1
|
Wu Z, Yan C, Xing K, Liu Y, Zhang C, Li H, Sun Y, Zhang J. Membrane-bound trehalase enhances cadmium tolerance by regulating cell apoptosis in Neocaridina denticulata sinensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173798. [PMID: 38844236 DOI: 10.1016/j.scitotenv.2024.173798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Trehalase gene is mainly expressed in the digestive circulatory system for regulating energy metabolism and chitin synthesis in insects, but it is significantly expressed in gill for immunomodulation in shrimp. However, its function in regulating immunity, particularly metal resistance in crustaceans has yet to be elucidated. In this study, one Tre2 gene (NdTre2) was isolated from Neocaridina denticulata sinensis. It could bind to Cd2+ and inhibit its toxicity. Spatiotemporal expression analysis showed that the expression of NdTre2 was highest in the gill and significantly reduced at 12 h after Cd2+ stimulation. The transcriptomic analysis of the gill after NdTre2 knockdown showed that the expression of genes synthetizing 20E was up-regulated and the increased 20E could further induce apoptosis by activating the intrinsic mitochondrial pathway, exogenous death receptor-ligand pathway, and MAPK pathway. In vitro, overexpressing NdTre2 enhanced the tolerance of E. coli in Cd2+ environment. In summary, these results indicate that NdTre2 plays an essential role in regulating immunity and chitin metabolism in N. denticulata sinensis.
Collapse
Affiliation(s)
- Zixuan Wu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Congcong Yan
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Kefan Xing
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Yujie Liu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Chunyu Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Huimin Li
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
2
|
Furse S, Koch H, Wright GA, Stevenson PC. Sterol and lipid metabolism in bees. Metabolomics 2023; 19:78. [PMID: 37644282 PMCID: PMC10465395 DOI: 10.1007/s11306-023-02039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Bees provide essential pollination services for many food crops and are critical in supporting wild plant diversity. However, the dietary landscape of pollen food sources for social and solitary bees has changed because of agricultural intensification and habitat loss. For this reason, understanding the basic nutrient metabolism and meeting the nutritional needs of bees is becoming an urgent requirement for agriculture and conservation. We know that pollen is the principal source of dietary fat and sterols for pollinators, but a precise understanding of what the essential nutrients are and how much is needed is not yet clear. Sterols are key for producing the hormones that control development and may be present in cell membranes, where fatty-acid-containing species are important structural and signalling molecules (phospholipids) or to supply, store and distribute energy (glycerides). AIM OF THE REVIEW In this critical review, we examine the current general understanding of sterol and lipid metabolism of social and solitary bees from a variety of literature sources and discuss implications for bee health. KEY SCIENTIFIC CONCEPTS OF REVIEW We found that while eusocial bees are resilient to some dietary variation in sterol supply the scope for this is limited. The evidence of both de novo lipogenesis and a dietary need for particular fatty acids (FAs) shows that FA metabolism in insects is analogous to mammals but with distinct features. Bees rely on their dietary intake for essential sterols and lipids in a way that is dependent upon pollen availability.
Collapse
Affiliation(s)
- Samuel Furse
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK.
| | - Hauke Koch
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK
| | | | - Philip C Stevenson
- Royal Botanic Gardens, Kew Green, Kew, Surrey, TW9 3AB, UK.
- Natural Resources Institute, University of Greenwich, Chatham, Kent, ME4 4TB, UK.
| |
Collapse
|
3
|
Iino S, Oya S, Kakutani T, Kohno H, Kubo T. Identification of ecdysone receptor target genes in the worker honey bee brains during foraging behavior. Sci Rep 2023; 13:10491. [PMID: 37380789 DOI: 10.1038/s41598-023-37001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Ecdysone signaling plays central roles in morphogenesis and female ovarian development in holometabolous insects. In the European honey bee (Apis mellifera L.), however, ecdysone receptor (EcR) is expressed in the brains of adult workers, which have already undergone metamorphosis and are sterile with shrunken ovaries, during foraging behavior. Aiming at unveiling the significance of EcR signaling in the worker brain, we performed chromatin-immunoprecipitation sequencing of EcR to search for its target genes using the brains of nurse bees and foragers. The majority of the EcR targets were common between the nurse bee and forager brains and some of them were known ecdysone signaling-related genes. RNA-sequencing analysis revealed that some EcR target genes were upregulated in forager brains during foraging behavior and some were implicated in the repression of metabolic processes. Single-cell RNA-sequencing analysis revealed that EcR and its target genes were expressed mostly in neurons and partly in glial cells in the optic lobes of the forager brain. These findings suggest that in addition to its role during development, EcR transcriptionally represses metabolic processes during foraging behavior in the adult worker honey bee brain.
Collapse
Affiliation(s)
- Shiori Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuji Kakutani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki Kohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
4
|
Chen X, Wang D, An J. Circular RNA ame_circ_2015 Function as microRNA Sponges in Regulating Egg-Laying of Honeybees ( Apis mellifera). LIFE (BASEL, SWITZERLAND) 2023; 13:life13010161. [PMID: 36676110 PMCID: PMC9865145 DOI: 10.3390/life13010161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Honeybees (Apis mellifera) are critical to maintaining ecological balance and are important pollinators. The oviposition behavior in honeybees is important and complex. Circular RNAs (circRNAs) are found to form circRNA-miRNA crosstalk and play important roles in reproduction processes. Here, dual luciferase reporter was used to confirm the crosstalk between ame_circ_2015 and ame_miR-14-3p. Functional experiments in vitro and in vivo were performed to investigate the biological functions of ame_circ_2015 in egg-laying of queens. The results showed that ame_circ_2015 directly target ame_miR-14-3p, and the expression of ame_circ_2015 was negatively correlated with ame_miR-14-3p expression. Overexpression results showed that ame_circ_2015 promoted the number of eggs laid and knockdown of ame_circ_2015 suppressed the number of eggs laid. It demonstrates that up-regulated ame_circ_2015 promotes the number of eggs laid by sponging ame_miR-14-3p. The study will provide information towards a better understanding of circRNA-miRNA crosstalk in egg-laying in honeybees.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-1013426240519
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiandong An
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Shahzad MF, Idrees A, Afzal A, Iqbal J, Qadir ZA, Khan AA, Ullah A, Li J. RNAi-Mediated Silencing of Putative Halloween Gene Phantom Affects the Performance of Rice Striped Stem Borer, Chilo suppressalis. INSECTS 2022; 13:731. [PMID: 36005356 PMCID: PMC9409148 DOI: 10.3390/insects13080731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The physiological and biochemical characterization of the "Halloween" genes has fundamental importance in the biosynthesis pathway of ecdysteroids. These genes were found to catalyze the final phases of ecdysteroid biosynthesis from dietary cholesterol to the molting hormone 20-hydroxyecdysone. We report the characterization of the Cs-Phm in a major insect pest in agriculture, the rice striped stem borer, Chilo suppressalis (C. suppressalis). A full-length transcript of Cs-Phm was amplified with an open reading frame (ORF) of 478 amino acids through 5' and 3' RACE. Cs-Phm shows five insect-conserved P450 motifs: Helix-C, Helix-I, Helix-K, PERF, and heme-binding motifs. Phylogenetic analysis clearly shows high similarity to Lepidoptera and evolutionary conservation in insects. The relative spatial and temporal transcript profile shows that Cs-Phm is highly expressed in the prothoracic glands and appears throughout the larval development, but with low expression at the start of the larval instar. It seems to peak in 3-4 days and decreases again before the larvae molt. Double-stranded RNA (dsRNA) injection of Cs-Phm at the larval stage efficiently knocked down the target gene and decreased its expression level. The dsRNA-treated group showed significantly decreased ecdysteroid titers, which leads to delayed larval development and higher larval mortality. Negative effects of larval development were rescued by treating 20E in the dsRNA-treated group. Thus, in conclusion, our results suggest that Cs-Phm is functionally conserved in C. suppressalis and encodes functional CYP that contributes to the biogenesis of 20E.
Collapse
Affiliation(s)
- Muhammad Faisal Shahzad
- Department of Entomology, Faculty of Agriculture, Gomal University, Dera Ismail Khan 29220, Pakistan
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Atif Idrees
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Ayesha Afzal
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1-Km Defense Road, Lahore 54000, Pakistan
| | - Jamshaid Iqbal
- Department of Entomology, Faculty of Agriculture, Gomal University, Dera Ismail Khan 29220, Pakistan
| | - Ziyad Abdul Qadir
- Honeybee Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716, USA
| | - Azhar Abbas Khan
- College of Agriculture, Bahadur Sub Campus Layyah, Bahauddin Zakariya University, Multan 31200, Pakistan
| | - Ayat Ullah
- Department of Entomology, Faculty of Agriculture, Gomal University, Dera Ismail Khan 29220, Pakistan
| | - Jun Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| |
Collapse
|
6
|
Azevedo P, Butolo NP, de Alencar LD, Lima HMS, Sales VR, Malaspina O, Nocelli RCF. Optimization of in vitro culture of honeybee nervous tissue for pesticide risk assessment. Toxicol In Vitro 2022; 84:105437. [PMID: 35839977 DOI: 10.1016/j.tiv.2022.105437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 11/19/2022]
Abstract
The most used pesticides have neurotoxic action on the neurotransmitter system of target and non-targeted insects, such as honeybees. However, honeybees have foremost importance worldwide, which has encouraged the development of tools to evaluate the action of specific pesticide molecules on their nervous system, providing accurate data on damage to their brain. In this sense, our study aimed to optimize in vitro honeybee nervous tissue culture to assess pesticide risks. To this end, six forager honeybee brains were dissected and transferred to different combinations of Leibovitz-15 (L-15) culture medium supplemented with Fetal Bovine Serum (FBS), Hank's Balanced Salt Solution (HBSS), and Insect Medium Supplement (IMS). Nervous tissues were collected after different incubation times (1, 6, 12, and 24 h) for morphology and Kenyon cell analyses. Our results showed that L-15 medium supplemented with HBSS and with HBSS plus FBS were the best media for culturing honey nervous tissue, as they resulted in less tissue spacing and cell disarrangement. Therefore, they may be assessed in future ecotoxicological tests.
Collapse
Affiliation(s)
- Patricia Azevedo
- Universidade Estadual Paulista 'Júlio de Mesquita Filho'(UNESP), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Programa de Pós-Graduação em Biologia Celular e Molecular, campus Rio Claro, SP, Brazil.
| | - Nicole Pavan Butolo
- Universidade Estadual Paulista 'Júlio de Mesquita Filho'(UNESP), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Programa de Pós-Graduação em Biologia Celular e Molecular, campus Rio Claro, SP, Brazil
| | - Luciano Delmondes de Alencar
- Universidade Estadual de Campinas (UNICAMP), Instituto de Biologia, Grupo de Genética e Genômica da Conservação, Programa de Pós-Graduação em Genética e Biologia Molecular, Campinas, SP, Brazil
| | - Hellen Maria Soares Lima
- Universidade Estadual Paulista 'Júlio de Mesquita Filho'(UNESP), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Programa de Pós-Graduação em Biologia Celular e Molecular, campus Rio Claro, SP, Brazil
| | - Victor Ribeiro Sales
- Universidade Federal de São Carlos, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Grupo de Abelhas e Serviços Ambientais, Programa de Pós-Graduação em Agricultura e Ambiente, campus Araras, SP, Brazil
| | - Osmar Malaspina
- Universidade Estadual Paulista 'Júlio de Mesquita Filho'(UNESP), Departamento de Biologia, Centro de Estudos de Insetos Sociais (CEIS), Programa de Pós-Graduação em Biologia Celular e Molecular, campus Rio Claro, SP, Brazil
| | - Roberta Cornélio Ferreira Nocelli
- Universidade Federal de São Carlos, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Grupo de Abelhas e Serviços Ambientais, Programa de Pós-Graduação em Agricultura e Ambiente, campus Araras, SP, Brazil
| |
Collapse
|
7
|
Yuan H, Qiao H, Fu Y, Fu H, Zhang W, Jin S, Gong Y, Jiang S, Xiong Y, Hu Y, Wu Y. RNA interference shows that Spook, the precursor gene of 20-hydroxyecdysone (20E), regulates the molting of Macrobrachium nipponense. J Steroid Biochem Mol Biol 2021; 213:105976. [PMID: 34418528 DOI: 10.1016/j.jsbmb.2021.105976] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/02/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
The aim of this study was to explore the function of the Mn-Spook gene, which was found in the ovary transcriptome of the Oriental river prawn (Macrobrachium nipponense). The Spook gene, which is the precursor gene of 20-hydroxyecdysone (20E), plays an important role in the process of molting in many arthropods, but its function in M. nipponense is unclear. We cloned the full-length Mn-Spook gene from the ovary of M. nipponense and found that it had the same conserved domains as the P450 gene of the Halloween family of genes. The Mn-Spook gene was highly expressed in ovary and gill tissue during the breeding period. During ovarian development, Mn-spook gene expression was highest at the nearly-ripe stage, and it also was highly expressed in the zoea developmental stage. Cellular localization analysis showed that Mn-Spook signals accumulated in the cytoplasmic membrane and nucleus of oocytes. Finally, we used RNA interference to evaluate the function of the Mn-Spook gene. Compared with the control group, in vivo injection of Mn-Spook dsRNA effectively downregulated the expression of Mn-Spook and the content of 20E. The molting frequency of M. nipponense in the experimental group also was significantly inhibited. These results demonstrated that the Mn-Spook gene played an important role in the molting process of M. nipponense.
Collapse
Affiliation(s)
- Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yin Fu
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yuning Hu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
8
|
The microRNA miR-14 Regulates Egg-Laying by Targeting EcR in Honeybees ( Apis mellifera). INSECTS 2021; 12:insects12040351. [PMID: 33919981 PMCID: PMC8071020 DOI: 10.3390/insects12040351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022]
Abstract
Honeybees (Apis mellifera) are important pollinators and are commonly used for honey production. The oviposition behavior in honeybees is complex and errors in oviposition could affect the development of the bee colony. Recent studies reported that RNA-RNA cross-talk played a critical role in several biological processes, including reproduction. Ecdysone receptor (EcR) and miR-14 were previously reported to play important roles in egg-laying. Moreover, EcR was predicted to be the target gene of miR-14 and may form miR-14-EcR cross-talk. In this study, knocking down and overexpression of miR-14 and EcR in queen model were implemented. The effect of RNA expression of miR-14 and EcR on the number of eggs laid by honeybee queens were analyzed. Further, luciferase assay was used to confirm the target relation between miR-14 and 3'UTR of EcR. The results showed that the expression of miR-14 and EcR was associated with the number of eggs laid by queens. In specific, inhibition of miR-14 expression enhanced the number of eggs laid, while overexpression of EcR enhanced the number of eggs laid. Lastly, we determined that miR-14 directly targets the mRNA of EcR. These findings suggest that the cross-talk of miR-14-EcR plays an important role in the number of eggs laid by honeybee queens.
Collapse
|
9
|
Galbraith DA, Ma R, Grozinger CM. Tissue-specific transcription patterns support the kinship theory of intragenomic conflict in honey bees (Apis mellifera). Mol Ecol 2021; 30:1029-1041. [PMID: 33326651 DOI: 10.1111/mec.15778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 12/20/2022]
Abstract
Kin selection may act differently on genes inherited from parents (matrigenes and patrigenes), resulting in intragenomic conflict. This conflict can be observed as differential expression of matrigenes and patrigenes, or parent-specific gene expression (PSGE). In honey bees (Apis mellifera), intragenomic conflict is hypothesized to occur in multiple social contexts. Previously, we found that patrigene-biased expression in reproductive tissues was associated with increased reproductive potential in worker honey bees, consistent with the prediction that patrigenes are selected to promote selfish behaviour in this context. Here, we examined brain gene expression patterns to determine if PSGE is also found in other tissues. As before, the number of transcripts showing patrigene expression bias was significantly greater in the brains of reproductive vs. sterile workers, while the number of matrigene-biased transcripts was not significantly different. Twelve transcripts out of the 374 showing PSGE in either tissue showed PSGE in both brain and reproductive tissues; this overlap was significantly greater than expected by chance. However, the majority of transcripts show PSGE only in one tissue, suggesting the epigenetic mechanisms mediating PSGE exhibit plasticity between tissues. There was no significant overlap between transcripts that showed PSGE and transcripts that were significantly differentially expressed. Weighted gene correlation network analysis identified modules which were significantly enriched in both types of transcripts, suggesting that these genes may influence each other through gene networks. Our results provide further support for the kin selection theory of intragenomic conflict, and provide valuable insights into the mechanisms which may mediate this process.
Collapse
Affiliation(s)
- David A Galbraith
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Rong Ma
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
10
|
Aurori CM, Giurgiu A, Conlon BH, Kastally C, Dezmirean DS, Routtu J, Aurori A. Juvenile hormone pathway in honey bee larvae: A source of possible signal molecules for the reproductive behavior of Varroa destructor. Ecol Evol 2021; 11:1057-1068. [PMID: 33520186 PMCID: PMC7820148 DOI: 10.1002/ece3.7125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022] Open
Abstract
The parasitic mite Varroa destructor devastates honey bee (Apis mellifera) colonies around the world. Entering a brood cell shortly before capping, the Varroa mother feeds on the honey bee larvae. The hormones 20-hydroxyecdysone (20E) and juvenile hormone (JH), acquired from the host, have been considered to play a key role in initiating Varroa's reproductive cycle. This study focuses on differential expression of the genes involved in the biosynthesis of JH and ecdysone at six time points during the first 30 hr after cell capping in both drone and worker larvae of A. mellifera. This time frame, covering the conclusion of the honey bee brood cell invasion and the start of Varroa's ovogenesis, is critical to the successful initiation of a reproductive cycle. Our findings support a later activation of the ecdysteroid cascade in honey bee drones compared to worker larvae, which could account for the increased egg production of Varroa in A. mellifera drone cells. The JH pathway was generally downregulated confirming its activity is antagonistic to the ecdysteroid pathway during the larva development. Nevertheless, the genes involved in JH synthesis revealed an increased expression in drones. The upregulation of jhamt gene involved in methyl farnesoate (MF) synthesis came into attention since the MF is not only a precursor of JH but it is also an insect pheromone in its own right as well as JH-like hormone in Acari. This could indicate a possible kairomone effect of MF for attracting the mites into the drone brood cells, along with its potential involvement in ovogenesis after the cell capping, stimulating Varroa's initiation of egg laying.
Collapse
Affiliation(s)
- Cristian M. Aurori
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Alexandru‐Ioan Giurgiu
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Benjamin H. Conlon
- Molecular EcologyInstitute of Biology/ZoologyMartin‐Luther‐University Halle‐WittenbergHalleGermany
- Section for Ecology and EvolutionDepartment of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Chedly Kastally
- Molecular EcologyInstitute of Biology/ZoologyMartin‐Luther‐University Halle‐WittenbergHalleGermany
- Department of Ecology and Genetics and Biocenter OuluUniversity of OuluOuluFinland
| | - Daniel S. Dezmirean
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| | - Jarkko Routtu
- Molecular EcologyInstitute of Biology/ZoologyMartin‐Luther‐University Halle‐WittenbergHalleGermany
| | - Adriana Aurori
- Faculty of Animal Science and BiotechnologyUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
- Advanced Horticultural Research Institute of TransylvaniaUniversity of Agriculture Sciences and Veterinary MedicineCluj‐NapocaRomania
| |
Collapse
|
11
|
Kablau A, Eckert JH, Pistorius J, Sharbati S, Einspanier R. Effects of selected insecticidal substances on mRNA transcriptome in larvae of Apis mellifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104703. [PMID: 32980071 DOI: 10.1016/j.pestbp.2020.104703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
For the last decade, scientists have reported a loss of honeybee colonies. Multiple factors like parasites, pathogens and pesticides are dealt as possible drivers of honeybee losses. In particular, insecticides are considered as a major factor of pollinator poisoning. We applied sublethal concentrations of four insecticidal substances to honeybee larval food and analyzed the effects on transcriptome. The aim was to identify candidate genes indicating early negative impacts after application of insecticidal substances. Honeybee larvae were kept in-vitro under hive conditions (34-35 °C) and fed with dimethoate, fenoxycarb, chlorantraniliprole and flupyradifurone in sublethal concentrations between day 3-6 after grafting. Larvae at day 4, 6 and 8 were sampled and their transcriptome analyzed. By use of a RT-qPCR array differences in gene expression of selected gene families (immune system, development detoxification) were measured. Targets mainly involved in development, energy metabolism and the immune system were significantly affected by the insecticidal substances tested, selectively inducing genes of the detoxification system, immune response and nutritional stress.
Collapse
Affiliation(s)
- Arne Kablau
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Germany
| | - Jakob H Eckert
- Julius Kühn-Institute, Institute for Bee Protection, Braunschweig, Germany
| | - Jens Pistorius
- Julius Kühn-Institute, Institute for Bee Protection, Braunschweig, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Germany.
| |
Collapse
|
12
|
Jing TX, Wang DF, Ma YP, Zeng LL, Meng LW, Zhang Q, Dou W, Wang JJ. Genome-wide and expression-profiling analyses of the cytochrome P450 genes in Bactrocera dorsalis (Hendel) and screening of candidate P450 genes associated with malathion resistance. PEST MANAGEMENT SCIENCE 2020; 76:2932-2943. [PMID: 32400962 DOI: 10.1002/ps.5891] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/05/2020] [Accepted: 05/13/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Bactrocera dorsalis (Hendel) is a notorious agricultural pest worldwide, and its resistance to insecticides is a major obstacle in successful control. Cytochrome P450s (P450s) are major metabolic enzymes associated with insecticide resistance. The genome of B. dorsalis was sequenced recently, allowing an integrated genome-wide analysis of P450 genes (P450s) and the analysis of correlations between these genes and insecticide resistance in this pest. RESULTS Totally, 101 P450s were identified in the B. dorsalis genome and classified into four clans, 25 families and 57 subfamilies. Quantitative reverse transcription polymerase chain reaction results showed that most of these genes were highly expressed in adults (46) and in metabolic tissues, including the fatbody (63), midgut (61) and Malphagian tubules (66). In a malathion-resistant strain, 13 and 9 genes were significantly upregulated and downregulated, respectively, compared with a susceptible strain, and these genes were screened as candidate genes associated with malathion resistance. CONCLUSION This study provides useful information for understanding the evolution and potential functions of P450s in B. dorsalis, and the results lay the foundation for further studies on the correlations between P450s and malathion resistance in B. dorsalis. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tian-Xing Jing
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Di-Fei Wang
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yun-Peng Ma
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Li-Li Zeng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Corby-Harris V, Snyder L, Meador C. Fat body lipolysis connects poor nutrition to hypopharyngeal gland degradation in Apis mellifera. JOURNAL OF INSECT PHYSIOLOGY 2019; 116:1-9. [PMID: 30953617 DOI: 10.1016/j.jinsphys.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The hypopharyngeal glands (HGs) of honey bee nurse workers secrete the major protein fraction of jelly, a protein and lipid rich substance fed to developing larvae, other worker bees, and queens. A hallmark of poorly nourished nurses is their small HGs, which actively degrade due to hormone-induced autophagy. To better connect nutritional stress with HG degradation, we looked to honey bees and other insect systems, where nutrient stress is often accompanied by fat body degradation. The fat body contains stored lipids that are likely a substrate for ecdysteroid synthesis, so we tested whether starvation caused increased fat body lipolysis. Ecdysteroid signaling and response pathways and IIS/TOR are tied to nutrient-dependent autophagy in honey bees and other insects, and so we also tested whether and where genes in these pathways were differentially regulated in the head and fat body. Last, we injected nurse-aged bees with the honey bee ecdysteroid makisterone A to determine whether this hormone influenced HG size and autophagy. We find that starved nurse aged bees exhibited increased fat body lipolysis and increased expression of ecdysteroid production and response genes in the head. Genes in the IIS/TOR pathway were not impacted by starvation in either the head or fat body. Additionally, bees injected with makisterone A had smaller HGs and increased expression of autophagy genes. These data support the hypothesis that nutritional stress induces fat body lipolysis, which may liberate the sterols important for ecdysteroid production, and that increased ecdysteroid levels induce autophagic HG degradation.
Collapse
Affiliation(s)
| | - Lucy Snyder
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85718, USA
| | - Charlotte Meador
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, AZ 85718, USA
| |
Collapse
|
14
|
Li B, Li M, Wu J, Xu X. Transcriptomic analysis of differentially expressed genes in the oriental armyworm Mythimna separata Walker at different temperatures. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:186-195. [PMID: 30889494 DOI: 10.1016/j.cbd.2019.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 11/19/2022]
Abstract
The oriental armyworm Mythimna separata Walker is a serious migratory and polyphagous pest that damages major crops and some pastures from the family Gramineae. Temperature is a crucial abiotic factor that affects its survival, development and reproduction, but the thermal responses of this moth at the molecular level are largely unknown. In this research, we sequenced the transcriptomes of oriental armyworms that were reared at three temperatures (20 °C, 25 °C and 30 °C) using an Illumina high-throughput RNA-sequencing (RNA-seq) method. We obtained 54.0 Gb of clean reads and 113,396 transcripts. From a total of 46,681 unigenes identified, 22,911 were annotated to the non-redundant (NR) database. We identified 333 downregulated and 1588 upregulated genes in 20 °C versus 25 °C, and 1096 downregulated and 875 upregulated genes at 30 °C versus 25 °C by differential expression of genes (DEGs). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analyses revealed several functional terms related to carbohydrate metabolism, energy metabolism, and xenobiotics metabolism. DEGs involved in glycolysis, the citrate cycle, oxidative phosphorylation, and the composition of myofilaments were significantly downregulated, while most heat shock protein genes (HSPs) and genes in the ubiquitin-mediated proteasome pathway were upregulated at 30 °C. Many cytochrome P450 monooxygenase genes (CYPs) in clan 3 were upregulated at 20 °C, while two genes involved in ecdysteroid biosynthesis, CYP302A1 and CYP315A1, were upregulated at 30 °C. These data may improve the understanding of the complex molecular mechanisms involved in the thermal responses of M. separata.
Collapse
Affiliation(s)
- Boliao Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, 712100 Yangling, Shaanxi, China
| | - Meimei Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, 712100 Yangling, Shaanxi, China
| | - Junxiang Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, 712100 Yangling, Shaanxi, China.
| | - Xiangli Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, No. 3 Taicheng Road, 712100 Yangling, Shaanxi, China.
| |
Collapse
|
15
|
Huang K, Chen W, Zhu F, Li PWL, Kapahi P, Bai H. RiboTag translatomic profiling of Drosophila oenocytes under aging and induced oxidative stress. BMC Genomics 2019; 20:50. [PMID: 30651069 PMCID: PMC6335716 DOI: 10.1186/s12864-018-5404-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Aging is accompanied with loss of tissue homeostasis and accumulation of cellular damages. As one of the important metabolic centers, liver shows age-related dysregulation of lipid metabolism, impaired detoxification pathway, increased inflammation and oxidative stress response. However, the mechanisms for these age-related changes still remain unclear. In the fruit fly, Drosophila melanogaster, liver-like functions are controlled by two distinct tissues, fat body and oenocytes. Compared to fat body, little is known about how oenocytes age and what are their roles in aging regulation. To characterize age- and stress-regulated gene expression in oenocytes, we performed cell-type-specific ribosome profiling (RiboTag) to examine the impacts of aging and oxidative stress on oenocyte translatome in Drosophila. RESULTS We show that aging and oxidant paraquat significantly increased the levels of reactive oxygen species (ROS) in adult oenocytes of Drosophila, and aged oenocytes exhibited reduced sensitivity to paraquat treatment. Through RiboTag sequencing, we identified 3324 and 949 differentially expressed genes in oenocytes under aging and paraquat treatment, respectively. Aging and paraquat exhibit both shared and distinct regulations on oenocyte translatome. Among all age-regulated genes, oxidative phosphorylation, ribosome, proteasome, fatty acid metabolism, and cytochrome P450 pathways were down-regulated, whereas DNA replication and immune response pathways were up-regulated. In addition, most of the peroxisomal genes were down-regulated in aged oenocytes, including genes involved in peroxisomal biogenesis factors and fatty acid beta-oxidation. Many age-related mRNA translational changes in oenocytes are similar to aged mammalian liver, such as up-regulation of innate immune response and Ras/MAPK signaling pathway and down-regulation of peroxisome and fatty acid metabolism. Furthermore, oenocytes highly expressed genes involving in liver-like processes (e.g., ketogenesis). CONCLUSIONS Our oenocyte-specific translatome analysis identified many genes and pathways that are shared between Drosophila oenocytes and mammalian liver, highlighting the molecular and functional similarities between the two tissues. Many of these genes were altered in both oenocytes and liver during aging. Thus, our translatome analysis provide important genomic resource for future dissection of oenocyte function and its role in lipid metabolism, stress response and aging regulation.
Collapse
Affiliation(s)
- Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Wenhao Chen
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
16
|
Christen V, Kunz PY, Fent K. Endocrine disruption and chronic effects of plant protection products in bees: Can we better protect our pollinators? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1588-1601. [PMID: 30296754 DOI: 10.1016/j.envpol.2018.09.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Exposure to plant protection products (PPPs) is one of the causes for the population decline of pollinators. In addition to direct exposure, pollinators are exposed to PPPs by pollen, nectar and honey that often contain residues of multiple PPPs. While in legislation PPPs are regarded mainly for their acute toxicity in bees, other effects such as neurotoxicity, immunotoxicity, behavioural changes, stress responses and chronic effects that may harm different physiologically and ecologically relevant traits are much less or not regarded. Despite the fact that endocrine disruption by PPPs is among key effects weakening survival and thriving of populations, pollinators have been poorly investigated in this regard. Here we summarize known endocrine disruptive effects of PPPs in bees and compare them to other chronic effects. Endocrine disruption in honey bees comprise negative effects on reproductive success of queens and drones and behavioural transition of nurse bees to foragers. Among identified PPPs are insecticides, including neonicotinoids, fipronil, chlorantraniliprole and azadirachtin. So far, there exists no OECD guideline to investigate possible endocrine effects of PPPs. Admittedly, investigation of effects on reproduction success of queens and drones is rarely possible under laboratory conditions. But the behavioural transition of nurse bees to foragers could be a possible endpoint to analyse endocrine effects of PPPs under laboratory conditions. We identified some genes, including vitellogenin, which regulate this transition and which may be used as biomarkers for endocrine disruptive PPPs. We plea for a better implementation of the adverse outcome pathway concept into bee's research and propose a procedure for extending and complementing current assessments, including OECD guidelines, with additional physiological and molecular endpoints. Consequently, assessing potential endocrine disruption in pollinators should receive much more relevance.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland
| | - Petra Y Kunz
- Swiss Federal Office for the Environment, Section Biocides and Plant Protection Products, CH-3003, Bern, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092, Zürich, Switzerland.
| |
Collapse
|
17
|
He K, Sun Y, Xiao H, Ge C, Li F, Han Z. Multiple miRNAs jointly regulate the biosynthesis of ecdysteroid in the holometabolous insects, Chilo suppressalis. RNA (NEW YORK, N.Y.) 2017; 23:1817-1833. [PMID: 28860304 PMCID: PMC5689003 DOI: 10.1261/rna.061408.117] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/18/2017] [Indexed: 05/30/2023]
Abstract
The accurate rise and fall of active hormones is important for insect development. The ecdysteroids must be cleared in a timely manner. However, the mechanism of suppressing the ecdysteroid biosynthesis at the right time remains unclear. Here, we sequenced a small RNA library of Chilo suppressalis and identified 300 miRNAs in this notorious rice insect pest. Microarray analysis yielded 54 differentially expressed miRNAs during metamorphosis development. Target prediction and in vitro dual-luciferase assays confirmed that seven miRNAs (two conserved and five novel miRNAs) jointly targeted three Halloween genes in the ecdysteroid biosynthesis pathway. Overexpression of these seven miRNAs reduced the titer of 20-hydroxyecdysone (20E), induced mortality, and retarded development, which could be rescued by treatment with 20E. Comparative analysis indicated that the miRNA regulation of metamorphosis development is a conserved process but that the miRNAs involved are highly divergent. In all, we present evidence that both conserved and lineage-specific miRNAs have crucial roles in regulating development in insects by controlling ecdysteroid biosynthesis, which is important for ensuring developmental convergence and evolutionary diversity.
Collapse
Affiliation(s)
- Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yang Sun
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Huamei Xiao
- College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, China
| | - Chang Ge
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhaojun Han
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Cooperative Control of Ecdysone Biosynthesis in Drosophila by Transcription Factors Séance, Ouija Board, and Molting Defective. Genetics 2017; 208:605-622. [PMID: 29187506 PMCID: PMC5788525 DOI: 10.1534/genetics.117.300268] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ecdysteroids are steroid hormones that control many aspects of development and physiology. During larval development, ecdysone is synthesized in an endocrine organ called the prothoracic gland through a series of ecdysteroidogenic enzymes encoded by the Halloween genes. The expression of the Halloween genes is highly restricted and dynamic, indicating that their spatiotemporal regulation is mediated by their tight transcriptional control. In this study, we report that three zinc finger-associated domain (ZAD)-C2H2 zinc finger transcription factors—Séance (Séan), Ouija board (Ouib), and Molting defective (Mld)—cooperatively control ecdysone biosynthesis in the fruit fly Drosophila melanogaster. Séan and Ouib act in cooperation with Mld to positively regulate the transcription of neverland and spookier, respectively, two Halloween genes. Remarkably, loss-of-function mutations in séan, ouib, or mld can be rescued by the expression of neverland, spookier, or both, respectively. These results suggest that the three transcription factors have distinct roles in coordinating the expression of just two genes in Drosophila. Given that neverland and spookier are located in constitutive heterochromatin, Séan, Ouib, and Mld represent the first example of a transcription factor subset that regulates genes located in constitutive heterochromatin.
Collapse
|
19
|
Niu L, Ma W, Lei C, Jurat-Fuentes JL, Chen L. Herbicide and insect resistant Bt cotton pollen assessment finds no detrimental effects on adult honey bees. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:479-485. [PMID: 28688300 DOI: 10.1016/j.envpol.2017.06.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
One important concern regarding the use of transgenic cotton expressing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) is its potential detrimental effect on non-target organisms. The honey bee (Apis mellifera) is the most important pollinator species worldwide and it is directly exposed to transgenic crops by the consumption of genetically modified (GM) pollen. However, the potential effects of Bt cotton on A. mellifera remain unclear. In the present study, we assessed the effects of two Bt cotton varieties; ZMSJ expressing the Cry1Ac and Cry2Ab insecticidal proteins, and ZMKCKC producing Cry1Ac and EPSPS, on A. mellifera. Feeding on pollen from two Bt cotton varieties led to detection of low levels of Cry toxins (<10 ng/g fresh weight) in the midgut of A. mellifera adults, yet expression of detoxification genes did not change significantly compared to feeding on non-Bt cotton. Binding assays showed no Cry1Ac or Cry2Ab binding to midgut brush border membrane proteins from A. mellifera adults. Taken together, these results support minimal risk for potential negative effects on A. mellifera by exposure to Bt cotton.
Collapse
Affiliation(s)
- Lin Niu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Lizhen Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China.
| |
Collapse
|
20
|
Chen X, Ma C, Chen C, Lu Q, Shi W, Liu Z, Wang H, Guo H. Integration of lncRNA-miRNA-mRNA reveals novel insights into oviposition regulation in honey bees. PeerJ 2017; 5:e3881. [PMID: 29018616 PMCID: PMC5632538 DOI: 10.7717/peerj.3881] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/12/2017] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The honey bee (Apis mellifera) is a highly diverse species commonly used for honey production and pollination services. The oviposition of the honey bee queen affects the development and overall performance of the colony. To investigate the ovary activation and oviposition processes on a molecular level, a genome-wide analysis of lncRNAs, miRNAs and mRNA expression in the ovaries of the queens was performed to screen for differentially expressed coding and noncoding RNAs. Further analysis identified relevant candidate genes or RNAs. RESULTS The analysis of the RNA profiles in different oviposition phase of the queens revealed that 740 lncRNAs, 81 miRNAs and 5,481 mRNAs were differently expressed during the ovary activation; 88 lncRNAs, 13 miRNAs and 338 mRNAs were differently expressed during the oviposition inhibition process; and finally, 100 lncRNAs, four miRNAs and 497 mRNAs were differently expressed during the oviposition recovery process. In addition, functional annotation of differentially expressed RNAs revealed several pathways that are closely related to oviposition, including hippo, MAPK, notch, Wnt, mTOR, TGF-beta and FoxO signaling pathways. Furthermore, in the QTL region for ovary size, 73 differentially expressed genes and 14 differentially expressed lncRNAs were located, which are considered as candidate genes affecting ovary size and oviposition. Moreover, a core set of genes served as bridges among different miRNAs were identified through the integrated analysis of lncRNA-miRNA-mRNA network. CONCLUSION The observed dramatic expression changes of coding and noncoding RNAs suggest that they may play a critical role in honey bee queens' oviposition. The identified candidate genes for oviposition activation and regulation could serve as a resource for further studies of genetic markers of oviposition in honey bees.
Collapse
Affiliation(s)
- Xiao Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ce Ma
- Novogene Co., LTD, Tianjin, China
| | - Chao Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Lu
- Novogene Co., LTD, Tianjin, China
| | - Wei Shi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiguang Liu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huihua Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haikun Guo
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Van Ekert E, Wang M, Miao YG, Brent CS, Hull JJ. RNA interference-mediated knockdown of the Halloween gene Spookiest (CYP307B1) impedes adult eclosion in the western tarnished plant bug, Lygus hesperus. INSECT MOLECULAR BIOLOGY 2016; 25:550-565. [PMID: 27189651 DOI: 10.1111/imb.12242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ecdysteroids play a critical role in coordinating insect growth, development and reproduction. A suite of cytochrome P450 monooxygenases coded by what are collectively termed Halloween genes mediate ecdysteroid biosynthesis. In this study, we describe cloning and RNA interference (RNAi)-mediated knockdown of the CYP307B1 Halloween gene (Spookiest) in the western tarnished plant bug, Lygus hesperus. Transcripts for Ly. hesperus Spookiest (LhSpot) were amplified from all life stages and correlated well with timing of the pre-moult ecdysteroid pulse. In adults, LhSpot was amplified from heads of both genders as well as female reproductive tissues. Heterologous expression of a LhSpot fluorescent chimera in cultured insect cells co-localized with a fluorescent marker of the endoplasmic reticulum/secretory pathway. RNAi-mediated knockdown of LhSpot in fifth instars reduced expression of ecdysone-responsive genes E74 and E75, and prevented adult development. This developmental defect was rescued following application of exogenous 20-hydroxyecdysone but not exogenous 7-dehydrocholesterol. The unequivocal RNAi effects on Ly. hesperus development and the phenotypic rescue by 20-hydroxyecdysone are causal proof of the involvement of LhSpot in ecdysteroid biosynthesis and related developmental processes, and may provide an avenue for development of new control measures against Ly. hesperus.
Collapse
Affiliation(s)
- E Van Ekert
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - M Wang
- Zhejiang University, Hangzhou, China
| | - Y-G Miao
- Zhejiang University, Hangzhou, China
| | - C S Brent
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - J J Hull
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, AZ, USA
| |
Collapse
|
22
|
Kaneko K, Suenami S, Kubo T. Gene expression profiles and neural activities of Kenyon cell subtypes in the honeybee brain: identification of novel 'middle-type' Kenyon cells. ZOOLOGICAL LETTERS 2016; 2:14. [PMID: 27478620 PMCID: PMC4967334 DOI: 10.1186/s40851-016-0051-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/18/2016] [Indexed: 05/23/2023]
Abstract
In the honeybee (Apis mellifera L.), it has long been thought that the mushroom bodies, a higher-order center in the insect brain, comprise three distinct subtypes of intrinsic neurons called Kenyon cells. In class-I large-type Kenyon cells and class-I small-type Kenyon cells, the somata are localized at the edges and in the inner core of the mushroom body calyces, respectively. In class-II Kenyon cells, the somata are localized at the outer surface of the mushroom body calyces. The gene expression profiles of the large- and small-type Kenyon cells are distinct, suggesting that each exhibits distinct cellular characteristics. We recently identified a novel gene, mKast (middle-type Kenyon cell-preferential arrestin-related gene-1), which has a distinctive expression pattern in the Kenyon cells. Detailed expression analyses of mKast led to the discovery of novel 'middle-type' Kenyon cells characterized by their preferential mKast-expression in the mushroom bodies. The somata of the middle-type Kenyon cells are localized between the large- and small-type Kenyon cells, and the size of the middle-type Kenyon cell somata is intermediate between that of large- and small-type Kenyon cells. Middle-type Kenyon cells appear to differentiate from the large- and/or small-type Kenyon cell lineage(s). Neural activity mapping using an immediate early gene, kakusei, suggests that the small-type and some middle-type Kenyon cells are prominently active in the forager brain, suggesting a potential role in processing information during foraging flight. Our findings indicate that honeybee mushroom bodies in fact comprise four types of Kenyon cells with different molecular and cellular characteristics: the previously known class-I large- and small-type Kenyon cells, class-II Kenyon cells, and the newly identified middle-type Kenyon cells described in this review. As the cellular characteristics of the middle-type Kenyon cells are distinct from those of the large- and small-type Kenyon cells, their careful discrimination will be required in future studies of honeybee Kenyon cell subtypes. In this review, we summarize recent progress in analyzing the gene expression profiles and neural activities of the honeybee Kenyon cell subtypes, and discuss possible roles of each Kenyon cell subtype in the honeybee brain.
Collapse
Affiliation(s)
- Kumi Kaneko
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shota Suenami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
23
|
Ronai I, Vergoz V, Oldroyd B. The Mechanistic, Genetic, and Evolutionary Basis of Worker Sterility in the Social Hymenoptera. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Jia S, Wan PJ, Li GQ. Molecular cloning and characterization of the putative Halloween gene Phantom from the small brown planthopper Laodelphax striatellus. INSECT SCIENCE 2015; 22:707-718. [PMID: 24954278 DOI: 10.1111/1744-7917.12147] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/27/2014] [Indexed: 06/03/2023]
Abstract
Ecdysteroid hormone 20-hydroxyecdysone plays fundamental roles in insect postembryonic development and reproduction. Several cytochrome P450 mono-oxygenases (CYPs), encoded by the Halloween genes, have been documented to be involved in ecdysteroidogenesis in representative insects in Diptera, Lepidoptera and Orthoptera. Here the putative Halloween gene Phantom (Phm, cyp306a1) from a hemipteran insect species, the small brown planthopper Laodelphax striatellus, was cloned. LsPHM shows five insect conserved P450 motifs, that is, Helix-C, Helix-I, Helix-K, PERF and heme-binding motifs. Temporal and spatial expression patterns of LsPhm were evaluated by quantitative polymerase chain reaction. Through the fourth-instar and the early fifth-instar stages, LsPhm showed two expression peaks in day 2 and days 4-5 fourth-instar nymphs, and three troughs in day 1 and 3 fourth instars and day 1 fifth instars. On day 5 of the fourth-instar nymphs, LsPhm clearly had a high transcript level in the thorax where the prothoracic glands were located. Dietary introduction of double-stranded RNA (dsRNA) of LsPhm at the nymph stage successfully knocked down the target gene, decreased expression level of ecdysone receptor (LsEcR) gene and caused a higher nymphal mortality rate and delayed development. Ingestion of 20-hydroxyecdysone on LsPhm-dsRNA-exposed nymphs did not increase LsPhm expression level, but almost completely rescued the LsEcR mRNA level, and relieved the negative effects on survival and development. Thus, our data suggest that the putative LsPhm encodes a functional 25-hydroxylase that catalyzes the biosynthesis of ecdysteroids in L. striatellus.
Collapse
Affiliation(s)
- Shuang Jia
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pin-Jun Wan
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guo-Qing Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
25
|
Uryu O, Ameku T, Niwa R. Recent progress in understanding the role of ecdysteroids in adult insects: Germline development and circadian clock in the fruit fly Drosophila melanogaster. ZOOLOGICAL LETTERS 2015; 1:32. [PMID: 26605077 PMCID: PMC4657291 DOI: 10.1186/s40851-015-0031-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/27/2015] [Indexed: 05/26/2023]
Abstract
Steroid hormones are one of the major bioactive molecules responsible for the coordinated regulation of biological processes in multicellular organisms. In insects, the principal steroid hormones are ecdysteroids, including 20-hydroxyecdysone. A great deal of research has investigated the roles played by ecdysteroids during insect development, especially the regulatory role in inducing molting and metamorphosis. However, little attention has been paid to the roles of these hormones in post-developmental processes, despite their undisputed presence in the adult insect body. Recently, molecular genetics of the fruit fly Drosophila melanogaster has revealed that ecdysteroid biosynthesis and signaling are indeed active in adult insects, and involved in diverse processes, including oogenesis, stress resistance, longevity, and neuronal activity. In this review, we focus on very recent progress in the understanding of two adult biological events that require ecdysteroid biosynthesis and/or signaling in Drosophila at the molecular level: germline development and the circadian clock.
Collapse
Affiliation(s)
- Outa Uryu
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
| | - Tomotsune Ameku
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
| | - Ryusuke Niwa
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
- />Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
- />PRESTO, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
26
|
Ueno T, Takeuchi H, Kawasaki K, Kubo T. Changes in the Gene Expression Profiles of the Hypopharyngeal Gland of Worker Honeybees in Association with Worker Behavior and Hormonal Factors. PLoS One 2015; 10:e0130206. [PMID: 26083737 PMCID: PMC4470657 DOI: 10.1371/journal.pone.0130206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 05/18/2015] [Indexed: 01/24/2023] Open
Abstract
The hypopharyngeal glands (HPGs) of worker honeybees undergo physiological changes along with the age-dependent role change from nursing to foraging: nurse bee HPGs secrete mainly major royal jelly proteins, whereas forager HPGs secrete mainly α-glucosidase III, which converts the sucrose in the nectar into glucose and fructose. We previously identified two other genes, Apis mellifera buffy (Ambuffy) and Apis mellifera matrix metalloproteinase 1 (AmMMP1), with enriched expression in nurse bee and forager HPGs, respectively. In the present study, to clarify the molecular mechanisms that coordinate HPG physiology with worker behavior, we first analyzed whether Ambuffy, AmMMP1, mrjp2 (a gene encoding one of major royal jelly protein isoforms), and Hbg3 (a gene encoding α-glucosidase III) expression, is associated with worker behavior in 'single-cohort colonies' where workers of almost the same age perform different tasks. Expression of these genes correlated with the worker’s role, while controlling for age, indicating their regulation associated with the worker’s behavior. Associated gene expression suggested the possible involvement of some hormonal factors in its regulation. We therefore examined the relationship between ecdysone- and juvenile hormone (JH)-signaling, and the expression profiles of these ‘indicator’ genes (nurse bee HPG-selective genes: mrjp2 and Ambuffy, and forager HPG-selective genes: Hbg3 and AmMMP1). Expression of both ecdysone-regulated genes (ecdysone receptor, mushroom body large type Kenyon cell specific protein-1, and E74) and JH-regulated genes (Methoprene tolerant and Krüppel homolog 1) was higher in the forager HPGs than in the nurse bee HPGs, suggesting the possible roles of ecdysone- and JH-regulated genes in worker HPGs. Furthermore, 20-hydroxyecdysone-treatment repressed both nurse bee- and forager-selective gene expression, whereas methoprene-treatment enhanced the expression of forager-selective genes and repressed nurse bee-selective genes in the HPGs. Our findings suggest that both ecdysone- and JH-signaling cooperatively regulate the physiological state of the HPGs in association with the worker’s behavior.
Collapse
Affiliation(s)
- Takayuki Ueno
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113–0033, Japan
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto, 610–0395, Japan
| | - Hideaki Takeuchi
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Kiyoshi Kawasaki
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto, 610–0395, Japan
| | - Takeo Kubo
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113–0033, Japan
- * E-mail:
| |
Collapse
|
27
|
Xuan N, Guo X, Xie HY, Lou QN, Lu XB, Liu GX, Picimbon JF. Increased expression of CSP and CYP genes in adult silkworm females exposed to avermectins. INSECT SCIENCE 2015; 22:203-219. [PMID: 24677614 DOI: 10.1111/1744-7917.12116] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
We analyzed 20 chemosensory protein (CSP) genes of the silkworm Bombyx mori. We found a high number of retrotransposons inserted in introns. We then analyzed expression of the 20 BmorCSP genes across tissues using quantitative real-time polymerase chain reaction (PCR). Relatively low expression levels of BmorCSPs were found in the gut and fat body tissues. We thus tested the effects of endectocyte insecticide abamectin (B1a and B1b avermectins) on BmorCSP gene expression. Quantitative real-time PCR experiments showed that a single brief exposure to insecticide abamectin increased dramatically CSP expression not only in the antennae but in most tissues, including gut and fat body. Furthermore, our study showed coordinate expression of CSPs and metabolic cytochrome P450 enzymes in a tissue-dependent manner in response to the insecticide. The function of CSPs remains unknown. Based on our results, we suggest a role in detecting xenobiotics that are then detoxified by cytochrome P450 anti-xenobiotic enzymes.
Collapse
Affiliation(s)
- Ning Xuan
- Biotechnology Research Center, Shandong Provincial Key Laboratory for Genetic Improvement Cultivation, Ecology and Physiology of Crops, Shandong Academy of Agricultural Sciences, Jinan
| | | | | | | | | | | | | |
Collapse
|
28
|
Jia S, Wan PJ, Zhou LT, Mu LL, Li GQ. RNA interference-mediated silencing of a Halloween gene spookier affects nymph performance in the small brown planthopper Laodelphax striatellus. INSECT SCIENCE 2015; 22:191-202. [PMID: 24282064 DOI: 10.1111/1744-7917.12087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/30/2013] [Indexed: 06/02/2023]
Abstract
Post-embryonic development of insects is highly dependent on ecdysteroid hormone 20-hydroxyecdysone. Halloween gene spookier (spok, cyp307a2) has been documented to be involved in ecdysteroidogenesis in Drosophila melanogaster and Bombyx mori. We describe here the cloning and characterization of Halloween gene spookier (Lsspok, Lscyp307a2) in the small brown planthopper Laodelphax striatellus, a hemipteran insect species. LsSPOK has three insect-conserved P450 motifs, that is, Helix-K, PERF motif and heme-binding domain. Temporal and spatial expression patterns of Lsspok were evaluated by quantitative polymerase chain reaction. Through the fouth-instar and the early fifth-instar stages, Lsspok showed two expression peaks in the second- and fifth-day fourth-instar nymphs, and two troughs in the first-day fourth and fifth instars. On day 5 of the fourth-instar nymphs, Lsspok clearly had a high transcript level in the thorax where prothoracic glands were located. Dietary introduction of double-stranded RNA of Lsspok in the nymph stage successfully knocked down the target gene, decreased expression level of ecdysone receptor (LsEcR) gene, caused nymphal lethality and delayed development. Ingestion of 20-hydroxyecdysone in Lsspok-dsRNA-exposed nymphs did not increase Lsspok expression level, but almost completely rescued the LsEcR mRNA level and relieved the negative effects on survival and development. Thus, our data suggest that the ecdysteroidogenic pathway is conserved in insects and LsSPOK is responsible for specific steps in ecdysteroidogenesis in L. striatellus.
Collapse
Affiliation(s)
- Shuang Jia
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | |
Collapse
|
29
|
Shahzad MF, Li Y, Ge C, Sun Y, Yang Q, Li F. Knockdown of Cs-Spook induces delayed larval molting in rice striped stem borer Chilo suppressalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:179-191. [PMID: 25354095 DOI: 10.1002/arch.21213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Spook has essential roles in the biogenesis of the molting hormone 20-hydroxyecdysone (20-E). The function of spook in the rice striped stem borer (SSB) Chilo suppressalis remains unclear, prompting our hypothesis that it exerts actions similar to those reported for other insect species. Here we amplified the full-length transcript of spook (Cs-Spook) in SSB by 5' and 3' rapid amplification of cDNA ends. Cs-Spook has conserved P450 motifs such as Helix-C, Helix-I, Helix-K, and PERF motif (PxxFxPxRF). It was highly expressed in late instar larvae but less so in newly molted larvae. Cs-Spook was highly expressed in prothoracic glands. Cs-Spook was knocked down by dsRNA treatments. Compared with controls, the gene expression level was reduced to 9% at 24 h post injection (PI), 33% at 48 h PI, and 24% at 72 h PI. The ecdysteroid titer decreased significantly in the dsRNA-treated group (P < 0.05), resulting in delayed larval development. The delayed development in dsRNA-treatment group was rescued by treating with 20-E. Our work demonstrates that Cs-Spook participates in the biogenesis of 20-E and regulates the molt of SSB, as seen in other species.
Collapse
Affiliation(s)
- Muhammad Faisal Shahzad
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
30
|
Wan PJ, Jia S, Li N, Fan JM, Li GQ. A Halloween gene shadow is a potential target for RNA-interference-based pest management in the small brown planthopper Laodelphax striatellus. PEST MANAGEMENT SCIENCE 2015; 71:199-206. [PMID: 24648012 DOI: 10.1002/ps.3780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 01/05/2014] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Laodelphax striatellus is an economically important rice pest in China. Ecdysteroid hormone 20-hydroxyecdysone regulates insect development and reproduction. The cytochrome P450 monooxygenase Shadow (Sad) plays a critical role in ecdysteroidogenesis. Here, tests were conducted to establish whether Lssad was a potential target gene for RNA-interference-based management of L. striatellus. RESULTS Lssad was cloned and characterised. LsSad had Helix-C, Helix-I, Helix-K, PERF and haem-binding motifs. Lssad is expressed at a higher level in the thorax, where prothoracic glands are located, compared with the level in the head or abdomen. It showed two expression peaks in day 2 and day 4-5 fourth-instar nymphs, and two troughs in day 1 fourth and fifth instars. Oral delivery of double-stranded RNA (dsRNA) of Lssad at the nymph stage successfully knocked down the expression of the target gene, reduced the expression level of ecdysone receptor (LsEcR) gene, caused nymphal lethality and delayed development in a dose-dependent manner. Ingestion of 20-hydroxyecdysone in Lssad-dsRNA-exposed nymphs did not increase Lssad expression level, but almost completely rescued the LsEcR mRNA level and relieved the negative effects on survival and development. CONCLUSIONS The ecdysteroidogenic pathway is conserved in L. striatellus. Lssad can serve as a possible target for dsRNA-based pesticides for planthopper control.
Collapse
Affiliation(s)
- Pin-Jun Wan
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | |
Collapse
|
31
|
Kong Y, Liu XP, Wan PJ, Shi XQ, Guo WC, Li GQ. The P450 enzyme Shade mediates the hydroxylation of ecdysone to 20-hydroxyecdysone in the Colorado potato beetle, Leptinotarsa decemlineata. INSECT MOLECULAR BIOLOGY 2014; 23:632-43. [PMID: 24989229 DOI: 10.1111/imb.12115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ecdysone 20-monooxygenase (E20MO), a cytochrome P450 monooxygenase (CYP314A1), catalyses the conversion of ecdysone (E) to 20-hydroxyecdysone (20E). We report here the cloning and characterization of the Halloween gene Shade (Shd) encoding E20MO in the Colorado potato beetle, Leptinotarsa decemlineata. LdSHD has five conserved motifs typical of insect P450s, ie the Helix-C, Helix-I, Helix-K, PxxFxPE/DRF (PERF) and heme-binding motifs. LdShd was expressed in developing eggs, the first to fourth instars, wandering larvae, pupae and adults, with statistically significant fluctuations. Its mRNA was ubiquitously distributed in the head, thorax and abdomen. The recombinant LdSHD protein expressed in Spodoptera frugiperda 9 (Sf9) cells catalysed the conversion of E to 20E. Dietary introduction of double-stranded RNA (dsRNA) of LdShd into the second instar larvae successfully knocked down the LdShd expression level, decreased the mRNA level of the ecdysone receptor (LdEcR) gene, caused larval lethality, delayed development and affected pupation. Moreover, ingestion of LdShd-dsRNA by the fourth instars also down-regulated LdShd and LdEcR expression, reduced the 20E titre, and negatively influenced pupation. Introduction of 20E and a nonsteroidal ecdysteroid agonist halofenozide into the LdShd-dsRNA-ingested second instars, and of halofenozide into the LdShd-dsRNA-ingested fourth instars almost completely relieved the negative effects on larval performance. Thus, LdSHD functions to regulate metamorphotic processes by converting E to 20E in a coleopteran insect species Le. decemlineata.
Collapse
Affiliation(s)
- Y Kong
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
32
|
Niu D, Zheng H, Corona M, Lu Y, Chen X, Cao L, Sohr A, Hu F. Transcriptome comparison between inactivated and activated ovaries of the honey bee Apis mellifera L. INSECT MOLECULAR BIOLOGY 2014; 23:668-681. [PMID: 25039886 DOI: 10.1111/imb.12114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Ovarian activity not only influences fertility, but is also involved with the regulation of division of labour between reproductive and behavioural castes of female honey bees. In order to identify candidate genes associated with ovarian activity, we compared the gene expression patterns between inactivated and activated ovaries of queens and workers by means of high-throughput RNA-sequencing technology. A total of 1615 differentially expressed genes (DEGs) was detected between ovaries of virgin and mated queens, and more than 5300 DEGs were detected between inactivated and activated worker ovaries. Intersection analysis of DEGs amongst five libraries revealed that a similar set of genes (824) participated in the ovary activation of both queens and workers. A large number of these DEGs were predominantly related to cellular, cell and cell part, binding, biological regulation and metabolic processes. In addition, over 1000 DEGs were linked to more than 230 components of Kyoto Encyclopedia of Genes and Genomes pathways, including 25 signalling pathways. The reliability of the RNA-sequencing results was confirmed by means of quantitative real-time PCR. Our results provide new insights into the molecular mechanisms involved in ovary activation and reproductive division of labour.
Collapse
Affiliation(s)
- D Niu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Niwa R, Niwa YS. Enzymes for ecdysteroid biosynthesis: their biological functions in insects and beyond. Biosci Biotechnol Biochem 2014; 78:1283-92. [DOI: 10.1080/09168451.2014.942250] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
Steroid hormones are responsible for the coordinated regulation of many aspects of biological processes in multicellular organisms. Since the last century, many studies have identified and characterized steroidogenic enzymes in vertebrates, including mammals. However, much less is known about invertebrate steroidogenic enzymes. In the last 15 years, a number of steroidogenic enzymes and their functions have been characterized in ecdysozoan animals, especially in the fruit fly Drosophila melanogaster. In this review, we summarize the latest knowledge of enzymes crucial for synthesizing ecdysteroids, the principal insect steroid hormones. We also discuss the functional conservation and diversity of ecdysteroidogenic enzymes in other insects and even non-insect species, such as nematodes, vertebrates, and lower eukaryotes.
Collapse
Affiliation(s)
- Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| | - Yuko S Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
34
|
Seres AB, Ducza E, Báthori M, Hunyadi A, Béni Z, Dékány M, Hajagos-Tóth J, Verli J, Gáspár R. Androgenic effect of honeybee drone milk in castrated rats: roles of methyl palmitate and methyl oleate. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:446-453. [PMID: 24607508 DOI: 10.1016/j.jep.2014.02.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/20/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Numerous honeybee (Apis mellifera) products have been used in traditional medicine to treat infertility and to increase vitality in both men and women. Drone milk (DM) is a relatively little-known honeybee product with a putative sexual hormone effect. The oestrogenic effect of a fraction of DM has recently been reported in rats. However, no information is available on the androgenic effects of DM. The purpose of the present study was to determine the androgen-like effect of DM in male rats and to identify effective compounds. MATERIALS AND METHODS A modified Hershberger assay was used to investigate the androgenic effect of crude DM, and the plasma level of testosterone was measured. The prostatic mRNA and protein expression of Spot14-like androgen-inducible protein (SLAP) were also examined with real-time PCR and Western blot techniques. GC-MS and NMR spectroscopic investigations were performed to identify the active components gained by bioactivity-guided fractionation. RESULTS The crude DM increased the relative weights of the androgen-dependent organs and the plasma testosterone level in castrated rats and these actions were flutamide-sensitive. DM increased the tissue mRNA and protein level of SLAP, providing further evidence of its androgen-like character. After bioactivity-guided fractionation, two fatty acid esters, methyl palmitate (MP) and methyl oleate (MO), were identified as active compounds. MP alone showed an androgenic effect, whereas MO increased the weight of androgen-sensitive tissues and the plasma testosterone level only in combination. CONCLUSION The experimental data of DM and its active compounds (MO and MP) show androgenic activity confirming the traditional usage of DM. DM or MP or/and MO treatments may project a natural mode for the therapy of male infertility.
Collapse
Affiliation(s)
- A B Seres
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6701, P.O. Box 121, Hungary.
| | - E Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6701, P.O. Box 121, Hungary.
| | - M Báthori
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary.
| | - A Hunyadi
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary.
| | - Z Béni
- Spectroscopic Research, Gedeon Richter Plc., Gyömrői út 19-21, H-1103 Budapest, Hungary.
| | - M Dékány
- Spectroscopic Research, Gedeon Richter Plc., Gyömrői út 19-21, H-1103 Budapest, Hungary.
| | - J Hajagos-Tóth
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6701, P.O. Box 121, Hungary.
| | - J Verli
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6701, P.O. Box 121, Hungary.
| | - Róbert Gáspár
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6701, P.O. Box 121, Hungary.
| |
Collapse
|
35
|
Kelstrup HC, Hartfelder K, Nascimento FS, Riddiford LM. Reproductive status, endocrine physiology and chemical signaling in the Neotropical, swarm-founding eusocial wasp Polybia micans. ACTA ACUST UNITED AC 2014; 217:2399-410. [PMID: 24744417 DOI: 10.1242/jeb.096750] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the evolution of caste-based societies in Hymenoptera, the classical insect hormones juvenile hormone (JH) and ecdysteroids were co-opted into new functions. Social wasps, which show all levels of sociality and lifestyles, are an ideal group in which to study such functional changes. Virtually all studies on the physiological mechanisms underlying reproductive division of labor and caste functions in wasps have been done on independent-founding paper wasps, and the majority of these studies have focused on species specially adapted for overwintering. The relatively little-studied tropical swarm-founding wasps of the Epiponini (Vespidae) are a diverse group of permanently social wasps, with some species maintaining caste flexibility well into the adult phase. We investigated the behavior, reproductive status, JH and ecdysteroid titers in hemolymph, ecdysteroid content of the ovary and cuticular hydrocarbon (CHC) profiles in the caste-monomorphic, epiponine wasp Polybia micans Ducke. We found that the JH titer was not elevated in competing queens from established multiple-queen nests, but increased in lone queens that lack direct competition. In queenless colonies, JH titer rose transiently in young potential reproductives upon challenge by nestmates, suggesting that JH may prime the ovaries for further development. Ovarian ecdysteroids were very low in workers but higher and correlated with the number of vitellogenic oocytes in the queens. Hemolymph ecdysteroid levels were low and variable in both workers and queens. Profiles of P. micans CHCs reflected caste, age and reproductive status, but were not tightly linked to either hormone. These findings show a significant divergence in hormone function in swarm-founding wasps compared with independently founding ones.
Collapse
Affiliation(s)
- Hans C Kelstrup
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Klaus Hartfelder
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14049-900 SP, Brazil
| | - Fabio S Nascimento
- Departamento de Biologia da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, 14040-900 SP, Brazil
| | - Lynn M Riddiford
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| |
Collapse
|
36
|
RNA interference depletion of the Halloween gene disembodied implies its potential application for management of planthopper Sogatella furcifera and Laodelphax striatellus. PLoS One 2014; 9:e86675. [PMID: 24489765 PMCID: PMC3904942 DOI: 10.1371/journal.pone.0086675] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/11/2013] [Indexed: 11/20/2022] Open
Abstract
Sogatella furcifera and Laodelphax striatellus are economically important rice pests in China by acting as vectors of several rice viruses, sucking the phloem sap and blocking the phloem vessels. Ecdysteroid hormone 20-hydroxyecdysone regulates insect development and reproduction. A cytochrome P450 monooxygenase CYP302A1 (22-hydroxylase), encoded by the Halloween gene disembodied (dib), plays a critical role in ecdysteroidogenesis. The objective of this study is to test whether dib genes are potential targets for RNA interference-based management of S. furcifera and L. striatellus. We cloned and characterized Sfdib and Lsdib. The open reading frame regions of dib genes were generated and used for designing and constructing dsRNA fragments. Experiments were conducted using oral delivery of dsdib to investigate the effectiveness of RNAi in S. furcifera and L. striatellus nymphs. Real-time quantitative reverse transcriptase-PCR analysis demonstrated that continuous ingestion of dsdib at the concentration of 0.01, 0.05 and 0.50 mg/ml diminished Sfdib expression levels by 35.9%, 45.1% and 66.2%, and ecdysone receptor (SfEcR) gene mRNA levels by 34.0%, 36.2% and 58.5% respectively in S. furcifera, and decreased Lsdib expression level by 18.8%, 35.8% and 56.7%, and LsEcR mRNA levels by 25.2%, 46.8% and 68.8% respectively in L. striatellus. The reduction in dib and EcR transcript abundance resulted in observable phenotypes. The development of nymphs was impaired and the survival was negatively affected. Our data will enable the development of new insect control strategies and functional analysis of vital genes in S. furcifera and L. striatellus nymphs.
Collapse
|
37
|
van Zweden JS, Bonckaert W, Wenseleers T, d'Ettorre P. QUEEN SIGNALING IN SOCIAL WASPS. Evolution 2013; 68:976-86. [DOI: 10.1111/evo.12314] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 10/10/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Jelle S. van Zweden
- Centre for Social Evolution; University of Copenhagen; Universitetsparken 15 2100 Copenhagen Denmark
- Laboratory of Socioecology and Social Evolution; KU Leuven; Naamsestraat 59, box 2466 3000 Leuven Belgium
| | - Wim Bonckaert
- Laboratory of Socioecology and Social Evolution; KU Leuven; Naamsestraat 59, box 2466 3000 Leuven Belgium
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution; KU Leuven; Naamsestraat 59, box 2466 3000 Leuven Belgium
| | - Patrizia d'Ettorre
- Centre for Social Evolution; University of Copenhagen; Universitetsparken 15 2100 Copenhagen Denmark
- Laboratoire d'Ethologie Expérimentale et Comparée; Université Paris 13 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse France
| |
Collapse
|
38
|
Jia S, Wan PJ, Zhou LT, Mu LL, Li GQ. Knockdown of a putative Halloween gene Shade reveals its role in ecdysteroidogenesis in the small brown planthopper Laodelphax striatellus. Gene 2013; 531:168-74. [DOI: 10.1016/j.gene.2013.09.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 01/12/2023]
|
39
|
Cardinal-Aucoin M, Rapp N, Steel CG. Circadian regulation of hemolymph and ovarian ecdysteroids during egg development in the insect Rhodnius prolixus (Hemiptera). Comp Biochem Physiol A Mol Integr Physiol 2013; 166:503-9. [DOI: 10.1016/j.cbpa.2013.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/05/2013] [Accepted: 08/06/2013] [Indexed: 11/24/2022]
|
40
|
Jia S, Wan PJ, Zhou LT, Mu LL, Li GQ. Molecular cloning and RNA interference-mediated functional characterization of a Halloween gene spook in the white-backed planthopper Sogatella furcifera. BMC Mol Biol 2013; 14:19. [PMID: 24007644 PMCID: PMC3766648 DOI: 10.1186/1471-2199-14-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/26/2013] [Indexed: 11/16/2022] Open
Abstract
Background Ecdysteroid hormones ecdysone and 20-hydroxyecdysone play fundamental roles in insect postembryonic development and reproduction. Five cytochrome P450 monooxygenases (CYPs), encoded by Halloween genes, have been documented to be involved in the ecdysteroidogenesis in insect species of diverse orders such as Diptera, Lepidoptera and Orthoptera. Up to now, however, the involvement of the Halloween genes in ecdysteroid synthesis has not been confirmed in hemipteran insect species. Results In the present paper, a Halloween gene spook (Sfspo, Sfcyp307a1) was cloned in the hemipteran Sogatella furcifera. SfSPO has three insect conserved P450 motifs, i.e., Helix-K, PERF and heme-binding motifs. Temporal and spatial expression patterns of Sfspo were evaluated by qPCR. Sfspo showed three expression peaks in late second-, third- and fourth-instar stages. In contrast, the expression levels were lower and formed three troughs in the newly-molted second-, third- and fourth-instar nymphs. On day 3 of the fourth-instar nymphs, Sfspo clearly had a high transcript level in the thorax where PGs were located. Dietary introduction of double-stranded RNA (dsRNA) of Sfspo into the second instars successfully knocked down the target gene, and greatly reduced expression level of ecdysone receptor (EcR) gene. Moreover, knockdown of Sfspo caused lethality and delayed development during nymphal stages. Furthermore, application of 20-hydroxyecdysone on Sfspo-dsRNA-exposed nymphs did not increase Sfspo expression, but could almost completely rescue SfEcR expression, and relieved the negative effects on nymphal survival and development. Conclusion In S. furcifera, Sfspo was cloned and the conservation of SfSPO is valid. Thus, SfSPO is probably also involved in ecdysteroidogenesis for hemiptera.
Collapse
Affiliation(s)
- Shuang Jia
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | |
Collapse
|
41
|
Luan JB, Ghanim M, Liu SS, Czosnek H. Silencing the ecdysone synthesis and signaling pathway genes disrupts nymphal development in the whitefly. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:740-6. [PMID: 23748027 DOI: 10.1016/j.ibmb.2013.05.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 05/13/2023]
Abstract
Sap-sucking insects are important pests in agriculture and good models to study insect biology. The role of ecdysone pathway genes in the life history of this group of insects is largely unknown likely due to a lack of efficient gene silencing methods allowing functional genetic analyses. Here, we developed a new and high throughput method to silence whitefly genes using a leaf-mediated dsRNA feeding method. We have applied this method to explore the roles of genes within the molting hormone-ecdysone synthesis and signaling pathway for the survival, reproduction and development of whiteflies. Silencing of genes in the ecdysone pathway had a limited effect on the survival and fecundity of adult whiteflies. However, gene silencing reduced survival and delayed development of the whitefly during nymphal stages. These data suggest that the silencing method developed here provides a useful tool for functional gene discovery studies of sap-sucking insects, and further indicate the potential of regulating the ecdysone pathway in whitefly control.
Collapse
Affiliation(s)
- Jun-Bo Luan
- Ministry of Agriculture, Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | |
Collapse
|
42
|
Geddes LH, McQuillan HJ, Aiken A, Vergoz V, Mercer AR. Steroid hormone (20-hydroxyecdysone) modulates the acquisition of aversive olfactory memories in pollen forager honeybees. Learn Mem 2013; 20:399-409. [DOI: 10.1101/lm.030825.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Wegener J, Huang ZY, Lorenz MW, Lorenz JI, Bienefeld K. New insights into the roles of juvenile hormone and ecdysteroids in honey bee reproduction. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:655-661. [PMID: 23631954 DOI: 10.1016/j.jinsphys.2013.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 06/02/2023]
Abstract
In workers of the Western honeybee, Apis mellifera, juvenile hormone (JH) and ecdysteroids regulate many aspects of age polyphenism. Here we investigated whether these derived functions in workers have developed by an uncoupling of endocrine mechanisms in adult queens and workers, or whether parallels can be found between the roles of the two hormones in both castes. We looked at yolk protein metabolism as a process central to the physiology of both queens and workers, and at sperm storage as a feature of the queen alone. Queens of differing fertility status (virgin, virgin but CO2-treated, inseminated, freshly laying and 1-2 years-old) were compared regarding vitellogenin (Vg), JH and ecdysteroid-titers in their hemolymph, as well as ovarian yolk protein and spermathecal gland composition. Our results showed that hormone titres were unrelated to the composition of spermathecal glands. JH-concentrations in the hemolymph were low in the groups of queens characterized by yolk uptake into the ovaries, and high in pre-vitellogenic queens or animals that were forced to interrupt egg-laying by caging. Ecdysteroid-concentrations were higher in untreated virgins than after insemination or during egg-laying. They were not affected by the caging of queens. These patterns of hormone changes were parallel to those known from worker bees. Together, these findings suggest a conserved role for JH as repressor of vitellogenin uptake into tissues, and for ecdysteroids in preparing tissues for this process. An involvement of the two hormones in the regulation of sperm storage seems unlikely. Our results add to the view that JH and ecdysteroids act similarly on the yolk protein metabolism of both castes of A. mellifera. This may imply that it was the biochemical versatility of Vg rather than that of hormonal regulatory circuits that allowed for the functional separation of the two castes.
Collapse
Affiliation(s)
- Jakob Wegener
- Institute for Bee Research, Hohen Neuendorf, Germany.
| | | | | | | | | |
Collapse
|
44
|
Vitecek S, Maria A, Blais C, Duportets L, Gaertner C, Dufour MC, Siaussat D, Debernard S, Gadenne C. Is the rapid post-mating inhibition of pheromone response triggered by ecdysteroids or other factors from the sex accessory glands in the male moth Agrotis ipsilon? Horm Behav 2013; 63:700-8. [PMID: 23562716 DOI: 10.1016/j.yhbeh.2013.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/16/2013] [Accepted: 03/20/2013] [Indexed: 01/30/2023]
Abstract
In many animals, male copulation is dependent on the detection and processing of female-produced sex pheromones, which is generally followed by a sexual refractory post-ejaculatory interval (PEI). In the male moth, Agrotis ipsilon, this PEI is characterized by a transient post-mating inhibition of behavioral and central nervous responses to sex pheromone, which prevents males from re-mating until they have refilled their reproductive tracts for a potential new ejaculate. However, the timing and possible factors inducing this rapid olfactory switch-off are still unknown. Here, we determined the initial time delay and duration of the PEI. Moreover, we tested the hypothesis that the brain, the testis and/or the sex accessory glands (SAGs) could produce a factor inducing the PEI. Lastly, we investigated the possible involvement of ecdysteroids, hormones essential for development and reproduction in insects, in this olfactory plasticity. Using brain and SAG cross-injections in virgin and newly-mated males, surgical treatments, wind tunnel behavioral experiments and EIA quantifications of ecdysteroids, we show that the PEI starts very shortly after the onset of copulation, and that SAGs contain a factor, which is produced/accumulated after copulation to induce the PEI. Moreover, SAGs were found to be the main source of ecdysteroids, whose concentration decreased after mating, whereas it increased in the haemolymph. 20-Hydroxyecdysone (20E) was identified as the major ecdysteroid in SAGs of A. ipsilon males. Finally, 20E injections did not reduce the behavioral pheromone response of virgin males. Altogether our data indicate that 20E is probably not involved in the PEI.
Collapse
Affiliation(s)
- Simon Vitecek
- UMR 1272, UPMC-INRA, Physiologie de l'Insecte, Signalisation et Communication, INRA Route de Saint-Cyr, F-78000, Versailles, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Seres AB, Ducza E, Báthori M, Hunyadi A, Béni Z, Dékány M, Gáspár R. Raw drone milk of honeybees elicits uterotrophic effect in rats: evidence for estrogenic activity. J Med Food 2013; 16:404-9. [PMID: 23631495 DOI: 10.1089/jmf.2012.0232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Numerous honeybee products are used in medicine, but the literature furnishes no information concerning the effects of the drone milk (DM), although drone brood, which is similar to DM, was reported to elicit a hormone-like strengthening effect. In certain countries, DM is traditionally used to treat infertility and to promote vitality in both men and women. The aim of this study was to determine the putative estrogen hormone-like effect of raw DM in rats and to identify the effective compounds. Uterotrophic assays revealed that DM increased the relative weight of the immature rat uterus. This effect was confirmed by reverse transcription polymerase chain-reaction and Western blot methods, in which the mRNA and protein expression of the estrogen-dependent peptide complement component C3 was determined. Column chromatography and uterotrophic assays were used to fractionate and check bioactivity, respectively. The active compound after the last fractionation was identified by the nuclear magnetic resonance and mass spectrometry techniques as E-dec-2-enedioic acid, which is very similar to the fatty acids with estrogenic activity that were previously isolated from royal jelly. These results lead us to suppose that E-dec-2-enedioic acid is responsible for the estrogen-like effect of DM. This appears to be the first report on the pharmacological effects of DM and E-dec-2-enedioic acid in mammals.
Collapse
Affiliation(s)
- Adrienn B Seres
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
46
|
Bloch G, Hazan E, Rafaeli A. Circadian rhythms and endocrine functions in adult insects. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:56-69. [PMID: 23103982 DOI: 10.1016/j.jinsphys.2012.10.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 06/01/2023]
Abstract
Many behavioral and physiological processes in adult insects are influenced by both the endocrine and circadian systems, suggesting that these two key physiological systems interact. We reviewed the literature and found that experiments explicitly testing these interactions in adult insects have only been conducted for a few species. There is a shortage of measurements of hormone titers throughout the day under constant conditions even for the juvenile hormones (JHs) and ecdysteroids, the best studied insect hormones. Nevertheless, the available measurements of hormone titers coupled with indirect evidence for circadian modulation of hormone biosynthesis rate, and the expression of genes encoding proteins involved in hormone biosynthesis, binding or degradation are consistent with the hypothesis that the circulating levels of many insect hormones are influenced by the circadian system. Whole genome microarray studies suggest that the modulation of farnesol oxidase levels is important for the circadian regulation of JH biosynthesis in honey bees, mosquitoes, and fruit flies. Several studies have begun to address the functional significance of circadian oscillations in endocrine signaling. The best understood system is the circadian regulation of Pheromone Biosynthesis Activating Neuropeptide (PBAN) titers which is important for the temporal organization of sexual behavior in female moths. The evidence that the circadian and endocrine systems interact has important implications for studies of insect physiology and behavior. Additional studies on diverse species and physiological processes are needed for identifying basic principles underlying the interactions between the circadian and endocrine systems in insects.
Collapse
Affiliation(s)
- Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.
| | | | | |
Collapse
|
47
|
Marchal E, Verlinden H, Badisco L, Van Wielendaele P, Vanden Broeck J. RNAi-mediated knockdown of Shade negatively affects ecdysone-20-hydroxylation in the desert locust, Schistocerca gregaria. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:890-896. [PMID: 22465741 DOI: 10.1016/j.jinsphys.2012.03.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 05/31/2023]
Abstract
A major breakthrough in elucidating the ecdysteroid biosynthetic pathway in insects was realized with the molecular identification and further functional characterization of the 'Halloween' genes. These genes were found to encode cytochrome P450 enzymes catalysing the final steps of ecdysteroid biosynthesis in the dipteran, Drosophila melanogaster, and in the Lepidoptera, Manduca sexta and Bombyx mori. A recent report focused on the identification of Halloween orthologs in the desert locust, Schistocerca gregaria, a member of the hemimetabolous insect order of the Orthoptera. In the present study, an additional Halloween gene Shade, is identified in the desert locust. In Diptera and Lepidoptera, this gene encodes a 20-hydroxylase, catalysing the conversion of ecdysone (E) to 20-hydroxyecdysone (20E). However, this enzymatic function has previously been suggested for CYP6H1 in another locust species, the migratory locust, Locusta migratoria. Using q-RT-PCR, the spatial and temporal transcript profiles of S. gregaria orthologs for Shade as well as CYP6H1 were analysed in last larval stage desert locusts. An RNA interference (RNAi)-based approach was employed to study whether these genes could possibly encode a functional 20-hydroxylase in the desert locust.
Collapse
Affiliation(s)
- Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, Zoological Institute, K.U. Leuven, Naamsestraat 59, B-3000 Leuven, Belgium.
| | | | | | | | | |
Collapse
|
48
|
Dolezal AG, Brent CS, Hölldobler B, Amdam GV. Worker division of labor and endocrine physiology are associated in the harvester ant, Pogonomyrmex californicus. ACTA ACUST UNITED AC 2012; 215:454-60. [PMID: 22246254 DOI: 10.1242/jeb.060822] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Pogonomyrmex californicus harvester ants, an age-associated division of labor occurs in the worker caste, in which young workers perform in-nest tasks and older workers forage for food. Here, we tested whether this behavioral division is age based or age flexible, and whether it coincides with differential expression of systemic hormones with known roles in behavioral regulation. Whole-body content of juvenile hormone (JH) and ecdysteroids was determined in workers from (1) age-typical colonies, in which a typical age structure is maintained and workers transition across behaviors naturally, and (2) single-cohort colonies, which are entirely composed of same-aged workers, facilitating the establishment of age-independent division of labor. Foragers from both colony types had higher JH and lower ecdysteroid content than workers performing in-nest tasks, suggesting that age is not the sole determinant of worker behavior. This association between hormone content and behavior of P. californicus workers is similar to that previously observed in founding queens of this species. Because these hormones are key regulators of development and reproductive behavior, our data are consistent with the reproductive ground plan hypothesis (RGPH), which posits that the reproductive regulatory mechanisms of solitary ancestors were co-opted to regulate worker behavior.
Collapse
Affiliation(s)
- Adam G Dolezal
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | | |
Collapse
|
49
|
Boncristiani H, Underwood R, Schwarz R, Evans JD, Pettis J, vanEngelsdorp D. Direct effect of acaricides on pathogen loads and gene expression levels in honey bees Apis mellifera. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:613-20. [PMID: 22212860 DOI: 10.1016/j.jinsphys.2011.12.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 05/25/2023]
Abstract
The effect of using acaricides to control varroa mites has long been a concern to the beekeeping industry due to unintended negative impacts on honey bee health. Irregular ontogenesis, suppression of immune defenses, and impairment of normal behavior have been linked to pesticide use. External stressors, including parasites and the pathogens they vector, can confound studies on the effects of pesticides on the metabolism of honey bees. This is the case of Varroa destructor, a mite that negatively affects honey bee health on many levels, from direct parasitism, which diminishes honey bee productivity, to vectoring and/or activating other pathogens, including many viruses. Here we present a gene expression profile comprising genes acting on diverse metabolic levels (detoxification, immunity, and development) in a honey bee population that lacks the influence of varroa mites. We present data for hives treated with five different acaricides; Apiguard (thymol), Apistan (tau-fluvalinate), Checkmite (coumaphos), Miteaway (formic acid) and ApiVar (amitraz). The results indicate that thymol, coumaphos and formic acid are able to alter some metabolic responses. These include detoxification gene expression pathways, components of the immune system responsible for cellular response and the c-Jun amino-terminal kinase (JNK) pathway, and developmental genes. These could potentially interfere with the health of individual honey bees and entire colonies.
Collapse
|
50
|
Zayed A, Naeger NL, Rodriguez-Zas SL, Robinson GE. Common and novel transcriptional routes to behavioral maturation in worker and male honey bees. GENES BRAIN AND BEHAVIOR 2011; 11:253-61. [DOI: 10.1111/j.1601-183x.2011.00750.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|