microconidia. Atomic force microscopy imaging demonstrated evident alterations in the fungal cell surface after incubation with apoLp-III, suggesting that the protein affected the cell wall components.
Collapse
Affiliation(s)
- Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | | | | | | | | | | |
Collapse
|
31
|
Banville N, Fallon J, McLoughlin K, Kavanagh K. Disruption of haemocyte function by exposure to cytochalasin b or nocodazole increases the susceptibility of Galleria mellonella larvae to infection. Microbes Infect 2011; 13:1191-8. [PMID: 21782965 DOI: 10.1016/j.micinf.2011.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 07/01/2011] [Accepted: 07/01/2011] [Indexed: 11/18/2022]
Abstract
Administration of non-toxic concentrations (10 μM) of cytochalasin b and nocodazole to larvae of Galleria mellonella increased their susceptibility to infection by the yeast Candida albicans. These agents were found to inhibit the process of phagocytosis and to reduce the killing ability of haemocytes. In addition, both cytochalasin b and nocodazole reduced the release of antimicrobial peptides (e.g. apolipophorin 3) and enzymes (e.g. serine protease) from PMA stimulated haemocytes. Rhodamine coupled phalloidin staining revealed reduced F-actin formation in haemocytes treated with nocodazole or cytochalasin b. By disrupting the formation of F-actin cytochalasin b and nocodazole have the ability to retard the function of haemocytes, in the same manner as they affect mammalian neutrophils, and thus increase the susceptibility of larvae to infection. The results presented here demonstrate that haemocytes are sensitive to inhibition by nocodazole and cytochalasin b, in a similar manner to neutrophils, thus highlighting another similarity between both cell types and so increasing the attractiveness of using insects as alternative models to the use of mammals for in vivo pathogen or drug screening.
Collapse
Affiliation(s)
- Nessa Banville
- Medical Mycology Unit, Department of Biology, NUI Maynooth, Co. Kildare, Ireland
| | | | | | | |
Collapse
|
32
|
Abstract
Lepidopteran insects provide important model systems for innate immunity of insects, particularly for cell biology of hemocytes and biochemical analyses of plasma proteins. Caterpillars are also among the most serious agricultural pests, and understanding of their immune systems has potential practical significance. An early response to infection in lepidopteran larvae is the activation of hemocyte adhesion, leading to phagocytosis, nodule formation, or encapsulation. Plasmatocytes and granular cells are the hemocyte types involved in these responses. Infectious microorganisms are recognized by binding of hemolymph plasma proteins to microbial surface components. This "pattern recognition" triggers phagocytosis and nodule formation, activation of prophenoloxidase and melanization and the synthesis of antimicrobial proteins that are secreted into the hemolymph. Many hemolymph proteins that function in such innate immune responses of insects were first discovered in lepidopterans. Microbial proteinases and nucleic acids released from lysed host cells may also activate lepidopteran immune responses. Hemolymph antimicrobial peptides and proteins can reach high concentrations and may have activity against a broad spectrum of microorganisms, contributing significantly to clearing of infections. Serine proteinase cascade pathways triggered by microbial components interacting with pattern recognition proteins stimulate activation of the cytokine Spätzle, which initiates the Toll pathway for expression of antimicrobial peptides. A proteinase cascade also results inproteolytic activation of phenoloxidase and production of melanin coatings that trap and kill parasites and pathogens. The proteinases in hemolymph are regulated by specific inhibitors, including members of the serpin superfamily. New developments in lepidopteran functional genomics should lead to much more complete understanding of the immune systems of this insect group.
Collapse
|
33
|
Andrejko M, Mizerska-Dudka M. Elastase B of Pseudomonas aeruginosa stimulates the humoral immune response in the greater wax moth, Galleria mellonella. J Invertebr Pathol 2011; 107:16-26. [DOI: 10.1016/j.jip.2010.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/20/2010] [Accepted: 12/31/2010] [Indexed: 11/16/2022]
|
34
|
Kim YI, Kim HJ, Kwon YM, Kang YJ, Lee IH, Jin BR, Han YS, Kim I, Cheon HM, Ha NG, Seo SJ. RNA interference mediated knockdown of apolipophorin-III leads to knockdown of manganese superoxide dismutase in Hyphantria cunea. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:303-12. [PMID: 21458580 DOI: 10.1016/j.cbpa.2011.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/25/2011] [Accepted: 03/25/2011] [Indexed: 11/27/2022]
Abstract
Apolipophorin-III (apoLp-III), a hemolymph protein that facilitates lipid transport in aqueous media in insects was recently shown to play a role in insect immune activation. Here, we report another novel possible function of apoLp-III in insects. To identify genes affected by apoLp-III expression in larvae, we decreased endogenous apoLp-III mRNA in Hyphantria cunea (Hc) through RNA interference; subsequently, we observed lower levels of antioxidant enzymes, including manganese superoxide dismutase (MnSOD), glutathione S-transferase, and immune proteins. Knockdown of Hc apoLp-III led to decreased MnSOD expression in fat body tissues and elevated superoxide anion levels in Hc fat body cells, suggesting that Hc apoLp-III is involved in the action and/or expression of antioxidant enzymes, especially MnSOD.
Collapse
Affiliation(s)
- Yong Il Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Involvement of apolipophorin III in antibacterial defense of Galleria mellonella larvae. Comp Biochem Physiol B Biochem Mol Biol 2011; 158:90-8. [DOI: 10.1016/j.cbpb.2010.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 11/19/2022]
|
36
|
Gupta L, Noh JY, Jo YH, Oh SH, Kumar S, Noh MY, Lee YS, Cha SJ, Seo SJ, Kim I, Han YS, Barillas-Mury C. Apolipophorin-III mediates antiplasmodial epithelial responses in Anopheles gambiae (G3) mosquitoes. PLoS One 2010; 5:e15410. [PMID: 21072214 PMCID: PMC2970580 DOI: 10.1371/journal.pone.0015410] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/06/2010] [Indexed: 11/18/2022] Open
Abstract
Background Apolipophorin-III (ApoLp-III) is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes. Methodology/Principal Findings We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III). Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; however, the predicted tertiary structure of AgApoLp-III is similar to that of Manduca sexta (tobacco hornworm). We found that AgApoLp-III mRNA expression is strongly induced in the midgut of An. gambiae (G3 strain) mosquitoes in response to Plasmodium berghei infection. Furthermore, immunofluorescence stainings revealed that high levels of AgApoLp-III protein accumulate in the cytoplasm of Plasmodium-invaded cells and AgApoLp-III silencing increases the intensity of P. berghei infection by five fold. Conclusion There are broad differences in the midgut epithelial responses to Plasmodium invasion between An. gambiae strains. In the G3 strain of An. gambiae AgApoLp-III participates in midgut epithelial defense responses that limit Plasmodium infection.
Collapse
Affiliation(s)
- Lalita Gupta
- Mosquito Immunity and Vector Competence Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ju Young Noh
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Yong Hun Jo
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Seung Han Oh
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Sanjeev Kumar
- Mosquito Immunity and Vector Competence Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mi Young Noh
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Yong Seok Lee
- Department of Parasitology, College of Medicine and Frontier Inje Research for Science and Technology, Inje University, Busan, Korea
| | - Sung-Jae Cha
- Johns Hopkins School of Public Health, Department of Molecular Microbiology and Immunology and Malaria Research Institute, Baltimore, Maryland, United States of America
| | - Sook Jae Seo
- Division of Applied Life Science, Gyeongsang National University, Jinju, Korea
| | - Iksoo Kim
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Yeon Soo Han
- Department of Agricultural Biology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
- * E-mail: (YSH); (CB-M)
| | - Carolina Barillas-Mury
- Mosquito Immunity and Vector Competence Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail: (YSH); (CB-M)
| |
Collapse
|
37
|
Son Y, Kim Y. Immunosuppression induced by entomopathogens is rescued by addition of apolipophorin III in the diamondback moth, Plutella xylostella. J Invertebr Pathol 2010; 106:217-22. [PMID: 20937282 DOI: 10.1016/j.jip.2010.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/23/2010] [Accepted: 09/30/2010] [Indexed: 11/26/2022]
Abstract
Apolipophorin III (ApoLpIII) has been known to play critical roles in lipid transport and immune activation in insects. This study reports a partial ApoLpIII gene cloned from the diamondback moth, Plutella xylostella. It showed that the gene was expressed in all developmental stages of P. xylostella. In larval stage, it was expressed in all tested tissues of hemocyte, fat body, gut, and epidermis. In response to bacterial challenge, the larvae showed an enhanced level of ApoLpIII expression by a quantitative real-time RT-PCR. RNA interference of ApoLpIII by its specific double stranded RNA (dsRNA) caused significant knockdown of its expression level and resulted in significant suppression in hemocyte nodule formation in response to bacterial challenge. However, larvae treated with the dsRNA exhibited a significant recovery in the cellular immune response by addition of a recombinant ApoLpIII. Parasitization by an endoparasitoid wasp, Cotesia plutellae, suppressed expression of ApoLpIII and resulted in a significant suppression in the hemocyte nodule formation. The addition of the recombinant ApoLpIII to the parasitized larvae significantly restored the hemocyte activity. Infection of an entomopathogenic bacterium, Xenorhabdus nematophila, caused potent pathogenicity of P. xylostella. However, the addition of the recombinant ApoLpIII to the infected larvae significantly prevented the lethal pathogenicity. This study suggests that ApoLpIII limits pathogenicity induced by parasitization or bacterial infection in P. xylostella.
Collapse
Affiliation(s)
- Yerim Son
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | | |
Collapse
|
38
|
Gulii V, Dunphy GB, Mandato CA. Innate hemocyte responses of Malacosoma disstria larvae (C. Insecta) to antigens are modulated by intracellular cyclic AMP. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:890-900. [PMID: 19454331 DOI: 10.1016/j.dci.2009.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 02/13/2009] [Accepted: 02/19/2009] [Indexed: 05/27/2023]
Abstract
Invertebrate intracellular hemocyte signaling pathways affecting cellular-antigen responses, although defined for molluscs and some arthropods including dipteran insects, is less known for lepidopterans. Hemocytic-antigen responses of the arboreal pest lepidopteran Malacosoma disstria are linked to cAMP-dependent protein kinase A implicating cAMP in cellular hemocyte immune responses. The purpose in the present study was to determine intracellular cAMP effects on larval M. disstria hemocytes adhering to slides and bacteria. Altering adenylate cyclase and phosphodiesterase activities as well as cAMP levels in vitro and in vivo changed hemocyte responses to antigens. Quiescent hemocytes had high cAMP levels due to adenylate cyclase activity and possibly low phosphodiesterase (type 4) activity. Antigen contact diminished hemocytic cAMP levels. Inhibiting adenylate cyclase increased hemocyte-antigen and hemocyte-hemocyte adhesion, the latter producing nodules in vivo without bacterial antigens. Inhibiting phosphodiesterase type 4 produced the reverse effects. Pharmacologically increasing intracellular cAMP in attached hemocytes caused many of the cells to detach. Diminished intracellular cAMP changed hemograms in vivo in bacteria-free larvae comparable to changes induced by the bacterium, Bacillus subtilis, by producing nodules. Lowering cAMP enhanced also the removal of Xenorhabdus nematophila and B. subtilisin vivo.
Collapse
Affiliation(s)
- Vladislav Gulii
- Department of Natural Resource Sciences, McGill University, Montreal, Canada
| | | | | |
Collapse
|
39
|
Lourenço AP, Martins JR, Bitondi MMG, Simões ZLP. Trade-off between immune stimulation and expression of storage protein genes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2009; 71:70-87. [PMID: 19309002 DOI: 10.1002/arch.20301] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Proteins stored in insect hemolymph may serve as a source of amino acids and energy for metabolism and development. The expression of the main storage proteins was assessed in bacterial-challenged honey bees using real-time (RT)-PCR and Western blot. After ensuring that the immune system had been activated by measuring the ensuing expression of the innate immune response genes, defensin-1 (def-1) and prophenoloxidase (proPO), we verified the expression of four genes encoding storage proteins. The levels of vitellogenin (vg) mRNA and of the respective protein were significantly lowered in bees injected with bacteria or water only (injury). An equivalent response was observed in orally-infected bees. The levels of apolipophorin II/I (apoLp-II/I) and hexamerin (hex 70a) mRNAs did not significantly change, but levels of Hex 70a protein subunit showed a substantial decay after bacterial challenge or injury. Infection also caused a strong reduction in the levels of apoLp-III transcripts. Our findings are consistent with a down-regulation of the expression and accumulation of storage proteins as a consequence of activation of the immune system, suggesting that this phenomenon represents a strategy to redirect resources to combat injury or infection.
Collapse
Affiliation(s)
- Anete P Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | | | | | | |
Collapse
|
40
|
Seo SJ, Park KH, Cho KH. Apolipophorin III from Hyphantria cunea shows different anti-oxidant ability against LDL oxidation in the lipid-free and lipid-bound state. Comp Biochem Physiol B Biochem Mol Biol 2008; 151:433-9. [DOI: 10.1016/j.cbpb.2008.09.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 09/01/2008] [Accepted: 09/02/2008] [Indexed: 10/21/2022]
|
41
|
Song KH, Jung MK, Eum JH, Hwang IC, Han SS. Proteomic analysis of parasitized Plutella xylostella larvae plasma. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:1270-1280. [PMID: 18671979 DOI: 10.1016/j.jinsphys.2008.06.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 06/20/2008] [Accepted: 06/20/2008] [Indexed: 05/26/2023]
Abstract
Insects use their innate immunity to defend themselves against foreign invaders, such as microorganisms, nematodes and parasites. Cotesia plutellae, an endoparasitoid wasp that parasitizes the diamondback moth Plutella xylostella, uses several strategies to attack the host immune system, such as injection of viruses, venom, and serosal membrane-derived cells denoted teratocytes. However, the proteome profiles related to these immune deficiency systems have yet to be clearly defined. In this study, we investigate differences in protein expression patterns in parasitized P. xylostella larvae, with a view to identifying parasitism-specific factors. Using 2D polyacrylamide gel electrophoresis, proteins in the host plasma were assessed every 48 h after parasitism by C. plutellae. A large number of protein spots (350 in total) were detected, and approximately 50 spots were differentially expressed in the parasitized P. xylostella larvae every 48 h. In total, 26 potential candidates, including P. xylostella Serpin 2 (pxSerpin 2), translationally controlled tumor protein, signal transduction histidine kinase, apolipophorin-III, and fatty-acid binding protein were identified through quadrupole time-of-flight tandem mass spectrometry and sequence homology analysis. These proteins were classified into the following functional groups: immunity, signaling, lipid metabolism, energy metabolism, amino acid/nucleotide metabolism, and others. The pxSerpin 2 gene was cloned, and its expression profile investigated during the course of parasitism. Real-time PCR analysis of pxSerpin 2 revealed a poor correlation between the mRNA level and protein abundance. Our results clearly suggest that parasitism-specific proteins participate in suppression of the host immune response.
Collapse
Affiliation(s)
- Kyung-Han Song
- School of Life Science and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | |
Collapse
|
42
|
Dunphy GB, Chen G, Webster JM. The antioxidants dimethylsulfoxide and dimethylthiourea affect the immediate adhesion responses of larval haemocytes from 3 lepidopteran insect species. Can J Microbiol 2008; 53:1330-47. [PMID: 18059566 DOI: 10.1139/w07-096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antioxidants, dimethylsulfoxide (DMSO) and dimethylthiourea (DMTU), at concentrations not affecting the viability of blood cells (haemocytes) from the larval stage of 3 lepidopteran insects - Galleria mellonella, Lymantria dispar, and Malacosoma disstria - differed in their influence on the innate binding of haemocytes to glass, bacteria to haemocytes, and on humoral responses to alien materials. In vitro DMSO had little effect, whereas DMTU substantially impaired the adhesion of the haemocyte types, the plasmatocytes and granular cells, to slides as well as the attachment of Bacillus subtilis to these haemocytes. Although both antioxidants increased lysozyme and phenoloxidase activities, there was no correlation of enzyme activity and haemocyte adhesion responses, possibly reflecting sequestered radicals. Nitric oxide and hydroxyl radicals offset the DMTU effect. In the absence of antioxidants, inactivate protein kinases A (PKA) and C (PKC) enhanced haemocyte aggregation. In general, DMSO, as opposed to DMTU, did not alter the effects of PKA and PKC activators and inhibitors on haemocyte aggregation or of PKC and PKA activities. High concentrations of DMSO and all levels of DMTU, although inhibiting PKA and PKC, inhibited haemocyte adhesion to slides. Comparable results occurred for DMTU-treated haemocytes incubated with B. subtilis. In vivo DMSO, unlike DMTU, did not impair plasmatocyte or granular cell responses to foreign materials, including bacterial removal from the haemolymph and nodulation.
Collapse
Affiliation(s)
- Gary B Dunphy
- Department of Natural Resource Sciences, Macdonald Campus, McGill University, Macdonald Campus, 21111 Lakeshore Road, Sainte Anne de Bellevue, QC H9X 3V9, Canada.
| | | | | |
Collapse
|
43
|
Giannoulis P, Brooks CL, Dunphy GB, Niven DF, Mandato CA. Surface antigens of Xenorhabdus nematophila (F. Enterobacteriaceae) and Bacillus subtilis (F. Bacillaceae) react with antibacterial factors of Malacosoma disstria (C. Insecta: O. Lepidoptera) hemolymph. J Invertebr Pathol 2008; 97:211-22. [DOI: 10.1016/j.jip.2007.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 09/10/2007] [Accepted: 10/11/2007] [Indexed: 11/29/2022]
|
44
|
Adamo SA, Roberts JL, Easy RH, Ross NW. Competition between immune function and lipid transport for the protein apolipophorin III leads to stress-induced immunosuppression in crickets. J Exp Biol 2008; 211:531-8. [DOI: 10.1242/jeb.013136] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Intense physical activity results in transient immunosuppression in a wide range of animals. We tested the hypothesis that competition between immune function and lipid transport for the protein apolipophorin III (apoLpIII) can cause transient immunosuppression in crickets. Both flying, an energetically demanding behavior, and an immune challenge reduced the amount of monomeric(free) apoLpIII in the hemolymph of crickets. Because both immune function and flying depleted free apoLpIII, these two phenomena could be in competition for this protein. We showed that immune function was sensitive to the amount of free apoLpIII in the hemolymph. Reducing the amount of free apoLpIII in the hemolymph using adipokinetic hormone produced immunosuppression. Increasing apoLpIII levels after flight by pre-loading animals with trehalose reduced immunosuppression. Increasing post-flight apoLpIII levels by injecting purified apoLpIII also reduced flight-induced immunosuppression. These results show that competition between lipid transport and immune function for the same protein can produce transient immunosuppression after flight-or-fight behavior. Intertwined physiological systems can produce unexpected trade-offs.
Collapse
Affiliation(s)
- S. A. Adamo
- Department of Psychology, Dalhousie University, Halifax, NS B3H 4J1,Canada
| | - J. L. Roberts
- Department of Psychology, Dalhousie University, Halifax, NS B3H 4J1,Canada
| | - R. H. Easy
- Institute for Marine Biosciences, National Research Council of Canada, 1411 Oxford Street, Halifax, NS, Canada
| | - N. W. Ross
- Institute for Marine Biosciences, National Research Council of Canada, 1411 Oxford Street, Halifax, NS, Canada
| |
Collapse
|
45
|
Freitak D, Wheat CW, Heckel DG, Vogel H. Immune system responses and fitness costs associated with consumption of bacteria in larvae of Trichoplusia ni. BMC Biol 2007; 5:56. [PMID: 18154650 PMCID: PMC2235825 DOI: 10.1186/1741-7007-5-56] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 12/21/2007] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Insects helped pioneer, and persist as model organisms for, the study of specific aspects of immunity. Although they lack an adaptive immune system, insects possess an innate immune system that recognizes and destroys intruding microorganisms. Its operation under natural conditions has not been well studied, as most studies have introduced microbes to laboratory-reared insects via artificial mechanical wounding. One of the most common routes of natural exposure and infection, however, is via food; thus, the role of dietary microbial communities in herbivorous insect immune system evolution invites study. Here, we examine the immune system response and consequences of exposing a lepidopteran agricultural pest to non-infectious microorganisms via simple oral consumption. RESULTS Immune system response was compared between Trichoplusia ni larvae reared on diets with or without non-pathogenic bacteria (Escherichia coli and Micrococcus luteus). Two major immune response-related enzymatic activities responded to diets differently - phenoloxidase activity was inhibited in the bacteria-fed larvae, whereas general antibacterial activity was enhanced. Eight proteins were highly expressed in the hemolymph of the bacteria fed larvae, among them immune response related proteins arylphorin, apolipophorin III and gloverin. Expression response among 25 putative immune response-related genes were assayed via RT-qPCR. Seven showed more than fivefold up regulation in the presence of bacterial diet, with 22 in total being differentially expressed, among them apolipophorin III, cecropin, gallerimycin, gloverin, lysozyme, and phenoloxidase inhibiting enzyme. Finally, potential life-history trade-offs were studied, with pupation time and pupal mass being negatively affected in bacteria fed larvae. CONCLUSION The presence of bacteria in food, even if non-pathogenic, can trigger an immune response cascade with life history tradeoffs. Trichoplusia ni larvae are able to detect and respond to environmental microbes encountered in the diet, possibly even using midgut epithelial tissue as a sensing organ. Potential benefits of this immune system priming may outweigh the observed tradeoffs, as priming based on environmentally sensed bacterial may decrease risk of serious infection. These results show that food plant microbial communities represent a dynamic and unstudied part of the coevolutionary interactions between plants and their insect herbivores.
Collapse
Affiliation(s)
- Dalial Freitak
- Max Planck Institute for Chemical Ecology, Department of Entomology, Hans-Knoell - Strasse 8, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
46
|
Andrejko M, Mizerska-Dudka M, Jakubowicz T. Changes in Galleria mellonella apolipophorin III level during Pseudomonas aeruginosa infection. J Invertebr Pathol 2007; 97:14-9. [PMID: 17681528 DOI: 10.1016/j.jip.2007.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 03/27/2007] [Accepted: 06/19/2007] [Indexed: 11/25/2022]
Abstract
The level of apoLp-III in fat body, hemocytes and plasma from Galleria mellonella larvae infected with Pseudomonas aeruginosa was studied. It was found that the amount of 18kDa protein present in fat body and hemocytes decreased progressively with time after infection. In the case of plasma, an increase in apoLp-III content was observed during the first 19h after infection and then decreased significantly after prolonged infection time. The decreased level of apoLp-III in plasma 24h after infection was accompanied by the appearance of smaller than 18kDa immunoreactive polypeptides. Four intermediate forms with molecular mass of, respectively, 15, 13.3, 12 and 9.5kDa were detectable. The size of polypeptides detected in experiments performed in vivo is comparable with the degradation products of apoLp-III produced by serine protease IV in vitro. In addition, the total proteolytic activity of plasma increased progressively during infection time. The results of our studies suggest that a significant part of total proteolytical activity in the plasma of infected G. mellonella larvae can be attributed to proteases produced by P. aeruginosa during pathogenesis. We discuss the possibility that protease IV of P. aeruginosa is responsible for apoLp-III degradation in vivo.
Collapse
Affiliation(s)
- Mariola Andrejko
- Department of Invertebrate Immunology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | | | | |
Collapse
|
47
|
Wang C, Cao Y, Wang Z, Yin Y, Peng G, Li Z, Zhao H, Xia Y. Differentially-expressed glycoproteins in Locusta migratoria hemolymph infected with Metarhizium anisopliae. J Invertebr Pathol 2007; 96:230-6. [PMID: 17658547 DOI: 10.1016/j.jip.2007.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/21/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
Glycoproteins play important roles in insect physiology. Infection with pathogen always results in the differential expression of some glycoproteins, which may be involved in host-pathogen interactions. In this report, differentially-expressed glycoproteins from the hemolymph of locusts infected with Metarhizium anisopliae were analyzed by two-dimensional electrophoresis (2-DE) and PDQuest software. The results showed that 13 spots were differentially expressed, of which nine spots were upregulated and four were downregulated. Using MS/MS with de novo sequencing and NCBI database searches, three upregulated proteins were identified as locust transferrin, apolipoprotein precursor, and hexameric storage protein 3. These proteins have been reported to be involved in the insect innate immune response to microbial challenge. Due to the limited available genome information and protein sequences of locusts, the possible functions of the other 10 differentially-expressed spots remain unknown.
Collapse
Affiliation(s)
- Chutao Wang
- Genetic Engineering Research Center, Chongqing University, Chongqing 400030, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Rahman MM, Ma G, Roberts HLS, Schmidt O. Cell-free immune reactions in insects. JOURNAL OF INSECT PHYSIOLOGY 2006; 52:754-62. [PMID: 16753175 DOI: 10.1016/j.jinsphys.2006.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 04/04/2006] [Accepted: 04/04/2006] [Indexed: 05/10/2023]
Abstract
Insects, like many other multicellular organisms, are able to recognise and inactivate potential pathogens and toxins in the absence of cells. Here we show that the recognition and inactivation of lipopolysaccharides (LPS) and bacteria is mediated by lipophorin particles, which are the lipid carrier in insects. In immune-induced insects sub-populations of lipophorin particles are associated with pattern recognition proteins and regulatory proteins that activate prophenoloxidase. Moreover, interactions with lectins result in the assembly of lipophorin particles into cage-like coagulation products, effectively protecting the surrounding tissues and cells from the potentially damaging effects of pathogens and phenoloxidase products. The existence of cell-free defence reactions implies that immune signals exist upstream of cell-bound receptors.
Collapse
Affiliation(s)
- M Mahbubur Rahman
- Insect Molecular Biology, University of Adelaide, Glen Osmond, SA 5064, Australia
| | | | | | | |
Collapse
|
49
|
Cheon HM, Shin SW, Bian G, Park JH, Raikhel AS. Regulation of lipid metabolism genes, lipid carrier protein lipophorin, and its receptor during immune challenge in the mosquito Aedes aegypti. J Biol Chem 2006; 281:8426-35. [PMID: 16449228 DOI: 10.1074/jbc.m510957200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the mosquito Aedes aegypti, the expression of two fat body genes involved in lipid metabolism, a lipid carrier protein lipophorin (Lp) and its lipophorin receptor (LpRfb), was significantly increased after infections with Gram (+) bacteria and fungi, but not with Gram (-) bacteria. The expression of these genes was enhanced after the infection with Plasmodium gallinaceum. RNA interference (RNAi) knockdown of Lp strongly restricted the development of Plasmodium oocysts, reducing their number by 90%. In Vg-DeltaREL1-A transgenic mosquitoes, with gain-of-function phenotype of Toll/REL1 immune pathway activated after blood feeding, both the Lp and LpRfb genes were overexpressed independently of septic injury. The same phenotype was observed in the mosquitoes with RNAi knockdown of Cactus, an IkappaB inhibitor in the Toll/REL1 pathway. These results showed that, in the mosquito fat body, both Lp and LpRfb gene expression were regulated by the Toll/REL1 pathway during immune induction by pathogen and parasite infections. Indeed, the proximal region of the LpRfb promoter contained closely linked binding motifs for GATA and NF-kappaB transcription factors. Transfection and in vivo RNAi knockdown experiments showed that the bindings of both GATA and NF-kappaB transcription factors to the corresponding motif were required for the induction of the LpRfb gene. These findings suggest that lipid metabolism is involved in the mosquito systemic immune responses to pathogens and parasites.
Collapse
Affiliation(s)
- Hyang-Mi Cheon
- Center for Disease-Vector Research, Department of Entomology and the Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | | | | | | | | |
Collapse
|
50
|
Kim HJ, Je HJ, Cheon HM, Kong SY, Han J, Yun CY, Han YS, Lee IH, Kang YJ, Seo SJ. Accumulation of 23 kDa lipocalin during brain development and injury in Hyphantria cunea. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:1133-41. [PMID: 16102419 DOI: 10.1016/j.ibmb.2005.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 05/17/2005] [Accepted: 05/17/2005] [Indexed: 05/04/2023]
Abstract
The cDNA corresponding to a novel lipocalin was identified from the fall webworm, Hyphantria cunea. This lipocalin cDNA encodes a 194 residue protein with a calculated molecular mass of 23 kDa. Sequence analyses revealed that the 23 kDa lipocalin cDNA is most similar to Drosophila lazarillo, human apolipoprotein D, and Bombyrin. Northern blot analyses showed that 23 kDa lipocalin transcript is expressed in the whole body only in 4- and 6-day-old pupae. By Western blot analysis it was confirmed that 23 kDa lipocalin is mainly accumulated in brain and subesophageal ganglion, though it is detected in a small amount in fat body and epidermis of Hyphantria cunea. The accumulation of 23 kDa lipocalin in brain tissue was upregulated in response to injury. The putative function of 23 kDa lipocalin in brain is discussed.
Collapse
Affiliation(s)
- Hong Ja Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|