1
|
Liu W, Zhao K, Zhou A, Wang X, Ge X, Qiao H, Sun X, Yan C, Wang Y. Genome-wide annotation and comparative analysis revealed conserved cuticular protein evolution among non-biting midges with varied environmental adaptability. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101248. [PMID: 38797005 DOI: 10.1016/j.cbd.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Chironomidae, non-biting midges, a diverse and abundant insect group in global aquatic ecosystems, represent an exceptional model for investigating genetic adaptability mechanisms in aquatic insects due to their extensive species diversity and resilience to various environmental conditions. The cuticle in insects acts as the primary defense against ecological pressures. Cuticular Proteins (CPs) determine cuticle characteristics, facilitating adaptation to diverse challenges. However, systematic annotation of CP genes has only been conducted for one Chironomidae species, Propsilocerus akamusi, by our team. In this study, we expanded this annotation by identifying CP genes in eight additional Chironomidae species, covering all Chironomidae species with available genome data. We identified a total of 889 CP genes, neatly categorized into nine CP families: 215 CPR RR1 genes, 272 CPR RR2 genes, 23 CPR RR3 genes, 21 CPF genes, 16 CPLCA genes, 19 CPLCG genes, 28 CPLCP genes, 77 CPAP genes, and 37 Tweedle genes. Subsequently, we conducted a comprehensive phylogenetic analysis of CPs within the Chironomidae family. This expanded annotation of CP genes across diverse Chironomidae species significantly contributes to our understanding of their remarkable adaptability.
Collapse
Affiliation(s)
- Wenbin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Kangzhu Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Anmo Zhou
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Xinyu Wang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Xinyu Ge
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Xiaoya Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Chuncai Yan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China.
| | - Yiwen Wang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Shanxi University, 237016 Shanxi, China; School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China.
| |
Collapse
|
2
|
Kamel MM, Badr A, Alkhalifah DHM, Mahmoud R, GadelHak Y, Hozzein WN. Unveiling the Impact of Eco-Friendly Synthesized Nanoparticles on Vegetative Growth and Gene Expression in Pelargonium graveolens and Sinapis alba L. Molecules 2024; 29:3394. [PMID: 39064972 PMCID: PMC11280068 DOI: 10.3390/molecules29143394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Nanoscale geranium waste (GW) and magnesium nanoparticle/GW nanocomposites (Mg NP/GW) were prepared using green synthesis. The Mg NP/GW samples were subjected to characterization using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR-FT). The surface morphology of the materials was examined using a scanning electron microscope (SEM), and their thermal stability was assessed through thermal gravimetric analysis (TG). The BET-specific surface area, pore volume, and pore size distribution of the prepared materials were determined using the N2 adsorption-desorption method. Additionally, the particle size and zeta potentials of the materials were also measured. The influence of the prepared nanomaterials on seed germination was intensively investigated. The results revealed an increase in seed germination percent at low concentrations of Mg NP/GWs. Upon treatment with Mg NP/GW nanoparticles, a reduction in the mitotic index (MI) was observed, indicating a decrease in cell division. Additionally, an increase in chromosomal abnormalities was detected. The efficacy of GW and Mg NP/GW nanoparticles as new elicitors was evaluated by studying their impact on the expression levels of the farnesyl diphosphate synthase (FPPS1) and geranylgeranyl pyrophosphate (GPPS1) genes. These genes play a crucial role in the terpenoid biosynthesis pathway in Sinapis alba (S. alba) and Pelargonium graveolens (P. graveolens) plants. The expression levels were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The qRT-PCR analysis of FPPS and GPPS gene expression was performed. The outputs of FPPS1 gene expression demonstrated high levels of mRNA in both S. alba and P. graveolens with fold changes of 25.24 and 21.68, respectively. In contrast, the minimum expression levels were observed for the GPPS1 gene, with fold changes of 11.28 and 6.48 in S. alba and P. graveolens, respectively. Thus, this study offers the employment of medicinal plants as an alternative to fertilizer usage resulting in promoting environmental preservation, optimal waste utilization, reducing water consumption, and cost reduction.
Collapse
Affiliation(s)
- Maha M. Kamel
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Bani Suef 62521, Egypt; (M.M.K.); (W.N.H.)
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Cairo 11790, Egypt
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt
| | - Yasser GadelHak
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef 62511, Egypt
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Bani Suef 62521, Egypt; (M.M.K.); (W.N.H.)
| |
Collapse
|
3
|
Li Z, Ouyang L, Wu Q, Peng Q, Zhang B, Qian W, Liu B, Wan F. Cuticular proteins in codling moth (Cydia pomonella) respond to insecticide and temperature stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115852. [PMID: 38141334 DOI: 10.1016/j.ecoenv.2023.115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
The insect cuticle consists of chitin and cuticular proteins (CPs), which stabilize the body shape and provide an effective physical barrier against the external environment. They are also potential target sites for developing environmentally friendly insect management through the utilization of physiology-based methods. The codling moth, Cydia pomonella, is a pest afflicting fruit orchards worldwide. This study used a comparative genomic approach, whole-genome resequencing, and transcriptome data to understand the role that CPs played in the environmental adaptation of the codling moth. A total of 182 putative CPs were identified in the codling moth genome, which were classified into 12 CP families. 119 CPR genes, including 54 RR-1, 60 RR-2, and 5 RR-3 genes were identified and accounted for 65.4% of the total CPs. Eight and seven gene clusters are formed in RR1 and RR2 subfamily and the ancestor-descendant relationship was explained. Five CPAP genes were highly expressed during the egg stage and exposed to high temperature, which indicated their potential role in aiding codling moth eggs in acclimating to varying external heat conditions. Moreover, six CPs belonging to the CPR and CPLCP families were identified in association with insecticide resistance by population resequencing. Their expression levels increased after exposure to insecticides, suggesting they might be involved in codling moth resistance to the insecticides azinphos-methyl or deltamethrin. Our results provide insight into the evolution of codling moth CPs and their association with high temperature adaptation and insecticide resistance, and provide an additional information required for further analysis of CPs in environmental adaptation.
Collapse
Affiliation(s)
- Zaiyuan Li
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lan Ouyang
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qi Peng
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bin Zhang
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Bo Liu
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Fanghao Wan
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
4
|
Ohkubo S, Shintaku T, Mine S, Yamamoto DS, Togawa T. Mosquitoes Possess Specialized Cuticular Proteins That Are Evolutionarily Related to the Elastic Protein Resilin. INSECTS 2023; 14:941. [PMID: 38132614 PMCID: PMC10743668 DOI: 10.3390/insects14120941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Resilin is an elastic protein that is vital to insects' vigorous movement. Canonical resilin proteins possess the R&R Consensus, a chitin-binding domain conserved in a family of cuticular proteins, and highly repetitive sequences conferring elastic properties. In the malaria vector mosquito, Anopheles gambiae, however, a cuticular protein has been found that has an R&R Consensus resembling that of resilin but lacks the repetitive sequences (here, we call it resilin-related or resilin-r). The relationship between resilin-r and resilin was unclear. It was also unknown whether resilin-r is conserved in mosquitoes. In this paper, phylogenetic and structural analyses were performed to reveal the relationship of resilin homologous proteins from holometabolous insects. Their chitin-binding abilities were also assessed. A resilin-r was found in each mosquito species, and these proteins constitute a clade with resilin from other insects based on the R&R Consensus sequences, indicating an evolutionary relationship between resilin-r and resilin. The resilin-r showed chitin-binding activity as same as resilin, but had distinct structural features from resilin, suggesting that it plays specialized roles in the mosquito cuticle. Another resilin-like protein was found to exist in each holometabolous insect that possesses resilin-like repetitive sequences but lacks the R&R Consensus. These results suggest that similar evolutionary events occurred to create resilin-r and resilin-like proteins.
Collapse
Affiliation(s)
- Sakura Ohkubo
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan (S.M.)
| | - Tohki Shintaku
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan (S.M.)
| | - Shotaro Mine
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan (S.M.)
- Division of Insect Advanced Technology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Owashi 1-2, Tsukuba 305-8634, Japan
| | - Daisuke S. Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Yakushiji 3311-1, Shimotsuke 329-0498, Japan;
| | - Toru Togawa
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Sakurajyosui 3-25-40, Setagaya-ku, Tokyo 156-8550, Japan (S.M.)
| |
Collapse
|
5
|
Senousy HH, Hamoud YA, Abu-Elsaoud AM, Mahmoud Al zoubi O, Abdelbaky NF, Zia-ur-Rehman M, Usman M, Soliman MH. Algal Bio-Stimulants Enhance Salt Tolerance in Common Bean: Dissecting Morphological, Physiological, and Genetic Mechanisms for Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3714. [PMID: 37960071 PMCID: PMC10648064 DOI: 10.3390/plants12213714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Salinity adversely affects the plant's morphological characteristics, but the utilization of aqueous algal extracts (AE) ameliorates this negative impact. In this study, the application of AE derived from Chlorella vulgaris and Dunaliella salina strains effectively reversed the decline in biomass allocation and water relations, both in normal and salt-stressed conditions. The simultaneous application of both extracts in salt-affected soil notably enhanced key parameters, such as chlorophyll content (15%), carotene content (1%), photosynthesis (25%), stomatal conductance (7%), and transpiration rate (23%), surpassing those observed in the application of both AE in salt-affected as compared to salinity stress control. Moreover, the AE treatments effectively mitigated lipid peroxidation and electrolyte leakage induced by salinity stress. The application of AE led to an increase in GB (6%) and the total concentration of free amino acids (47%) by comparing with salt-affected control. Additionally, salinity stress resulted in an elevation of antioxidant enzyme activities, including superoxide dismutase, ascorbate peroxidase, catalase, and glutathione reductase. Notably, the AE treatments significantly boosted the activity of these antioxidant enzymes under salinity conditions. Furthermore, salinity reduced mineral contents, but the application of AE effectively counteracted this decline, leading to increased mineral levels. In conclusion, the application of aqueous algal extracts, specifically those obtained from Chlorella vulgaris and Dunaliella salina strains, demonstrated significant efficacy in alleviating salinity-induced stress in Phaseolus vulgaris plants.
Collapse
Affiliation(s)
- Hoda H. Senousy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.S.)
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Recourses, Hohai University, Nanjing 210098, China
| | - Abdelghafar M. Abu-Elsaoud
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Omar Mahmoud Al zoubi
- Biology Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia
| | - Nessreen F. Abdelbaky
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia
| | - Muhammad Zia-ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.S.)
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia
| |
Collapse
|
6
|
Li F, Xing G, Li Y, Chen P, Hu Q, Chen M, Li Y, Cao H, Huang Y. Expressions and functions of RR-1 cuticular protein genes in the integument of Mythimna separata. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:963-972. [PMID: 36964708 DOI: 10.1093/jee/toad053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 06/14/2023]
Abstract
As the most outer layer between itself and the environment, integuments are necessary for insects with various important functions. Cuticular proteins (CPs) are the main components in integuments, while the functions of CP genes remain unknown in Mythimna separata (Walker), which is a devastating agricultural pest. In this study, 79 CP genes were identified from the transcriptomes of larval integuments, 57 of which were from the family containing conserved Rebers & Riddiford (R&R) consensus (CPR family). Amongst these CPRs, 44 genes belonged to the subfamily with RR-1 motif (RR-1 genes) and clustered into three clades, with the top 15 most abundant RR-1 genes identified based on fragments per kilobase per million mapped fragments (FPKM) values. RT-qPCR analysis showed that most of RR-1 genes such as MsCPR1-4 were highly expressed at larval stages and in their integuments. The expression levels of RR-1 genes were generally decreased at the beginning but increased at the late stage of molting process. RNAi was applied for six RR-1 genes, and MsCPR1-4 were knocked down significantly. Silence of MsCPR2 resulted in abnormal integument formed after molting, while knockdown of MsCPR3 and MsCPR4 led to failure of molting, respectively. No phenotype was obtained for the RNAi of MsCPR1. Therefore, the expression of RR-1 genes and their functions were analyzed in the development of integuments in M. separata, providing new insights of RR-1 genes and potential targets for the development of growth regulators and new insecticides for M. separata.
Collapse
Affiliation(s)
- Fuyuan Li
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Gaoliang Xing
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Yixuan Li
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Peng Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Qin Hu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Ming Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Yiyu Li
- Institute of New Rural Development, Anhui Agricultural University, Hefei, PR China
| | - Haiqun Cao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Yong Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| |
Collapse
|
7
|
Alhaithloul HAS, Alqahtani MM, Abdein MA, Ahmed MAI, Hesham AEL, Aljameeli MME, Al Mozini RN, Gharsan FN, Hussien SM, El-Amier YA. Rosemary and neem methanolic extract: antioxidant, cytotoxic, and larvicidal activities supported by chemical composition and molecular docking simulations. FRONTIERS IN PLANT SCIENCE 2023; 14:1155698. [PMID: 37275255 PMCID: PMC10232984 DOI: 10.3389/fpls.2023.1155698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 06/07/2023]
Abstract
This study aimed to employ GC-MS to assess the chemical composition of MeOH leaf extracts of R. officinalis and A. indica and evaluate their insecticidal, antioxidant, and antibacterial activities. Twelve components, representing 98.61% and 100% of the total volatile compounds, were deduced from the extracted R. officinalis and A. indica, respectively, using this method. In R. officinalis extract, limonene is typically positioned as the main component (23.03%), while the main chemicals identified in A. indica extract were methyl (E)-octadec-13-enoate (23.20%) and (2R)-1,3,8-trimethyl-4-propyl-5-ethyl-2-(1-hydroxyethyl)-7-methoxycardonylethyl-6-methylenecarbonyl-porphyrin (23.03%). Both extracts of R. officinalis and A. indica exhibited different toxicity against the stored grain pest T. castaneum, with LC50 values of 1.470 and 2.588 mg/ml, respectively. Additionally, after 4 and 5 h of treatment at a concentration of 0.2 mg/ml, the A. indica extract showed the highest levels of repellent action (81.4% and 93.4%), and the R. officinalis extract showed a good repellent rate (64.9% and 80.7%) against T. castenum larvae. With an IC50 value of 35.83 and 28.68 mg/L and a radical scavenging activity percentage of 67.76% and 72.35%, the leaf extract was found to be the most potent plant extract when tested for DPPH antioxidant activity. Overall results showed that MeOH extracts of R. officinalis and A. indica were more effective against S. aureus than E. coli. To determine how the investigated chemicals attach to the active sites of E. coli DNA gyrase A and S. aureus undecaprenyl diphosphate synthase, docking studies were carried out. The consensus score analysis showed that limonene exhibits the best binding energy with both enzymes in docking analysis and more stability in molecular dynamics simulations. The RMSD was obtained at 20.6 and 4.199 (Kcal/mole). The two compounds were successfully used in molecular dynamics simulation research to generate stable complexes with DNA gyrase A.
Collapse
Affiliation(s)
| | - Mesfer M. Alqahtani
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi, Saudi Arabia
| | - Mohamed A. Abdein
- Department of Biology, Faculty of Science and Arts, Northern Border University, Rafha, Saudi Arabia
| | - Mohamed A. I. Ahmed
- Plant Protection Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Abd El-Latif Hesham
- Genetics Department, Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammad M. E. Aljameeli
- Department of Biology, Faculty of Science and Arts, Northern Border University, Rafha, Saudi Arabia
| | - Reem N. Al Mozini
- Department of Biology, College of Science and Arts, Qassim University, Unaizah, Saudi Arabia
| | - Fatehia N. Gharsan
- Biology Department, Faculty of Science, Al-Baha University, Al-Baha, Saudi Arabia
| | - Suzan M. Hussien
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Yasser A. El-Amier
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Chen Q, Sasikala-Appukuttan AK, Husain Z, Shrivastava A, Spain M, Sendler ED, Daines B, Fischer S, Chen R, Cook TA, Friedrich M. Global Gene Expression Analysis Reveals Complex Cuticle Organization of the Tribolium Compound Eye. Genome Biol Evol 2023; 15:evac181. [PMID: 36575057 PMCID: PMC9866248 DOI: 10.1093/gbe/evac181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022] Open
Abstract
The red flour beetle Tribolium castaneum is a resource-rich model for genomic and developmental studies. To extend previous studies on Tribolium eye development, we produced transcriptomes for normal-eyed and eye-depleted heads of pupae and adults to identify differentially transcript-enriched (DE) genes in the visual system. Unexpectedly, cuticle-related genes were the largest functional class in the pupal compound eye DE gene population, indicating differential enrichment in three distinct cuticle components: clear lens facet cuticle, highly melanized cuticle of the ocular diaphragm, which surrounds the Tribolium compound eye for internal fortification, and newly identified facet margins of the tanned cuticle, possibly enhancing external fortification. Phylogenetic, linkage, and high-throughput gene knockdown data suggest that most cuticle proteins (CPs) expressed in the Tribolium compound eye stem from the deployment of ancient CP genes. Consistent with this, TcasCPR15, which we identified as the major lens CP gene in Tribolium, is a beetle-specific but pleiotropic paralog of the ancient CPR RR-2 CP gene family. The less abundant yet most likely even more lens-specific TcasCP63 is a member of a sprawling family of noncanonical CP genes, documenting a role of local gene family expansions in the emergence of the Tribolium compound eye CP repertoire. Comparisons with Drosophila and the mosquito Anopheles gambiae reveal a steady turnover of lens-enriched CP genes during insect evolution.
Collapse
Affiliation(s)
- Qing Chen
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | | - Zahabiya Husain
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Anura Shrivastava
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Marla Spain
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Edward D Sendler
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bryce Daines
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Stefan Fischer
- Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, University of Tübingen, Germany
| | - Rui Chen
- Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, University of Tübingen, Germany
| | - Tiffany A Cook
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
9
|
Liu W, Chang T, Zhao K, Sun X, Qiao H, Yan C, Wang Y. Genome-wide annotation of cuticular protein genes in non-biting midge Propsilocerus akamusi and transcriptome analysis of their response to heavy metal pollution. Int J Biol Macromol 2022; 223:555-566. [PMID: 36356871 DOI: 10.1016/j.ijbiomac.2022.10.279] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/16/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
The insect cuticle is a sophisticated chitin-protein extracellular structure for mutable functions. The cuticles varied their structures and properties in different species, and the same species but in different regions or at different stages, to fill the requirements of different functions. The alteration of cuticle structures may also be induced due to challenges by some environmental crises, such as pollution exposures. The physical properties of the cuticle were determined by the cuticle proteins (CPs) they contain. The cuticle proteins are large protein groups in all insects, which are commonly divided into different families according to their conserved protein sequence motifs. Although Chironomidae is an abundant and universal insect in global aquatic ecosystems and a popular model for aquatic toxicology, no systematic annotation of CPs was done for any species in Chironomidae before. In this work, we annotated the CP genes of Propsilocerus akamusi, the most abundant Chironomidae species in Asia. A total of 160 CP genes were identified, and 97 of them could be well classified into eight CP families: 76 CPR genes can be subdivided into three groups (further divided into three subgroups: 36 RR1 genes, 37 RR2 genes, and 3 RR3 genes), 2 CPF genes, 3 CPLCA genes, 1 CPLCG gene, 8 CPAP genes, and 3 Tweedle genes. Additionally, we analyzed the response of P. akamusi CP genes at expression level to Cu exposure, which is related to the high heavy metal tolerance and the earlier onset of pupariation in heavy metal polluted water.
Collapse
Affiliation(s)
- Wenbin Liu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Tong Chang
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Kangzhu Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Xiaoya Sun
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China
| | - Huanhuan Qiao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Chuncai Yan
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, 300387 Tianjin, China.
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China.
| |
Collapse
|
10
|
Tan D, Hu H, Tong X, Han M, Gai T, Lou J, Yan Z, Xiong G, Lu C, Dai F. Mutation of a lepidopteran-specific PMP-like protein, BmLSPMP-like, induces a stick body shape in silkworm, Bombyx mori. PEST MANAGEMENT SCIENCE 2022; 78:5334-5346. [PMID: 36039742 DOI: 10.1002/ps.7156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lepidoptera is one of the largest orders of insects, some of which are major pests of crops and forests. The cuticles of lepidopteran pests play important roles in defense against insecticides and pathogens, and are indispensable for constructing and maintaining extracellular structures and locomotion during their life cycle. Lepidopteran-specific cuticular proteins could be potential targets for lepidopteran pest control. But information on this is limited. Our research aimed to screen the lepidopteran-specific cuticular proteins using the lepidopteran model, the silkworm, to explore the molecular mechanism underlying the involvement of cuticular proteins in body shape construction. RESULTS Positional cloning showed that BmLSPMP-like, a gene encoding a lepidopteran-specific peritrophic matrix protein (PMP) like protein which includes a peritrophin A-type chitin-binding domain (CBM_14), is responsible for the stick (sk) mutation. BmLSPMP-like is an evolutionarily conserved gene that exhibits synteny in Lepidoptera and underwent purifying selection during evolution. Expression profiles demonstrated that BmLSPMP-like is expressed in chitin-forming tissues, testis and ovary, and accumulates in the cuticle. BmLSPMP-like knockout, generated with CRISPR/Cas9, resulted in a stick-like larval body shape phenotype. Over-expression of BmLSPMP-like in the sk mutant rescued its abnormal body shape. The results showed that BmLSPMP-like may be involved in assemblage in the larval cuticle. CONCLUSION Our results suggested that the dysfunction of BmLSPMP-like may result in a stick body shape phenotype in silkworm, through the regulation of the arrangement of the chitinous laminae and cuticle thickness. Our study provides new evidence of the effects of LSPMP-likes on lepidopteran body shape formation, metamorphosis and mortality, which could be an eco-friendly target for lepidopteran pest management. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duan Tan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Minjin Han
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Tingting Gai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jinghou Lou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhengwen Yan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Gao Xiong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, China
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Xie J, Peng G, Wang M, Zhong Q, Song X, Bi J, Tang J, Feng F, Gao H, Li B. RR-1 cuticular protein TcCPR69 is required for growth and metamorphosis in Tribolium castaneum. INSECT SCIENCE 2022; 29:1612-1628. [PMID: 35312233 DOI: 10.1111/1744-7917.13038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Cuticle is not only critical for protecting insects from noxious stimuli but is also involved in a variety of metabolic activities. Cuticular proteins (CPs) affect cuticle structure and mechanical properties during insect growth, reproduction, and environmental adaptation. Here, we describe the identification and characterization of a member of the RR-1 subfamily of CPs with an R&R consensus (CPR) in Tribolium castaneum (TcCPR69). Although it was previously reported to be highly expressed in the wings, we found that knocking down TcCPR69 by RNA interference (RNAi) did not cause obvious wing abnormalities but markedly disrupted the growth and metamorphosis of beetles with 100% cumulative mortality; additionally, the chitin content of the pharate adult was decreased and the new abdominal cuticle was significantly thinner before molting. TcCPR69 showed chitin-binding ability and the expression levels of key genes involved in chitin metabolism (trehalase [TcTRE], chitin synthase [TcCHSA and TcCHSB], and chitinase [TcCHT5 and TcCHT10]) were also decreased by TcCPR69 knockdown. TcCPR69 gene expression peaked shortly after molting and was increased 2.61 fold at 12 h after 20-hydroxyecdysone (20E) injection. This was reversed by RNAi of the ecdysone-related genes ecdysone receptor (TcECR) and fushi tarazu transcription factor 1 (TcFTZ-F1). These results indicate that TcCPR69 is positively regulated by 20E signaling to contribute to cuticle formation and maintain chitin accumulation during the growth and metamorphosis of beetles.
Collapse
Affiliation(s)
- Jia Xie
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, College of Plant Protection, Hainan University, Haikou, China
| | - Guifang Peng
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Miao Wang
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qisheng Zhong
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaowen Song
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Tang
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fan Feng
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Gao
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
12
|
Tan S, Li G, Guo H, Li H, Tian M, Liu Q, Wang Y, Xu B, Guo X. Identification of the cuticle protein AccCPR2 gene in Apis cerana cerana and its response to environmental stress. INSECT MOLECULAR BIOLOGY 2022; 31:634-646. [PMID: 35619242 DOI: 10.1111/imb.12792] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Cuticular proteins (CPs) are known to play important roles in insect development and defence responses. The loss of CP genes can lead to changes in insect morphology and sensitivity to the external environment. In this study, we identified the AccCPR2 gene, which belongs to the CPR family (including the R&R consensus motif) of CPs, and explored its function in the response of Apis cerana cerana to adverse external stresses. Our results demonstrated that AccCPR2 was highly expressed in the late pupal stage and epidermis, and the expression of AccCPR2 may be induced or inhibited under different stressors. RNA interference experiments showed that knockdown of AccCPR2 reduced the activity of antioxidant enzymes, led to the accumulation of oxidative damage and suppressed the expression of several antioxidant genes. In addition, knockdown of AccCPR2 also reduced the pesticide resistance of A. cerana cerana. The overexpression of AccCPR2 in a prokaryotic system further confirmed its role in resistance to various stresses. In summary, AccCPR2 may play pivotal roles in the normal development and environmental stress response of A. cerana cerana. This study also enriched the theoretical knowledge of the resistance biology of bees.
Collapse
Affiliation(s)
- Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu, P. R. China
| | - Hengjun Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Ming Tian
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| |
Collapse
|
13
|
Sakit ALHaithloul HA, Khan MI, Musa A, Ghoneim MM, Aysh ALrashidi A, Khan I, Azab E, Gobouri AA, Sofy MR, El-Sherbiny M, Soliman MH. Phytotoxic effects of Acacia saligna dry leachates on germination, seedling growth, photosynthetic performance, and gene expression of economically important crops. PeerJ 2022; 10:e13623. [PMID: 35935250 PMCID: PMC9354756 DOI: 10.7717/peerj.13623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/02/2022] [Indexed: 01/17/2023] Open
Abstract
The influence of dry leachates of Acasia saligna was tested on the seedling growth, photosynthesis, biochemical attributes, and gene expression of the economically important crops, including wheat (Triticum aestivum L.), radish (Raphanus sativus L.), barley (Hordeum vulgare L.) and arugula (Eruca sativa L.). Different concentrations (5%, 10%, 15%, 20%, and 25%) of stem extract (SE) and leaf extract (LE) of A. saligna were prepared, and seedlings were allowed to grow in Petri plates for 8 days. The results showed that all plant species exhibited reduced germination rate, plant height, and fresh and dry weight due to leachates extracts of A. saligna. Moreover, the activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX), exhibited differential regulation due to the extract treatment. The SOD was increased with increasing the concentration of extracts, while CAT and APX activities were decreased with increasing the extract concentrations. In addition, leachate extract treatment decrease chlorophyll content, photosynthesis, PSII activity, and water use efficiency, with evident effects at their higher concentrations. Furthermore, the content of proline, sugars, protein, total phenols, and flavonoids were reduced considerably due to leachates extract treatments. Furthermore, seedlings treated with high concentrations of LE increased the expression of genes. The present results lead to the conclusion that A. saligna contains significant allelochemicals that interfere with the growth and development of the tested crop species and reduced the crops biomass and negatively affected other related parameters. However, further studies are suggested to determine the isolation and purification of the active compounds present in A. saligna extracts.
Collapse
Affiliation(s)
| | - Muhammad Ishfaq Khan
- Department of Weed Science and Botany, University of Agriculture Peshawar, Peshawar, Pakistan
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia,Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed M. Ghoneim
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt,Department of Pharmacy Practice, College of Pharmacy, Al Maarefa University, Ad Diriyah, Saudi Arabia
| | | | - Imtiaz Khan
- Department of Weed Science and Botany, University of Agriculture Peshawar, Peshawar, Pakistan
| | - Ehab Azab
- Department of Food Science and Nutrition, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Mahmoud R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia,Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt,Biology Department, Faculty of Science, Taibah University, Yanbu, Medina, Saudi Arabia
| |
Collapse
|
14
|
Yu H, Yi L, Lu Z. Silencing of Chitin-Binding Protein with PYPV-Rich Domain Impairs Cuticle and Wing Development in the Asian Citrus Psyllid, Diaphorina citri. INSECTS 2022; 13:insects13040353. [PMID: 35447795 PMCID: PMC9027310 DOI: 10.3390/insects13040353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/25/2022]
Abstract
Simple Summary Molting is extremely important for insect growth and development, which is accompanied the degradation of old cuticle and synthesis of new cuticle. Chitin and proteins, as major components of insect cuticle, maintain the rigidity of the exoskeleton. The functions of chitin-binding proteins have not, to date, been characterized in Diaphorina citri. In the current study, we identified a cuticle protein (DcCP64) according to chitin column purification and LC-MS/MS analysis. Silencing of DcCP64 induced an abnormal phenotype and increased the permeability of the abdomen and wings. Additionally, the mortality and malformation rate significantly increased, and the molting rate decreased after inhibition of DcCP64. Transcriptome sequencing analysis revealed that up-regulated DEGs were mainly related to oxidative phosphorylation, whereas down-regulated DEGs were mainly involved in MAPK and FoxO signaling pathways. Our results provide a basis for further functional research on DcCP64 in D. citri. Abstract Chitin is a major component of the arthropod exoskeleton, always working together with chitin-binding proteins to maintain the functions of extracellular structures. In the present study, we identified a cuticle protein 64 from Diaphorina citri using a chitin-binding assay. Bioinformatics analysis revealed that DcCP64 contained eight conserved PYPV motifs but lacked a Rebers–Riddiford (R–R) consensus and other chitin-binding domains. RT-qPCR analysis suggested that DcCP64 had the highest expression level in the wing and fifth-instar nymph stage. Knockdown of DcCP64 by RNA interference (RNAi) resulted in a malformed-wing phenotype, higher mortality and decreased molting rate. Furthermore, transcriptomics analysis revealed that 1244 differentially expressed genes (DEGs) were up-regulated and 580 DEGs were down-regulated, compared with dsDcCP64 groups and dsGFP groups. KEGG enrichment analysis revealed that up-regulated DEGs were mainly related to oxidative phosphorylation, whereas down-regulated DEGs were mainly involved in the MAPK and FoxO signaling pathways. Moreover, inhibition of DcCP64 significantly affected the cuticle surface, and increased the permeability of the abdomen and wings. Further chitin- and cellulose-binding assay confirmed the chitin-binding properties of recombinant DcCP64 in vitro. These results indicate that DcCP64 might play an important role in the cuticle and wing development of D. citri.
Collapse
Affiliation(s)
- Haizhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China;
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Nanling Insect Biology, Gannan Normal University, Ganzhou 341000, China
| | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China;
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Correspondence: (L.Y.); (Z.L.); Tel.: +86-0797-8397738 (L.Y. & Z.L.)
| | - Zhanjun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China;
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Nanling Insect Biology, Gannan Normal University, Ganzhou 341000, China
- Correspondence: (L.Y.); (Z.L.); Tel.: +86-0797-8397738 (L.Y. & Z.L.)
| |
Collapse
|
15
|
Liu H, Heng J, Wang L, Li Y, Tang X, Huang X, Xia Q, Zhao P. Homeodomain proteins POU-M2, antennapedia and abdominal-B are involved in regulation of the segment-specific expression of the clip-domain serine protease gene CLIP13 in the silkworm, Bombyx mori. INSECT SCIENCE 2022; 29:111-127. [PMID: 33860633 DOI: 10.1111/1744-7917.12916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/20/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Clip-domain serine proteases (CLIPs) play important roles in insect innate immunity and development. Our previous studies indicated that CLIP13, an epidermis-specific gene, was involved in cuticle remodeling during molting and metamorphosis in the silkworm, Bombyx mori. However, the transcriptional regulatory mechanism and regulatory pathways of CLIP13 remained unclear. In the present study, we investigated CLIP13 expression and the regulation pathway controlled by 20-hydroxyecdysone (20E) in the silkworm. At the transcriptional level, expression of CLIP13 exhibited pronounced spatial and temporal specificity in different regions of the epidermis; homeodomain transcription factors POU-M2, antennapedia (Antp), and abdominal-B (Abd-B) showed similar expression change trends as CLIP13 in the head capsule, thorax, and abdomen, respectively. Furthermore, results of cell transfection assays, electrophoretic mobility shift assays, and chromatin immunoprecipitation demonstrated that POU-M2, Antp, and Abd-B were involved in the transcriptional regulation of CLIP13 by directly binding to their cis-response elements in CLIP13 promoter. RNA interference-mediated silencing of POU-M2, Antp, and Abd-B led to a decrease of CLIP13 expression in the head capsule, the epidermis of the 1st to 3rd thoracic segments and the 7th to 10th abdominal segments, respectively. Consistent with CLIP13, 20E treatment significantly upregulated expression of POU-M2, Antp, and Abd-B in the silkworm epidermis. Taken together, these data suggest that 20E positively regulates transcription of CLIP13 via homeodomain proteins POU-M2, Antp, and Abd-B in different regions of the silkworm epidermis during metamorphosis, thus affecting the molting process. Our findings provide new insight into the functions of homeodomain transcription factors in insect molting.
Collapse
Affiliation(s)
- Huawei Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Jingya Heng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Luoling Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
| | - Youshan Li
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi Province, 723001, China
| | - Xin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Xuan Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400716, China
- Biological Science Research Center, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400716, China
| |
Collapse
|
16
|
Hou QL, Chen EH, Dou W, Wang JJ. Knockdown of specific cuticular proteins analogous to peritrophin 3 genes disrupt larval and ovarian development in Bactrocera dorsalis (Diptera: Tephritidae). INSECT SCIENCE 2021; 28:1326-1337. [PMID: 32856386 DOI: 10.1111/1744-7917.12869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/12/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Cuticular proteins (CPs) are critical components of the insect cuticle and play important roles in maintaining normal insect development and defense against various environmental stresses. The oriental fruit fly (Bactrocera dorsalis) is one of the most destructive pests worldwide, and its eight CPs analogous to peritrophin 3 (BdCPAP3) family genes have been identified in our previous study. In the present study, we further explored the possible roles of CPAP3 genes in B. dorsalis development. Each sequence of BdCPAP3 genes contained three conserved ChtBD2 (chitin-binding) domains. Spatial and temporal expression patterns revealed that the four BdCPAP3 genes (BdCPAP3-A1, B, E, and E2) might play important roles in larval pupariation of B. dorsalis. Moreover, treatment with a juvenile hormone analog (methoprene) significantly restricted expression of these four CPAP3 genes, whereas treatment with 20-hydroxy-ecdysone induced expression. The RNA interference (RNAi) results revealed that down-regulated CPAP3 genes led to significant delay of pupariation, and injection of dsBdCPAP3-E into 5-d-old B. dorsalis larvae caused approximately 40% mortality. Interestingly, we also confirmed that BdCPAP3-D2 was involved in B. dorsalis ovarian development. This study showed that some specific CPAP3 genes had crucial roles in B. dorsalis development, and these CP genes could be used as potential targets to control this pest via RNAi.
Collapse
Affiliation(s)
- Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| |
Collapse
|
17
|
Exogenous Nitric Oxide Reinforces Photosynthetic Efficiency, Osmolyte, Mineral Uptake, Antioxidant, Expression of Stress-Responsive Genes and Ameliorates the Effects of Salinity Stress in Wheat. PLANTS 2021; 10:plants10081693. [PMID: 34451738 PMCID: PMC8400961 DOI: 10.3390/plants10081693] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022]
Abstract
Salinity stress is one of the major environmental constraints responsible for a reduction in agricultural productivity. This study investigated the effect of exogenously applied nitric oxide (NO) (50 μM and 100 μM) in protecting wheat plants from NaCl-induced oxidative damage by modulating protective mechanisms, including osmolyte accumulation and the antioxidant system. Exogenously sourced NO proved effective in ameliorating the deleterious effects of salinity on the growth parameters studied. NO was beneficial in improving the photosynthetic efficiency, stomatal conductance, and chlorophyll content in normal and NaCl-treated wheat plants. Moreover, NO-treated plants maintained a greater accumulation of proline and soluble sugars, leading to higher relative water content maintenance. Exogenous-sourced NO at both concentrations up-regulated the antioxidant system for averting the NaCl-mediated oxidative damage on membranes. The activity of antioxidant enzymes increased the protection of membrane structural and functional integrity and photosynthetic efficiency. NO application imparted a marked effect on uptake of key mineral elements such as nitrogen (N), potassium (K), and calcium (Ca) with a concomitant reduction in the deleterious ions such as Na+. Greater K and reduced Na uptake in NO-treated plants lead to a considerable decline in the Na/K ratio. Enhancing of salt tolerance by NO was concomitant with an obvious down-regulation in the relative expression of SOS1, NHX1, AQP, and OSM-34, while D2-protein was up-regulated.
Collapse
|
18
|
Hou QL, Chen EH. RNA-seq analysis of gene expression changes in cuticles during the larval-pupal metamorphosis of Plutella xylostella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100869. [PMID: 34171685 DOI: 10.1016/j.cbd.2021.100869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023]
Abstract
The diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is a holometabolous insect that its cuticles must undergo the significant changes during the larval-pupal metamorphosis development. To elucidate these changes at molecular levels, RNA-seq analysis of cuticles from LLS (later fourth instar larval stage), PPS (prepupal stage) and PS (pupal stage) were performed in P. xylostella. In this paper, a total of 17,710 transcripts were obtained in the larval-pupal transition of P. xylostella, and out of which 2293 (881 up-regulated and 1412 down-regulated) and 2989 transcripts (2062 up-regulated and 927 down-regulated) were identified to be differentially expressed between LLS and PPS, as well as PPS and PS, respectively. The further GO and KEGG analysis of differentially expressed genes (DEGs) revealed that the 'structural constituent of cuticle', 'chitin metabolic process', 'chitin binding', 'tyrosine metabolism' and 'insect hormone biosynthesis' pathways were significantly enriched, indicating these pathways might be involved in the process of larval pupation in P. xylostella. Then, we found some genes that encoded cuticular proteins, chitinolytic enzymes, chitin synthesis enzymes, and cuticle tanning proteins changed their expression levels remarkably, indicating these genes might play important roles in the restruction (degradation and biosynthesis) of insect cuticles during the larval metamorphosis. Additionally, the significant changes in the mRNA levels of 20-hydroxyecdysone (20E) and juvenile hormone (JH) related genes suggested their crucial roles in regulating cuticle remodeling during the larval metamorphosis of P. xylostella. In conclusion, the present study provide us the comprehensive gene expression profiles to explore the molecular mechanisms of cuticle metamorphosis in P. xylostella, which laid a molecular basis to study roles of specific pathways and genes in insect development.
Collapse
Affiliation(s)
- Qiu-Li Hou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Er-Hu Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
19
|
Gao M, Mei X, Li C, Yu P, Shen D, Zhao Q. Genetic analysis and transcriptome analysis of the mini mutant of the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21774. [PMID: 33690914 DOI: 10.1002/arch.21774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
The expression levels of some intrinsic genes, protease activity, and regulation of signaling pathways were distinct during different growth and development stages in the silkworm, Bombyx mori. The silkworm mutant mini was discovered from the normal silkworm strain S8V, and the body-size of the mini mutant was smaller than the wild-type from the second-instar and the difference became more significant in the following stages. In this study, genetic analysis of mini mutant showed that mini mutant was controlled by a single recessive gene, manifested as homozygous lethal. Then, the transcriptome analysis of the mini mutant indicated that 2944 differentially expressed genes (DEGs) were identified from the silkworm in the 48 h of the second-instar, of which 1638 genes in the mini mutants were upregulated and 1306 genes were downregulated. These DEGs were mainly distributed in the biological process, cellular component, and molecular function. The functional annotation based on the KEGG database showed that these genes were mainly clustered in metabolic pathways, fatty acid metabolism pathways, ribosome biogenesis in eukaryotes, and so on. Further analysis indicated that some genes involved in the growth and metabolism including enzyme genes, juvenile hormone, and ecdysone exhibited different transcriptional levels. These results provided new experimental evidence regarding the mechanism of the underlying formation of mini mutants.
Collapse
Affiliation(s)
- Mengjie Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xinglin Mei
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Cong Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Pengcheng Yu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Dongxu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
20
|
Ramasamy R, Thiruchenthooran V, Jayadas TTP, Eswaramohan T, Santhirasegaram S, Sivabalakrishnan K, Naguleswaran A, Uzest M, Cayrol B, Voisin SN, Bulet P, Surendran SN. Transcriptomic, proteomic and ultrastructural studies on salinity-tolerant Aedes aegypti in the context of rising sea levels and arboviral disease epidemiology. BMC Genomics 2021; 22:253. [PMID: 33836668 PMCID: PMC8034070 DOI: 10.1186/s12864-021-07564-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Aedes aegypti mosquito, the principal global vector of arboviral diseases, lays eggs and undergoes larval and pupal development to become adult mosquitoes in fresh water (FW). It has recently been observed to develop in coastal brackish water (BW) habitats of up to 50% sea water, and such salinity tolerance shown to be an inheritable trait. Genomics of salinity tolerance in Ae. aegypti has not been previously studied, but it is of fundamental biological interest and important for controlling arboviral diseases in the context of rising sea levels increasing coastal ground water salinity. RESULTS BW- and FW-Ae. aegypti were compared by RNA-seq analysis on the gut, anal papillae and rest of the carcass in fourth instar larvae (L4), proteomics of cuticles shed when L4 metamorphose into pupae, and transmission electron microscopy of cuticles in L4 and adults. Genes for specific cuticle proteins, signalling proteins, moulting hormone-related proteins, membrane transporters, enzymes involved in cuticle metabolism, and cytochrome P450 showed different mRNA levels in BW and FW L4 tissues. The salinity-tolerant Ae. aegypti were also characterized by altered L4 cuticle proteomics and changes in cuticle ultrastructure of L4 and adults. CONCLUSIONS The findings provide new information on molecular and ultrastructural changes associated with salinity adaptation in FW mosquitoes. Changes in cuticles of larvae and adults of salinity-tolerant Ae. aegypti are expected to reduce the efficacy of insecticides used for controlling arboviral diseases. Expansion of coastal BW habitats and their neglect for control measures facilitates the spread of salinity-tolerant Ae. aegypti and genes for salinity tolerance. The transmission of arboviral diseases can therefore be amplified in multiple ways by salinity-tolerant Ae. aegypti and requires appropriate mitigating measures. The findings in Ae. aegypti have attendant implications for the development of salinity tolerance in other fresh water mosquito vectors and the diseases they transmit.
Collapse
Affiliation(s)
- Ranjan Ramasamy
- ID-FISH Technology Inc., Milpitas, CA, 95035, USA. .,Department of Zoology, University of Jaffna, Jaffna, Sri Lanka.
| | | | | | | | | | | | | | - Marilyne Uzest
- UMR BGPI, University of Montpellier, INRAE, CIRAD, SupAgro, Montpellier, France
| | - Bastien Cayrol
- UMR BGPI, University of Montpellier, INRAE, CIRAD, SupAgro, Montpellier, France
| | | | - Philippe Bulet
- Platform BioPark Archamps, Archamps, France.,CR Université Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Grenoble, France
| | | |
Collapse
|
21
|
Volovych O, Lin Z, Du J, Jiang H, Zou Z. Identification and temporal expression profiles of cuticular proteins in the endoparasitoid wasp, Microplitis mediator. INSECT SCIENCE 2020; 27:998-1018. [PMID: 31317624 PMCID: PMC7497268 DOI: 10.1111/1744-7917.12711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 05/10/2023]
Abstract
Recently, parasitoid wasp species Microplitis mediator has evoked increasing research attention due to its possible use in the control of Lepidoptera insects. Because insect development involves changes in cuticle composition, identification and expression analysis of M. mediator cuticular proteins may clarify the mechanisms involved in parasite development processes. We found 70 cuticular proteins from the M. mediator transcriptome and divided them into seven distinct families. Expression profiling indicated that most of these cuticular protein genes have expression peaks specific for one particular developmental stage of M. mediator. Eggs and pupae have the highest number of transcriptionally active cuticular protein genes (47 and 52 respectively). Only 12 of these genes maintained high expression activity during late larval development. Functional analysis of two larval proteins, MmCPR3 and MmCPR14, suggested their important role in the proper organization of the cuticle layers of larvae. During M. mediator larval development, normal cuticle formation can be supported by a limited number of cuticular proteins.
Collapse
Affiliation(s)
- Olga Volovych
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Jie Du
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hong Jiang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
22
|
Liu SH, Xia YD, Zhang Q, Li W, Li RY, Liu Y, Chen EH, Dou W, Stelinski LL, Wang JJ. Potential targets for controlling Bactrocera dorsalis using cuticle- and hormone-related genes revealed by a developmental transcriptome analysis. PEST MANAGEMENT SCIENCE 2020; 76:2127-2143. [PMID: 31951094 DOI: 10.1002/ps.5751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/01/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis (Hendel), is an important agricultural pest and has developed resistance to many insecticides. To investigate vital genes participating in metamorphosis for development of additional control strategies, a comprehensive transcriptome analysis covering ten developmental stages of B. dorsalis was performed. RESULTS There were 2132, 952, 1062, 2301 and 1333 differentially expressed genes identified during hatching, 1st-instar larval molting, 2nd-instar larval molting, pupariation and emergence, respectively. Further expression analyses indicated that genes in hormone- (20-hydroxyecdysone and juvenile hormone) and cuticle- (chitin and cuticle protein) related pathways were essential for metamorphosis in B. dorsalis. Among chitinase (Cht) genes, BdCht-5, -8 and -10 were differentially expressed during larval-larval, larval-pupal and pupal-adult moltings. However, BdCht7 was differentially expressed during egg-larval and larval-larval moltings. Knockdown of BdCht7 at the 1st-instar larval stage disrupted normal development of larvae and was lethal to B. dorsalis. Among cuticle protein (CP) genes, 15 genes (BdCPLCG-1, BdCPLCP-2, BdCPAP1-B2, BdRR1-21, BdRR1-31, BdRR2-15, BdRR2-26, BdRR2-30, BdRR2-32, BdTweedle-9, BdTweedle-24, BdRR2-10, BdCPAP3-C1, BdRR1-34 and BdRR1-41) were differentially expressed during four of five types of moltings. Among hormone-relative genes, BdJHBP-4, -9 and -13 were differentially expressed during all five types of moltings, whereas BdJHBP-5, -12 and BdHR4 were differentially expressed during four of five types of moltings. CONCLUSION This study reveals critical genes involved in development and metamorphosis of B. dorsaslis, and BdCht7 is dispensable for larval survival. It also provides comprehensive transcriptome information for finding more molecular targets to control this pest. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shi-Huo Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ying-Dan Xia
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Run-Yan Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Gainesville, FL, USA
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
23
|
Naqqash MN, Gökçe A, Aksoy E, Bakhsh A. Downregulation of imidacloprid resistant genes alters the biological parameters in Colorado potato beetle, Leptinotarsa decemlineata Say (chrysomelidae: Coleoptera). CHEMOSPHERE 2020; 240:124857. [PMID: 31726599 DOI: 10.1016/j.chemosphere.2019.124857] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Colorado potato beetle, Leptinotarsa decemlineata Say (coleoptera: chrysomelidae), is the important pest of potato all over the world. This insect pest is resistant to more than 50 active compounds belonging to various chemical groups. Potential of RNA interference (RNAi) was explored to knock down transcript levels of imidacloprid resistant genes in Colorado potato beetle (CPB) under laboratory conditions. Three important genes belonging to cuticular protein (CP), cytochrome P450 monoxygenases (P450) and glutathione synthetase (GSS) families encoding imidacloprid resistance were targeted. Feeding bio-assays were conducted on various stages of imidacloprid resistant CPB lab population by applying HT115 expressing dsRNA on potato leaflets. Survival rate of insects exposed to CP-dsRNA decreased to 4.23%, 15.32% and 47.35% in 2nd, 3rd and 4th instar larvae respectively. Larval weight and pre-adult duration were also affected due to dsRNAs feeding. Synergism of RNAi with imidacloprid conducted on the 2nd instar larvae, exhibited 100% mortality of larvae when subjected to reduced doses of GSS and CP dsRNAs along with imidacloprid. Utilization of three different dsRNAs against imidacloprid resistant CPB population reveal that dsRNAs targeting CP, P450 and GSS enzymes could be useful tool in management of imidacloprid resistant CPB populations.
Collapse
Affiliation(s)
- Muhammad Nadir Naqqash
- Department of Plant Production & Technologies, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey.
| | - Ayhan Gökçe
- Department of Plant Production & Technologies, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey
| | - Emre Aksoy
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Omer Halisdemir University, Niğde, Turkey.
| |
Collapse
|
24
|
Alhaithloul HAS. Impact of Combined Heat and Drought Stress on the Potential Growth Responses of the Desert Grass Artemisia sieberi alba: Relation to Biochemical and Molecular Adaptation. PLANTS (BASEL, SWITZERLAND) 2019; 8:E416. [PMID: 31618849 PMCID: PMC6843163 DOI: 10.3390/plants8100416] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 01/31/2023]
Abstract
Artemisia sieberi alba is one of the important plants frequently encountered by the combined effect of drought and heat stress. In the present study, we investigated the individual and combined effect of drought and heat stress on growth, photosynthesis, oxidative damage, and gene expression in A. sieberi alba. Drought and heat stress triggered oxidative damage by increasing the accumulation of hydrogen peroxide, and therefore electrolyte leakage. The accumulation of secondary metabolites, such as phenol and flavonoids, and proline, mannitol, inositol, and sorbitol, was increased due to drought and heat stress exposure. Photosynthetic attributes including chlorophyll synthesis, stomatal conductance, transpiration rate, photosynthetic efficiency, and chlorophyll fluorescence parameters were drastically reduced due to drought and heat stress exposure. Relative water content declined significantly in stressed plants, which was evident by the reduced leaf water potential and the water use efficiency, therefore, affecting the overall growth performance. Relative expression of aquaporin (AQP), dehydrin (DHN1), late embryogenesis abundant (LEA), osmotin (OSM-34), and heat shock proteins (HSP70) were significantly higher in stressed plants. Drought triggered the expression of AQP, DHN1, LEA, and OSM-34 more than heat, which improved the HSP70 transcript levels. A. sieberi alba responded to drought and heat stress by initiating key physio-biochemical and molecular responses, which were distinct in plants exposed to a combination of drought and heat stress.
Collapse
|
25
|
Panfilio KA, Vargas Jentzsch IM, Benoit JB, Erezyilmaz D, Suzuki Y, Colella S, Robertson HM, Poelchau MF, Waterhouse RM, Ioannidis P, Weirauch MT, Hughes DST, Murali SC, Werren JH, Jacobs CGC, Duncan EJ, Armisén D, Vreede BMI, Baa-Puyoulet P, Berger CS, Chang CC, Chao H, Chen MJM, Chen YT, Childers CP, Chipman AD, Cridge AG, Crumière AJJ, Dearden PK, Didion EM, Dinh H, Doddapaneni HV, Dolan A, Dugan S, Extavour CG, Febvay G, Friedrich M, Ginzburg N, Han Y, Heger P, Holmes CJ, Horn T, Hsiao YM, Jennings EC, Johnston JS, Jones TE, Jones JW, Khila A, Koelzer S, Kovacova V, Leask M, Lee SL, Lee CY, Lovegrove MR, Lu HL, Lu Y, Moore PJ, Munoz-Torres MC, Muzny DM, Palli SR, Parisot N, Pick L, Porter ML, Qu J, Refki PN, Richter R, Rivera-Pomar R, Rosendale AJ, Roth S, Sachs L, Santos ME, Seibert J, Sghaier E, Shukla JN, Stancliffe RJ, Tidswell O, Traverso L, van der Zee M, Viala S, Worley KC, Zdobnov EM, Gibbs RA, Richards S. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biol 2019. [PMID: 30935422 DOI: 10.1101/201731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.
Collapse
Affiliation(s)
- Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Deniz Erezyilmaz
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
- Present address: Department of Physiology, Anatomy and Genetics and Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, UK
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Stefano Colella
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
- Present address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, INRA, IRD, CIRAD, SupAgro, University of Montpellier, Montpellier, France
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Robert M Waterhouse
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
- Present address: Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics, and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Present address: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Present address: Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07745, Jena, Germany
| | - Elizabeth J Duncan
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Barbara M I Vreede
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | | | - Chloé S Berger
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Chun-Che Chang
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mei-Ju M Chen
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Yen-Ta Chen
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Andrew G Cridge
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Antonin J J Crumière
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Peter K Dearden
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Dolan
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Gérard Febvay
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Neta Ginzburg
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter Heger
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Thorsten Horn
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Yi-Min Hsiao
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Tamsin E Jones
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Stefan Koelzer
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Megan Leask
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chien-Yueh Lee
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Mackenzie R Lovegrove
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Hsiao-Ling Lu
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yong Lu
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Patricia J Moore
- Department of Entomology, University of Georgia, 120 Cedar St., Athens, GA, 30602, USA
| | - Monica C Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Subba R Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Leslie Pick
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Megan L Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter N Refki
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
- Present address: Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Rose Richter
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: Earthworks Institute, 185 Caroline Street, Rochester, NY, 14620, USA
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Siegfried Roth
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Lena Sachs
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - M Emília Santos
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jan Seibert
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Essia Sghaier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jayendra N Shukla
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
- Present address: Department of Biotechnology, Central University of Rajasthan (CURAJ), NH-8, Bandarsindri, Ajmer, 305801, India
| | - Richard J Stancliffe
- Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121, Bonn, Germany
- Present address: E. A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX, UK
| | - Olivia Tidswell
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- Present address: Department of Zoology, University of Cambridge, Cambridge, CB2 3DT, UK
| | - Lucila Traverso
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maurijn van der Zee
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Séverine Viala
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
26
|
Panfilio KA, Vargas Jentzsch IM, Benoit JB, Erezyilmaz D, Suzuki Y, Colella S, Robertson HM, Poelchau MF, Waterhouse RM, Ioannidis P, Weirauch MT, Hughes DST, Murali SC, Werren JH, Jacobs CGC, Duncan EJ, Armisén D, Vreede BMI, Baa-Puyoulet P, Berger CS, Chang CC, Chao H, Chen MJM, Chen YT, Childers CP, Chipman AD, Cridge AG, Crumière AJJ, Dearden PK, Didion EM, Dinh H, Doddapaneni HV, Dolan A, Dugan S, Extavour CG, Febvay G, Friedrich M, Ginzburg N, Han Y, Heger P, Holmes CJ, Horn T, Hsiao YM, Jennings EC, Johnston JS, Jones TE, Jones JW, Khila A, Koelzer S, Kovacova V, Leask M, Lee SL, Lee CY, Lovegrove MR, Lu HL, Lu Y, Moore PJ, Munoz-Torres MC, Muzny DM, Palli SR, Parisot N, Pick L, Porter ML, Qu J, Refki PN, Richter R, Rivera-Pomar R, Rosendale AJ, Roth S, Sachs L, Santos ME, Seibert J, Sghaier E, Shukla JN, Stancliffe RJ, Tidswell O, Traverso L, van der Zee M, Viala S, Worley KC, Zdobnov EM, Gibbs RA, Richards S. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biol 2019; 20:64. [PMID: 30935422 PMCID: PMC6444547 DOI: 10.1186/s13059-019-1660-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/21/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.
Collapse
Affiliation(s)
- Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Deniz Erezyilmaz
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
- Present address: Department of Physiology, Anatomy and Genetics and Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, UK
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Stefano Colella
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
- Present address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, INRA, IRD, CIRAD, SupAgro, University of Montpellier, Montpellier, France
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Robert M Waterhouse
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
- Present address: Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics, and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Present address: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Present address: Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07745, Jena, Germany
| | - Elizabeth J Duncan
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Barbara M I Vreede
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | | | - Chloé S Berger
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Chun-Che Chang
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mei-Ju M Chen
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Yen-Ta Chen
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Andrew G Cridge
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Antonin J J Crumière
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Peter K Dearden
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Dolan
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Gérard Febvay
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Neta Ginzburg
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter Heger
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Thorsten Horn
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Yi-Min Hsiao
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Tamsin E Jones
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Stefan Koelzer
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Megan Leask
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chien-Yueh Lee
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Mackenzie R Lovegrove
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Hsiao-Ling Lu
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yong Lu
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Patricia J Moore
- Department of Entomology, University of Georgia, 120 Cedar St., Athens, GA, 30602, USA
| | - Monica C Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Subba R Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Leslie Pick
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Megan L Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter N Refki
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
- Present address: Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Rose Richter
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: Earthworks Institute, 185 Caroline Street, Rochester, NY, 14620, USA
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Siegfried Roth
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Lena Sachs
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - M Emília Santos
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jan Seibert
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Essia Sghaier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jayendra N Shukla
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
- Present address: Department of Biotechnology, Central University of Rajasthan (CURAJ), NH-8, Bandarsindri, Ajmer, 305801, India
| | - Richard J Stancliffe
- Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121, Bonn, Germany
- Present address: E. A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX, UK
| | - Olivia Tidswell
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- Present address: Department of Zoology, University of Cambridge, Cambridge, CB2 3DT, UK
| | - Lucila Traverso
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maurijn van der Zee
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Séverine Viala
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
27
|
Zhou Y, Badgett MJ, Orlando R, Willis JH. Proteomics reveals localization of cuticular proteins in Anopheles gambiae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 104:91-105. [PMID: 30278207 PMCID: PMC6370036 DOI: 10.1016/j.ibmb.2018.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/14/2018] [Accepted: 09/27/2018] [Indexed: 05/02/2023]
Abstract
Anopheles gambiae devotes over 2% of its protein coding genes to its 298 structural cuticular proteins (CPs). This paper provides new LC-MS/MS data on two adult structures, proboscises and palps, as well as three larval samples - 4th instar larvae, just their terminal segment, and a preparation enriched in their tracheae. These data were combined with our previously published results of proteins from five other adult structures, whole adults, and two preparations chosen for their relatively clean cuticle, the larval head capsules left behind after ecdysis and the pupal cuticles left behind after adult eclosion. Peptides from 28 CPs were recovered in all adult structures; 24 CPs were identified for the first time, 6 of these were members of the TWDL family. Most newly identified proteins came from the larval sources. Based solely on peptide recovery, from our data and from other investigators, most available on VectorBase, there were only 4 CPs that were restricted to a single adult structure. More were restricted to a single metamorphic stage, 14 in larvae, 0 in pupae and 32 in adults. Expression data from our earlier RT-qPCR studies reduces these numbers. Charting restriction of CPs to stage or structure is a step forward in establishing their specific roles.
Collapse
Affiliation(s)
- Yihong Zhou
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Majors J Badgett
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
28
|
Chen EH, Hou QL, Dou W, Wei DD, Yue Y, Yang RL, Yang PJ, Yu SF, De Schutter K, Smagghe G, Wang JJ. Genome-wide annotation of cuticular proteins in the oriental fruit fly (Bactrocera dorsalis), changes during pupariation and expression analysis of CPAP3 protein genes in response to environmental stresses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 97:53-70. [PMID: 29729388 DOI: 10.1016/j.ibmb.2018.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/26/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Cuticular proteins (CPs) are essential components of the insect cuticle as they create a structural and protective shield and may have a role in insect development. In this paper, we studied the CPs in the oriental fruit fly (Bactrocera dorsalis), one of the most economically important pests in the Tephritidae family around the world. The availability of a complete genome sequence (NCBI Assembly: ASM78921v2) allowed the identification of 164 CP genes in B. dorsalis. Comparative analysis of the CPs in B. dorsalis with those in the model insect Drosophila melanogaster and the closely related Ceratitis capitata, and CPs from mosquitoes, Lepidoptera, Hymenoptera and Coleoptera identified Diptera-specific genes and cuticle development patterns. Analysis of their evolutionary relationship revealed that some CP families had evolved according to the phylogeny of the different insect species, while others shared a closer relationship based on domain architecture. Subsequently, transcriptome analysis showed that while most of the CPs (60-100% of the family members) are expressed in the epidermis, some were also present in internal organs such as the fat body and the reproductive organs. Furthermore, the study of the expression profiles throughout development revealed a profound change in the expression of CPs during the formation of the puparium (pupariation). Further analysis of the expression profiles of the CPAP3 genes under various environmental stresses revealed them to be involved in the response to pesticides and arid and extreme temperatures conditions. In conclusion, the data provide a particular overview of CPs and their evolutionary and transcriptional dynamics, and in turn they lay a molecular foundation to explore their roles in the unique developmental process of insect metamorphosis and stress responses.
Collapse
Affiliation(s)
- Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China
| | - Yong Yue
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Rui-Lin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Pei-Jin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | - Shuai-Feng Yu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China
| | | | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China; Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, PR China; Academy of Agricultural Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
29
|
Abstract
This article presents an overview of the development of techniques for analyzing cuticular proteins (CPs), their transcripts, and their genes over the past 50 years based primarily on experience in the laboratory of J.H. Willis. It emphasizes changes in the kind of data that can be gathered and how such data provided insights into the molecular underpinnings of insect metamorphosis and cuticle structure. It describes the techniques that allowed visualization of the location of CPs at both the anatomical and intracuticular levels and measurement of the appearance and deployment of transcripts from CP genes as well as what was learned from genomic and transcriptomic data. Most of the early work was done with the cecropia silkmoth, Hyalophora cecropia, and later work was with Anopheles gambiae.
Collapse
Affiliation(s)
- Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
30
|
Murata Y, Osakabe M. Developmental Phase-Specific Mortality After Ultraviolet-B Radiation Exposure in the Two-Spotted Spider Mite. ENVIRONMENTAL ENTOMOLOGY 2017; 46:1448-1455. [PMID: 29069313 DOI: 10.1093/ee/nvx169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exposure to ambient ultraviolet-B (UVB) radiation generates DNA lesions, such as cyclobutane pyrimidine dimers and 6-4 pyrimidine-pyrimidine photoproducts in Tetranychus urticae Koch (Acari: Tetranychidae). Larvae appeared normal and healthy after UVB irradiation. Conversely, many mites were trapped in their old epidermis or experienced retarded development and shrunk, thus failing to molt from protochrysalises to protonymphs and died. This suggested that DNA lesions per se were not causing lethality in mites unless damaged genes were expressed. UVB-induced DNA lesions may have interfered with DNA replication and gene expression during the physiological changes of morphogenesis in the chrysalis stage. Comprehensive gene expression analysis by RNA sequencing revealed that gene expression involving epidermal tissue (characteristically cuticular protein genes) and myosin heavy chain muscle-like genes were downregulated in protochrysalises irradiated with UVB at the larval stage. We conclude that the success of protochrysalis molting is determined by whether the DNA lesions of genes, particularly those connected with morphogenesis, are repaired before expression at the protochrysalis stage.
Collapse
Affiliation(s)
- Yasumasa Murata
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Japan
| | - Masahiro Osakabe
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Japan
| |
Collapse
|
31
|
Microscopic cuticle structure comparison of pupal melanic and wild strain of Spodoptera exigua and their gene expression profiles in three time points. Microb Pathog 2017; 114:483-493. [PMID: 29196168 DOI: 10.1016/j.micpath.2017.11.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 11/20/2022]
Abstract
The beet armyworm, Spodoptera exigua (Hubner), is one of the major crop pests and is a target for current pest control approaches using insecticides. S. exigua melanic mutants (SEM) spontaneously occurred in the S. exigua wild type (SEW) strain and have been maintained under laboratory conditions on an artificial diet. Scanning electron microscopy showed that the inner cuticle of the SEM had a denser and less orderly structure. We investigated the cuticle protein genes using RNA-seq at three different developmental stages of both SEM and SEW. Comparison of cDNA libraries showed that 7257 CPs were significantly up-regulated and 664 genes were significantly downregulated in SEM at the developmental stage of 46-h in the fifth instar. In addition, 460 genes were significantly up-regulated and 439 genes were significantly down-regulated in the SEM at the development stage of 4-h before pupation. Moreover, 162 genes were significantly up-regulated and 293 genes were significantly downregulated in the SEM, just after pupation. Two genes CPR63 and CPR97 were identified from RNA sequences to verify the differentially expressed gene (DEG) results through quantitative real-time PCR (qRT-PCR). The results show that expression of both CPR63 and CPR97 structural cuticular proteins were significantly different between SEM and SEW. This functional analysis may help in understanding the role that these genes play in the cuticle pattern of the SEM.
Collapse
|
32
|
Zhou Y, Badgett MJ, Billard L, Bowen JH, Orlando R, Willis JH. Properties of the cuticular proteins of Anopheles gambiae as revealed by serial extraction of adults. PLoS One 2017; 12:e0175423. [PMID: 28419115 PMCID: PMC5395146 DOI: 10.1371/journal.pone.0175423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/24/2017] [Indexed: 01/22/2023] Open
Abstract
How cuticular proteins (CPs) interact with chitin and with each other in the cuticle remains unresolved. We employed LC-MS/MS to identify CPs from 5–6 day-old adults of Anopheles gambiae released after serial extraction with PBS, EDTA, 2-8M urea, and SDS as well as those that remained unextracted. Results were compared to published data on time of transcript abundance, localization of proteins within structures and within the cuticle, as well as properties of individual proteins, length, pI, percent histidine, tyrosine, glutamine, and number of AAP[A/V/L] repeats. Thirteen proteins were solubilized completely, all were CPRs, most belonging to the RR-1 group. Eleven CPs were identified in both soluble fractions and the final pellet, including 5 from other CP families. Forty-three were only detected from the final pellet. These included CPRs and members of the CPAP1, CPF, CPFL, CPLCA, CPLCG, CPLCP, and TWDL families, as well as several low complexity CPs, not assigned to families and named CPLX. For a given protein, many histidines or tyrosines or glutamines appear to be potential participants in cross-linking since we could not identify any peptide bearing these residues that was consistently absent. We failed to recover peptides from the amino-terminus of any CP. Whether this implicates that location in sclerotization or some modification that prevents detection is not known. Soluble CPRs had lower isoelectric points than those that remained in the final pellet; most members of other CP families had isoelectric points of 8 or higher. Obviously, techniques beyond analysis of differential solubility will be needed to learn how CPs interact with each other and with chitin.
Collapse
Affiliation(s)
- Yihong Zhou
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Majors J. Badgett
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Lynne Billard
- Department of Statistics, University of Georgia, Athens, Georgia, United States of America
| | - John Hunter Bowen
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Ron Orlando
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Judith H. Willis
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
33
|
Yang CH, Yang PC, Zhang SF, Shi ZY, Kang L, Zhang AB. Identification, expression pattern, and feature analysis of cuticular protein genes in the pine moth Dendrolimus punctatus (Lepidoptera: Lasiocampidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:94-106. [PMID: 28284855 DOI: 10.1016/j.ibmb.2017.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/19/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Cuticular proteins (CPs) are vital components of the insects' cuticle that support movement and protect insect from adverse environmental conditions. The CPs exist in a large number and diversiform structures, thus, the accurate annotation is the first step to interpreting their roles in insect growth. The rapid development of sequencing technology has simplified the access to the information on protein sequences, especially for non-model species. Dendrolimus punctatus is a Lepidopteran defoliator, and its periodic outbreaks cause severe damage to the coniferous forests. The transcriptome of D. punctatus integrating the whole developmental periods are available for the potential investigation of CPs. In this study, we identified 216 CPs from D. punctatus, including 147 from CPR family, 4 from TWDL family, 3 from CPF/CPFL families, 22 from CPAP families, 8 low complexity proteins, 1 CPCPC and 31 from other CP families. The putative CPs were compared with homologs in other species such as Bombyx mori, Manduca sexta and Drosophila melanogaster. We further identified five co-orthologous groups have highly similar sequences of CRPs in nine lepidopteran species, which exclusively presented in RR-2 subfamily rather than RR-1. We inferred that in Lepidoptera the difference in RR-2 numbers was maintained by homologs in co-orthologous groups, coincided with observation in Drosophila and Anopheles that gene cluster was the model and source for the expansion of RR-2 genes. In combination with the variation of members in each CP family among different species, these results indicated the evolution of CPs was highly correlated to the adaptation of insect to environment. Furthermore, we compared the amino acid composition of the different types CPRs, and examined the expression patterns of CP genes in various developmental stages. The comprehensive overview of CPs from our study provides an insight into their evolution and the association between them and insect development.
Collapse
Affiliation(s)
- Cong-Hui Yang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Peng-Cheng Yang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Su-Fang Zhang
- Key Laboratory of Forest Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, State Forestry Administration, Beijing, 100091, China
| | - Zhi-Yong Shi
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Le Kang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ai-Bing Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
34
|
Mathers TC, Chen Y, Kaithakottil G, Legeai F, Mugford ST, Baa-Puyoulet P, Bretaudeau A, Clavijo B, Colella S, Collin O, Dalmay T, Derrien T, Feng H, Gabaldón T, Jordan A, Julca I, Kettles GJ, Kowitwanich K, Lavenier D, Lenzi P, Lopez-Gomollon S, Loska D, Mapleson D, Maumus F, Moxon S, Price DRG, Sugio A, van Munster M, Uzest M, Waite D, Jander G, Tagu D, Wilson ACC, van Oosterhout C, Swarbreck D, Hogenhout SA. Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biol 2017; 18:27. [PMID: 28190401 PMCID: PMC5304397 DOI: 10.1186/s13059-016-1145-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/22/2016] [Indexed: 12/04/2022] Open
Abstract
Background The prevailing paradigm of host-parasite evolution is that arms races lead to increasing specialisation via genetic adaptation. Insect herbivores are no exception and the majority have evolved to colonise a small number of closely related host species. Remarkably, the green peach aphid, Myzus persicae, colonises plant species across 40 families and single M. persicae clonal lineages can colonise distantly related plants. This remarkable ability makes M. persicae a highly destructive pest of many important crop species. Results To investigate the exceptional phenotypic plasticity of M. persicae, we sequenced the M. persicae genome and assessed how one clonal lineage responds to host plant species of different families. We show that genetically identical individuals are able to colonise distantly related host species through the differential regulation of genes belonging to aphid-expanded gene families. Multigene clusters collectively upregulate in single aphids within two days upon host switch. Furthermore, we demonstrate the functional significance of this rapid transcriptional change using RNA interference (RNAi)-mediated knock-down of genes belonging to the cathepsin B gene family. Knock-down of cathepsin B genes reduced aphid fitness, but only on the host that induced upregulation of these genes. Conclusions Previous research has focused on the role of genetic adaptation of parasites to their hosts. Here we show that the generalist aphid pest M. persicae is able to colonise diverse host plant species in the absence of genetic specialisation. This is achieved through rapid transcriptional plasticity of genes that have duplicated during aphid evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1145-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas C Mathers
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.,The International Aphid Genomics Consortium, Miami, USA
| | - Yazhou Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,The International Aphid Genomics Consortium, Miami, USA
| | | | - Fabrice Legeai
- The International Aphid Genomics Consortium, Miami, USA.,INRA, UMR 1349 IGEPP (Institute of Genetics Environment and Plant Protection), Domaine de la Motte, 35653, Le Rheu Cedex, France.,IRISA/INRIA, GenOuest Core Facility, Campus de Beaulieu, Rennes, 35042, France
| | - Sam T Mugford
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,The International Aphid Genomics Consortium, Miami, USA
| | - Patrice Baa-Puyoulet
- The International Aphid Genomics Consortium, Miami, USA.,Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Anthony Bretaudeau
- The International Aphid Genomics Consortium, Miami, USA.,INRA, UMR 1349 IGEPP (Institute of Genetics Environment and Plant Protection), Domaine de la Motte, 35653, Le Rheu Cedex, France.,IRISA/INRIA, GenOuest Core Facility, Campus de Beaulieu, Rennes, 35042, France
| | | | - Stefano Colella
- The International Aphid Genomics Consortium, Miami, USA.,Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France.,Present Address: INRA, UMR1342 IRD-CIRAD-INRA-SupAgro-Université de Montpellier, Laboratoire des Symbioses Tropicales et Méditéranéennes, Campus International de Baillarguet, TA-A82/J, F-34398, Montpellier cedex 5, France
| | - Olivier Collin
- IRISA/INRIA, GenOuest Core Facility, Campus de Beaulieu, Rennes, 35042, France
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Thomas Derrien
- CNRS, UMR 6290, Institut de Génétique et Developpement de Rennes, Université de Rennes 1, 2 Avenue du Pr. Léon Bernard, 35000, Rennes, France
| | - Honglin Feng
- The International Aphid Genomics Consortium, Miami, USA.,Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Toni Gabaldón
- The International Aphid Genomics Consortium, Miami, USA.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Anna Jordan
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Irene Julca
- The International Aphid Genomics Consortium, Miami, USA.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Graeme J Kettles
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Present address: Rothamsted Research, Harpenden, Hertforshire, ALF5 2JQ, UK
| | - Krissana Kowitwanich
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Present address: J. R. Simplot Company, Boise, ID, USA
| | - Dominique Lavenier
- IRISA/INRIA, GenOuest Core Facility, Campus de Beaulieu, Rennes, 35042, France
| | - Paolo Lenzi
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,Present address: Alson H. Smith Jr. Agriculture and Extension Center, Virginia Tech, Winchester, 22602, VA, USA
| | - Sara Lopez-Gomollon
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Present address: Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Damian Loska
- The International Aphid Genomics Consortium, Miami, USA.,Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Daniel Mapleson
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Florian Maumus
- The International Aphid Genomics Consortium, Miami, USA.,Unité de Recherche Génomique-Info (URGI), INRA, Université Paris-Saclay, 78026, Versailles, France
| | - Simon Moxon
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Daniel R G Price
- The International Aphid Genomics Consortium, Miami, USA.,Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.,Present address: Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK
| | - Akiko Sugio
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.,INRA, UMR 1349 IGEPP (Institute of Genetics Environment and Plant Protection), Domaine de la Motte, 35653, Le Rheu Cedex, France
| | - Manuella van Munster
- The International Aphid Genomics Consortium, Miami, USA.,INRA, UMR BGPI, CIRAD TA-A54K, Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | - Marilyne Uzest
- The International Aphid Genomics Consortium, Miami, USA.,INRA, UMR BGPI, CIRAD TA-A54K, Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | - Darren Waite
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Georg Jander
- The International Aphid Genomics Consortium, Miami, USA.,Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Denis Tagu
- The International Aphid Genomics Consortium, Miami, USA.,INRA, UMR 1349 IGEPP (Institute of Genetics Environment and Plant Protection), Domaine de la Motte, 35653, Le Rheu Cedex, France
| | - Alex C C Wilson
- The International Aphid Genomics Consortium, Miami, USA.,Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Cock van Oosterhout
- The International Aphid Genomics Consortium, Miami, USA.,School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK. .,The International Aphid Genomics Consortium, Miami, USA. .,School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Saskia A Hogenhout
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK. .,The International Aphid Genomics Consortium, Miami, USA. .,School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
35
|
Vannini L, Willis JH. Localization of RR-1 and RR-2 cuticular proteins within the cuticle of Anopheles gambiae. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:13-29. [PMID: 27717796 PMCID: PMC5292290 DOI: 10.1016/j.asd.2016.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/16/2016] [Accepted: 10/03/2016] [Indexed: 05/03/2023]
Abstract
The largest arthropod cuticular protein family, CPR, has the Rebers and Riddiford (R&R) Consensus that in an extended form confers chitin-binding properties. Two forms of the Consensus, RR-1 and RR-2, have been recognized and initial data suggested that the RR-1 and RR-2 proteins were present in different regions within the cuticle itself. Thus, RR-2 proteins would contribute to exocuticle that becomes sclerotized, while RR-1s would be found in endocuticle that remains soft. An alternative, and more common, suggestion is that RR-1 proteins are used for soft, flexible cuticles such as intersegmental membranes, while RR-2s are associated with hard cuticle such as sclerites and head capsules. We used TEM immunogold detection to localize the position of several RR-1 and RR-2 proteins in the cuticle of Anopheles gambiae. RR-1s were localized in the procuticle of the soft intersegmental membrane except for one protein found in the endocuticle of hard cuticle. RR-2s were consistently found in hard cuticle and not in flexible cuticle. All RR-2 antibodies localized to the exocuticle and four out of six were also found in the endocuticle. Hence the location of RR-1s and RR-2s depends more on properties of individual proteins than on either hypothesis.
Collapse
Affiliation(s)
- Laura Vannini
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
36
|
Vannini L, Willis JH. Immunolocalization of cuticular proteins in Johnston's organ and the corneal lens of Anopheles gambiae. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:519-535. [PMID: 27744002 PMCID: PMC5228451 DOI: 10.1016/j.asd.2016.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/03/2016] [Indexed: 05/03/2023]
Abstract
Previous work with EM immunolocalization examined the intracuticular placement of several antibodies directed against cuticular proteins (CPs) in various structures of Anopheles gambiae. Those structures had long stretches of fairly uniform cuticle. We have now used 19 antibodies directed against members of five CP families on two adult structures with considerable complexity, Johnston's organ and the corneal lens of the compound eye. We also localized chitin with colloidal-gold labeled wheat germ agglutinin. Twelve of these antibodies recognized structures in Johnston's organ. Only 6 were detected in the outer pedicel wall, but the internal structures were more complex with distinct distributions of members of the five CP families in six different structures. The corneal lens had four distinct regions of laminar cuticle. Thirteen of the 15 members of the CPR family were detected, none from the other CP families. Specific antibodies were localized to different regions and in different laminae within a region. The specificity of deployment of cuticular proteins revealed in this study is helping to explain why An. gambiae allocates about 2% of its protein coding genes to structural CPs.
Collapse
Affiliation(s)
- Laura Vannini
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
37
|
Zhang T, He K, Wang Z. Transcriptome Comparison Analysis of Ostrinia furnacalis in Four Developmental Stages. Sci Rep 2016; 6:35008. [PMID: 27713521 PMCID: PMC5054526 DOI: 10.1038/srep35008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/22/2016] [Indexed: 11/24/2022] Open
Abstract
The Asian corn borer, Ostrinia furnacalis, is one of the most destructive pests of maize and causes huge losses in maize yield each year. In order to characterize the different developmental stages, a high-throughput sequencing platform was employed to perform de novo transcriptome assembly and gene expression analysis for the egg, larva, pupa and adult stages. Approximately 185 million reads were obtained, trimmed, and assembled into 42,638 unigenes with an average length of 801.94 bp and an N50 length of 1,152 bp. These unigene sequences were annotated and classified by performing Gene Ontology (GO), Cluster of Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classifications. Comparison of the gene expression profiles of the two transitional stages revealed dramatic differences. Some differentially expressed genes are associated with digestion, cuticularization olfactory recognition and wing formation as well as growth and development. In total, 12 putative insect development-related genes were identified. Real-time quantitative PCR (RT-qPCR) results and sequencing based on relative expression levels of randomly selected genes confirmed these expression patterns. These data represent the most comprehensive transcriptomic resource currently available for O. furnacalis and will facilitate the study of developmental pathways, cuticularization, wing formation and olfactory recognition.
Collapse
Affiliation(s)
- Tiantao Zhang
- State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Kanglai He
- State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China
| | - Zhenying Wang
- State Key Laboratory for the Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Beijing 100193, China
| |
Collapse
|
38
|
Marchant A, Mougel F, Jacquin-Joly E, Costa J, Almeida CE, Harry M. Under-Expression of Chemosensory Genes in Domiciliary Bugs of the Chagas Disease Vector Triatoma brasiliensis. PLoS Negl Trop Dis 2016; 10:e0005067. [PMID: 27792774 PMCID: PMC5085048 DOI: 10.1371/journal.pntd.0005067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/22/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In Latin America, the bloodsucking bugs Triatominae are vectors of Trypanosoma cruzi, the parasite that causes Chagas disease. Chemical elimination programs have been launched to control Chagas disease vectors. However, the disease persists because native vectors from sylvatic habitats are able to (re)colonize houses-a process called domiciliation. Triatoma brasiliensis is one example. Because the chemosensory system allows insects to interact with their environment and plays a key role in insect adaption, we conducted a descriptive and comparative study of the chemosensory transcriptome of T. brasiliensis samples from different ecotopes. METHODOLOGY/PRINCIPAL FINDING In a reference transcriptome built using de novo assembly, we found transcripts encoding 27 odorant-binding proteins (OBPs), 17 chemosensory proteins (CSPs), 3 odorant receptors (ORs), 5 transient receptor potential channel (TRPs), 1 sensory neuron membrane protein (SNMPs), 25 takeout proteins, 72 cytochrome P450s, 5 gluthatione S-transferases, and 49 cuticular proteins. Using protein phylogenies, we showed that most of the OBPs and CSPs for T. brasiliensis had well supported orthologs in the kissing bug Rhodnius prolixus. We also showed a higher number of these genes within the bloodsucking bugs and more generally within all Hemipterans compared to the other species in the super-order Paraneoptera. Using both DESeq2 and EdgeR software, we performed differential expression analyses between samples of T. brasiliensis, taking into account their environment (sylvatic, peridomiciliary and domiciliary) and sex. We also searched clusters of co-expressed contigs using HTSCluster. Among differentially expressed (DE) contigs, most were under-expressed in the chemosensory organs of the domiciliary bugs compared to the other samples and in females compared to males. We clearly identified DE genes that play a role in the chemosensory system. CONCLUSION/SIGNIFICANCE Chemosensory genes could be good candidates for genes that contribute to adaptation or plastic rearrangement to an anthropogenic system. The domiciliary environment probably includes less diversity of xenobiotics and probably has more stable abiotic parameters than do sylvatic and peridomiciliary environments. This could explain why both detoxification and cuticle protein genes are less expressed in domiciliary bugs. Understanding the molecular basis for how vectors adapt to human dwellings may reveal new tools to control disease vectors; for example, by disrupting chemical communication.
Collapse
Affiliation(s)
- Axelle Marchant
- UMR Evolution, Génomes, Comportement, Ecologie, CNRS-IRD- Univ. Paris-Sud, Université Paris Saclay, Campus CNRS, Gif-sur-Yvette – France
- UFR Sciences, Université Paris Sud, Orsay, France
| | - Florence Mougel
- UMR Evolution, Génomes, Comportement, Ecologie, CNRS-IRD- Univ. Paris-Sud, Université Paris Saclay, Campus CNRS, Gif-sur-Yvette – France
- UFR Sciences, Université Paris Sud, Orsay, France
| | - Emmanuelle Jacquin-Joly
- INRA, UMR 1392, Institut d’Ecologie et des Sciences de l’Environnement de Paris, Route de Saint Cyr, Versailles, France
| | - Jane Costa
- Laboratório de Biodiversidade Entomológica; Instituto Oswaldo Cruz - Fiocruz; Rio de Janeiro; Brasil Instituto Oswaldo Cruz, Fiocruz – Brazil
| | - Carlos Eduardo Almeida
- Universidade Estadual de Campinas (Uncamp), Campinas São Paulo – Brazil
- Universidade Federal da Paraíba (UFPB), Paraíba – Brazil
| | - Myriam Harry
- UMR Evolution, Génomes, Comportement, Ecologie, CNRS-IRD- Univ. Paris-Sud, Université Paris Saclay, Campus CNRS, Gif-sur-Yvette – France
- UFR Sciences, Université Paris Sud, Orsay, France
| |
Collapse
|
39
|
Papanicolaou A, Schetelig MF, Arensburger P, Atkinson PW, Benoit JB, Bourtzis K, Castañera P, Cavanaugh JP, Chao H, Childers C, Curril I, Dinh H, Doddapaneni H, Dolan A, Dugan S, Friedrich M, Gasperi G, Geib S, Georgakilas G, Gibbs RA, Giers SD, Gomulski LM, González-Guzmán M, Guillem-Amat A, Han Y, Hatzigeorgiou AG, Hernández-Crespo P, Hughes DST, Jones JW, Karagkouni D, Koskinioti P, Lee SL, Malacrida AR, Manni M, Mathiopoulos K, Meccariello A, Munoz-Torres M, Murali SC, Murphy TD, Muzny DM, Oberhofer G, Ortego F, Paraskevopoulou MD, Poelchau M, Qu J, Reczko M, Robertson HM, Rosendale AJ, Rosselot AE, Saccone G, Salvemini M, Savini G, Schreiner P, Scolari F, Siciliano P, Sim SB, Tsiamis G, Ureña E, Vlachos IS, Werren JH, Wimmer EA, Worley KC, Zacharopoulou A, Richards S, Handler AM. The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol 2016; 17:192. [PMID: 27659211 PMCID: PMC5034548 DOI: 10.1186/s13059-016-1049-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/26/2016] [Indexed: 01/01/2023] Open
Abstract
Background The Mediterranean fruit fly (medfly), Ceratitis capitata, is a major destructive insect pest due to its broad host range, which includes hundreds of fruits and vegetables. It exhibits a unique ability to invade and adapt to ecological niches throughout tropical and subtropical regions of the world, though medfly infestations have been prevented and controlled by the sterile insect technique (SIT) as part of integrated pest management programs (IPMs). The genetic analysis and manipulation of medfly has been subject to intensive study in an effort to improve SIT efficacy and other aspects of IPM control. Results The 479 Mb medfly genome is sequenced from adult flies from lines inbred for 20 generations. A high-quality assembly is achieved having a contig N50 of 45.7 kb and scaffold N50 of 4.06 Mb. In-depth curation of more than 1800 messenger RNAs shows specific gene expansions that can be related to invasiveness and host adaptation, including gene families for chemoreception, toxin and insecticide metabolism, cuticle proteins, opsins, and aquaporins. We identify genes relevant to IPM control, including those required to improve SIT. Conclusions The medfly genome sequence provides critical insights into the biology of one of the most serious and widespread agricultural pests. This knowledge should significantly advance the means of controlling the size and invasive potential of medfly populations. Its close relationship to Drosophila, and other insect species important to agriculture and human health, will further comparative functional and structural studies of insect genomes that should broaden our understanding of gene family evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1049-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, Australia
| | - Marc F Schetelig
- Justus-Liebig-University Giessen, Institute for Insect Biotechnology, 35394, Giessen, Germany
| | - Peter Arensburger
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, 91768, USA
| | - Peter W Atkinson
- Department of Entomology and Center for Disease Vector Research, University of California Riverside, Riverside, CA, 92521, USA.,Interdepartmental Graduate Program in Genetics, Genomics & Bioinformatics, University of California Riverside, Riverside, CA, 92521, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Seibersdorf, Vienna, Austria.,Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Pedro Castañera
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - John P Cavanaugh
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Ingrid Curril
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, 37077, Göttingen, Germany
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - HarshaVardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Amanda Dolan
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Scott Geib
- USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI, 96720, USA
| | - Georgios Georgakilas
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sarah D Giers
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ludvik M Gomulski
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Miguel González-Guzmán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Ana Guillem-Amat
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Artemis G Hatzigeorgiou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Pedro Hernández-Crespo
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA
| | - Dimitra Karagkouni
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Panagiota Koskinioti
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Mosè Manni
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Kostas Mathiopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Angela Meccariello
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | | | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Georg Oberhofer
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, 37077, Göttingen, Germany
| | - Félix Ortego
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Maria D Paraskevopoulou
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece
| | - Monica Poelchau
- National Agricultural Library, USDA, Beltsville, MD, 20705, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin Reczko
- Institute of Molecular Biology and Genetics, Biomedical Sciences Research Centre "Alexander Fleming", Vari, Greece
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Andrew E Rosselot
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Patrick Schreiner
- Interdepartmental Graduate Program in Genetics, Genomics & Bioinformatics, University of California Riverside, Riverside, CA, 92521, USA
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Paolo Siciliano
- Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Sheina B Sim
- USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI, 96720, USA
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Enric Ureña
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Ioannis S Vlachos
- DIANA-Lab, Department of Electrical & Computer Engineering, University of Thessaly, 382 21 Volos, Greece and Hellenic Pasteur Institute, 11521, Athens, Greece
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Ernst A Wimmer
- Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, 37077, Göttingen, Germany
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Alfred M Handler
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, 1700 S.W. 23rd Drive, Gainesville, FL, 32608, USA.
| |
Collapse
|
40
|
Guo J, Jiang F, Yi J, Liu X, Zhang G. Transcriptome characterization and gene expression analysis related to sexual dimorphism in the ghost moth, Thitarodes pui, a host of Ophiocordyceps sinensis. Gene 2016; 588:134-40. [PMID: 27182053 DOI: 10.1016/j.gene.2016.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023]
Abstract
Thitarodes pui is one of the host species of the Chinese caterpillar fungus Ophiocordyceps sinensis as a traditional Chinese medicine with economic and medical importance. The pupal and adult stages of T. pui are sexually dimorphic. In order to elucidate the molecular mechanisms involved in the sexually dimorphic development of T. pui, we compared the transcriptomes of female and male pupae and adults. We obtained 15,881,734, 16,962,086, 17,514,743, and 17,770,904 clean reads from female pupae, male pupae, female adults, and male adults, respectively. The reads obtained from the four samples were pooled and assembled into 65,165 unigenes, 23,597 of which were annotated. Candidate genes involved in sexual development were identified and analysed. Gene expression analysis revealed that 1406 genes were differentially expressed in male and female pupae, 448 of which were up-regulated in males and 958 were up-regulated in females. A total of 2025 genes were differentially expressed in male and females adults, 1304 of which were up-regulated in males and 721 were up-regulated in females. The functional enrichment of the differentially expressed genes indicated that reproduction and cuticle synthesis were regulated differently between the sexes. The transcriptome data obtained provide significant information regarding the genes involved in sexually dimorphic development, which will improve our understanding of the molecular mechanisms related to sexual dimorphism and helpful for the moth mass rearing which would provide enough host insects for the sustainable utilization of O. sinensis.
Collapse
Affiliation(s)
- Jixing Guo
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Xingangxi Road 135, Guangzhou 510275, PR China
| | - Fengze Jiang
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Xingangxi Road 135, Guangzhou 510275, PR China
| | - Jiequn Yi
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Xingangxi Road 135, Guangzhou 510275, PR China
| | - Xin Liu
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Xingangxi Road 135, Guangzhou 510275, PR China
| | - Guren Zhang
- State Key Laboratory for Biocontrol, Sun Yat-sen University, Xingangxi Road 135, Guangzhou 510275, PR China.
| |
Collapse
|
41
|
Song TQ, Yang ML, Wang YL, Liu Q, Wang HM, Zhang J, Li T. Cuticular protein LmTwdl1 is involved in molt development of the migratory locust. INSECT SCIENCE 2016; 23:520-530. [PMID: 27430427 DOI: 10.1111/1744-7917.12342] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/12/2016] [Accepted: 03/22/2016] [Indexed: 06/06/2023]
Abstract
The cuticle, an essential structure for insects, is produced from cuticular proteins and chitin via a series of biochemical reactions. Tweedle genes are important members of the cuticular protein family and have four conserved motifs binding to chitin. Tweedle family genes have been found to play a profound effect on cuticle development. Here, we report that the cuticular protein gene LmTwdl1 of Locusta migratoria belongs to the Tweedle family. In situ hybridization showed that LmTwdl1 is localized to epidermal cells of the cuticle. The expression patterns of LmTwdl1 showed low expression in the cuticle during the early and middle stages of the fifth-instar nymphs; in contrast, its expression rapidly increased in the late stages of fifth-instar nymphs. We performed RNA interference to examine the function of LmTwdl1 in locusts. Silencing of LmTwdl1 resulted in high mortality during the molting process before the next stage. Also, the epicuticle of nymphs failed to molt, tended to be thinner and the arrangement of chitin in the procuticle appeared to be disordered compare to the control group. These results demonstrate that LmTwdl1 plays a critical role in molting, which contributes to a better understanding of the distinct functions of the Tweedle family in locusts.
Collapse
Affiliation(s)
- Tian-Qi Song
- Research Institute of Applied Biology, Shanxi University, Taiyuan and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mei-Ling Yang
- Research Institute of Applied Biology, Shanxi University, Taiyuan and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yan-Li Wang
- Research Institute of Applied Biology, Shanxi University, Taiyuan and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qing Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui-Min Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Tao Li
- Research Institute of Applied Biology, Shanxi University, Taiyuan and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Shahin R, Iwanaga M, Kawasaki H. Cuticular protein and transcription factor genes expressed during prepupal-pupal transition and by ecdysone pulse treatment in wing discs of Bombyx mori. INSECT MOLECULAR BIOLOGY 2016; 25:138-152. [PMID: 26748620 DOI: 10.1111/imb.12207] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We aimed to understand the underlying mechanism that regulates successively expressed cuticular protein (CP) genes around pupation in Bombyx mori. Quantitative PCR was conducted to clarify the expression profile of CP genes and ecdysone-responsive transcription factor (ERTF) genes around pupation. Ecdysone pulse treatment was also conducted to compare the developmental profiles and the ecdysone induction of the CP and ERTF genes. Fifty-two CP genes (RR-1 13, RR-2 18, CPG 8, CPT 3, CPFL 2, CPH 8) in wing discs of B. mori were examined. Different expression profiles were found, which suggests the existence of a mechanism that regulates CP genes. We divided the genes into five groups according to their peak stages of expression. RR-2 genes were expressed until the day of pupation and RR-1 genes were expressed before and after pupation and for longer than RR-2 genes; this suggests different construction of exo- and endocuticular layers. CPG, CPT, CPFL and CPH genes were expressed before and after pupation, which implies their involvement in both cuticular layers. Expression profiles of ERTFs corresponded with previous reports. Ecdysone pulse treatment showed that the induction of CP and ERTF genes in vitro reflected developmental expression, from which we speculated that ERTFs regulate CP gene expression around pupation.
Collapse
Affiliation(s)
- R Shahin
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - M Iwanaga
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| | - H Kawasaki
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, Japan
| |
Collapse
|
43
|
Vannini L, Bowen JH, Reed TW, Willis JH. The CPCFC cuticular protein family: Anatomical and cuticular locations in Anopheles gambiae and distribution throughout Pancrustacea. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:57-67. [PMID: 26164413 PMCID: PMC4628598 DOI: 10.1016/j.ibmb.2015.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 05/03/2023]
Abstract
Arthropod cuticles have, in addition to chitin, many structural proteins belonging to diverse families. Information is sparse about how these different cuticular proteins contribute to the cuticle. Most cuticular proteins lack cysteine with the exception of two families (CPAP1 and CPAP3), recently described, and the one other that we now report on that has a motif of 16 amino acids first identified in a protein, Bc-NCP1, from the cuticle of nymphs of the cockroach, Blaberus craniifer (Jensen et al., 1997). This motif turns out to be present as two or three copies in one or two proteins in species from many orders of Hexapoda. We have named the family of cuticular proteins with this motif CPCFC, based on its unique feature of having two cysteines interrupted by five amino acids (C-X(5)-C). Analysis of the single member of the family in Anopheles gambiae (AgamCPCFC1) revealed that its mRNA is most abundant immediately following ecdysis in larvae, pupae and adults. The mRNA is localized primarily in epidermis that secretes hard cuticle, sclerites, setae, head capsules, appendages and spermatheca. EM immunolocalization revealed the presence of the protein, generally in endocuticle of legs and antennae. A phylogenetic analysis found proteins bearing this motif in 14 orders of Hexapoda, but not in some species for which there are complete genomic data. Proteins were much longer in Coleoptera and Diptera than in other orders. In contrast to the 1 and occasionally 2 copies in other species, a dragonfly, Ladona fulva, has at least 14 genes coding for family members. CPCFC proteins were present in four classes of Crustacea with 5 repeats in one species, and motifs that ended C-X(7)-C in Malacostraca. They were not detected, except as obvious contaminants, in any other arthropod subphyla or in any other phylum. The conservation of CPCFC proteins throughout the Pancrustacea and the small number of copies in individual species indicate that, when present, these proteins are serving important functions worthy of further study.
Collapse
Affiliation(s)
- Laura Vannini
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - John Hunter Bowen
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Tyler W Reed
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
44
|
Dittmer NT, Tetreau G, Cao X, Jiang H, Wang P, Kanost MR. Annotation and expression analysis of cuticular proteins from the tobacco hornworm, Manduca sexta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:100-13. [PMID: 25576653 PMCID: PMC4476932 DOI: 10.1016/j.ibmb.2014.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/19/2014] [Accepted: 12/29/2014] [Indexed: 05/06/2023]
Abstract
The insect cuticle is a unique material that covers the exterior of the animal as well as lining the foregut, hindgut, and tracheae. It offers protection from predators and desiccation, defines body shape, and serves as an attachment site for internal organs and muscle. It has demonstrated remarkable variations in hardness, flexibility and elasticity, all the while being light weight, which allows for ease of movement and flight. It is composed primarily of chitin, proteins, catecholamines, and lipids. Proteomic analyses of cuticle from different life stages and species of insects has allowed for a more detailed examination of the protein content and how it relates to cuticle mechanical properties. It is now recognized that several groups of cuticular proteins exist and that they can be classified according to conserved amino acid sequence motifs. We have annotated the genome of the tobacco hornworm, Manduca sexta, for genes that encode putative cuticular proteins that belong to seven different groups: proteins with a Rebers and Riddiford motif (CPR), proteins analogous to peritrophins (CPAP), proteins with a tweedle motif (CPT), proteins with a 44 amino acid motif (CPF), proteins that are CPF-like (CPFL), proteins with an 18 amino acid motif (18 aa), and proteins with two to three copies of a C-X5-C motif (CPCFC). In total we annotated 248 genes, of which 207 belong to the CPR family, the most for any insect genome annotated to date. Additionally, we discovered new members of the CPAP family and determined that orthologous genes are present in other insects. We established orthology between the M. sexta and Bombyx mori genes and identified duplication events that occurred after separation of the two species. Finally, we utilized 52 RNAseq libraries to ascertain gene expression profiles that revealed commonalities and differences between different tissues and developmental stages.
Collapse
Affiliation(s)
- Neal T Dittmer
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506, USA.
| | - Guillaume Tetreau
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Xiaolong Cao
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ping Wang
- Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| | - Michael R Kanost
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
45
|
Roer R, Abehsera S, Sagi A. Exoskeletons across the Pancrustacea: Comparative Morphology, Physiology, Biochemistry and Genetics. Integr Comp Biol 2015; 55:771-91. [DOI: 10.1093/icb/icv080] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
46
|
Zhang Q, Hua G, Adang MJ. Chitosan/DsiRNA nanoparticle targeting identifies AgCad1 cadherin in Anopheles gambiae larvae as an in vivo receptor of Cry11Ba toxin of Bacillus thuringiensis subsp. jegathesan. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 60:33-38. [PMID: 25758367 DOI: 10.1016/j.ibmb.2015.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/18/2015] [Accepted: 03/01/2015] [Indexed: 06/04/2023]
Abstract
The Cry11Ba protein of Bacillus thuringiensis subsp. jegathesan crystals has uniquely high toxicity against a spectrum of mosquito species. The high potency of Cry11Ba against Anopheles gambiae is caused by recognition of multiple midgut proteins including glycosyl phosphatidylinositol-anchored alkaline phosphatase AgALP1, aminopeptidase AgAPN2, α-amylase AgAmy1 and α-glucosidase Agm3 that bind Cry11Ba with high affinity and function as putative receptors. The cadherin AgCad2 in An. gambiae larvae also binds Cry11Ba with high affinity (Kd = 12 nM) and is considered a putative receptor, while cadherin AgCad1 bound Cry11Ba with low affinity (Kd = 766 nM), a property not supportive for a Cry11Ba receptor role. Here, we show the in vivo involvement of AgCad1 in Cry11Ba toxicity in An. gambiae larvae using chitosan/DsiRNA nanoparticles to inhibit AgCad expression in larvae. Cry11Ba was significantly less toxic to AgCad1-silenced larvae than to control larvae. Because AgCad1 was co-suppressed by AgCad2 DsRNAi, the involvement of AgCad2 in Cry11Ba toxicity could not be ascertained. The ratio of AgCad1:AgCad2 transcript level is 36:1 for gut tissue in 4th instar larvae. Silencing AgCad expression had no effect on transcript levels of other binding receptors of Cry11Ba. We conclude that AgCad1 and possibly AgCad2 in An. gambiae larvae are functional receptors of Cry11Ba toxin in vivo.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, USA
| | - Gang Hua
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, USA
| | - Michael J Adang
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602-2603, USA.
| |
Collapse
|
47
|
Ali MS, Rahman RF, Swapon AH. Transcriptional regulation of cuticular protein glycine-rich13 gene expression in wing disc of Bombyx mori, Lepidoptera. JOURNAL OF INSECT SCIENCE (ONLINE) 2015; 15:iev019. [PMID: 25843580 PMCID: PMC4535481 DOI: 10.1093/jisesa/iev019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/14/2015] [Indexed: 06/04/2023]
Abstract
Cuticular protein genes are good models to study the molecular mechanisms of signaling by ecdysteroids, which regulate molting and metamorphosis in insects. The present research demonstrates on hormonal regulation and analysis of the regulatory sequences and transcription factors important for Bombyx mori cuticular protein glycine-rich13 (CPG13) gene expression. Expression of CPG13 was strong at prepupal stage in wing tissues of B. mori. CPG13 expression was induced by the addition of 20E, which was inhibited by cycloheximide in the wing disc. The upstream region of the CPG13 gene was analyzed using a transient reporter assay with a gene gun system and identified two BR-Z2 binding sites to be important cis-acting elements for the transcription activation of the luciferase reporter gene by an ecdysone pulse. Site-directed mutagenesis of these sites, followed by introduction into wing discs, significantly decreased the reporter activity. It was found that the regions carrying the binding sites for the ecdysone-responsive transcription factor BR-Z2 were responsible for the hormonal enhancement of the reporter gene activity in wing discs. Mutation of the BR-Z2 binding sites decreased the reporter activity suggesting that the BR-Z2 isoform can bind to the upstream region of the cuticle protein gene, CPG13 and activates its expression.
Collapse
Affiliation(s)
- Md Saheb Ali
- Bangladesh Jute Research Institute, Manik Mia Ave., Dhaka 1207, Bangladesh
| | - R F Rahman
- Bangladesh Jute Research Institute, Manik Mia Ave., Dhaka 1207, Bangladesh
| | | |
Collapse
|
48
|
Xiao D, Lu YH, Shang QL, Song DL, Gao XW. Gene silencing of two acetylcholinesterases reveals their cholinergic and non-cholinergic functions in Rhopalosiphum padi and Sitobion avenae. PEST MANAGEMENT SCIENCE 2015; 71:523-530. [PMID: 24729410 DOI: 10.1002/ps.3800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUD The function of acetylcholinesterase (AChE) is to terminate synaptic transmission by hydrolysing the neurotransmitter acetylcholine (ACh) in the synaptic cleft, and thus it is an effective target for organophosphate (OP) and carbamate (CB) insecticides. RESULTS The transcript levels of the four Ace genes were dramatically suppressed by injection of their respective dsRNA in Rhopalosiphum padi and Sitobion avenae. However, the AChE activity changes in the Ace1 knockdown aphids were consistent with the significant transcript level changes of Ace1 genes in these aphids, but not for Ace2. Bioassay results indicated that the suppression of RpAce1 increased its susceptibilities to pirimicarb and malathion, and SaAce1 silencing also increased susceptibility to pirimicarb in S. avenae, whereas the knockdowns of RpAce2 and SaAce2 had a slight effect on their susceptibilities. The knockdown of Ace1 genes also caused significant reductions in fecundity in the aphids of their parental generation. CONCLUSIONS These results suggest that AChE1 is a predominant cholinergic enzyme and is the target of anticholinesterase insecticides in both R. padi and S. avenae. It also plays a non-cholinergic role in fecundity of these aphids. AChE2 may also be important for the toxicological function, although its importance appeared to be lower than that of AChE1.
Collapse
Affiliation(s)
- Da Xiao
- Department of Entomology, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
49
|
Insecticide-mediated up-regulation of cytochrome P450 genes in the red flour beetle (Tribolium castaneum). Int J Mol Sci 2015; 16:2078-98. [PMID: 25607733 PMCID: PMC4307350 DOI: 10.3390/ijms16012078] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/09/2015] [Indexed: 12/31/2022] Open
Abstract
Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in response to insecticide exposures in insects. To date, however, limited information is available with respect to the relationships among the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes. In this study, we examined the transcriptional response of eight selected CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and 2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h. Our studies also showed that similar levels of up-regulation can be achieved for CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that up-regulation of these CYP genes was rapid and only required low concentrations of insecticides, and the up-regulation not only depended on the CYP genes but also the type of insecticides. Our results along with those from previous studies also indicated that there were no specific patterns for predicting the up-regulation of specific CYP gene families based on the insecticide classification.
Collapse
|
50
|
Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, Amon J, Arcà B, Arensburger P, Artemov G, Assour LA, Basseri H, Berlin A, Birren BW, Blandin SA, Brockman AI, Burkot TR, Burt A, Chan CS, Chauve C, Chiu JC, Christensen M, Costantini C, Davidson VLM, Deligianni E, Dottorini T, Dritsou V, Gabriel SB, Guelbeogo WM, Hall AB, Han MV, Hlaing T, Hughes DST, Jenkins AM, Jiang X, Jungreis I, Kakani EG, Kamali M, Kemppainen P, Kennedy RC, Kirmitzoglou IK, Koekemoer LL, Laban N, Langridge N, Lawniczak MKN, Lirakis M, Lobo NF, Lowy E, MacCallum RM, Mao C, Maslen G, Mbogo C, McCarthy J, Michel K, Mitchell SN, Moore W, Murphy KA, Naumenko AN, Nolan T, Novoa EM, O'Loughlin S, Oringanje C, Oshaghi MA, Pakpour N, Papathanos PA, Peery AN, Povelones M, Prakash A, Price DP, Rajaraman A, Reimer LJ, Rinker DC, Rokas A, Russell TL, Sagnon N, Sharakhova MV, Shea T, Simão FA, Simard F, Slotman MA, Somboon P, Stegniy V, Struchiner CJ, Thomas GWC, Tojo M, Topalis P, Tubio JMC, Unger MF, Vontas J, Walton C, Wilding CS, Willis JH, Wu YC, Yan G, Zdobnov EM, Zhou X, Catteruccia F, Christophides GK, Collins FH, Cornman RS, Crisanti A, Donnelly MJ, Emrich SJ, Fontaine MC, Gelbart W, Hahn MW, Hansen IA, Howell PI, Kafatos FC, Kellis M, Lawson D, Louis C, Luckhart S, Muskavitch MAT, Ribeiro JM, Riehle MA, Sharakhov IV, Tu Z, Zwiebel LJ, Besansky NJ. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 2014; 347:1258522. [PMID: 25554792 DOI: 10.1126/science.1258522] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts.
Collapse
Affiliation(s)
- Daniel E Neafsey
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA.
| | - Robert M Waterhouse
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Mohammad R Abai
- Department of Medical Entomology and Vector Control, School of Public Health and Institute of Health Researches, Tehran University of Medical Sciences, Tehran, Iran
| | - Sergey S Aganezov
- George Washington University, Department of Mathematics and Computational Biology Institute, 45085 University Drive, Ashburn, VA 20147, USA
| | - Max A Alekseyev
- George Washington University, Department of Mathematics and Computational Biology Institute, 45085 University Drive, Ashburn, VA 20147, USA
| | - James E Allen
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - James Amon
- National Vector Borne Disease Control Programme, Ministry of Health, Tafea Province, Vanuatu
| | - Bruno Arcà
- Department of Public Health and Infectious Diseases, Division of Parasitology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Peter Arensburger
- Department of Biological Sciences, California State Polytechnic-Pomona, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Gleb Artemov
- Tomsk State University, 36 Lenina Avenue, Tomsk, Russia
| | - Lauren A Assour
- Department of Computer Science and Engineering, Eck Institute for Global Health, 211B Cushing Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Hamidreza Basseri
- Department of Medical Entomology and Vector Control, School of Public Health and Institute of Health Researches, Tehran University of Medical Sciences, Tehran, Iran
| | - Aaron Berlin
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Bruce W Birren
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Stephanie A Blandin
- Inserm, U963, F-67084 Strasbourg, France. CNRS, UPR9022, IBMC, F-67084 Strasbourg, France
| | - Andrew I Brockman
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Thomas R Burkot
- Faculty of Medicine, Health and Molecular Science, Australian Institute of Tropical Health Medicine, James Cook University, Cairns 4870, Australia
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Clara S Chan
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Cedric Chauve
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Joanna C Chiu
- Department of Entomology and Nematology, One Shields Avenue, University of California-Davis, Davis, CA 95616, USA
| | - Mikkel Christensen
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Carlo Costantini
- Institut de Recherche pour le Développement, Unités Mixtes de Recherche Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle, 911, Avenue Agropolis, BP 64501 Montpellier, France
| | - Victoria L M Davidson
- Division of Biology, Kansas State University, 271 Chalmers Hall, Manhattan, KS 66506, USA
| | - Elena Deligianni
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - Tania Dottorini
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Vicky Dritsou
- Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Stacey B Gabriel
- Genomics Platform, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou 01 BP 2208, Burkina Faso
| | - Andrew B Hall
- Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mira V Han
- School of Life Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Thaung Hlaing
- Department of Medical Research, No. 5 Ziwaka Road, Dagon Township, Yangon 11191, Myanmar
| | - Daniel S T Hughes
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK. Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Adam M Jenkins
- Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| | - Xiaofang Jiang
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Irwin Jungreis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Evdoxia G Kakani
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA. Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, Perugia, Italy
| | - Maryam Kamali
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Petri Kemppainen
- Computational Evolutionary Biology Group, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ryan C Kennedy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94143, USA
| | - Ioannis K Kirmitzoglou
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Bioinformatics Research Laboratory, Department of Biological Sciences, New Campus, University of Cyprus, CY 1678 Nicosia, Cyprus
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, and Vector Control Reference Unit, National Institute for Communicable Diseases of the National Health Laboratory Service, Sandringham 2131, Johannesburg, South Africa
| | - Njoroge Laban
- National Museums of Kenya, P.O. Box 40658-00100, Nairobi, Kenya
| | - Nicholas Langridge
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mara K N Lawniczak
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Manolis Lirakis
- Department of Biology, University of Crete, 700 13 Heraklion, Greece
| | - Neil F Lobo
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA
| | - Ernesto Lowy
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Robert M MacCallum
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Chunhong Mao
- Virginia Bioinformatics Institute, 1015 Life Science Circle, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Gareth Maslen
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Charles Mbogo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Centre for Geographic Medicine Research - Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Jenny McCarthy
- Department of Biological Sciences, California State Polytechnic-Pomona, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Kristin Michel
- Division of Biology, Kansas State University, 271 Chalmers Hall, Manhattan, KS 66506, USA
| | - Sara N Mitchell
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA
| | - Wendy Moore
- Department of Entomology, 1140 East South Campus Drive, Forbes 410, University of Arizona, Tucson, AZ 85721, USA
| | - Katherine A Murphy
- Department of Entomology and Nematology, One Shields Avenue, University of California-Davis, Davis, CA 95616, USA
| | - Anastasia N Naumenko
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tony Nolan
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Eva M Novoa
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Samantha O'Loughlin
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| | - Chioma Oringanje
- Department of Entomology, 1140 East South Campus Drive, Forbes 410, University of Arizona, Tucson, AZ 85721, USA
| | - Mohammad A Oshaghi
- Department of Medical Entomology and Vector Control, School of Public Health and Institute of Health Researches, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Philippos A Papathanos
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Ashley N Peery
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Michael Povelones
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Anil Prakash
- Regional Medical Research Centre NE, Indian Council of Medical Research, P.O. Box 105, Dibrugarh-786 001, Assam, India
| | - David P Price
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ashok Rajaraman
- Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Lisa J Reimer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - David C Rinker
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Antonis Rokas
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, TN 37235, USA. Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Tanya L Russell
- Faculty of Medicine, Health and Molecular Science, Australian Institute of Tropical Health Medicine, James Cook University, Cairns 4870, Australia
| | - N'Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou 01 BP 2208, Burkina Faso
| | - Maria V Sharakhova
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Terrance Shea
- Genome Sequencing and Analysis Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Felipe A Simão
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Frederic Simard
- Institut de Recherche pour le Développement, Unités Mixtes de Recherche Maladies Infectieuses et Vecteurs Écologie, Génétique, Évolution et Contrôle, 911, Avenue Agropolis, BP 64501 Montpellier, France
| | - Michel A Slotman
- Department of Entomology, Texas A&M University, College Station, TX 77807, USA
| | - Pradya Somboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Claudio J Struchiner
- Fundação Oswaldo Cruz, Avenida Brasil 4365, RJ Brazil. Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gregg W C Thomas
- School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Marta Tojo
- Department of Physiology, School of Medicine, Center for Research in Molecular Medicine and Chronic Diseases, Instituto de Investigaciones Sanitarias, University of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece
| | - José M C Tubio
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Maria F Unger
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA
| | - John Vontas
- Department of Biology, University of Crete, 700 13 Heraklion, Greece
| | - Catherine Walton
- Computational Evolutionary Biology Group, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Craig S Wilding
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Yi-Chieh Wu
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA. Department of Computer Science, Harvey Mudd College, Claremont, CA 91711, USA
| | - Guiyun Yan
- Program in Public Health, College of Health Sciences, University of California, Irvine, Hewitt Hall, Irvine, CA 92697, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development, University of Geneva Medical School, Rue Michel-Servet 1, 1211 Geneva, Switzerland. Swiss Institute of Bioinformatics, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Flaminia Catteruccia
- Harvard School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA 02115, USA. Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, Perugia, Italy
| | - George K Christophides
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Frank H Collins
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA
| | - Robert S Cornman
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK. Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. Malaria Programme, Wellcome Trust Sanger Institute, Cambridge CB10 1SJ, UK
| | - Scott J Emrich
- Department of Computer Science and Engineering, Eck Institute for Global Health, 211B Cushing Hall, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael C Fontaine
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA. Centre of Evolutionary and Ecological Studies (Marine Evolution and Conservation group), University of Groningen, Nijenborgh 7, NL-9747 AG Groningen, Netherlands
| | - William Gelbart
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Matthew W Hahn
- Department of Biology, Indiana University, Bloomington, IN 47405, USA. School of Informatics and Computing, Indiana University, Bloomington, IN 47405, USA
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA. Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Paul I Howell
- Centers for Disease Control and Prevention, 1600 Clifton Road NE MSG49, Atlanta, GA 30329, USA
| | - Fotis C Kafatos
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA. The Broad Institute of Massachusetts Institute of Technology and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Daniel Lawson
- European Molecular Biology Laboratory, European Bioinformatics Institute, EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Christos Louis
- Department of Biology, University of Crete, 700 13 Heraklion, Greece. Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Nikolaou Plastira 100 GR-70013, Heraklion, Crete, Greece. Centre of Functional Genomics, University of Perugia, Perugia, Italy
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Marc A T Muskavitch
- Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA. Biogen Idec, 14 Cambridge Center, Cambridge, MA 02142, USA
| | - José M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Michael A Riehle
- Department of Entomology, 1140 East South Campus Drive, Forbes 410, University of Arizona, Tucson, AZ 85721, USA
| | - Igor V Sharakhov
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Zhijian Tu
- Program of Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Laurence J Zwiebel
- Departments of Biological Sciences and Pharmacology, Institutes for Chemical Biology, Genetics and Global Health, Vanderbilt University and Medical Center, Nashville, TN 37235, USA
| | - Nora J Besansky
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Sciences Building, Notre Dame, IN 46556, USA.
| |
Collapse
|