1
|
Hu B, Xing Z, Dong H, Chen X, Ren M, Liu K, Rao C, Tan A, Su J. Cytochrome P450 CYP6AE70 Confers Resistance to Multiple Insecticides in a Lepidopteran Pest, Spodoptera exigua. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23141-23150. [PMID: 39382406 DOI: 10.1021/acs.jafc.4c04872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Cytochrome P450 monooxygenases are associated with the detoxification of xenobiotics, and overexpression of P450 genes has been proven to be associated with insecticide resistance in insect species. Our previous study has revealed that multiple CYP6AE genes were significantly overexpressed in a resistant strain of Spodoptera exigua, and among these genes, CYP6AE70 was particularly highly expressed. However, the functional roles of the CYP6AE genes in insecticide resistance remain unknown in this pest. Here, we investigate the relationship between the CYP6AE genes and insecticide resistance by focusing on CYP6AE70. The expression of CYP6AE70 was increased after exposure to chlorpyrifos, cypermethrin, and deltamethrin. Ectopic overexpression of P450 in transgenic flies by the GAL4/UAS system dramatically enhanced the tolerance to these three insecticides. Furthermore, the recombinant CYP6AE70 was functionally expressed in Sf9 cells, and metabolic assays revealed that the recombinant P450 protein could efficiently metabolize chlorpyrifos, cypermethrin, and deltamethrin. Finally, molecular modeling and docking also showed that this P450 protein were tightly bound to the three insecticides. These results determine that the upregulation of CYP6AE genes results in resistance to multiple insecticides in S. exigua. This study improves our understanding of P450-mediated insecticide resistance and will help us to design more effective resistance management for pest control.
Collapse
Affiliation(s)
- Bo Hu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhiping Xing
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Hui Dong
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiangzhu Chen
- School of Medicine, Linyi University, Linyi 276000, China
| | - Miaomiao Ren
- College of Environment and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Kuitun Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Cong Rao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Anjiang Tan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jianya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Guo YA, Si FL, Han BZ, Qiao L, Chen B. Identification and functional validation of P450 genes associated with pyrethroid resistance in the malaria vector Anopheles sinensis (Diptera Culicidae). Acta Trop 2024; 260:107413. [PMID: 39343287 DOI: 10.1016/j.actatropica.2024.107413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Cytochrome P450 monooxygenases (P450s), a multifunctional protein superfamily, are one of three major classes of detoxification enzymes. However, the diversity and functions of P450 genes from pyrethroid-resistant populations of Anopheles sinensis have not been fully explored. In this study, P450 genes associated with pyrethroid resistance were systematically screened using RNA-seq in three field pyrethroid-resistant populations (AH-FR, CQ-FR, YN-FR) and one laboratory resistant strain (WX-LR) at developmental stages, tissues, and post blood-meal in comparison to the laboratory susceptible strain (WX-LS) in An. sinensis. Importantly, the expression of significantly upregulated P450s was verified using RT-qPCR, and the function of selected P450s in pyrethroid detoxification was determined with RNA interference using four laboratory pyrethroid-resistant strains (WX-LR, AH-LR, CQ-LR, YN-LR). Sixteen P450 genes were significantly upregulated in at least one field-resistant population, and 44 were significantly upregulated in different developmental stages, tissues or post blood-meal. A total of 19 P450s were selected to verify their association with pyrethroid resistance, and four of them (AsCYP6P3v1, AsCYP6P3v2, AsCYP9J10, and AsCYP9K1) demonstrated significant upregulation in laboratory pyrethroid-resistant strains using RT-qPCR. Knockdown of these four genes all significantly reduced pyrethroid resistance and increased the mortality by 57.19% (AsCYP6P3v1 and AsCYP6P3v2 knockdown group), 38.39% (AsCYP9K1 knockdown group) and 48.87% (AsCYP9J10 knockdown group) in An. sinensis by RNAi, which determined the pyrethroid detoxification function of these four genes. This study revealed the diversity of P450 genes and provided functional evidence for four P450s in pyrethroid detoxification in An. sinensis for the first time, which increases our understanding of the pyrethroid resistance mechanism, and is of potential value for pyrethroid resistance detection and surveillance.
Collapse
Affiliation(s)
- Ying-Ao Guo
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Feng-Ling Si
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Bao-Zhu Han
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| | - Bin Chen
- Chongqing Key Laboratory of Vector Control and Utilization, Institute of Entomology and Molecular Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
3
|
Skorokhod O, Vostokova E, Gilardi G. The role of P450 enzymes in malaria and other vector-borne infectious diseases. Biofactors 2024; 50:16-32. [PMID: 37555735 DOI: 10.1002/biof.1996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023]
Abstract
Vector-borne infectious diseases are still an important global health problem. Malaria is the most important among them, mainly pediatric, life-threatening disease. Malaria and other vector-borne disorders caused by parasites, bacteria, and viruses have a strong impact on public health and significant economic costs. Most vector-borne diseases could be prevented by vector control, with attention to the ecological and biodiversity conservation aspects. Chemical control with pesticides and insecticides is widely used as a measure of prevention although increasing resistance to insecticides is a serious issue in vector control. Metabolic resistance is the most common mechanism and poses a big challenge. Insect enzyme systems, including monooxygenase CYP P450 enzymes, are employed by vectors mainly to metabolize insecticides thus causing resistance. The discovery and application of natural specific inhibitors/blockers of vector P450 enzymes as synergists for commonly used pesticides will contribute to the "greening" of insecticides. Besides vector CYPs, host CYP enzymes could also be exploited to fight against vector-borne diseases: using mostly their detoxifying properties and involvement in the immune response. Here, we review published research data on P450 enzymes from all players in vector-borne infections, that is, pathogens, vectors, and hosts, regarding the potential role of CYPs in disease. We discuss strategies on how to exploit cytochromes P450 in vector-borne disease control.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Ekaterina Vostokova
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
4
|
Ramkumar G, Muthusamy R, Narayanan M, Shivakumar MS, Kweka EJ. Overexpression of cytochrome P450 and esterase genes involved in permethrin resistance in larvae and adults of Culex quinquefasciatus. Parasitol Res 2023; 122:3205-3212. [PMID: 37874391 DOI: 10.1007/s00436-023-08010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Mosquitoes are important vectors of several arthropod-borne diseases, which remain a priority for epidemiological research. Mosquito vector control strategies have traditionally relied on chemical insecticides such as synthetic pyrethroids. However, the indiscriminate use of pesticides has resulted in the development of resistance in many mosquito species. In insects, resistance evolves primarily through the overexpression of one or more gene products from the cytochrome P450, carboxylesterase, and glutathione superfamilies. The current study examined the expression of cytochrome P450 CYP6M2, CYP6AA7, CYP6Z2, CYP9J34, α-Esterase, Esterase B1, and neuroactin genes in larvae and adults of a permethrin-resistant (PerRes) and susceptible (Sus) Culex quinquefasciatus strains. The results showed that the CYP6AA7 gene was overexpressed (10-fold) in larvae and adults with PerRes (p < 0.01) followed by CYPJ34 (9.0-fold) and CYP6Z2 (5.0-fold) compared to the Sus, whereas fewer changes in CYP6M gene expression were observed in PerRes adults (p < 0.05), and no expression was found in larvae. The esterase gene was overexpressed in PerRes larvae (9.0-fold) followed by adults (2.5-fold) compared to the susceptible strain. Based on data, the present study suggests that cytochrome P450, CYP6AA7, CYP6Z2, CYP9J34, α-Esterase, Esterase B1, and neuroactin genes were involved in permethrin resistance in larval and adult Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Govindaraju Ramkumar
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, 30223, USA
- Molecular Entomology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ranganathan Muthusamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institution, Hosur, 635130, Tamil Nadu, India.
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602105, Tamil Nadu, India
| | | | - Eliningaya J Kweka
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
- Research Department, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania
- Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
| |
Collapse
|
5
|
Lin DJ, Zhang YX, Fang Y, Gao SJ, Wang R, Wang JD. The effect of chlorogenic acid, a potential botanical insecticide, on gene transcription and protein expression of carboxylesterases in the armyworm (Mythimna separata). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105575. [PMID: 37666601 DOI: 10.1016/j.pestbp.2023.105575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 09/06/2023]
Abstract
Chlorogenic acid (CGA) is a potential botanical insecticide metabolite that naturally occurs in various plants. Our previous studies revealed CGA is sufficient to control the armyworm Mythimna separata. In this study, we conducted a proteomic analysis of saliva collected from M. separata following exposure to CGA and found that differentially expressed proteins (DEPs) treated with CGA for 6 h and 24 h were primarily enriched in glutathione metabolism and the pentose phosphate pathway. Notably, we observed six carboxylesterase (CarE) proteins that were enriched at both time points. Additionally, these corresponding genes were expressed at levels 5.05 to 130.25 times higher in our laboratory-selected resistance strains. We also noted a significant increase in the enzyme activity of carboxylesterase following treatments with varying CGA concentrations. Finally, we confirmed that knockdown of MsCarE14, MsCarE28, and MsCCE001h decreased the susceptibility to CGA in resistance strain, indicating three CarE genes play crucial roles in CGA detoxification. This study presents the first report on the salivary proteomics of M. separata, offering valuable insights into the role of salivary proteins. Moreover, the determination of CarE mediated susceptibility change to CGA provides new targets for agricultural pest control and highlights the potential insecticide resistance mechanism for pest resistance management.
Collapse
Affiliation(s)
- Dong-Jiang Lin
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ya-Xin Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agriculture Science, Changsha 410125, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Jin-da Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Li PR, Shi Y, Ju D, Liu YX, Wang W, He YS, Zhang YY, Yang XQ. Metabolic functional redundancy of the CYP9A subfamily members leads to P450-mediated lambda-cyhalothrin resistance in Cydia pomonella. PEST MANAGEMENT SCIENCE 2023; 79:1452-1466. [PMID: 36519662 DOI: 10.1002/ps.7317] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The evolution of insect resistance to pesticides poses a continuing threat to sustainable pest management. While much is known about the molecular mechanisms that confer resistance in model insects and few agricultural pests, far less is known about fruit pests. Field-evolved resistance to synthetic insecticides such as lambda-cyhalothrin has been widely documented in Cydia pomonella, a major invasive pest of pome fruit worldwide, and the increased production of cytochrome P450 monooxygenases (P450s) has been linked to resistance in field-evolved resistant populations. However, the underlying molecular mechanisms of P450-mediated insecticide resistance remain largely unknown. RESULTS Here we found that functional redundancy and preference of metabolism by P450s genes in the CYP9A subfamily confer resistance to lambda-cyhalothrin in Cydia pomonella. A total of four CYP9A genes, including CYP9A61, CYP9A120, CYP9A121, and CYP9A122, were identified from Cydia pomonella. Among these, CYP9A120, CYP9A121, and CYP9A122 were predominantly expressed in the midgut of larvae. The expression levels of these P450 genes were significantly induced by a lethal dose that would kill 10% (LD10 ) of lambda-cyhalothrin and were overexpressed in a field-evolved lambda-cyhalothrin resistant population. Knockdown of CYP9A120 and CYP9A121 by RNA-mediated interference (RNAi) increased the susceptibility of larvae to lambda-cyhalothrin. In vitro assays demonstrated that recombinant P450s expressed in Sf9 cells can metabolize lambda-cyhalothrin, but with functional redundancy and divergence through regioselectivity of metabolism. CYP9A121 preferred to convert lambda-cyhalothrin to 2'-hydroxy-lambda-cyhalothrin, whereas CYP9A122 only generated 4'-hydroxy metabolite of lambda-cyhalothrin. Although possesses a relatively low metabolic capability, CYP9A120 balanced catalytic competence to generate both 2'- and 4'-metabolites. CONCLUSION Collectively, these results reveal that metabolic functional redundancy of three members of the CYP9A subfamily leads to P450-mediated lambda-cyhalothrin resistance in Cydia pomonella, thus representing a potential adaptive evolutionary strategy during its worldwide expansion. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pei-Rong Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| | - Yu Shi
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Di Ju
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| | - Yu-Xi Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| | - Wei Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| | - Ying-Shi He
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yu-Yun Zhang
- The Key Laboratory of Plant Immunity and College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xue-Qing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang, China
| |
Collapse
|
7
|
Huang X, Kaufman PE, Athrey GN, Fredregill C, Alvarez C, Shetty V, Slotman MA. Potential key genes involved in metabolic resistance to malathion in the southern house mosquito, Culex quinquefasciatus, and functional validation of CYP325BC1 and CYP9M12 as candidate genes using RNA interference. BMC Genomics 2023; 24:160. [PMID: 36991322 PMCID: PMC10061707 DOI: 10.1186/s12864-023-09241-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Metabolic detoxification is one of the major mechanisms contributing to the development of resistance in mosquitoes, including the southern house mosquito, Culex quinquefasciatus. The three major detoxification supergene families, cytochrome P450s, glutathione S-transferases and general esterases, have been demonstrated to play an important role in metabolic resistance. In this study, we performed differential gene expression analysis based on high-throughput transcriptome sequencing on samples from four experimental groups to give insight into key genes involved in metabolic resistance to malathion in Cx. quinquefasciatus. We conducted a whole transcriptome analysis of field captured wild Cx. quinquefasciatus from Harris County (WI), Texas and a malathion susceptible laboratory-maintained Sebring colony (CO) to investigate metabolic insecticide resistance. Field captured mosquitoes were also phenotypically classified into the malathion resistant and malathion susceptible groups following a mortality response measure conducted using a Centers for Disease Control and Prevention (CDC) bottle assay. The live (MR) and dead (MS) specimens from the bottle assay, along with an unselected WI sample and a CO sample were processed for total RNA extraction and subjected to whole-transcriptome sequencing. RESULTS We demonstrated that the genes coding for detoxification enzymes, particularly cytochrome P450s, were highly up-regulated in the MR group compared to the MS group with similar up-regulation observed in the WI group compared to the CO group. A total of 1,438 genes were differentially expressed in comparison between MR and MS group, including 614 up-regulated genes and 824 down-regulated genes. Additionally, 1,871 genes were differentially expressed in comparison between WI and CO group, including 1,083 up-regulated genes and 788 down-regulated genes. Further analysis on differentially expressed genes from three major detoxification supergene families in both comparisons resulted in 16 detoxification genes as candidates potentially associated with metabolic resistance to malathion. Knockdown of CYP325BC1 and CYP9M12 using RNA interference on the laboratory-maintained Sebring strain significantly increased the mortality of Cx. quinquefasciatus after exposure to malathion. CONCLUSION We generated substantial transcriptomic evidence on metabolic detoxification of malathion in Cx. quinquefasciatus. We also validated the functional roles of two candidate P450 genes identified through DGE analysis. Our results are the first to demonstrate that knockdown of CYP325BC1 and CYP9M12 both significantly increased malathion susceptibility in Cx. quinquefasciatus, indicating involvement of these two genes in metabolic resistance to malathion.
Collapse
Affiliation(s)
- Xinyue Huang
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| | - Phillip E. Kaufman
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| | - Giridhar N. Athrey
- Department of Poultry Science, Texas A&M University, College Station, TX 77843 USA
| | - Chris Fredregill
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX 77021 USA
| | - Christina Alvarez
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX 77021 USA
| | - Vinaya Shetty
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| | - Michel A. Slotman
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| |
Collapse
|
8
|
Hafez AM. First comprehensive report of the resistance of Culex quinquefasciatus Say (Diptera: Culicidae) to commonly used insecticides in Riyadh, Saudi Arabia. Heliyon 2022; 9:e12709. [PMID: 36647349 PMCID: PMC9840124 DOI: 10.1016/j.heliyon.2022.e12709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/02/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
The mosquito Culex quinquefasciatus is a vector of various pathogens including West Nile virus, Saint Louis encephalitis virus, and Western equine encephalitis virus. Insecticides are the main tools for Cx. quinquefasciatus control, but this overreliance on chemical tools has led to the development of resistance to many insecticides in this important insect vector. The resistance of eight field populations of Cx. quinquefasciatus to 10 commonly used insecticides was evaluated. Based on the resistance ratios (RRs), the adults of Cx. quinquefasciatus field populations displayed susceptibility to the organophosphates (OPs) except Al-Masanie adults which exhibited low resistance to fenitrothion (RR50 = 3.62). Conversely, the mosquitoes exhibited susceptibility, low resistance, and moderate resistance to the pyrethroids alpha-cypermethrin (RR = 0.59-2.56), bifenthrin (RR = 0.59-2.19), deltamethrin (RR = 0.60-7.07), cypermethrin (RR = 0.60-2.66), and cyfluthrin (RR = 0.58-2.39). At the larval stage, Cx. quinquefasciatus field populations displayed susceptibility to low resistance to the OPs chlorpyrifos (RR = 0.03-1.75), malathion (RR = 0.19-3.42), fenitrothion (RR = 0.11-2.78), and pirimiphos-methyl (RR = 0.08-1.15). Although these results in Cx. quinquefasciatus field populations indicated that the OPs and pyrethroids maintained high efficacy in controlling this species in the geographical area of this study, these findings should be utilized wisely to avoid any potential negative effects on human health and environmental safety attributable to the application of these broad-spectrum conventional insecticides. However, these findings provide a solid basis for decision-making for Cx. quinquefasciatus integrated vector management programs.
Collapse
|
9
|
Melo de Almeida E, Tisserand F, Faria M, Chèvre N. Efficiency of Several Cytochrome P450 Biomarkers in Highlighting the Exposure of Daphnia magna to an Organophosphate Pesticide. TOXICS 2022; 10:482. [PMID: 36006161 PMCID: PMC9416226 DOI: 10.3390/toxics10080482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The cytochromes P450 (CYP450) represent a major enzyme family operating mostly in the first step of xenobiotic detoxification in aquatic organisms. The ability to measure these CYP450 enzymes' activities provides a crucial tool to understand organisms' response to chemical stressors. However, research on CYP450 activity measurement is still limited and has had variable success. In the present study, we optimize, compile, and compare existing scientific information and techniques for a series of CYP450 biomarkers (EROD, MROD, ECOD, APND, and ERND) used on Daphnia magna. Additionally, we explored these CYP450 biomarkers' activities through the first 5 days of life of daphnids, providing a link between their age and sensitivity to chemicals. In the experiment, daphnids were exposed to an organophosphate pesticide (diazinon) from birth to measure the molecular response of the detoxification process. Our results suggest EROD as the most applicable biomarker for organisms such as D. magna, with a higher organophosphate detoxification rate in daphnids that are 2 and 5 days old. Additionally, a larger body size allowed a more accurate EROD measurement; hence, we emphasize the use of 5-day-old daphnids when analyzing their detoxification response.
Collapse
Affiliation(s)
- Elodie Melo de Almeida
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
- School of Biology, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Floriane Tisserand
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
| | - Micaela Faria
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nathalie Chèvre
- IDYST, Faculty of Geosciences and Environments, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Omotayo AI, Dogara MM, Sufi D, Shuaibu T, Balogun J, Dawaki S, Muktar B, Adeniyi K, Garba N, Namadi I, Adam HA, Adamu S, Abdullahi H, Sulaiman A, Oduola AO. High pyrethroid-resistance intensity in Culex quinquefasciatus (Say) (Diptera: Culicidae) populations from Jigawa, North-West, Nigeria. PLoS Negl Trop Dis 2022; 16:e0010525. [PMID: 35727843 PMCID: PMC9249174 DOI: 10.1371/journal.pntd.0010525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/01/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022] Open
Abstract
This study examined pyrethroid resistance intensity and mechanisms in Culex quinquefasciatus (Say) (Diptera: Culicidae) populations from Jigawa, North-West Nigeria. Resistance statuses to permethrin, lambda-cyhalothrin and alphacypermethrin were determined with both WHO and CDC resistance bioassays. Synergist assay was conducted by pre-exposing the populations to Piperonyl butoxide (PBO) using the WHO method. Resistance intensities to 2x, 5x and 10x of diagnostic concentrations were determined with the CDC bottle method. Species analysis and presence of knockdown mutation (Leu-Phe) were done using Polymerase Chain Reaction (PCR). Results showed that Cx. quinquefasciatus was the only Culex spp. present and “Kdr-west” mutation was not detected in all analyzed samples. Using WHO method, Cx. quinquefasciatus resistance to permethrin was detected in Dutse (12.2%) and Kafin-Hausa (77.78%). Lambda-cyhalothrin resistance was recorded only in Kafin-Hausa (83.95%) with resistance suspected in Ringim (90%). Resistance to alphacypermethrin was recorded in all locations. Pre-exposure to PBO led to 100% mortality to alphacypermethrin and lambda-cyhalothrin in Ringim while mortality to permethrin and alphacypermethrin in Dutse increased from 12.2% to 97.5% and 64.37% to 79.52% respectively. Using CDC bottle bioassay, resistance was also recorded in all populations and the result shows a significant positive correlation (R2 = 0.728, p = 0.026) with the result from the WHO bioassay. Results of resistance intensity revealed a very high level of resistance in Kafin-Hausa with susceptibility to lambda-cyhalothrin and alphacypermethrin not achieved at 10x of diagnostic doses. Resistance intensity was also high in Dutse with susceptibility to all insecticides not achieved at 5x of diagnostic doses. Widespread and high intensity of resistance in Cx. quinquefasciatus from North-West Nigeria is a major threat to the control of diseases transmitted by Culex and other mosquito species. It is a challenge that needs to be adequately addressed so as to prevent the failure of pyrethroid-based vector control tools. Development of resistance to insecticide by mosquitoes has been identified to be a major challenge in the prevention and control of diseases transmitted by mosquitoes. This informs this study that investigated the level of resistance of Culex mosquitoes from Jigawa, North-West Nigeria to Pyrethroids. The main type of Culex mosquitoes found in the sampled area was Cx. quinquefasciatus. The Cx. quinquefasciatus populations were found to be resistant to permethrin, lambda-cyhalothrin and alphacypermethrin. Resistance in Cx. quinquefasciatus from the three LGAs is more pronounced to alphacypermethrin. The methods employed by the mosquitoes in developing resistance involve detoxification of the insecticides by metabolic enzymes. Cx. quinquefasciatus from the three LGAs were observed to be highly resistant and can withstand multiple of the recommended doses. This development whereby Cx. quinquefasciatus populations were highly resistant to these recommended insecticides is of serious concern as it can lead to failure of all efforts geared towards prevention and control of diseases transmitted by Culex mosquitoes in North-West Nigeria.
Collapse
Affiliation(s)
- Ahmed Idowu Omotayo
- Molecular Entomology and Vector Control Research Laboratory, Department of Public Health and Epidemiology, Nigeria Institute of Medical Research, Yaba, Lagos, Nigeria
- Department of Zoology, Faculty of Life Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
- * E-mail:
| | - Musa Mustapha Dogara
- Department of Biological Sciences, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Danjuma Sufi
- Department of Biological Sciences, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Tasiu Shuaibu
- Department of Biological Sciences, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Joshua Balogun
- Department of Biological Sciences, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Salwa Dawaki
- Department of Biological Sciences, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Bature Muktar
- Department of Biological Sciences, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Kamoru Adeniyi
- Department of Biological Sciences, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Nura Garba
- Department of Biological Sciences, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Isah Namadi
- Department of Biological Sciences, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Hafiz Abdullahi Adam
- Department of Biological Sciences, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Shuaibu Adamu
- Department of Biological Sciences, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | - Hamza Abdullahi
- Department of Biological Sciences, Federal University Kashere, Gombe State, Nigeria
| | - Abubakar Sulaiman
- Department of Biological Sciences, Federal University Dutse, Dutse, Jigawa State, Nigeria
| | | |
Collapse
|
11
|
Gao S, Liu K, Liu H, Yin S, Guo X, Zhang Y, Zhang K, Li R. Functional analysis of a cytochrome P450 gene CYP9Z6 responding to terpinen-4-ol in the red flour beetle, Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105065. [PMID: 35430067 DOI: 10.1016/j.pestbp.2022.105065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/26/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
Tribolium castaneum is an agricultural and stored pest found throughout the world. The cytochrome P450 genes of T. castaneum can encode various detoxification enzymes and catabolize heterologous substances, conferring tolerance to insecticides. Herein, we describe the identification of a P450 gene (CYP9Z6) from T. castaneum and investigated its expression profile and potential role in the detoxification of terpinen-4-ol. TcCYP9Z6 expression was significantly induced after exposure to terpinen-4-ol, and RNA-mediated silencing of TcCYP9Z6 increased terpinen-4-ol-induced larval mortality from 47.75% to 63.92%, showing that TcCYP9Z6 is closely related to the detoxification of terpinen-4-ol. The developmental expression profile revealed that TcCYP9Z6 was mainly expressed in late adults and late larvae. Tissue expression profiling revealed that the highest TcCYP9Z6 expression occurred in the head, in both the adult and the larval tissues, followed by the gut in larvae and the antennae in adults. These developmental stages and tissues with high TcCYP9Z6 expression are closely related to the detoxification of heterologous substances. These results indicated that TcCYP9Z6 may play a pivotal role in the detoxification of terpinen-4-ol, which provides support for using TcCYP9Z6 a potential gene for the RNAi-mediated prevention and control of T. castaneum.
Collapse
Affiliation(s)
- Shanshan Gao
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Kui Liu
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Hui Liu
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Se Yin
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xinlong Guo
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Yonglei Zhang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Kunpeng Zhang
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China.
| | - Ruimin Li
- Department of Food and Bioengineering, Anyang Institute of Technology, Anyang, Henan 455000, China.
| |
Collapse
|
12
|
Gong Y, Li T, Li Q, Liu S, Liu N. The Central Role of Multiple P450 Genes and Their Co-factor CPR in the Development of Permethrin Resistance in the Mosquito Culex quinquefasciatus. Front Physiol 2022; 12:802584. [PMID: 35095564 PMCID: PMC8792746 DOI: 10.3389/fphys.2021.802584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes’ increasing resistance to insecticides is becoming a major threat for control efforts worldwide. Multiple P450 genes that are up-regulated in permethrin resistant strains of Culex quinquefasciatus have been linked to the development of resistance. In the current study, we characterized the function of six P450 genes, CYP6P14, CYP6BZ2, CYP9J33, CYP9J34, CYP9J40, and CYP9J45, that are overexpressed in the permethrin resistant Culex mosquitoes and showed their capability in metabolism of permethrin. These six P450 genes can convert 3-phenoxybenzoic alcohol (PBCHO) to a less toxic product, 3-phenoxybenzoic acid (PBCOOH), indicating that these P450s play an important role in permethrin degradation pathways. Although we know multiple P450 genes are over-expressed in permethrin resistant Culex mosquitoes, it remains to be seen whether cytochrome P450-reductase (CPR) gene that are co-overexpressed with P450 genes in permethrin resistant mosquitoes do indeed serve as a resistance mechanism. An in-depth investigation of the expression of CPR gene in resistant mosquitoes was conducted in permethrin resistant mosquitoes. The finding of CPR gene overexpression in permethrin resistant mosquitoes suggested the importance of co-overexpression of multiple P450 genes with their obligatory electron donor CPR in the complex detoxification system, boosting the metabolism of permethrin and hence the development of permethrin resistance in Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Youhui Gong
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Qi Li
- College of Aquaculture, Ocean University of China, Qingdao, China
| | - Shikai Liu
- College of Aquaculture, Ocean University of China, Qingdao, China
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
- *Correspondence: Nannan Liu,
| |
Collapse
|
13
|
Seyoum A, Kharlyngdoh JB, Paylar B, Olsson PE. Sublethal effects of DBE-DBCH diastereomers on physiology, behavior, and gene expression of Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117091. [PMID: 33901980 DOI: 10.1016/j.envpol.2021.117091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (DBE-DBCH) is a brominated flame retardant used in commercial and industrial applications. The use of DBE-DBCH containing products has resulted in an increased release into the environment. However, limited information is available on the long-term effects of DBE-DBCH and its effects in aquatic invertebrates. Thus, the present study was aimed at determining how DBE-DBCH diastereomers (αβ and γδ) affects aquatic invertebrates using Daphnia magna as a model organism. Survival, reproduction, feeding, swimming behavior and toxicogenomic responses to environmental relevant concentrations of DBE-DBCH were analyzed. Chronic exposure to DBE-DBCH resulted in decreased lifespan, and reduced fecundity. Expression of genes involved in reproductive processes, vtg1 and jhe, were also inhibited. DBE-DBCH also induced hypoxia by inhibiting the transcription of genes involved in heme biosynthesis and oxygen transport. Furthermore, DBE-DBCH also inhibited feeding resulting in emptiness of the alimentary canal. Increased expression of the stress response biomarkers was observed following DBE-DBCH exposure. In addition, DBE-DBCH diastereomers also altered the swimming behavior of Daphnia magna. The present study demonstrates that DBE-DBCH cause multiple deleterious effects on Daphnia magna, including effects on reproduction and hormonal systems. These endocrine disrupting effects are in agreement with effects observed on vertebrates. Furthermore, as is the case in vertebrates, DBE-DBCH γδ exerted stronger effects than DBE-DBCH αβ on Daphnia magna. This indicate that DBE-DBCH γδ has properties making it more toxic to all so far studied animals than DBE-DBCH αβ.
Collapse
Affiliation(s)
- Asmerom Seyoum
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Joubert Banjop Kharlyngdoh
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Berkay Paylar
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden
| | - Per-Erik Olsson
- The Life Science Center-Biology, School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
14
|
Aguirre-Rojas LM, Scully ED, Trick HN, Zhu KY, Smith CM. Comparative analyses of transcriptional responses of Dectes texanus LeConte (Coleoptera: Cerambycidae) larvae fed on three different host plants and artificial diet. Sci Rep 2021; 11:11448. [PMID: 34075134 PMCID: PMC8169664 DOI: 10.1038/s41598-021-90932-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Dectes texanus is an important coleopteran pest of soybeans and cultivated sunflowers in the Midwestern United States that causes yield losses by girdling stems of their host plants. Although sunflower and giant ragweed are primary hosts of D. texanus, they began colonizing soybeans approximately 50 years ago and no reliable management method has been established to prevent or reduce losses by this pest. To identify genes putatively involved when feeding soybean, we compared gene expression of D. texanus third-instar larvae fed soybean to those fed sunflower, giant ragweed, or artificial diet. Dectes texanus larvae differentially expressed 514 unigenes when fed on soybean compared to those fed the other diet treatments. Enrichment analyses of gene ontology terms from up-regulated unigenes in soybean-fed larvae compared to those fed both primary hosts highlighted unigenes involved in oxidoreductase and polygalacturonase activities. Cytochrome P450s, carboxylesterases, major facilitator superfamily transporters, lipocalins, apolipoproteins, glycoside hydrolases 1 and 28, and lytic monooxygenases were among the most commonly up-regulated unigenes in soybean-fed larvae compared to those fed their primary hosts. These results suggest that D. texanus larvae differentially expressed unigenes involved in biotransformation of allelochemicals, digestion of plant cell walls and transport of small solutes and lipids when feeding in soybean.
Collapse
Affiliation(s)
- Lina M Aguirre-Rojas
- Deparment of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92506, USA
| | - Erin D Scully
- Stored Product Insect and Engineering Research Unit, USDA-ARS-CGAHR, Manhattan, KS, 66502, USA
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA
| | - C Michael Smith
- Department of Entomology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
15
|
Multiple cytochrome P450 genes: conferring high levels of permethrin resistance in mosquitoes, Culex quinquefasciatus. Sci Rep 2021; 11:9041. [PMID: 33907243 PMCID: PMC8079677 DOI: 10.1038/s41598-021-88121-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
Insecticides, especially pyrethroids, are the most important in the insect pest control and preventing insect vector-borne human diseases. However, insect pests, including mosquitoes, have developed resistance in the insecticides that used against them. Cytochrome P450s are associated with insecticide resistance through overexpression and detoxification mechanisms in insect species. In this study, we utilized a powerful tool, the RNAi technique, to determine the roles of key P450 genes overexpressed in permethrin resistant mosquitoes that confer insecticide resistance to unravel the molecular basis of resistance mechanisms in the mosquito Culex quinquefasciatus. The results showed that knockdown of 8 key P450 genes using RNAi techniques significantly decreased resistance to permethrin in resistant mosquitoes. In silico modeling and docking analysis further revealed the potential metabolic function of overexpressed P450 genes in the development of insecticide resistance in mosquitoes. These findings not only highlighted the functional importance of these P450 genes in insecticide resistance, but also revealed that overexpression of multiple P450 genes was responsible for the high levels of insecticide resistance in a mosquito population of Culex quinquefasciatus.
Collapse
|
16
|
Talipouo A, Mavridis K, Nchoutpouen E, Djiappi-Tchamen B, Fotakis EA, Kopya E, Bamou R, Kekeunou S, Awono-Ambene P, Balabanidou V, Balaska S, Wondji CS, Vontas J, Antonio-Nkondjio C. High insecticide resistance mediated by different mechanisms in Culex quinquefasciatus populations from the city of Yaoundé, Cameroon. Sci Rep 2021; 11:7322. [PMID: 33795804 PMCID: PMC8017000 DOI: 10.1038/s41598-021-86850-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Culex mosquitoes particularly Culex quinquefasciatus are important arboviral and filariasis vectors, however despite this important epidemiological role, there is still a paucity of data on their bionomics. The present study was undertaken to assess the insecticide resistance status of Cx. quinquefasciatus populations from four districts of Yaoundé (Cameroon). All Culex quinquefasciatus populations except one displayed high resistance to bendiocarb and malathion with mortalities ranging from 0 to 89% while high resistance intensity against both permethrin and deltamethrin was recorded. Molecular analyses revealed high frequencies of the ACE-1 G119S mutation (ranging from 0 to 33%) and kdr L1014F allele (ranging from 55 to 74%) in all Cx. quinquefasciatus populations. Significant overexpression was detected for cytochrome P450s genes CYP6AA7 and CYP6Z10, as well as for Esterase A and Esterase B genes. The total cuticular hydrocarbon content, a proxy of cuticular resistance, was significantly increased (compared to the S-lab strain) in one population. The study confirms strong insecticide resistance mediated by different mechanisms in Cx. quinquefasciatus populations from the city of Yaoundé. The expansion of insecticide resistance in Culex populations could affect the effectiveness of current vector control measures and stress the need for the implementation of integrated vector control strategies in urban settings.
Collapse
Affiliation(s)
- Abdou Talipouo
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun.
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé 1, P.O. Box 337, Yaoundé, Cameroon.
| | - Konstantinos Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Elysée Nchoutpouen
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
| | - Borel Djiappi-Tchamen
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
- Vector Borne Diseases Laboratory of the Research Unit Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - Emmanouil Alexandros Fotakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Edmond Kopya
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé 1, P.O. Box 337, Yaoundé, Cameroon
| | - Roland Bamou
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
- Vector Borne Diseases Laboratory of the Research Unit Biology and Applied Ecology (VBID-RUBAE), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - Sévilor Kekeunou
- Department of Animal Biology and Physiology, Faculty of Sciences, University of Yaoundé 1, P.O. Box 337, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Sofia Balaska
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
| | - Charles Sinclair Wondji
- Department of Vector Biology Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK
- Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroun
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche Sur Le PaludismeLaboratoire de Recherche Sur Le Paludisme, Organisation de Coordination Pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), B. P. 288, Yaoundé, Cameroun.
- Department of Vector Biology Liverpool School of Tropical Medicine Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
17
|
Zhang C, Shi Q, Li T, Cheng P, Guo X, Song X, Gong M. Comparative proteomics reveals mechanisms that underlie insecticide resistance in Culex pipiens pallens Coquillett. PLoS Negl Trop Dis 2021; 15:e0009237. [PMID: 33764997 PMCID: PMC7993597 DOI: 10.1371/journal.pntd.0009237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/12/2021] [Indexed: 11/23/2022] Open
Abstract
Mosquito control based on chemical insecticides is considered as an important element of the current global strategies for the control of mosquito-borne diseases. Unfortunately, the development of insecticide resistance of important vector mosquito species jeopardizes the effectiveness of insecticide-based mosquito control. In contrast to target site resistance, other mechanisms are far from being fully understood. Global protein profiles among cypermethrin-resistant, propoxur-resistant, dimethyl-dichloro-vinyl-phosphate-resistant and susceptible strain of Culex pipiens pallens were obtained and proteomic differences were evaluated by using isobaric tags for relative and absolute quantification labeling coupled with liquid chromatography/tandem mass spectrometric analysis. A susceptible strain of Culex pipiens pallens showed elevated resistance levels after 25 generations of insecticide selection, through iTRAQ data analysis detected 2,502 proteins, of which 1,513 were differentially expressed in insecticide-selected strains compared to the susceptible strain. Finally, midgut differential protein expression profiles were analyzed, and 62 proteins were selected for verification of differential expression using iTRAQ and parallel reaction monitoring strategy, respectively. iTRAQ profiles of adaptation selection to three insecticide strains combined with midgut profiles revealed that multiple insecticide resistance mechanisms operate simultaneously in resistant insects of Culex pipiens pallens. Significant molecular resources were developed for Culex pipiens pallens, potential candidates were involved in metabolic resistance and reducing penetration or sequestering insecticide. Future research that is targeted towards RNA interference of the identified metabolic targets, such as cuticular proteins, cytochrome P450s, glutathione S-transferases and ribosomal proteins proteins and biological pathways (drug metabolism—cytochrome P450, metabolism of xenobiotics by cytochrome P450, oxidative phosphorylation, ribosome) could lay the foundation for a better understanding of the genetic basis of insecticide resistance in Culex pipiens pallens. Global protein profiles were compared among a susceptible strain of Cx. pipiens pallens and strains that were cypermethrin-resistant, propoxur-resistant, and dimethyl-dichloro-vinyl-phosphate-resistant after 25 generations of selection by distinct chemical insecticide families, multiple mechanisms were found to operate simultaneously in resistant mosquitoes of Cx. pipiens pallens, including mechanisms to lower penetration of or sequester the insecticide or to increase biodegradation of the insecticide via subtle alterations in either the cuticular protein levels or the activities of detoxification enzymes (P450s and glutathione S-transferases).
Collapse
Affiliation(s)
- Chongxing Zhang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
- * E-mail: (ZCX); (GMQ)
| | - Qiqi Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, MOH, National Center for International Research on Tropical Diseases, WHO Collaborating Centre for Tropical Diseases, Shanghai, China
| | - Tao Li
- Nanning MHelixProTech Co., Ltd., Nanning Hi-tech Zone Bioengineering Center, Nanning, P.R. China
| | - Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
| | - Xiuxia Guo
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
| | - Xiao Song
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, P.R. China
- * E-mail: (ZCX); (GMQ)
| |
Collapse
|
18
|
Sugiura M, Kimoto F, Itokawa K, Kasai S. Novel CONCOMITANT mutations L932F and I936V in the Voltage-Gated Sodium Channel and Its Association With Pyrethroid Resistance in Culex quinquefasciatus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:798-806. [PMID: 33174593 DOI: 10.1093/jme/tjaa238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Highly residual pyrethroids such as permethrin have been used for controlling mosquitoes that transmit infectious diseases. However, the selective pressure from such insecticides may result in cross-resistance against other pyrethroids used for household insecticides. In this study, we investigated the susceptibility of Culex quinquefasciatus Say collected from Brazil and Myanmar to permethrin in addition to four types of household pyrethroids. Both strains exhibited high resistance against all pyrethroids tested, indicating cross-resistance. Furthermore, we detected the knockdown resistance (kdr) mutations L932F+I936V in the voltage-gated sodium channel gene (VGSC) in the Brazilian strain. Notably, the L932F+I936V haplotype has previously been observed in in silico data, but it should be detected not directly from living insects. In comparison, a common kdr mutation, L1014F, was detected from the Myanmar strain. Although L1014F was also detected from the Brazilian strain, the allele frequency was too low to affect resistance. Both strains harbored the resistance-associated haplotypes of the cytochrome P450 gene, CYP9M10. The Brazilian strain demonstrated comparable resistance against pyrethroids as that of the Myanmar strain even when a cytochrome P450 inhibitor, piperonyl butoxide was added to the bioassay. Our results suggested that the L932F+I936V mutations confer the Brazilian strain of Cx. Quiquefasciatus with resistance at a comparable level to that conferred by the well-recognized kdr mutation L1014F in the Myanmar strain. The identification of unexplored mutations may improve the diagnosis and understanding of resistance of this medically important species.
Collapse
Affiliation(s)
- Masaaki Sugiura
- Research & Development Division, Fumakilla Limited, Hatsukaichi-shi, Hiroshima-ken, Japan
| | - Fumiko Kimoto
- Research & Development Division, Fumakilla Limited, Hatsukaichi-shi, Hiroshima-ken, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, Japan
| | - Shinji Kasai
- Department of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
19
|
Hu B, Huang H, Hu S, Ren M, Wei Q, Tian X, Esmail Abdalla Elzaki M, Bass C, Su J, Reddy Palli S. Changes in both trans- and cis-regulatory elements mediate insecticide resistance in a lepidopteron pest, Spodoptera exigua. PLoS Genet 2021; 17:e1009403. [PMID: 33690635 PMCID: PMC7978377 DOI: 10.1371/journal.pgen.1009403] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/19/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
The evolution of insect resistance to insecticides is frequently associated with overexpression of one or more cytochrome P450 enzyme genes. Although overexpression of CYP450 genes is a well-known mechanism of insecticide resistance, the underlying regulatory mechanisms are poorly understood. Here we uncovered the mechanisms of overexpression of the P450 gene, CYP321A8 in a major pest insect, Spodoptera exigua that is resistant to multiple insecticides. CYP321A8 confers resistance to organophosphate (chlorpyrifos) and pyrethroid (cypermethrin and deltamethrin) insecticides in this insect. Constitutive upregulation of transcription factors CncC/Maf are partially responsible for upregulated expression of CYP321A8 in the resistant strain. Reporter gene assays and site-directed mutagenesis analyses demonstrated that CncC/Maf enhanced the expression of CYP321A8 by binding to specific sites in the promoter. Additional cis-regulatory elements resulting from a mutation in the CYP321A8 promoter in the resistant strain facilitates the binding of the orphan nuclear receptor, Knirps, and enhances the promoter activity. These results demonstrate that two independent mechanisms; overexpression of transcription factors and mutations in the promoter region resulting in a new cis-regulatory element that facilitates binding of the orphan nuclear receptor are involved in overexpression of CYP321A8 in insecticide-resistant S. exigua. Insect pests developing resistance to insecticides used for their control is a major problem in agriculture. Many pests including the beet armyworm, Spodoptera exigua have developed resistance to insecticides used for their control. Information on the mechanisms of resistance would help in resistance management programs. Overexpression of detoxifying enzymes were associated with insecticide resistance, but their functions and regulatory mechanisms are still unidentified. The expression levels of P450 genes between susceptible and resistant strains of S. exigua were compared and CYP321A8 was identified as the major contributor to resistance to organophosphate and pyrethroid insecticides. Further studies uncovered two independent but synergistic mechanisms; constitutive upregulation of b-Zip transcription factors and mutations in the promoter that facilitates the binding of an orphan nuclear receptor, Knirps contributing to increase in the expression of CYP321A8 and resistance to multiple insecticides in S. exigua.
Collapse
Affiliation(s)
- Bo Hu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - He Huang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Songzhu Hu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Miaomiao Ren
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Wei
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiangrui Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, United Kingdom
| | - Jianya Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail: (JS); (SRP)
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail: (JS); (SRP)
| |
Collapse
|
20
|
Nagar G, Upadhaya D, Sharma AK, Kumar R, Fular A, Ghosh S. Association between overexpression of cytochrome P450 genes and deltamethrin resistance in Rhipicephalus microplus. Ticks Tick Borne Dis 2020; 12:101610. [PMID: 33285351 DOI: 10.1016/j.ttbdis.2020.101610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
Cytochrome P450 monooxygenases mediated metabolic detoxification has been recognized as one of the mechanisms involved in resistance to pyrethroids, which is a class of pesticides that includes acaricides such as deltamethrin. Several cytochrome P450 (CYP) genes were identified in arthropod pests which are upregulated in response to exposure to pesticides used as acaricides. However, to date, limited information is available with respect to CYP genes and their response to acaricide exposure in ticks. We cloned and sequenced four CYP genes, the CYP41, CYP3006G8, CYP319A1 and CYP4W1 from reference susceptible IVRI-I strain of Rhipicephalus microplus. The expression pattern of the genes was investigated using qPCR in reference susceptible IVRI-I, pyrethroid-resistant IVRI-IV and multi-acaricide resistant IVRI-V strains. The effect of a single exposure of deltamethrin, at a concentration of 2600 μg/mL and 299.7 μg/mL on IVRI-IV and IVRI-V strains, respectively, on the expression of the four CYP genes was evaluated. In IVRI-IV strain, the CYP41 gene was highly overexpressed (FC 8.72) while CYP3006G8 was underexpressed with FC of 0.06. All the four genes were overexpressed in IVRI-V strain. After exposure to deltamethrin, the CYP3006G8 transcript levels were significantly upregulated at all time intervals in both resistant strains with the highest FC of 11.62 at 12 h in IVRI-IV and 13.38 at 3 h in IVRI-V. Our results suggest that the constitutive overexpression of CYP41 and deltamethrin induced upregulation of CYP3006G8 contribute to the development of pyrethroid resistance, specifically deltamethrin, in these two reference strains.
Collapse
Affiliation(s)
- Gaurav Nagar
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Deepak Upadhaya
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Anil Kumar Sharma
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Rinesh Kumar
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Ashutosh Fular
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India
| | - Srikant Ghosh
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, U.P., India.
| |
Collapse
|
21
|
Wang C, Xu X, Huang Y, Yu H, Li H, Wan Q, Pan B. Transcription profiling and characterization of Dermanyssus gallinae cytochrome P450 genes involved in beta-cypermethrin resistance. Vet Parasitol 2020; 283:109155. [PMID: 32534384 DOI: 10.1016/j.vetpar.2020.109155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 01/29/2023]
Abstract
The poultry red mite, Dermanyssus gallinae, poses a significant threat to hen health and poultry husbandry. D. gallinae has typically been controlled using synthetic acaricides, like pyrethroids, but increased resistance to pyrethroids has been found in poultry red mite populations worldwide. Pyrethroids resistance in arthropods has been associated to cytochrome P450 monooxygenases (P450s), a main member of a group of detoxification enzymes. To explore the potential contribution of P450s to the resistance to pyrethroids in D. gallinae, we first identified and then characterized four P450s genes. Phylogenetic analysis revealed that the four P450s genes in D. gallinae belong to three different clades, with two in the CYP-6, one in the CYP-4 and one in the CYP-2. All four P450s genes were expressed in a similar pattern in D. gallinae at different stages of development, and showed high expression in the adult stage, indicating that they played a role in mite development. Simultaneously, constitutive over-expression of Deg-CYP-3, a clade associated with pesticide metabolism, was detected in a resistant strain (RS) compared with a susceptible strain (SS). When exposed to beta-cypermethrin, the four P450s gene transcripts in the RS strain increased in a time-dependent manner. In particular, Deg-CYP-3 expression increased 5-fold compared to gene expression in control group at 12 h, although the four P450s genes were not induced in the SS strain. Our results show the first insights into the molecular characteristics of P450s genes in D. gallinae. The elevated presence of P450s genes in the RS strain, indicated by their constitutive over-expression and their inducible expression, suggests that they confer resistance to beta-cypermethrin, and are involved in its detoxification.
Collapse
Affiliation(s)
- Chuanwen Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaolin Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yu Huang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - He Yu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qiang Wan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Baoliang Pan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Fahmy NT, Osman A, Badr MS, Morcos N, Diclaro JW, Abd-ElSamie EM. Deciphering pyrethroid resistance in Cx. pipiens (L): Implications of cytochrome P450; expression profiling and regulatory microRNA. Mol Cell Probes 2020; 52:101579. [PMID: 32339604 DOI: 10.1016/j.mcp.2020.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 11/25/2022]
Abstract
Over the past decades, the extensive use of pyrethroids insecticides for vector control has resulted in the development of insecticide resistance. Cytochrome P450 has been recognized to play a critical role in the metabolic detoxification of insecticides. In the current study, Culex pipiens mosquitoes were collected from Giza Governorate in Egypt and tested for insecticide susceptibility against deltamethrin. First detection of Knockdown resistance gene (Kdr) mutations in field collected mosquitoes was performed. Activities of cytochrome oxidase P450 detoxification enzyme that synchronized with the resistance development, was assessed. Expression profiles of cytochrome P450s and their putative corresponding regulating miRNAs, which was previously reported in Cx. pipiens pallens were evaluated in pyrethroid resistant field-collected Cx. pipiens using RT-qPCR and stem-loop RT-qPCR, respectively. Specific stem-loop reverse transcription primers and forward primers were designed for miRNAs profiling. Our results elucidated the pyrethroid resistance development and revealed its relation to the metabolic and target site modification mechanisms with a first report of L1014F-kdr mutation detection. RT-qPCR results have showed an up-regulation in the expression of the studied P450 transcripts. Negative correlations were found between the expression of P450s and their regulatory miRNAs except for CYP9J35, where positive correlation was found with its corresponding miR-13. Interestingly, our data was the first to detect negative correlation between miR-285 and its putative CYP6Cp1 target gene. These findings highlighted the significance of identifying P450 gene along with regulatory miRNAs as a key mechanism implicated in pyrethroid resistance in field Culex vector population. The elucidation of this mechanism would shed light on the development of insecticide resistance and would help in shaping strategies to combat such vectors.
Collapse
Affiliation(s)
| | - Ahmed Osman
- Faculty of Science, Ain Shams University, Cairo, Egypt; Egypt Japan University of Science Technology, Alexandria, Egypt.
| | - Mohamed S Badr
- Medical Research Center, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Nadia Morcos
- Faculty of Science, Ain Shams University, Cairo, Egypt.
| | | | - Emtithal M Abd-ElSamie
- Faculty of Science, Cairo University, Giza, Egypt; Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, Egypt.
| |
Collapse
|
23
|
Paula DP, Menger J, Andow DA, Koch RL. Diverse patterns of constitutive and inducible overexpression of detoxifying enzyme genes among resistant Aphis glycines populations. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 164:100-114. [PMID: 32284115 DOI: 10.1016/j.pestbp.2019.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/21/2019] [Accepted: 12/30/2019] [Indexed: 06/11/2023]
Abstract
Understanding the mechanisms of pyrethroid resistance is essential to the effective management of pesticide resistance in Aphis glycines Matsumura (Hemiptera: Aphididae). We mined putative detoxifying enzyme genes in the draft genome sequence of A. glycines for cytochrome oxidase P450 (CYP), glutathione-S-transferase (GST) and esterases (E4 and carboxylesterases-CES). Aphids from clonal populations resistant to pyrethroids from three sites in Minnesota, USA, were screened against a diagnostic LC99 concentration of either λ-cyhalothrin or bifenthrin and detoxifying enzyme genes expression in survivors was analyzed by qPCR. Their expression profiles were compared relative to a susceptible clonal population. We found 61 CYP (40 full-length), seven GST (all full-length), seven E4 (five full-length) and three CES (two full-length) genes, including 24 possible pseudogenes. The detoxifying enzymes had different expression profiles across resistant aphid populations, possibly reflecting differences in the genetic background and pyrethroid selection pressures as the number of constitutively overexpressed detoxifying enzyme genes was correlated with the level of resistance. Our findings will strengthen the understanding of the pyrethroid resistance mechanisms in A. glycines.
Collapse
Affiliation(s)
- Débora Pires Paula
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, P.O. Box 02372, Brasília, DF 70770-917, Brazil.
| | - James Menger
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave., St. Paul, MN 55108, USA
| | - David A Andow
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave., St. Paul, MN 55108, USA
| | - Robert L Koch
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave., St. Paul, MN 55108, USA
| |
Collapse
|
24
|
Mugenzi LMJ, Menze BD, Tchouakui M, Wondji MJ, Irving H, Tchoupo M, Hearn J, Weedall GD, Riveron JM, Wondji CS. Cis-regulatory CYP6P9b P450 variants associated with loss of insecticide-treated bed net efficacy against Anopheles funestus. Nat Commun 2019; 10:4652. [PMID: 31604938 PMCID: PMC6789023 DOI: 10.1038/s41467-019-12686-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/21/2019] [Indexed: 11/09/2022] Open
Abstract
Elucidating the genetic basis of metabolic resistance to insecticides in malaria vectors is crucial to prolonging the effectiveness of insecticide-based control tools including long lasting insecticidal nets (LLINs). Here, we show that cis-regulatory variants of the cytochrome P450 gene, CYP6P9b, are associated with pyrethroid resistance in the African malaria vector Anopheles funestus. A DNA-based assay is designed to track this resistance that occurs near fixation in southern Africa but not in West/Central Africa. Applying this assay we demonstrate, using semi-field experimental huts, that CYP6P9b-mediated resistance associates with reduced effectiveness of LLINs. Furthermore, we establish that CYP6P9b combines with another P450, CYP6P9a, to additively exacerbate the reduced efficacy of insecticide-treated nets. Double homozygote resistant mosquitoes (RR/RR) significantly survive exposure to insecticide-treated nets and successfully blood feed more than other genotypes. This study provides tools to track and assess the impact of multi-gene driven metabolic resistance to pyrethroids, helping improve resistance management. Bed nets treated with insecticides have been instrumental in reducing malaria mortality, but insecticide resistance is on the rise. Here, Mugenzi et al. identify genetic variants in the P450 gene CYP6P9b of Anopheles funestus that associate with insecticide resistance and develop a PCR-based diagnostic assay to help identify pyrethroid-resistant strains.
Collapse
Affiliation(s)
- Leon M J Mugenzi
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Centre for Research in Infectious Diseases (CRID), P.O. Box, 13501, Yaoundé, Cameroon.,Department of Biochemistry and Molecular Biology, Faculty of Science University of Buea, P.O. Box, 63, Buea, Cameroon
| | - Benjamin D Menze
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Centre for Research in Infectious Diseases (CRID), P.O. Box, 13501, Yaoundé, Cameroon
| | - Magellan Tchouakui
- Centre for Research in Infectious Diseases (CRID), P.O. Box, 13501, Yaoundé, Cameroon
| | - Murielle J Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Centre for Research in Infectious Diseases (CRID), P.O. Box, 13501, Yaoundé, Cameroon
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Micareme Tchoupo
- Centre for Research in Infectious Diseases (CRID), P.O. Box, 13501, Yaoundé, Cameroon
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Gareth D Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Jacob M Riveron
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.,Centre for Research in Infectious Diseases (CRID), P.O. Box, 13501, Yaoundé, Cameroon
| | - Charles S Wondji
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK. .,Centre for Research in Infectious Diseases (CRID), P.O. Box, 13501, Yaoundé, Cameroon.
| |
Collapse
|
25
|
Transcriptomic analysis of insecticide resistance in the lymphatic filariasis vector Culex quinquefasciatus. Sci Rep 2019; 9:11406. [PMID: 31388075 PMCID: PMC6684662 DOI: 10.1038/s41598-019-47850-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/25/2019] [Indexed: 11/08/2022] Open
Abstract
Culex quinquefasciatus plays an important role in transmission of vector-borne diseases of public health importance, including lymphatic filariasis (LF), as well as many arboviral diseases. Currently, efforts to tackle C. quinquefasciatus vectored diseases are based on either mass drug administration (MDA) for LF, or insecticide-based interventions. Widespread and intensive insecticide usage has resulted in increased resistance in mosquito vectors, including C. quinquefasciatus. Herein, the transcriptome profile of Ugandan bendiocarb-resistant C. quinquefasciatus was explored to identify candidate genes associated with insecticide resistance. High levels of insecticide resistance were observed for five out of six insecticides tested, with the lowest mortality (0.97%) reported to permethrin, while for DDT, lambdacyhalothrin, bendiocarb and deltamethrin the mortality rate ranged from 1.63-3.29%. Resistance to bendiocarb in exposed mosquitoes was marked, with 2.04% mortality following 1 h exposure and 58.02% after 4 h. Genotyping of the G119S Ace-1 target site mutation detected a highly significant association (p < 0.0001; OR = 25) between resistance and Ace1-119S. However, synergist assays using the P450 inhibitor PBO, or the esterase inhibitor TPP resulted in markedly increased mortality (to ≈80%), suggesting a role of metabolic resistance in the resistance phenotype. Using a novel, custom 60 K whole-transcriptome microarray 16 genes significantly overexpressed in resistant mosquitoes were detected, with the P450 Cyp6z18 showing the highest differential gene expression (>8-fold increase vs unexposed controls). These results provide evidence that bendiocarb resistance in Ugandan C. quinquefasciatus is mediated by both target-site mechanisms and over-expression of detoxification enzymes.
Collapse
|
26
|
Tsakireli D, Riga M, Kounadi S, Douris V, Vontas J. Functional characterization of CYP6A51, a cytochrome P450 associated with pyrethroid resistance in the Mediterranean fruit fly Ceratitis capitata. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:196-203. [PMID: 31153469 DOI: 10.1016/j.pestbp.2019.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
Overexpression of the cytochrome P450 monooxygenase CYP6A51 has been previously associated with pyrethroid resistance in the Mediterranean fruit fly (medfly) Ceratitis capitata, an important pest species worldwide; however, this association has not been functionally validated. We expressed CYP6A51 gene in Escherichia coli and produced a functional enzyme with preference for the chemiluminescent substrate Luciferin-ME EGE. In vitro metabolism assays revealed that CYP6A51 is capable of metabolizing two insecticides that share the same mode of action, λ-cyhalothrin and deltamethrin, whereas no metabolism or substrate depletion was observed in the presence of spinosad or malathion. We further expressed CYP6A51 in vivo via a GAL4/UAS system in Drosophila melanogaster flies, driving expression with detoxification tissue-specific drivers. Toxicity bioassays indicated that CYP6A51 confers knock-down resistance to both λ-cyhalothrin and deltamethrin. Detection of CYP6A51 - associated pyrethroid resistance in field populations may be important for efficient Insecticide Resistance Management (IRM) strategies.
Collapse
Affiliation(s)
- Dimitra Tsakireli
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Laboratory of Molecular Entomology, Department of Biology, University of Crete, GR-700 13, Heraklion, Crete, Greece
| | - Maria Riga
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece
| | - Stella Kounadi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Laboratory of Molecular Entomology, Department of Biology, University of Crete, GR-700 13, Heraklion, Crete, Greece
| | - Vassilis Douris
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece.
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, GR-700 13, Heraklion, Crete, Greece; Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece.
| |
Collapse
|
27
|
Rault LC, O'Neal ST, Johnson EJ, Anderson TD. Association of age, sex, and pyrethroid resistance status on survival and cytochrome P450 gene expression in Aedes aegypti (L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:96-104. [PMID: 31027587 DOI: 10.1016/j.pestbp.2019.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 06/09/2023]
Abstract
Aedes aegypti is a vector of viruses that negatively impact human health. Insecticide resistance complicates mosquito control efforts, but understanding the mechanisms of resistance can help to improve management practices. This study examined different factors that could influence the interpretation of toxicity bioassays and gene expression studies in A. aegypti, including sex and age, in the context of resistance to pyrethroids. Bioassays using a pyrethroid-resistant strain, Puerto Rico (PR), and a pyrethroid-susceptible strain, Rockefeller (Rock), of A. aegypti were conducted with females and males of three age groups to determine differences in mortality induced by deltamethrin. Overall, strain was the only factor with a significant effect on the LD50. Enzyme assays showed that cytochrome P450 monooxygenase activity in PR was constitutively higher than in Rock, and that pretreatment with the cytochrome P450 inhibitor piperonyl butoxide (PBO) followed by a topical application of deltamethrin (LD25) significantly increased mortality in both strains. Evaluation of the expression levels of seven CYP9J genes previously reported to be involved in pyrethroid resistance revealed that CYP9J10, CYP9J19, and CYP9J28 were more highly expressed in PR than in Rock at all ages of females and males, indicating that they may be essential for resistance. The expression of CYP9J24, CYP9J26, CYP9J27, and CYP9J32 was higher in PR males compared to other groups, including PR females. Significant differences in expression between sexes and strains were also observed as a result of age.
Collapse
Affiliation(s)
- Leslie C Rault
- Department of Entomology, University of Nebraska, 103 Entomology Hall, Lincoln, NE 68583, USA.
| | - Scott T O'Neal
- Department of Entomology, University of Nebraska, 103 Entomology Hall, Lincoln, NE 68583, USA
| | - Ellis J Johnson
- Department of Entomology, University of Nebraska, 103 Entomology Hall, Lincoln, NE 68583, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, 103 Entomology Hall, Lincoln, NE 68583, USA
| |
Collapse
|
28
|
Chen C, Shan T, Liu Y, Shi X, Gao X. Identification of a novel cytochrome P450 CYP3356A1 linked with insecticide detoxification in Bradysia odoriphaga. PEST MANAGEMENT SCIENCE 2019; 75:1006-1013. [PMID: 30221445 DOI: 10.1002/ps.5208] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/24/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Cytochrome P450 monooxygenases play an important role in the metabolic detoxification of insecticides in insect pests. However, little is known about the role of a specific P450 gene and its responses to insecticide exposure in Bradysia odoriphaga, a major pest in Chinese chive production. RESULTS In this study, a novel P450 gene, CYP3356A1, was cloned from Bradysia odoriphaga. The full-length cDNA sequence of CYP3356A1 is 2153 bp and its open reading frame (ORF) encodes 508 amino acids. Quantitative real time PCR(qRT-PCR) analyses in different tissues showed that CYP3356A1 expression was the highest in the Malpighian tubule. Moreover, among the different developmental stages of the insect, the highest expression of CYP3356A1 was found in fourth-instar larvae. Expression of CYP3356A1 was upregulated by treatment with imidacloprid, thiamethoxam, and β-cypermethrin at median lethal concentrations (LC50 ). RNA interference (RNAi)-mediated silencing of CYP3356A1 significantly increased mortality by 36.90%, 25.17%, and 36.73 when fourth-instar B. odoriphaga larvae were exposed to imidacloprid, thiamethoxam, and β-cypermethrin, respectively, at the LC50 dose. CONCLUSION These results demonstrate that CYP3356A1 is related to the detoxification of imidacloprid, thiamethoxam, and β-cypermethrin in B. odoriphaga. Moreover, the study also increased our understanding of the molecular mechanisms of insecticide detoxification in this pest insect. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengyu Chen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Tisheng Shan
- Department of Entomology, China Agricultural University, Beijing, China
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xueyan Shi
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
29
|
Xu N, Sun XH, Liu ZH, Xu Y, Sun Y, Zhou D, Shen B, Zhu CL. Identification and classification of differentially expressed genes in pyrethroid-resistant Culex pipiens pallens. Mol Genet Genomics 2019; 294:861-873. [PMID: 30904950 DOI: 10.1007/s00438-018-1521-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 12/10/2018] [Indexed: 11/30/2022]
Abstract
Culex pipiens pallens is an important vector that transmits Bancroftian filariasis, Japanese encephalitis and other diseases that pose a serious threat to human health. Extensive and improper use of insecticides has caused insecticide resistance in mosquitoes, which has become an important obstacle to the control of mosquito-borne diseases. It is crucial to investigate the underlying mechanism of insecticide resistance. The aims of this study were to identify genes involved in insecticide resistance based on the resistance phenotype, gene expression profile and single-nucleotide polymorphisms (SNPs) and to screen for major genes controlling insecticide resistance. Using a combination of SNP and transcriptome data, gene expression quantitative trait loci (eQTLs) were studied in deltamethrin-resistant mosquitoes. The most differentially expressed pathway in the resistant group was identified, and a regulatory network was built using these SNPs and the differentially expressed genes (DEGs) in this pathway. The major candidate genes involved in the control of insecticide resistance were analyzed by qPCR, siRNA microinjection and CDC bottle bioassays. A total of 85 DEGs that encoded putative detoxification enzymes (including 61 P450s) were identified in this pathway. The resistance regulatory network was built using SNPs, and these metabolic genes, and a major gene, CYP9AL1, were identified. The functional role of CYP9AL1 in insecticide resistance was confirmed by siRNA microinjection and CDC bottle bioassays. Using the eQTL approach, we identified important genes in pyrethroid resistance that may aid in understanding the mechanism underlying insecticide resistance and in targeting new measures for resistance monitoring and management.
Collapse
Affiliation(s)
- Na Xu
- Xuzhou Central Hospital, 29 Taihang Road, Yunlong District, Xuzhou, 221111, People's Republic of China
| | - Xiao-Hong Sun
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Zhi-Han Liu
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Yang Xu
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China.,Key Laboratory of Pathogen Biology of Jiangsu Province, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China.,Key Laboratory of Pathogen Biology of Jiangsu Province, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China. .,Key Laboratory of Pathogen Biology of Jiangsu Province, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China.
| | - Chang-Liang Zhu
- Department of Pathogen Biology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China. .,Key Laboratory of Pathogen Biology of Jiangsu Province, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
30
|
Gottardi M, Cedergreen N. The synergistic potential of azole fungicides does not directly correlate to the inhibition of cytochrome P450 activity in aquatic invertebrates. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:187-196. [PMID: 30579157 DOI: 10.1016/j.aquatox.2018.12.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The ability of azole fungicides to inhibit cytochrome P450 dependent metabolism is proposed to be the main mechanism for their synergizing effect on pyrethroid insecticide toxicity in aquatic invertebrates. This study investigates the correlation between inhibition strength and synergistic potential of azole fungicides in the crustacean Daphnia magna and the insect larvae Chironomus riparius. Inhibition strength was measured in vivo toward the cytochrome P450 catalysed conversion of 7-ethoxycoumarin to 7-hydroxycoumarin (ECOD). Synergistic potentials were determined as the ratio between predicted and observed toxicity of mixtures based on the model of concentration addition (CA) and independent action (IA). Azoles (n = 9-11) enhanced the toxicity of α-cypermethrin in D. magna (Synergy ratios CA: 0.8 - 16; IA: 1.1 - 22) and inhibited cytochrome P450 activity by different degrees (IC50: 0.0023 - 36 μM for D. magna and 0.08 - 24 μM for C. riparius). Inhibition strengths were strongly correlated in the two organisms (r: 0.937 p: 0.019 for triazoles and r: 0.903 p: 0.097 for imidazoles). Lipophilicity governed the inhibition strength of triazoles in both species (r > 0.9, p < 0.05). No correlation was observed between inhibition strengths and synergistic potentials. Several reasons for the apparent lack of correlation were discussed.
Collapse
Affiliation(s)
- Michele Gottardi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.
| |
Collapse
|
31
|
Zhen C, Tan Y, Miao L, Wu J, Gao X. Overexpression of cytochrome P450s in a lambda-cyhalothrin resistant population of Apolygus lucorum (Meyer-Dür). PLoS One 2018; 13:e0198671. [PMID: 29949596 PMCID: PMC6021084 DOI: 10.1371/journal.pone.0198671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/23/2018] [Indexed: 11/18/2022] Open
Abstract
The mirid bug, Apolygus lucorum Meyer-Dür, has been an important pest of cotton crop in China, and is primarily controlled with insecticides, such as pyrethroids. To elucidate the potential resistant mechanisms of A. lucorum to lambda-cyhalothrin, a series of biological, biochemical, and molecular assays were conducted in the reference (AL-S) and lambda-cyhalothrin-resistant (AL-R) populations. Comparison of the molecular target of pyrethroid insecticides, voltage-gated sodium channel, revealed that there were no mutation sites in the resistant population, indicating target insensitivity is not responsible for increased resistance of AL-R to lambda-cyhalothrin. Furthermore, the synergism assays and the activities of detoxification enzymes were performed to determine detoxification mechanism conferring the lambda-cyhalothrin resistance. In the tested synergists, the piperonyl butoxide had the highest synergism ratio against lambda-cyhalothrin, which was up to five-fold in both populations. In addition, the result also showed that only cytochrome P450 had significantly higher O-deethylase activity with 7-ethoxycoumarin (1.78-fold) in AL-R population compared with AL-S population. Seven cytochrome P450 genes were found to be significantly overexpressed in the resistant AL-R population compared with AL-S population. Taken together, these results demonstrate that multiple over-transcribed cytochrome P450 genes would be involved in the development of lambda-cyhalothrin resistance in AL-R population.
Collapse
Affiliation(s)
- Congai Zhen
- Department of Entomology, China Agricultural University, Beijing, China
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China
| | - Yao Tan
- Department of Entomology, China Agricultural University, Beijing, China
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ling Miao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jie Wu
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China
- * E-mail: (XG); (JW)
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
- * E-mail: (XG); (JW)
| |
Collapse
|
32
|
Delannay C, Goindin D, Kellaou K, Ramdini C, Gustave J, Vega-Rúa A. Multiple insecticide resistance in Culex quinquefasciatus populations from Guadeloupe (French West Indies) and associated mechanisms. PLoS One 2018; 13:e0199615. [PMID: 29944713 PMCID: PMC6019780 DOI: 10.1371/journal.pone.0199615] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/11/2018] [Indexed: 11/18/2022] Open
Abstract
West Nile (WN) virus has been detected in Guadeloupe since 2002. Even if no WN human cases have been detected so far, mosquitoes from Culex genus especially Culex quinquefasciatus are recognized as potential WN vectors in Guadeloupe. To evaluate the impact of local vector control activities on this mosquito species we assessed the resistance levels of Cx. quinquefasciatus populations from three different sites from Guadeloupe (Abymes, Saint François and Gourbeyre) to malathion, temephos and deltamethrin. In addition, the frequencies of the L1014F kdr and the G119S ace-1 mutations were established in Cx. quinquefasciatus populations, as well as the constitutive expressions of five cytochrome P450 genes. Mosquito populations tested displayed high resistance to deltamethrin, moderate resistance to malathion (Abymes, Gourbeyre) and low resistance to temephos (Abymes et Gourbeyre). Molecular analyses revealed high frequencies of both L1014F kdr and G119S ace-1 mutations in Cx. quinquefasciatus populations, as well as overexpression of cytochrome P450 genes CYP9J45, CYP9J40 and CYP6AA7. Finally, deltamethrin resistance and knock-down rates were strongly correlated with the frequency of the resistant kdr and ace-1 alleles, as well as with CYP9J40 overexpression. These results should be taken into account to refine the current vector control strategies to prevent the appearance of Cx. quinquefasciatus-borne diseases in Guadeloupe.
Collapse
Affiliation(s)
- Christelle Delannay
- Laboratory of Medical Entomology, Environment and Health Unit, Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - Daniella Goindin
- Laboratory of Medical Entomology, Environment and Health Unit, Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - Kevin Kellaou
- Laboratory of Medical Entomology, Environment and Health Unit, Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
| | - Cédric Ramdini
- Vector Control Service of Grande–Terre, Regional Health Agency, Airport Zone South Raizet, Les Abymes, Guadeloupe, France
| | - Joël Gustave
- Vector Control Service of Grande–Terre, Regional Health Agency, Airport Zone South Raizet, Les Abymes, Guadeloupe, France
| | - Anubis Vega-Rúa
- Laboratory of Medical Entomology, Environment and Health Unit, Institut Pasteur de la Guadeloupe, Les Abymes, Guadeloupe, France
- * E-mail:
| |
Collapse
|
33
|
Dalhoff K, Gottardi M, Rinnan Å, Rasmussen JJ, Cedergreen N. Seasonal sensitivity of Gammarus pulex towards the pyrethroid cypermethrin. CHEMOSPHERE 2018; 200:632-640. [PMID: 29510371 DOI: 10.1016/j.chemosphere.2018.02.153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/19/2018] [Accepted: 02/24/2018] [Indexed: 06/08/2023]
Abstract
The aquatic toxicity of insecticides like the pyrethroids have been discussed intensively over the recent years especially in relation to risk assessment and how seasonality may or may not affect the sensitivity of non-target organisms. To address this issue, the crustacean Gammarus pulex was collected once a month for 16 months and acclimated to 10 °C for four days before being exposed to a 90 min pulse of cypermethrin. In vitro cytochrome P450 activity, total lipid content, total protein content, and dry weight were measured in male and female gammarids from each sampling date and used along with the water temperature as variables for sensitivity prediction by Partial Least Squares (PLS) regression models. The 24 h EC50-values varied more than 30 fold across the sampling period from 0.21 ± 0.05 μg L-1 (April 2015) to 6.60 ± 3.46 μg L-1 (October 2015), indicating seasonal variances in the acute sensitivity of G. pulex towards cypermethrin. After 168 h of recovery this difference in EC50-values was reduced to seven-fold. In both male and female gammarids seasonal patterns were observed in the total lipid content and in vitro CYP P450 activity, which peaked in spring and fall, respectively. The current study shows the importance of reporting time of organism collection and experimental execution for risk assessment of pyrethroids as season is important for the acute sensitivity of G. pulex. We suggest prolonged acclimation times of sampled macroinvertebrates to constant laboratory conditions in order to even out possible seasonal differences in sensitivity.
Collapse
Affiliation(s)
- Kristoffer Dalhoff
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Michele Gottardi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Åsmund Rinnan
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Jes Jessen Rasmussen
- Department of Bioscience - Stream and Wetland Ecology, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark
| | - Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| |
Collapse
|
34
|
Elzaki MEA, Miah MA, Peng Y, Zhang H, Jiang L, Wu M, Han Z. Deltamethrin is metabolized by CYP6FU1, a cytochrome P450 associated with pyrethroid resistance, in Laodelphax striatellus. PEST MANAGEMENT SCIENCE 2018; 74:1265-1271. [PMID: 29194952 DOI: 10.1002/ps.4808] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 08/29/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Cytochrome P450s (CYPs) are known to play a major role in metabolizing a wide range compounds. CYP6FU1 has been found to be over-expressed in a deltamethrin-resistant strain of Laodelphax striatellus. This study was conducted to express CYP6FU1 in Sf9 cells as a recombinant protein, to confirm its ability to degrade deltamethrin, chlorpyrifos, imidacloprid and traditional P450 probing substrates. RESULTS Carbon monoxide difference spectrum analysis indicated that the intact CYP6FU1 protein was expressed in insect Sf9 cells. Catalytic activity tests with four traditional P450 probing substrates revealed that the expressed CYP6FU1 preferentially metabolized p-nitroanisole and ethoxyresorufin, but not ethoxycoumarin and luciferin-HEGE. The enzyme kinetic parameters were tested using p-nitroanisole. The michaelis constant (Km ) and catalytic constant (Kcat ) values were 17.51 ± 4.29 µm and 0.218 ± 0.001 pmol min-1 mg-1 protein, respectively. Furthermore, CYP6FU1 activity for degradation of insecticides was tested by measuring substrate depletion and metabolite formation. The chromatogram analysis showed obvious nicotinamide-adenine dinucleotide phosphate (NADPH)-dependent depletion of deltamethrin, and formation of the unknown metabolite. Mass spectra and the molecular docking model showed that the metabolite was 4-hydroxy-deltamethrin. However, the recombinant CYP6FU1 could not metabolize imidacloprid and chlorpyrifos. CONCLUSION These results confirmed that the over-expressed CYP6FU1 contributes to deltamethrin resistance in L. striatellus, and p-nitroanisole might be a potential diagnostic probe for deltamethrin metabolic resistance detection and monitoring. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohammed Esmail Abdalla Elzaki
- Department of Entomology, College of Plant Protection/Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Mohammad Asaduzzaman Miah
- Department of Entomology, College of Plant Protection/Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yingchuan Peng
- Department of Entomology, College of Plant Protection/Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Haomiao Zhang
- Department of Entomology, College of Plant Protection/Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Min Wu
- Department of Entomology, College of Plant Protection/Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhaojun Han
- Department of Entomology, College of Plant Protection/Key Laboratory of Monitoring and Management of Plant Diseases and Insects, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
35
|
Ma Y, Li B, Ke Y, Zhang Y, Zhang Y. Transcriptome analysis of Rana chensinensis liver under trichlorfon stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:487-493. [PMID: 28910747 DOI: 10.1016/j.ecoenv.2017.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
Trichlorfon is a selective organophosphate insecticide that is widely applied in aquaculture and agriculture for control of various parasites. However, repeated and excess applications of trichlorfon often lead to water pollution and threaten non-targeted species. Our previous studies showed that trichlorfon could cause oxidative stress, lipid peroxidation and hepatic lesions in the liver of Rana chensinensis, but the related molecular mechanisms remain unclear. To explore the interference of trichlorfon in gene transcription, the differentially expressed genes in the liver of R. chensinensis exposed to trichlorfon were characterized using the RNA-seq platform. A search of all unigenes against non-redundant protein sequence (Nr), non-redundant nucleotide (Nt), Swiss-Prot, Kyoto Encyclopaedia of Genes and Genomes (KEGG), Clusters of Orthologous Groups (COG) and Gene Ontology (GO) databases resulted in 22,888, 21,719, 20,934, 16,923, 7375 and 15,631 annotations, respectively, and provided a total of 27,781 annotated unigenes. Among the annotated unigenes, 16,923 were mapped to 257 signalling pathways. A set of 3329 differentially expressed unigenes was identified by comparison of the two groups in liver. Notably, relative expression of metabolism-related genes, including both up- and down-regulated genes, were also validated by qPCR. The present study depicts the high degree of transcriptional complexity in R. chensinensis under trichlorfon stress and provides new insights into the molecular mechanisms of organophosphate insecticide toxicology. Some of these metabolism-responsive genes could be useful for understanding the toxicological mechanism of trichlorfon on non-target aquatic organisms and will contribute to the conservation of aquatic life.
Collapse
Affiliation(s)
- Yu Ma
- College of Life Science, Shaanxi Normal University, Xi'an 710062, China; Shaanxi Microbiology Institute, Xi'an 710043, China
| | - Bo Li
- College of Life Science, Shaanxi Normal University, Xi'an 710062, China; Shaanxi Microbiology Institute, Xi'an 710043, China
| | - Yang Ke
- Shaanxi Microbiology Institute, Xi'an 710043, China
| | - Yongan Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuhui Zhang
- College of Life Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
36
|
Liu QM, Li CX, Wu Q, Shi QM, Sun AJ, Zhang HD, Guo XX, Dong YD, Xing D, Zhang YM, Han Q, Diao XP, Zhao TY. Identification of Differentially Expressed Genes In Deltamethrin-Resistant Culex pipiens quinquefasciatus. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2017; 33:324-330. [PMID: 29369035 DOI: 10.2987/17-6658.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Culex quinquefasciatus is one of China's major house-dwelling mosquito species and an important vector of filariasis and encephalitis. Chemical treatments represent one of the most successful approaches for comprehensive mosquito prevention and control. However, the widespread use of chemical pesticides has led to the occurrence and development of insecticide resistance. Therefore, in-depth studies of resistance to insecticides are of vital importance. In this study, we performed a gene expression analysis to investigate genes from Cx. quinquefasciatus that may confer pyrethroid resistance. We aimed to understand the mechanisms of Cx. quinquefasciatus resistance to pyrethroid insecticides and provide insights into insect resistance management. Using a resistance bioassay, we determined the deltamethrin LC50 values (lethal concentration required to kill 50% of the population) for Cx. quinquefasciatus larvae in the F21, F23, F24, F26, F27, and F30 generations. The 7 tested strains exhibited pesticide resistance that was 25.25 to 87.83 times higher than that of the SanYa strain. Moreover, the expression of the OBPjj7a (odorant-binding protein OBPjj7a), OBP28 (odorant-binding protein OBP28), and E2 (ubiquitin-conjugating enzyme) genes was positively correlated with deltamethrin resistance ( R2 = 0.836, P = 0.011; R2 = 0.788, P = 0.018; and R2 = 0.850, P = 0.009, respectively) in Cx. quinquefasciatus. The expression of 4 additional genes, H/ACA, S19, SAR2, and PGRP, was not correlated with deltamethrin resistance. In summary, this study identified 3 Cx. quinquefasciatus genes with potential involvement in deltamethrin resistance, and these results may provide a theoretical basis for the control of mosquito resistance and insights into resistance detection.
Collapse
|
37
|
Xu W, Liu S, Zhang Y, Gao J, Yang M, Liu X, Tao L. Cypermethrin resistance conferred by increased target insensitivity and metabolic detoxification in Culex pipiens pallens Coq. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 142:77-82. [PMID: 29107250 DOI: 10.1016/j.pestbp.2017.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 06/07/2023]
Abstract
In order to elucidate the molecular mechanisms of cypermethrin resistance in Culex pipiens pallens Coq, the susceptible strain (SS strain) and cypermethrin resistant strain (CR strain) of Cx. p. pallens were investigated in this paper. The cypermethrin resistance ratio of CR strain to SS strain was measured by biological assays method, the cDNA sequence of sodium channel was cloned and analyzed. Real-time quantitative RT-PCR was used to detect the expression levels of the detoxification-related genes across between CR strain and SS strain of Cx. p. pallens. Bioassays indicated that CR strain was 283.06 and 80.68-fold resistance to cypermethrin and permethrin as compared to the susceptible strain, respectively. The sequence variability analysis of sodium channel gene between SS strain and CR strain shows that 4 point mutations (R954Q, L1023F, S1775G and A1989E) appear on the amino acid sequence of sodium channel of CR strain. The transcriptional levels of CYP6Z10, CYP9M10, CPGSTd1 and CPGSTd2 in the resistant strain are significantly higher than it is in the susceptible. The transcripts of CYP4H34 and E4 esterase have no significant difference between the CR strain and SS strain. The results indicated that sodium channel mutations, combined with elevated levels of P450s and GSTs, are associated with cypermethrin resistance in CR strain.
Collapse
Affiliation(s)
- Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Songlin Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jufang Gao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Mingjun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao Liu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
38
|
The function of two P450s, CYP9M10 and CYP6AA7, in the permethrin resistance of Culex quinquefasciatus. Sci Rep 2017; 7:587. [PMID: 28373679 PMCID: PMC5428437 DOI: 10.1038/s41598-017-00486-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/21/2017] [Indexed: 01/15/2023] Open
Abstract
Cytochrome P450 monooxygenases play a critical role in insecticide resistance by allowing resistant insects to metabolize insecticides. Previous studies revealed that two P450 genes, CYP9M10 and CYP6AA7, are not only up-regulated but also induced in resistant Culex mosquitoes. In this study, CYP9M10 and CYP6AA7 were separately co-expressed with cytochrome P450 reductase (CPR) in insect Spodoptera frugiperda (Sf9) cells using a baculovirus-mediated expression system and the enzymatic activity and metabolic ability of CYP9M10/CPR and CYP6AA7/CPR to permethrin and its metabolites, including 3-phenoxybenzoic alcohol (PBOH) and 3-phenoxybenzaldehyde (PBCHO), characterized. PBOH and PBCHO, both of which are toxic to Culex mosquito larvae, can be further metabolized by CYP9M10/CPR and CYP6AA7/CPR, with the ultimate metabolite identified here as PBCOOH, which is considerably less toxic to mosquito larvae. A cell-based MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) cytotoxicity assay revealed that Sf9 cells expressing CYP9M10/CPR or CYP6AA7/CPR increased the cell line's tolerance to permethrin, PBOH, and PBCHO. This study confirms the important role played by CYP9M10 and CYP6AA7 in the detoxification of permethrin and its metabolites PBOH and PBCHO.
Collapse
|
39
|
Meher PK, Sahu TK, Banchariya A, Rao AR. DIRProt: a computational approach for discriminating insecticide resistant proteins from non-resistant proteins. BMC Bioinformatics 2017; 18:190. [PMID: 28340571 PMCID: PMC5364559 DOI: 10.1186/s12859-017-1587-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Insecticide resistance is a major challenge for the control program of insect pests in the fields of crop protection, human and animal health etc. Resistance to different insecticides is conferred by the proteins encoded from certain class of genes of the insects. To distinguish the insecticide resistant proteins from non-resistant proteins, no computational tool is available till date. Thus, development of such a computational tool will be helpful in predicting the insecticide resistant proteins, which can be targeted for developing appropriate insecticides. RESULTS Five different sets of feature viz., amino acid composition (AAC), di-peptide composition (DPC), pseudo amino acid composition (PAAC), composition-transition-distribution (CTD) and auto-correlation function (ACF) were used to map the protein sequences into numeric feature vectors. The encoded numeric vectors were then used as input in support vector machine (SVM) for classification of insecticide resistant and non-resistant proteins. Higher accuracies were obtained under RBF kernel than that of other kernels. Further, accuracies were observed to be higher for DPC feature set as compared to others. The proposed approach achieved an overall accuracy of >90% in discriminating resistant from non-resistant proteins. Further, the two classes of resistant proteins i.e., detoxification-based and target-based were discriminated from non-resistant proteins with >95% accuracy. Besides, >95% accuracy was also observed for discrimination of proteins involved in detoxification- and target-based resistance mechanisms. The proposed approach not only outperformed Blastp, PSI-Blast and Delta-Blast algorithms, but also achieved >92% accuracy while assessed using an independent dataset of 75 insecticide resistant proteins. CONCLUSIONS This paper presents the first computational approach for discriminating the insecticide resistant proteins from non-resistant proteins. Based on the proposed approach, an online prediction server DIRProt has also been developed for computational prediction of insecticide resistant proteins, which is accessible at http://cabgrid.res.in:8080/dirprot/ . The proposed approach is believed to supplement the efforts needed to develop dynamic insecticides in wet-lab by targeting the insecticide resistant proteins.
Collapse
Affiliation(s)
- Prabina Kumar Meher
- Division of Statistical Genetics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Tanmaya Kumar Sahu
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Anjali Banchariya
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.,Department of Bioinformatics, Janta Vedic College, Baraut, Baghpat, 250611, Uttar Pradesh, India
| | - Atmakuri Ramakrishna Rao
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| |
Collapse
|
40
|
Giraldo-Calderón GI, Zanis MJ, Hill CA. Retention of duplicated long-wavelength opsins in mosquito lineages by positive selection and differential expression. BMC Evol Biol 2017; 17:84. [PMID: 28320313 PMCID: PMC5359912 DOI: 10.1186/s12862-017-0910-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 02/09/2017] [Indexed: 12/02/2022] Open
Abstract
Background Opsins are light sensitive receptors associated with visual processes. Insects typically possess opsins that are stimulated by ultraviolet, short and long wavelength (LW) radiation. Six putative LW-sensitive opsins predicted in the yellow fever mosquito, Aedes aegypti and malaria mosquito, Anopheles gambiae, and eight in the southern house mosquito, Culex quinquefasciatus, suggest gene expansion in the Family Culicidae (mosquitoes) relative to other insects. Here we report the first detailed molecular and evolutionary analyses of LW opsins in three mosquito vectors, with a goal to understanding the molecular basis of opsin-mediated visual processes that could be exploited for mosquito control. Results Time of divergence estimates suggest that the mosquito LW opsins originated from 18 or 19 duplication events between 166.9/197.5 to 1.07/0.94 million years ago (MY) and that these likely occurred following the predicted divergence of the lineages Anophelinae and Culicinae 145–226 MY. Fitmodel analyses identified nine amino acid residues in the LW opsins that may be under positive selection. Of these, eight amino acids occur in the N and C termini and are shared among all three species, and one residue in TMIII was unique to culicine species. Alignment of 5′ non-coding regions revealed potential Conserved Non-coding Sequences (CNS) and transcription factor binding sites (TFBS) in seven pairs of LW opsin paralogs. Conclusions Our analyses suggest opsin gene duplication and residues possibly associated with spectral tuning of LW-sensitive photoreceptors. We explore two mechanisms - positive selection and differential expression mediated by regulatory units in CNS – that may have contributed to the retention of LW opsin genes in Culicinae and Anophelinae. We discuss the evolution of mosquito LW opsins in the context of major Earth events and possible adaptation of mosquitoes to LW-dominated photo environments, and implications for mosquito control strategies based on disrupting vision-mediated behaviors. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0910-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gloria I Giraldo-Calderón
- Department of Entomology, Purdue University, West Lafayette, IN, 47907-2089, USA.,Present Address: Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Michael J Zanis
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907-2089, USA.,Present Address: Department of Biology, Seattle University, Seattle, WA, 98122, USA
| | - Catherine A Hill
- Department of Entomology, Purdue University, West Lafayette, IN, 47907-2089, USA. .,Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, 47907-2089, USA.
| |
Collapse
|
41
|
Philippou D, Borzatta V, Capparella E, Moroni L, Field L, Moores G. The use of substituted alkynyl phenoxy derivatives of piperonyl butoxide to control insecticide-resistant pests. PEST MANAGEMENT SCIENCE 2016; 72:1946-1950. [PMID: 26800141 DOI: 10.1002/ps.4234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/05/2016] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Derivatives of piperonyl butoxide with alkynyl side chains were tested in vitro and in vivo against pyrethroid-resistant Meligethes aeneus and imidacloprid-resistant Myzus persicae. RESULTS Synergists with the alkynyl side chain were more effective inhibitors of P450 activity in vitro than piperonyl butoxide, and demonstrated high levels of synergism in vivo, with up to 290-fold synergism of imidacloprid against imidacloprid-resistant M. persicae. CONCLUSIONS These 'second-generation' synergists could overcome metabolic resistance in many pest species and possibly enable reduced rates of insecticide application in some cases. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Despina Philippou
- Rothamsted Research, Harpenden, Herts, UK
- Plant Protection Sector, Department of Agriculture, Nicosia, Cyprus
| | | | | | | | | | | |
Collapse
|
42
|
MiR-285 targets P450 (CYP6N23) to regulate pyrethroid resistance in Culex pipiens pallens. Parasitol Res 2016; 115:4511-4517. [DOI: 10.1007/s00436-016-5238-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022]
|
43
|
Bi R, Pan Y, Shang Q, Peng T, Yang S, Wang S, Xin X, Liu Y, Xi J. Comparative proteomic analysis in Aphis glycines Mutsumura under lambda-cyhalothrin insecticide stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2016; 19:90-96. [PMID: 27395796 DOI: 10.1016/j.cbd.2016.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 06/08/2016] [Accepted: 06/22/2016] [Indexed: 12/16/2022]
Abstract
Lambda-cyhalothrin is now widely used in China to control the soybean aphid Aphis glycines. To dissect the resistance mechanism, a laboratory-selected resistant soybean aphid strain (CRR) was established with a 43.42-fold resistance ratio to λ-cyhalothrin than the susceptible strain (CSS) in adult aphids. In this study, a comparative proteomic analysis between the CRR and CSS strains revealed important differences between the susceptible and resistant strains of soybean aphids for λ-cyhalothrin. Approximately 493 protein spots were detected in two-dimensional polyacrylamide gel electrophoresis (2-DE). Thirty-six protein spots displayed differential expression of >2-fold in the CRR strain compared to the CSS strain. Out of these 36 protein spots, 21 had elevated and 15 had decreased expression. Twenty-four differentially expressed proteins were identified by MALDI TOF MS/MS and categorized into the functional groups cytoskeleton-related protein, carbohydrate and energy metabolism, protein folding, antioxidant system, and nucleotide and amino acid metabolism. Function analysis showed that cytoskeleton-related proteins and energy metabolism proteins have been associated with the λ-cyhalothrin resistance of A. glycines. The differential expression of λ-cyhalothrin responsive proteins reflected the overall change in cellular structure and metabolism after insecticide treatment in aphids. In summary, our studies improve understanding of the molecular mechanism resistance of soybean aphid to lambda-cyhalothrin, which will facilitate the development of rational approaches to improve the management of this pest and to improve the yield of soybean.
Collapse
Affiliation(s)
- Rui Bi
- College of Plant Science, Jilin University, ChangChun 130062, PR China; College of Agronomy, Jilin Agricultural University, ChangChun 130118, PR China
| | - Yiou Pan
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Qingli Shang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Tianfei Peng
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Shuang Yang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Shang Wang
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Xuecheng Xin
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Yan Liu
- College of Plant Science, Jilin University, ChangChun 130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, ChangChun 130062, PR China.
| |
Collapse
|
44
|
Zuo Y, Peng X, Wang K, Lin F, Li Y, Chen M. Expression patterns, mutation detection and RNA interference of Rhopalosiphum padi voltage-gated sodium channel genes. Sci Rep 2016; 6:30166. [PMID: 27439594 PMCID: PMC4954994 DOI: 10.1038/srep30166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/28/2016] [Indexed: 12/04/2022] Open
Abstract
The voltage-gated sodium channel (VGSC) is the target of sodium-channel-blocking insecticides. Traditionally, animals were thought to have only one VGSC gene comprising a α-subunit with four homologous domains (DI–DIV). The present study showed that Rhopalosiphum padi, an economically important crop pest, owned a unique heterodimeric VGSC (H1 and H2 subunits) encoded by two genes (Rpvgsc1 and Rpvgsc2), which is unusual in insects and other animals. The open reading frame (ORF) of Rpvgsc1 consisted 1150 amino acids, and the ORF of Rpvgsc2 had 957 amino acids. Rpvgsc1 showed 64.1% amino acid identity to DI–DII of Drosophila melanogaster VGSC and Rpvgsc2 showed 64.0% amino acid identity to DIII–DIV of D. melanogaster VGSC. A M918L mutation previously reported in pyrethroids-resistant strains of other insects was found in the IIS4-S6 region of R. padi field sample. The two R. padi VGSC genes were expressed at all developmental stages and showed similar expression patterns after treatment with beta-cypermethrin. Knockdown of Rpvgsc1 or Rpvgsc2 caused significant reduction in mortality rate of R. padi after exposure to beta-cypermethrin. These findings suggest that the two R. padi VGSC genes are both functional genes.
Collapse
Affiliation(s)
- Yayun Zuo
- College of Plant Protection, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xiong Peng
- College of Plant Protection, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Kang Wang
- College of Plant Protection, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Fangfei Lin
- College of Plant Protection, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Yuting Li
- College of Plant Protection, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Maohua Chen
- College of Plant Protection, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| |
Collapse
|
45
|
Testing the causality between CYP9M10 and pyrethroid resistance using the TALEN and CRISPR/Cas9 technologies. Sci Rep 2016; 6:24652. [PMID: 27095599 PMCID: PMC4837413 DOI: 10.1038/srep24652] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/04/2016] [Indexed: 01/07/2023] Open
Abstract
Recently-emerging genome editing technologies have enabled targeted gene knockout experiments even in non-model insect species. For studies on insecticide resistance, genome editing technologies offer some advantages over the conventional reverse genetic technique, RNA interference, for testing causal relationships between genes of detoxifying enzymes and resistance phenotypes. There were relatively abundant evidences indicating that the overexpression of a cytochrome P450 gene CYP9M10 confers strong pyrethroid resistance in larvae of the southern house mosquito Culex quinquefasciatus. However, reverse genetic verification has not yet been obtained because of the technical difficulty of microinjection into larvae. Here, we tested two genome editing technologies, transcription activator-like effector nucleases (TALEN)s and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), to disrupt CYP9M10 in a resistant strain of C. quinquefasciatus. Additionally, we developed a novel, effective approach to construct a TALE using the chemical cleavage of phosphorothioate inter-nucleotide linkages in the level 1 assembly. Both TALEN and CRISPR/Cas9 induced frame-shifting mutations in one or all copies of CYP9M10 in a pyrethroid-resistant strain. A line fixed with a completely disrupted CYP9M10 haplotype showed more than 100-fold reduction in pyrethroid resistance in the larval stage.
Collapse
|
46
|
Sayono S, Hidayati APN, Fahri S, Sumanto D, Dharmana E, Hadisaputro S, Asih PBS, Syafruddin D. Distribution of Voltage-Gated Sodium Channel (Nav) Alleles among the Aedes aegypti Populations In Central Java Province and Its Association with Resistance to Pyrethroid Insecticides. PLoS One 2016; 11:e0150577. [PMID: 26939002 PMCID: PMC4777534 DOI: 10.1371/journal.pone.0150577] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 02/17/2016] [Indexed: 11/19/2022] Open
Abstract
The emergence of insecticide resistant Aedes aegypti mosquitoes has hampered dengue control efforts. WHO susceptibility tests, using several pyrethroid compounds, were conducted on Ae. aegypti larvae that were collected and raised to adulthood from Semarang, Surakarta, Kudus and Jepara in Java. The AaNaV gene fragment encompassing kdr polymorphic sites from both susceptible and resistant mosquitoes was amplified, and polymorphisms were associated with the resistant phenotype. The insecticide susceptibility tests demonstrated Ae, aegypti resistance to the pyrethroids, with mortality rates ranging from 1.6%–15.2%. Three non-synonymous polymorphisms (S989P, V1016G and F1534C) and one synonymous polymorphism (codon 982) were detected in the AaNaV gene. Eight AaNaV alleles were observed in specimens from Central Java. Allele 3 (SGF) and allele 7 (PGF) represent the most common alleles found and demonstrated strong associations with resistance to pyrethroids (OR = 2.75, CI: 0.97–7.8 and OR = 7.37, CI: 2.4–22.5, respectively). This is the first report of 8 Ae. aegypti AaNaV alleles, and it indicates the development of resistance in Ae. aegypti in response to pyrethroid insecticide-based selective pressure. These findings strongly suggest the need for an appropriate integrated use of insecticides in the region. The 989P, 1016G and 1534C polymorphisms in the AaNaV gene are potentially valuable molecular markers for pyrethroid insecticide resistance monitoring.
Collapse
Affiliation(s)
- Sayono Sayono
- University of Muhammadiyah Semarang, Semarang, Indonesia
- Graduate School in Medicine and Health, Faculty of Medicine, University of Diponegoro, Semarang, Indonesia
- Eijkman Institute for Molecular Biology, Ministry of Research and Technology of the Republic of Indonesia, Jakarta, Indonesia
| | - Anggie Puspa Nur Hidayati
- Eijkman Institute for Molecular Biology, Ministry of Research and Technology of the Republic of Indonesia, Jakarta, Indonesia
| | - Sukmal Fahri
- Eijkman Institute for Molecular Biology, Ministry of Research and Technology of the Republic of Indonesia, Jakarta, Indonesia
- Health Polytechnic, Jambi Provincial Health Office, Ministry of Health of the Republic of Indonesia, Jambi, Indonesia
| | - Didik Sumanto
- University of Muhammadiyah Semarang, Semarang, Indonesia
| | - Edi Dharmana
- Graduate School in Medicine and Health, Faculty of Medicine, University of Diponegoro, Semarang, Indonesia
| | - Suharyo Hadisaputro
- Graduate School in Medicine and Health, Faculty of Medicine, University of Diponegoro, Semarang, Indonesia
| | - Puji Budi Setia Asih
- Eijkman Institute for Molecular Biology, Ministry of Research and Technology of the Republic of Indonesia, Jakarta, Indonesia
| | - Din Syafruddin
- Eijkman Institute for Molecular Biology, Ministry of Research and Technology of the Republic of Indonesia, Jakarta, Indonesia
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
- * E-mail:
| |
Collapse
|
47
|
Gottardi M, Kretschmann A, Cedergreen N. Measuring cytochrome P450 activity in aquatic invertebrates: a critical evaluation of in vitro and in vivo methods. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:419-430. [PMID: 26686507 DOI: 10.1007/s10646-015-1600-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
The first step in xenobiotic detoxification in aquatic invertebrates is mainly governed by the cytochrome P450 mixed function oxidase system. The ability to measure cytochrome P450 activity provides an important tool to understand macroinvertebrates' responses to chemical stressors. However, measurements of P450 activity in small aquatic invertebrates have had variable success and a well characterized assay is not yet available. The general lack of success has been scarcely investigated and it is therefore the focus of the present work. In particular, the suitability of the substrate selected for the assay, the sensitivity of the assay and the possible inhibition/attenuation of enzymatic activity caused by endogenous substances were investigated. 7-ethoxycoumarin-O-dealkylation activity of Daphnia magna, Chironomus riparius larvae and Hyalella azteca was assessed in vivo and in vitro and possible inhibition of enzymatic activity by macroinvertebrates homogenate was investigated. Activities of D. magna and C. riparius larvae measured in vivo were 1.37 ± 0.08 and 2.2 ± 0.2 pmol h(-1) organism(-1), respectively, while activity of H. azteca could not be detected. In vitro activity could be measured in C. riparius larvae only (500-1000 pmol h(-1) mg microsomal protein(-1)). The optimization of the in vitro assay has been especially long and resource consuming and particularly for D. magna, substances that inhibited cytochrome P450 activity seemed to be released during tissue homogenization preventing activity measurements in vitro. We therefore recommend testing the P450 inhibition potential of homogenate preparations prior to any investigation of P450 activity in vitro in macroinvertebrates.
Collapse
Affiliation(s)
- Michele Gottardi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark.
| | - Andreas Kretschmann
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
- Department of Pharmacy, Analytical Biosciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| |
Collapse
|
48
|
Singh N, Wang C, Cooper R. Posttreatment Feeding Affects Mortality of Bed Bugs (Hemiptera: Cimicidae) Exposed to Insecticides. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:273-283. [PMID: 26494709 DOI: 10.1093/jee/tov293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
Insecticide sprays and dusts are used for controlling bed bugs, Cimex lectularius L. In natural environments, bed bugs have daily access to hosts after they are exposed to insecticides. The established laboratory insecticide bioassay protocols do not provide feeding after insecticide treatments, which can result in inflated mortality compared with what would be encountered in the field. We evaluated the effect of posttreatment feeding on mortality of bed bugs treated with different insecticides. None of the insecticides tested had a significant effect on the amount of blood consumed and percent feeding. The effect of posttreatment feeding on bed bug mortality varied among different insecticides. Feeding significantly reduced mortality in bed bugs exposed to deltamethrin spray, an essential oil mixture (Bed Bug Fix) spray, and diatomaceous earth dust. Feeding increased the mean survival time for bed bugs treated with chlorfenapyr spray and a spray containing an essential oil mixture (Ecoraider), but did not affect the final mortality. First instars hatched from eggs treated with chlorfenapyr liquid spray had reduced feeding compared with nymphs hatched from nontreated eggs. Those nymphs hatched from eggs treated with chlorfenapyr liquid spray and successfully fed had reduced mortality and a higher mean survival time than those without feeding. We conclude that the availability of a bloodmeal after insecticide exposure has a significant effect on bed bug mortality. Protocols for insecticide efficacy testing should consider offering a bloodmeal to the treated bed bugs within 1 to 3 d after treatment.
Collapse
Affiliation(s)
- Narinderpal Singh
- Department of Entomology, Rutgers University, 93 Lipman Dr., New Brunswick, NJ 08901 (; ; ) and
| | - Changlu Wang
- Department of Entomology, Rutgers University, 93 Lipman Dr., New Brunswick, NJ 08901 (; ; ) and
| | - Richard Cooper
- Department of Entomology, Rutgers University, 93 Lipman Dr., New Brunswick, NJ 08901 (; ; ) and
| |
Collapse
|
49
|
Itokawa K, Komagata O, Kasai S, Tomita T. A single nucleotide change in a core promoter is involved in the progressive overexpression of the duplicated CYP9M10 haplotype lineage in Culex quinquefasciatus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 66:96-102. [PMID: 26494013 DOI: 10.1016/j.ibmb.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Although the importance of cis-acting mutations on detoxification enzyme genes for insecticide resistance is widely accepted, only a few of them have been determined as concrete mutations present in genomic DNA till date. The overexpression of a cytochrome P450 gene, CYP9M10, is associated with pyrethroid resistance in the southern house mosquito Culex quinquefasciatus. The haplotypes of CYP9M10 exhibiting overexpression (resistant haplotypes) belong to one specific phylogenetic lineage that shares high nucleotide sequence homology and the same insertion of a transposable element. Among the resistant haplotypes, allelic progression involving an additional cis-acting mutation and gene duplication evolved a CYP9M10 haplotype associated with extremely high transcription and strong pyrethroid resistance. Here we show that a single nucleotide substitution G-27A, which is located near the transcription start site of CYP9M10, is involved in the progression of the duplicated haplotype lineage. The deletion of a 7-bp AT-rich sequence that includes nucleotide -27 inhibited the initiation of transcription from the original transcriptional initiation site. The mutation was suspected to reside within a core promoter, TATA-box, of CYP9M10.
Collapse
Affiliation(s)
- Kentaro Itokawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan; Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg., 1-7-1 Otemachi, Chiyoda-ku, Tokyo, Japan
| | - Osamu Komagata
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Shinji Kasai
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Takashi Tomita
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
50
|
Kalsi M, Palli SR. Transcription factors, CncC and Maf, regulate expression of CYP6BQ genes responsible for deltamethrin resistance in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 65:47-56. [PMID: 26255690 DOI: 10.1016/j.ibmb.2015.08.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 05/24/2023]
Abstract
Insecticide resistance is a global problem that presents an ongoing challenge to control insects that destroy crops, trees and transmit diseases. Dramatic progress has been made during the last decade on identification of insecticide resistance-associated genes. In one of the most common resistance mechanisms, insects acquire resistance by increasing the levels of their detoxification enzymes especially the cytochrome P450 monooxygenases (P450's). Previous studies in our laboratory showed that the pyrethroid resistance in QTC279 strain of Tribolium castaneum is achieved through constitutive overexpression of the P450 gene CYP6BQ9 by 200-fold higher in the resistant strain as compared to that in the susceptible strain. RNAi-aided knockdown in the expression of probable genes that regulate P450 gene expression in QTC279 identified cap 'n' collar C (CncC) and muscle aponeurosis fibromatosis (Maf) family transcription factors as the key regulator of these genes, CncC and Maf regulate expression of multiple genes in the CYP6BQ cluster. Studies on the promoters of these genes using reporter assays identified binding sites that mediate CncC and Maf regulation of CYP6BQ gene expression.
Collapse
Affiliation(s)
- Megha Kalsi
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA.
| |
Collapse
|