1
|
Levy I, Arvidson R. Cephalic ganglia transcriptomics of the American cockroach Periplaneta americana (Blattodea: Blattidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:12. [PMID: 39688382 DOI: 10.1093/jisesa/ieae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
The American cockroach Periplaneta americana (L.) (Blattodea, Blattidae) has been a model organism for biochemical and physiological study for almost a century, however, its use does not benefit from the genetic tools found in key model species such as Drosophila melanogaster. To facilitate the use of the cockroach as a model system in neuroscience and to serve as a foundation for functional and translational experimentation, a transcriptome of the cephalic ganglia was assembled and annotated, and differential expression profiles between these ganglia were assessed. The transcriptome assembly yielded >400 k transcripts, with >40 k putative coding sequences. Gene ontology and protein domain searches indicate the cerebral and gnathal ganglia (GNG) have distinct genetic expression profiles. The developmental Toll signaling pathway appears to be active in the adult central nervous system (CNS), which may suggest a separate role for this pathway besides innate immune activation or embryonic development. The catabolic glycolytic and citric acid cycle enzymes are well represented in both ganglia, but key enzymes are more highly expressed in the GNG. Both ganglia express gluconeogenic and trehaloneogenic enzymes, suggesting a larger role of the CNS in regulating hemolymph sugar homeostasis than previously appreciated. The annotation and quantification of the cephalic ganglia transcriptome reveal both canonical and novel pathways in signaling and metabolism in an adult insect and lay a foundation for future functional and genetic analysis.
Collapse
Affiliation(s)
- Ilana Levy
- Undergraduate Program in Biochemistry, Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Ryan Arvidson
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
2
|
Lau NC, Macias VM. Transposon and Transgene Tribulations in Mosquitoes: A Perspective of piRNA Proportions. DNA 2024; 4:104-128. [PMID: 39076684 PMCID: PMC11286205 DOI: 10.3390/dna4020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mosquitoes, like Drosophila, are dipterans, the order of "true flies" characterized by a single set of two wings. Drosophila are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in Drosophila but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of Drosophila and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in Drosophila. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in Drosophila, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.
Collapse
Affiliation(s)
- Nelson C. Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Genome Science Institute and National Emerging Infectious Disease Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vanessa M. Macias
- Department of Biology, University of North Texas, Denton, TX 76205, USA
- Advanced Environmental Research Institute, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
3
|
Deem KD, Halfon MS, Tomoyasu Y. A new suite of reporter vectors and a novel landing site survey system to study cis-regulatory elements in diverse insect species. Sci Rep 2024; 14:10078. [PMID: 38698030 PMCID: PMC11066043 DOI: 10.1038/s41598-024-60432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024] Open
Abstract
Comparative analyses between traditional model organisms, such as the fruit fly Drosophila melanogaster, and more recent model organisms, such as the red flour beetle Tribolium castaneum, have provided a wealth of insight into conserved and diverged aspects of gene regulation. While the study of trans-regulatory components is relatively straightforward, the study of cis-regulatory elements (CREs, or enhancers) remains challenging outside of Drosophila. A central component of this challenge has been finding a core promoter suitable for enhancer-reporter assays in diverse insect species. Previously, we demonstrated that a Drosophila Synthetic Core Promoter (DSCP) functions in a cross-species manner in Drosophila and Tribolium. Given the over 300 million years of divergence between the Diptera and Coleoptera, we reasoned that DSCP-based reporter constructs will be useful when studying cis-regulation in a variety of insect models across the holometabola and possibly beyond. To this end, we sought to create a suite of new DSCP-based reporter vectors, leveraging dual compatibility with piggyBac and PhiC31-integration, the 3xP3 universal eye marker, GATEWAY cloning, different colors of reporters and markers, as well as Gal4-UAS binary expression. While all constructs functioned properly with a Tc-nub enhancer in Drosophila, complications arose with tissue-specific Gal4-UAS binary expression in Tribolium. Nevertheless, the functionality of these constructs across multiple holometabolous orders suggests a high potential compatibility with a variety of other insects. In addition, we present the piggyLANDR (piggyBac-LoxP AttP Neutralizable Destination Reporter) platform for the establishment of proper PhiC31 landing sites free from position effects. As a proof-of-principle, we demonstrated the workflow for piggyLANDR in Drosophila. The potential utility of these tools ranges from molecular biology research to pest and disease-vector management, and will help advance the study of gene regulation beyond traditional insect models.
Collapse
Affiliation(s)
- Kevin D Deem
- Department of Biology, Miami University, Oxford, OH, 45056, USA
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY, 14203, USA
| | | |
Collapse
|
4
|
Coutinho-Abreu IV, Akbari OS. Technological advances in mosquito olfaction neurogenetics. Trends Genet 2023; 39:154-166. [PMID: 36414481 PMCID: PMC10564117 DOI: 10.1016/j.tig.2022.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/06/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022]
Abstract
Gene-editing technologies have revolutionized the field of mosquito sensory biology. These technologies have been used to knock in reporter genes in-frame with neuronal genes and tag specific mosquito neurons to detect their activities using binary expression systems. Despite these advances, novel tools still need to be developed to elucidate the transmission of olfactory signals from the periphery to the brain. Here, we propose the development of a set of tools, including novel driver lines as well as sensors of neuromodulatory activities, which can advance our knowledge of how sensory input triggers behavioral outputs. This information can change our understanding of mosquito neurobiology and lead to the development of strategies for mosquito behavioral manipulation to reduce bites and disease transmission.
Collapse
Affiliation(s)
- Iliano V Coutinho-Abreu
- School of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Omar S Akbari
- School of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Bui M, Dalla Benetta E, Dong Y, Zhao Y, Yang T, Li M, Antoshechkin IA, Buchman A, Bottino-Rojas V, James AA, Perry MW, Dimopoulos G, Akbari OS. CRISPR mediated transactivation in the human disease vector Aedes aegypti. PLoS Pathog 2023; 19:e1010842. [PMID: 36656895 PMCID: PMC9888728 DOI: 10.1371/journal.ppat.1010842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/31/2023] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
As a major insect vector of multiple arboviruses, Aedes aegypti poses a significant global health and economic burden. A number of genetic engineering tools have been exploited to understand its biology with the goal of reducing its impact. For example, current tools have focused on knocking-down RNA transcripts, inducing loss-of-function mutations, or expressing exogenous DNA. However, methods for transactivating endogenous genes have not been developed. To fill this void, here we developed a CRISPR activation (CRISPRa) system in Ae. aegypti to transactivate target gene expression. Gene expression is activated through pairing a catalytically-inactive ('dead') Cas9 (dCas9) with a highly-active tripartite activator, VP64-p65-Rta (VPR) and synthetic guide RNA (sgRNA) complementary to a user defined target-gene promoter region. As a proof of concept, we demonstrate that engineered Ae. aegypti mosquitoes harboring a binary CRISPRa system can be used to effectively overexpress two developmental genes, even-skipped (eve) and hedgehog (hh), resulting in observable morphological phenotypes. We also used this system to overexpress the positive transcriptional regulator of the Toll immune pathway known as AaRel1, which resulted in a significant suppression of dengue virus serotype 2 (DENV2) titers in the mosquito. This system provides a versatile tool for research pathways not previously possible in Ae. aegypti, such as programmed overexpression of endogenous genes, and may aid in gene characterization studies and the development of innovative vector control tools.
Collapse
Affiliation(s)
- Michelle Bui
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Elena Dalla Benetta
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yunchong Zhao
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Ting Yang
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Ming Li
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Igor A. Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Anna Buchman
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Vanessa Bottino-Rojas
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, California, United States of America
| | - Anthony A. James
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, California, United States of America
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Michael W. Perry
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Omar S. Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| |
Collapse
|
6
|
Bottino-Rojas V, James AA. Use of Insect Promoters in Genetic Engineering to Control Mosquito-Borne Diseases. Biomolecules 2022; 13:16. [PMID: 36671401 PMCID: PMC9855440 DOI: 10.3390/biom13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
Mosquito transgenesis and gene-drive technologies provide the basis for developing promising new tools for vector-borne disease prevention by either suppressing wild mosquito populations or reducing their capacity from transmitting pathogens. Many studies of the regulatory DNA and promoters of genes with robust sex-, tissue- and stage-specific expression profiles have supported the development of new tools and strategies that could bring mosquito-borne diseases under control. Although the list of regulatory elements available is significant, only a limited set of those can reliably drive spatial-temporal expression. Here, we review the advances in our ability to express beneficial and other genes in mosquitoes, and highlight the information needed for the development of new mosquito-control and anti-disease strategies.
Collapse
Affiliation(s)
- Vanessa Bottino-Rojas
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA
| | - Anthony A. James
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
7
|
Genetics tools for corpora allata specific gene expression in Aedes aegypti mosquitoes. Sci Rep 2022; 12:20426. [PMID: 36443489 PMCID: PMC9705396 DOI: 10.1038/s41598-022-25009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Juvenile hormone (JH) is synthesized by the corpora allata (CA) and controls development and reproduction in insects. Therefore, achieving tissue-specific expression of transgenes in the CA would be beneficial for mosquito research and control. Different CA promoters have been used to drive transgene expression in Drosophila, but mosquito CA-specific promoters have not been identified. Using the CRISPR/Cas9 system, we integrated transgenes encoding the reporter green fluorescent protein (GFP) close to the transcription start site of juvenile hormone acid methyl transferase (JHAMT), a locus encoding a JH biosynthetic enzyme, specifically and highly expressed in the CA of Aedes aegypti mosquitoes. Transgenic individuals showed specific GFP expression in the CA but failed to reproduce the full pattern of jhamt spatiotemporal expression. In addition, we created GeneSwitch driver and responder mosquito lines expressing an inducible fluorescent marker, enabling the temporal regulation of the transgene via the presence or absence of an inducer drug. The use of the GeneSwitch system has not previously been reported in mosquitoes and provides a new inducible binary system that can control transgene expression in Aedes aegypti.
Collapse
|
8
|
Faber PA, Dorai AJ, Chown SL. A standardised low-cost membrane blood-feeder for Aedes aegypti made using common laboratory materials. PeerJ 2022; 10:e14247. [PMID: 36325181 PMCID: PMC9620972 DOI: 10.7717/peerj.14247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Blood feeding is a necessary part of laboratory studies involving mosquitoes and other hematophagous arthropods of interest in medical and ecological research. However, methods involving hosts may present serious risks, require ethics approvals and can be expensive. Here we describe an insect blood feeder made using common laboratory materials, which is low cost (<US$100) and can be constructed and operated with little technical expertise. We compared the blood feeder containing an artificial blood diet, Skitosnack, to direct human arm feeding for Aedes aegypti (Diptera: Culicidae), in terms of engorgement rate, fecundity and hatch rate. No significant difference in fecundity between the two approaches was found, (mean ± SD); direct human arm: 56 ± 26 eggs/female, artificial method: 47 ± 25 eggs/female, P = 0.569. Engorgement rates (direct human arm: 97.8 ± 4%, artificial: 64.1 ± 23%, P < 0.05) and hatch rates (direct human arm: 75 ± 12%, artificial: 59 ± 14%, P < 0.05) were lower in the artificially fed mosquitoes. Despite these differences, we maintained a healthy mosquito colony for 10 generations using the artificial feeding approach. Results from this comparison are within the range of other studies which compared direct host feeding with an artificial feeding method. We anticipate that the blood feeder presented here could substantially reduce costs usually required to establish a standardised and effective blood feeding method for maintaining mosquito colonies or conducting experiments, extending the capability of laboratories especially where research resources are limited, but vector-borne diseases common.
Collapse
Affiliation(s)
- Peter A. Faber
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | | | - Steven L. Chown
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Fölsz O, Lin CC, Task D, Riabinina O, Potter CJ. The Q-system: A Versatile Repressible Binary Expression System. Methods Mol Biol 2022; 2540:35-78. [PMID: 35980572 DOI: 10.1007/978-1-0716-2541-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Binary expression systems are useful genetic tools for experimentally labeling or manipulating the function of defined cells. The Q-system is a repressible binary expression system that consists of a transcription factor QF (and the recently improved QF2/QF2w), the inhibitor QS, a QUAS-geneX effector, and a drug that inhibits QS (quinic acid). The Q-system can be used alone or in combination with other binary expression systems, such as GAL4/UAS and LexA/LexAop. In this review chapter, we discuss the past, present, and future of the Q-system for applications in Drosophila and other organisms. We discuss the in vivo application of the Q-system for transgenic labeling, the modular nature of QF that allows chimeric or split transcriptional activators to be developed, its temporal control by quinic acid, new methods to generate QF2 reagents, intersectional expression labeling, and its recent adoption into many emerging experimental species.
Collapse
Affiliation(s)
- Orsolya Fölsz
- Department of Biosciences, Durham University, Durham, UK
| | - Chun-Chieh Lin
- Department of Pathology and Laboratory Medicine, Giesel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Darya Task
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
10
|
Elgendy AM, Mohamed AA, Duvic B, Tufail M, Takeda M. Involvement of Cis-Acting Elements in Molecular Regulation of JH-Mediated Vitellogenin Gene 2 of Female Periplaneta americana. Front Physiol 2021; 12:723072. [PMID: 34526913 PMCID: PMC8435907 DOI: 10.3389/fphys.2021.723072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
Vitellogenins (Vgs) are yolk protein precursors that are regulated by juvenile hormone (JH) and/or 20-hydroxyecdysone (20E) in insects. JH acts as the principal gonadotropin that stimulates vitellogenesis in hemimetabolous insects. In this study, we cloned and characterized the Periplaneta americana Vitellogenin 2 (Vg2) promoter. Multiple sites for putative transcription factor binding were predicted for the 1,804 bp Vg2 promoter region, such as the Broad-Complex, ecdysone response element (EcRE), GATA, Hairy, JH response element (JHRE), and Methoprene (Met)-binding motif, among others. Luciferase reporter assay has identified that construct -177 bp is enough to support JH III induction but not 20E suppression. This 38 bp region (from -177 to -139 bp) contains two conserved response element half-sites separated by 2 nucleotides spacer (DR2) and is designated as Vg2RE (-168GAGTCACGGAGTCGCCGCTG-149). Mutation assay and luciferase assay data using mutated constructs verified the crucial role of G residues in Vg2RE for binding the isolated fat body nuclear protein. In Sf9 cells, a luciferase reporter placed under the control of a minimal promoter containing Vg2RE was induced by JH III in a dose- and time-dependent manner. Nuclear proteins isolated from previtellogenic female fat body cells bound to Vg2RE, and this binding was outcompeted by a 50-fold excess of cold Drosophila melanogaster DR4 and Galleria mellonella JH binding protein response elements (Chorion factor-I/Ultraspiracle). Affinity pull-down experiment with nuclear extracts of previtellogenic female fat body, using 31-bp probe Vg2RE as bait, yielded a 71 kDa candidate nuclear protein that may mediate the regulatory action of the JH III.
Collapse
Affiliation(s)
- Azza M Elgendy
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt.,Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Muhammad Tufail
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan.,Ghazi University, Dera Ghazi Khan, Punjab, Pakistan
| | - Makio Takeda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
11
|
Zhao Z, Tian D, McBride CS. Development of a pan-neuronal genetic driver in Aedes aegypti mosquitoes. CELL REPORTS METHODS 2021; 1:100042. [PMID: 34590074 PMCID: PMC8478256 DOI: 10.1016/j.crmeth.2021.100042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/10/2021] [Accepted: 06/07/2021] [Indexed: 01/19/2023]
Abstract
The recent development of neurogenetic tools in Aedes aegypti mosquitoes is beginning to shed light on the neural basis of behaviors that make this species a major vector of human disease. However, we still lack a pan-neuronal expression driver-a key tool that provides genetic access to all neurons. Here, we describe our efforts to fill this gap via CRISPR/Cas9-mediated knock-in of reporters to broadly expressed neural genes and report on the generation of two strains, a Syt1:GCaMP6s strain that expresses synaptically localized GCaMP and a brp-T2A-QF2w driver strain that can be used to drive and amplify expression of any effector via the Q binary system. Both manipulations broadly and uniformly label the nervous system with only modest effects on behavior. We expect these strains to facilitate neurobiological research in Ae. aegypti mosquitoes and document both successful and failed manipulations as a roadmap for similar tool development in other non-model species.
Collapse
Affiliation(s)
- Zhilei Zhao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - David Tian
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Carolyn S. McBride
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
12
|
Caragata EP, Dong S, Dong Y, Simões ML, Tikhe CV, Dimopoulos G. Prospects and Pitfalls: Next-Generation Tools to Control Mosquito-Transmitted Disease. Annu Rev Microbiol 2021; 74:455-475. [PMID: 32905752 DOI: 10.1146/annurev-micro-011320-025557] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mosquito-transmitted diseases, including malaria and dengue, are a major threat to human health around the globe, affecting millions each year. A diverse array of next-generation tools has been designed to eliminate mosquito populations or to replace them with mosquitoes that are less capable of transmitting key pathogens. Many of these new approaches have been built on recent advances in CRISPR/Cas9-based genome editing. These initiatives have driven the development of pathogen-resistant lines, new genetics-based sexing methods, and new methods of driving desirable genetic traits into mosquito populations. Many other emerging tools involve microorganisms, including two strategies involving Wolbachia that are achieving great success in the field. At the same time, other mosquito-associated bacteria, fungi, and even viruses represent untapped sources of new mosquitocidal or antipathogen compounds. Although there are still hurdles to be overcome, the prospect that such approaches will reduce the impact of these diseases is highly encouraging.
Collapse
Affiliation(s)
- E P Caragata
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - S Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - Y Dong
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - M L Simões
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - C V Tikhe
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| | - G Dimopoulos
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA; , , , , ,
| |
Collapse
|
13
|
Harvey-Samuel T, Xu X, Lovett E, Dafa'alla T, Walker A, Norman VC, Carter R, Teal J, Akilan L, Leftwich PT, Reitmayer CM, Siddiqui HA, Alphey L. Engineered expression of the invertebrate-specific scorpion toxin AaHIT reduces adult longevity and female fecundity in the diamondback moth Plutella xylostella. PEST MANAGEMENT SCIENCE 2021; 77:3154-3164. [PMID: 33660916 DOI: 10.1002/ps.6353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Previous genetic pest management (GPM) systems in diamondback moth (DBM) have relied on expressing lethal proteins ('effectors') that are 'cell-autonomous', that is, they do not leave the cell in which they are expressed. To increase the flexibility of future GPM systems in DBM, we aimed to assess the use of a non-cell-autonomous, invertebrate-specific, neurotoxic effector - the scorpion toxin AaHIT. This AaHIT effector was designed to be secreted by expressing cells, potentially leading to effects on distant cells, specifically neuromuscular junctions. RESULTS Expression of AaHIT caused a 'shaking/quivering' phenotype that could be repressed by provision of an antidote (tetracycline): a phenotype consistent with the AaHIT mode-of-action. This effect was more pronounced when AaHIT expression was driven by the Hr5/ie1 promoter (82.44% of males, 65.14% of females) rather than Op/ie2 (57.35% of males, 48.39% of females). Contrary to expectations, the shaking phenotype and observed fitness costs were limited to adults in which they caused severe reductions in mean longevity (-81%) and median female fecundity (-93%). Quantitative polymerase chain reactions of AaHIT expression patterns and analysis of piggyBac-mediated transgene insertion sites suggest that restriction of the observed effects to the adult stages may be due to the influence of the local genomic environment on the tetO-AaHIT transgene. CONCLUSION We demonstrated the feasibility of using non-cell-autonomous effectors within a GPM context for the first time in Lepidoptera, one of the most economically damaging orders of insects. These findings provide a framework for extending this system to other pest Lepidoptera and to other secreted effectors. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Xuejiao Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Erica Lovett
- Arthropod Genetics Group, The Pirbright Institute, Woking, UK
| | | | | | - Victoria C Norman
- Arthropod Genetics Group, The Pirbright Institute, Woking, UK
- OXITEC Ltd., Abingdon, UK
| | - Ruth Carter
- Arthropod Genetics Group, The Pirbright Institute, Woking, UK
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | | | - Philip T Leftwich
- Arthropod Genetics Group, The Pirbright Institute, Woking, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | - Hamid A Siddiqui
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Luke Alphey
- Arthropod Genetics Group, The Pirbright Institute, Woking, UK
| |
Collapse
|
14
|
Driesschaert B, Mergan L, Temmerman L. Conditional gene expression in invertebrate animal models. J Genet Genomics 2021; 48:14-31. [PMID: 33814307 DOI: 10.1016/j.jgg.2021.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
A mechanistic understanding of biology requires appreciating spatiotemporal aspects of gene expression and its functional implications. Conditional expression allows for (ir)reversible switching of genes on or off, with the potential of spatial and/or temporal control. This provides a valuable complement to the more often used constitutive gene (in)activation through mutagenesis, providing tools to answer a wider array of research questions across biological disciplines. Spatial and/or temporal control are granted primarily by (combinations of) specific promoters, temperature regimens, compound addition, or illumination. The use of such genetic tool kits is particularly widespread in invertebrate animal models because they can be applied to study biological processes in short time frames and on large scales, using organisms amenable to easy genetic manipulation. Recent years witnessed an exciting expansion and optimization of such tools, of which we provide a comprehensive overview and discussion regarding their use in invertebrates. The mechanism, applicability, benefits, and drawbacks of each of the systems, as well as further developments to be expected in the foreseeable future, are highlighted.
Collapse
Affiliation(s)
- Brecht Driesschaert
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Lucas Mergan
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
15
|
Pondeville E, Puchot N, Parvy JP, Carissimo G, Poidevin M, Waterhouse RM, Marois E, Bourgouin C. Hemocyte-targeted gene expression in the female malaria mosquito using the hemolectin promoter from Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 120:103339. [PMID: 32105779 PMCID: PMC7181189 DOI: 10.1016/j.ibmb.2020.103339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Hemocytes, the immune cells in mosquitoes, participate in immune defenses against pathogens including malaria parasites. Mosquito hemocytes can also be infected by arthropod-borne viruses but the pro- or anti-viral nature of this interaction is unknown. Although there has been progress on hemocyte characterization during pathogen infection in mosquitoes, the specific contribution of hemocytes to immune responses and the hemocyte-specific functions of immune genes and pathways remain unresolved due to the lack of genetic tools to manipulate gene expression in these cells specifically. Here, we used the Gal4-UAS system to characterize the activity of the Drosophila hemocyte-specific hemolectin promoter in the adults of Anopheles gambiae, the malaria mosquito. We established an hml-Gal4 driver line that we further crossed to a fluorescent UAS responder line, and examined the expression pattern in the adult progeny driven by the hml promoter. We show that the hml regulatory region drives hemocyte-specific transgene expression in a subset of hemocytes, and that transgene expression is triggered after a blood meal. The hml promoter drives transgene expression in differentiating prohemocytes as well as in differentiated granulocytes. Analysis of different immune markers in hemocytes in which the hml promoter drives transgene expression revealed that this regulatory region could be used to study phagocytosis as well as melanization. Finally, the hml promoter drives transgene expression in hemocytes in which o'nyong-nyong virus replicates. Altogether, the Drosophila hml promoter constitutes a good tool to drive transgene expression in hemocyte only and to analyze the function of these cells and the genes they express during pathogen infection in Anopheles gambiae.
Collapse
Affiliation(s)
- Emilie Pondeville
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France.
| | - Nicolas Puchot
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | | | - Guillaume Carissimo
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Mickael Poidevin
- Centre de Génétique Moléculaire, CNRS UPR 2167, Gif-sur-Yvette, France
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Eric Marois
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France
| | - Catherine Bourgouin
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France.
| |
Collapse
|
16
|
Webster SH, Vella MR, Scott MJ. Development and testing of a novel killer-rescue self-limiting gene drive system in Drosophila melanogaster. Proc Biol Sci 2020; 287:20192994. [PMID: 32292114 DOI: 10.1098/rspb.2019.2994] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Here we report the development and testing of a novel self-limiting gene drive system, Killer-Rescue (K-R), in Drosophila melanogaster. This system is composed of an autoregulated Gal4 Killer (K) and a Gal4-activated Gal80 Rescue (R). Overexpression of Gal4 is lethal, but in the presence of R activation of Gal80 leads to much lower levels of Gal4 and rescue of lethality. We demonstrate that with a single 2 : 1 engineered to wild-type release, K drives R through the population and after nine generations, more than 98% of the population carry R and less than 2% of the population are wild-type flies. We discuss how this simple K-R gene drive system may be readily adapted for population replacement in a human health pest, Aedes aegypti, or for population suppression in an agricultural pest, Drosophila suzukii.
Collapse
Affiliation(s)
- Sophia H Webster
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27615, USA
| | - Michael R Vella
- Biomathematics Graduate Program, North Carolina State University, Raleigh, NC 27615, USA
| | - Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27615, USA
| |
Collapse
|
17
|
Asad M, Munir F, Xu X, Li M, Jiang Y, Chu L, Yang G. Functional characterization of the cis-regulatory region for the vitellogenin gene in Plutella xylostella. INSECT MOLECULAR BIOLOGY 2020; 29:137-147. [PMID: 31850544 DOI: 10.1111/imb.12632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/23/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
The vitellogenin gene promoter (VgP) is an essential cis-regulatory element that plays a significant role in transcription of the vitellogenin (Vg) gene, leading to the production of yolk protein in insects, including lepidopterans. However, the function of VgP is still not clear in Plutella xylostella. Here, we cloned a 5.1 kb DNA fragment of the cis-regulatory region adjacent to the 5' end of the Vg gene of P. xylostella (PxVg). We identified two promoter sites in that 5' upstream sequence of PxVg and performed in vitro analysis of two promoter sequences (PxVgP1, 4.9 kb, and PxVgP2, 2.9 kb) in the embryonic cell line of P. xylostella. PxVgP2 exhibited higher enhanced green fluorescent protein (EGFP) expression, so PxVgP2 was used for in vivo analysis. Strong EGFP fluorescence was observed in adult females and the fat body of females, with low expression in embryos. Our results suggest that PxVgP is an important stage-, tissue- and sex-specific endogenous cis-regulatory element in P. xylostella.
Collapse
Affiliation(s)
- M Asad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - F Munir
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - X Xu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - M Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Y Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - L Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - G Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| |
Collapse
|
18
|
Matthews BJ, Vosshall LB. How to turn an organism into a model organism in 10 'easy' steps. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb218198. [PMID: 32034051 DOI: 10.1242/jeb.218198] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many of the major biological discoveries of the 20th century were made using just six species: Escherichia coli bacteria, Saccharomyces cerevisiae and Schizosaccharomyces pombe yeast, Caenorhabditis elegans nematodes, Drosophila melanogaster flies and Mus musculus mice. Our molecular understanding of the cell division cycle, embryonic development, biological clocks and metabolism were all obtained through genetic analysis using these species. Yet the 'big 6' did not start out as genetic model organisms (hereafter 'model organisms'), so how did they mature into such powerful systems? First, these model organisms are abundant human commensals: they are the bacteria in our gut, the yeast in our beer and bread, the nematodes in our compost pile, the flies in our kitchen and the mice in our walls. Because of this, they are cheaply, easily and rapidly bred in the laboratory and in addition were amenable to genetic analysis. How and why should we add additional species to this roster? We argue that specialist species will reveal new secrets in important areas of biology and that with modern technological innovations like next-generation sequencing and CRISPR-Cas9 genome editing, the time is ripe to move beyond the big 6. In this review, we chart a 10-step path to this goal, using our own experience with the Aedes aegypti mosquito, which we built into a model organism for neurobiology in one decade. Insights into the biology of this deadly disease vector require that we work with the mosquito itself rather than modeling its biology in another species.
Collapse
Affiliation(s)
- Benjamin J Matthews
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA.,Howard Hughes Medical Institute, New York, NY 10065, USA.,Kavli Neural Systems Institute, New York, NY 10065, USA
| |
Collapse
|
19
|
Tomoyasu Y, Halfon MS. How to study enhancers in non-traditional insect models. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb212241. [PMID: 32034049 DOI: 10.1242/jeb.212241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcriptional enhancers are central to the function and evolution of genes and gene regulation. At the organismal level, enhancers play a crucial role in coordinating tissue- and context-dependent gene expression. At the population level, changes in enhancers are thought to be a major driving force that facilitates evolution of diverse traits. An amazing array of diverse traits seen in insect morphology, physiology and behavior has been the subject of research for centuries. Although enhancer studies in insects outside of Drosophila have been limited, recent advances in functional genomic approaches have begun to make such studies possible in an increasing selection of insect species. Here, instead of comprehensively reviewing currently available technologies for enhancer studies in established model organisms such as Drosophila, we focus on a subset of computational and experimental approaches that are likely applicable to non-Drosophila insects, and discuss the pros and cons of each approach. We discuss the importance of validating enhancer function and evaluate several possible validation methods, such as reporter assays and genome editing. Key points and potential pitfalls when establishing a reporter assay system in non-traditional insect models are also discussed. We close with a discussion of how to advance enhancer studies in insects, both by improving computational approaches and by expanding the genetic toolbox in various insects. Through these discussions, this Review provides a conceptual framework for studying the function and evolution of enhancers in non-traditional insect models.
Collapse
Affiliation(s)
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
20
|
Engineered action at a distance: Blood-meal-inducible paralysis in Aedes aegypti. PLoS Negl Trop Dis 2019; 13:e0007579. [PMID: 31479450 PMCID: PMC6719823 DOI: 10.1371/journal.pntd.0007579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/26/2019] [Indexed: 11/23/2022] Open
Abstract
Background Population suppression through mass-release of Aedes aegypti males carrying dominant-lethal transgenes has been demonstrated in the field. Where population dynamics show negative density-dependence, suppression can be enhanced if lethality occurs after the density-dependent (i.e. larval) stage. Existing molecular tools have limited current examples of such Genetic Pest Management (GPM) systems to achieving this through engineering ‘cell-autonomous effectors’ i.e. where the expressed deleterious protein is restricted to the cells in which it is expressed–usually under the control of the regulatory elements (e.g. promoter regions) used to build the system. This limits the flexibility of these technologies as regulatory regions with useful spatial, temporal or sex-specific expression patterns may only be employed if the cells they direct expression in are simultaneously sensitive to existing effectors, and also precludes the targeting of extracellular regions such as cell-surface receptors. Expanding the toolset to ‘non-cell autonomous’ effectors would significantly reduce these limitations. Methodology/Principal findings We sought to engineer female-specific, late-acting lethality through employing the Ae. aegypti VitellogeninA1 promoter to drive blood-meal-inducible, fat-body specific expression of tTAV. Initial attempts using pro-apoptotic effectors gave no evident phenotype, potentially due to the lower sensitivity of terminally-differentiated fat-body cells to programmed-death signals. Subsequently, we dissociated the temporal and spatial expression of this system by engineering a novel synthetic effector (Scorpion neurotoxin–TetO-gp67.AaHIT) designed to be secreted out of the tissue in which it was expressed (fat-body) and then affect cells elsewhere (neuro-muscular junctions). This resulted in a striking, temporary-paralysis phenotype after blood-feeding. Conclusions/Significance These results are significant in demonstrating for the first time an engineered ‘action at a distance’ phenotype in a non-model pest insect. The potential to dissociate temporal and spatial expression patterns of useful endogenous regulatory elements will extend to a variety of other pest insects and effectors. A recent addition to the toolbox for controlling populations of the disease vector Aedes aegypti is the mass-release of males engineered with dominant, lethal transgenes. The lethal effect of these transgenes is activated in the progeny of these released engineered males and wild females they mate with in the field and with continuous release of males can cause population collapse. To date, these systems have relied on the use of ‘cell-autonomous’ effectors, meaning that their action is restricted to the cells in which they are expressed, limiting the flexibility of designing new, more complex systems. Here we demonstrate that it is possible to engineer ‘non-cell autonomous’ effectors–that is where the effect (e.g. the action of a toxic protein) can act on cells distant from the tissues in which they are originally expressed. To achieve this we utilised the endogenous cell secretory pathway to engineer a novel control phenotype–blood-meal inducible (i.e. late-acting, female-specific) reversible paralysis. The logic behind engineering such ‘action at a distance’ phenotypes will extend to a variety of other pest insects and control phenotypes.
Collapse
|
21
|
Liu MZ, Vosshall LB. General Visual and Contingent Thermal Cues Interact to Elicit Attraction in Female Aedes aegypti Mosquitoes. Curr Biol 2019; 29:2250-2257.e4. [PMID: 31257144 DOI: 10.1016/j.cub.2019.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/29/2019] [Accepted: 06/03/2019] [Indexed: 01/31/2023]
Abstract
Female Aedes aegypti mosquitoes use multiple sensory modalities to hunt human hosts and obtain a blood meal for egg production. Attractive cues include carbon dioxide (CO2), a major component of exhaled breath [1, 2]; heat elevated above ambient temperature, signifying warm-blooded skin [3, 4]; and dark visual contrast [5, 6], proposed to bridge long-range olfactory and short-range thermal cues [7]. Any of these sensory cues in isolation is an incomplete signal of a human host, and so a mosquito must integrate multimodal sensory information before committing to approaching and biting a person [8]. Here, we study the interaction of visual cues, heat, and CO2 to investigate the contributions of human-associated stimuli to host-seeking decisions. We show that tethered flying mosquitoes strongly orient toward dark visual contrast, regardless of CO2 stimulation and internal host-seeking status. This suggests that attraction to visual contrast is general and not contingent on other host cues. In free-flight experiments with CO2, adding a dark contrasting visual cue to a warmed surface enhanced attraction. Moderate warmth became more attractive to mosquitoes, and mosquitoes aggregated on the cue at all non-noxious temperatures. Gr3 mutants, unable to detect CO2, were lured to the visual cue at ambient temperatures but fled and did not return when the surface was warmed to host-like temperatures. This suggests that attraction to thermal cues is contingent on the presence of the additional sensory cue CO2. Our results illustrate that mosquitoes integrate general attractive visual stimuli with context-dependent thermal stimuli to seek promising sites for blood feeding.
Collapse
Affiliation(s)
- Molly Z Liu
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA; Kavli Neural Systems Institute, New York, NY 10065, USA.
| |
Collapse
|
22
|
Serotonin signaling regulates insulin-like peptides for growth, reproduction, and metabolism in the disease vector Aedes aegypti. Proc Natl Acad Sci U S A 2018; 115:E9822-E9831. [PMID: 30275337 DOI: 10.1073/pnas.1808243115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Disease-transmitting female mosquitoes require a vertebrate blood meal to produce their eggs. An obligatory hematophagous lifestyle, rapid reproduction, and existence of a large number of transmittable diseases make mosquitoes the world's deadliest animals. Attaining optimal body size and nutritional status is critical for mosquitoes to become reproductively competent and effective disease vectors. We report that blood feeding boosts serotonin concentration and elevates the serotonin receptor Aa5HT2B (Aedes aegypti 5-hydroxytryptamine receptor, type 2B) transcript level in the fat-body, an insect analog of the vertebrate liver and adipose tissue. Aa5HT2B gene disruption using the CRISPR-Cas9 gene-editing approach led to a decreased body size, postponed development, shortened lifespan, retarded ovarian growth, and dramatically diminished lipid accumulation. Expression of the insulin-like peptide (ILP) genes ilp2 and ilp6 was down-regulated while that of ilp5 and ilp4 was up-regulated in response to Aa5HT2B disruption. CRISPR-Cas9 disruption of ilp2 or ilp6 resulted in adverse phenotypes similar to those of Aa5HT2B disruption, while ilp5 CRISPR-Cas9 disruption had exactly the opposite effect on growth and metabolism, with significantly increased body size and elevated lipid stores. Simultaneous CRISPR-Cas9 disruption of Aa5HT2B and ilp5 rescued these phenotypic manifestations. Aa5HT2B RNAi silencing rendered ilp6 insensitive to serotonin treatment in the cultured fat-body, suggesting a regulatory link between Aa5HT2B and ILP6. Moreover, CRISPR-Cas9 ilp6 disruption affects expression of ilp-2, -5, and -4, pointing out on a possible role of ILP6 as a mediator of the Aa5HT2B action.
Collapse
|
23
|
Mysore K, Li P, Duman-Scheel M. Identification of Aedes aegypti cis-regulatory elements that promote gene expression in olfactory receptor neurons of distantly related dipteran insects. Parasit Vectors 2018; 11:406. [PMID: 29996889 PMCID: PMC6042464 DOI: 10.1186/s13071-018-2982-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/27/2018] [Indexed: 12/25/2022] Open
Abstract
Background Sophisticated tools for manipulation of gene expression in select neurons, including neurons that regulate sexually dimorphic behaviors, are increasingly available for analysis of genetic model organisms. However, we lack comparable genetic tools for analysis of non-model organisms, including Aedes aegypti, a vector mosquito which displays sexually dimorphic behaviors that contribute to pathogen transmission. Formaldehyde-assisted isolation of regulatory elements followed by sequencing (FAIRE-seq) recently facilitated genome-wide discovery of putative A. aegypti cis-regulatory elements (CREs), many of which could be used to manipulate gene expression in mosquito neurons and other tissues. The goal of this investigation was to identify FAIRE DNA elements that promote gene expression in the olfactory system, a tissue of vector importance. Results Eight A. aegypti CREs that promote gene expression in antennal olfactory receptor neurons (ORNs) were identified in a Drosophila melanogaster transgenic reporter screen. Four CREs identified in the screen were cloned upstream of GAL4 in a transgenic construct that is compatible with transformation of a variety of insect species. These constructs, which contained FAIRE DNA elements associated with the A. aegypti odorant coreceptor (orco), odorant receptor 1 (Or1), odorant receptor 8 (Or8) and fruitless (fru) genes, were used for transformation of A. aegypti. Six A. aegypti strains, including strains displaying transgene expression in all ORNs, subsets of these neurons, or in a sex-specific fashion, were isolated. The CREs drove transgene expression in A. aegypti that corresponded to endogenous gene expression patterns of the orco, Or1, Or8 and fru genes in the mosquito antenna. CRE activity in A. aegypti was found to be comparable to that observed in D. melanogaster reporter assays. Conclusions These results provide further evidence that FAIRE-seq, which can be paired with D. melanogaster reporter screening to test FAIRE DNA element activity in select tissues, is a useful method for identification of mosquito cis-regulatory elements. These findings expand the genetic toolkit available for the study of Aedes neurobiology. Moreover, given that the CREs drive comparable olfactory neural expression in both A. aegypti and D. melanogaster, it is likely that they may function similarly in multiple dipteran insects, including other disease vector mosquito species.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 1234 Notre Dame Avenue, Raclin-Carmichael Hall, South Bend, IN, 46617, USA.,The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, 46556, USA
| | - Ping Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 1234 Notre Dame Avenue, Raclin-Carmichael Hall, South Bend, IN, 46617, USA.,The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, 46556, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 1234 Notre Dame Avenue, Raclin-Carmichael Hall, South Bend, IN, 46617, USA. .,The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, 46556, USA. .,Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
24
|
Homem RA, Davies TGE. An overview of functional genomic tools in deciphering insecticide resistance. CURRENT OPINION IN INSECT SCIENCE 2018; 27:103-110. [PMID: 30025625 PMCID: PMC6060081 DOI: 10.1016/j.cois.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/19/2018] [Accepted: 04/09/2018] [Indexed: 05/13/2023]
Abstract
In this short review, we highlight three functional genomic technologies that have recently been contributing to the understanding of the molecular mechanisms underpinning insecticide resistance: the GAL4/UAS system, a molecular tool used to express genes of interest in a spatiotemporal controlled manner; the RNAi system, which is used to knock-down gene expression; and the most recently developed gene editing tool, CRISPR/Cas9, which can be used to knock-out and knock-in sequences of interest.
Collapse
Affiliation(s)
- Rafael A Homem
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| | - Thomas G Emyr Davies
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, UK.
| |
Collapse
|
25
|
Adolfi A, Pondeville E, Lynd A, Bourgouin C, Lycett GJ. Multi-tissue GAL4-mediated gene expression in all Anopheles gambiae life stages using an endogenous polyubiquitin promoter. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 96:1-9. [PMID: 29578046 DOI: 10.1016/j.ibmb.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The ability to manipulate the Anopheles gambiae genome and alter gene expression effectively and reproducibly is a prerequisite for functional genetic analysis and for the development of novel control strategies in this important disease vector. However, in vivo transgenic analysis in mosquitoes is limited by the lack of promoters active ubiquitously. To address this, we used the GAL4/UAS system to investigate the promoter of the An. gambiae Polyubiquitin-c (PUBc) gene and demonstrated its ability to drive expression in mosquito cell culture before incorporation into An. gambiae transgenic driver lines. To generate such lines, piggyBac-mediated insertion was used to identify genomic regions able to sustain widespread expression and to create φC31 docking lines at these permissive sites. Patterns of expression induced by PUBc-GAL4 drivers carrying single intergenic insertions were assessed by crossing with a novel responder UAS-mCD8:mCherry line that was created by φC31-mediated integration. Amongst the drivers created at single, unique chromosomal integration loci, two were isolated that induced differential expression levels in a similar multiple-tissue spatial pattern throughout the mosquito life cycle. This work expands the tools available for An. gambiae functional analysis by providing a novel promoter for investigating phenotypes resulting from widespread multi-tissue expression, as well as identifying and tagging genomic sites that sustain broad transcriptional activity.
Collapse
Affiliation(s)
- Adriana Adolfi
- Liverpool School of Tropical Medicine, Vector Biology Department, Liverpool, UK.
| | - Emilie Pondeville
- Institut Pasteur, Genetics and Genomics of Insect Vectors, CNRS Unit URA3012, Paris, France.
| | - Amy Lynd
- Liverpool School of Tropical Medicine, Vector Biology Department, Liverpool, UK
| | - Catherine Bourgouin
- Institut Pasteur, Genetics and Genomics of Insect Vectors, CNRS Unit URA3012, Paris, France
| | - Gareth J Lycett
- Liverpool School of Tropical Medicine, Vector Biology Department, Liverpool, UK.
| |
Collapse
|
26
|
Zhao B, Lucas KJ, Saha TT, Ha J, Ling L, Kokoza VA, Roy S, Raikhel AS. MicroRNA-275 targets sarco/endoplasmic reticulum Ca2+ adenosine triphosphatase (SERCA) to control key functions in the mosquito gut. PLoS Genet 2017; 13:e1006943. [PMID: 28787446 PMCID: PMC5560755 DOI: 10.1371/journal.pgen.1006943] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 08/17/2017] [Accepted: 07/26/2017] [Indexed: 12/17/2022] Open
Abstract
The yellow fever mosquito Aedes aegypti is the major vector of arboviruses, causing numerous devastating human diseases, such as dengue and yellow fevers, Chikungunya and Zika. Female mosquitoes need vertebrate blood for egg development, and repeated cycles of blood feeding are tightly linked to pathogen transmission. The mosquito’s posterior midgut (gut) is involved in blood digestion and also serves as an entry point for pathogens. Thus, the mosquito gut is an important tissue to investigate. The miRNA aae-miR-275 (miR-275) has been shown to be required for normal blood digestion in the female mosquito; however, the mechanism of its action has remained unknown. Here, we demonstrate that miR-275 directly targets and positively regulates sarco/endoplasmic reticulum Ca2+adenosine triphosphatase, which is implicated in active transport of Ca2+ from the cytosol to the sarco/endoplasmic reticulum. We utilized a combination of the gut-specific yeast transcription activator protein Gal4/upstream activating sequence (Gal4/UAS) system and miRNA Tough Decoy technology to deplete the endogenous level of miR-275 in guts of transgenic mosquitoes. This gut-specific reduction of miR-275 post blood meal decreased SERCA mRNA and protein levels of the digestive enzyme late trypsin. It also resulted in a significant reduction of gut microbiota. Moreover, the decrease of miR-275 and SERCA correlated with defects in the Notch signaling pathway and assembly of the gut actin cytoskeleton. The adverse phenotypes caused by miR-275 silencing were rescued by injections of miR-275 mimic. Thus, we have discovered that miR-275 directly targets SERCA, and the maintenance of its level is critical for multiple gut functions in mosquitoes. Female mosquitoes transmit numerous devastating human diseases. The mosquito gut, in addition to its primary function as a site of blood digestion, represents the entry point for pathogen colonization in mosquito vectors. The conserved microRNA, miR-275, was shown to be required for blood digestion and egg development. In this study, we investigated the target of miR-275 contributing to the regulation of mosquito gut functions. We achieved spatiotemporal suppression of miR-275 using a transgenic Tough Decoy RNA approach in the A. aegypti female mosquito gut. Furthermore, we have uncovered that miR-275 targets sarco/endoplasmic reticulum Ca2+- adenosine triphosphatase (SERCA), affecting numerous gut functions including blood digestion, production of digestive proteases, and assembly of the gut actin cytoskeleton. SERCA is essential for maintenance of Ca2+ homeostasis, and its disturbance, in humans, leads to cardiac hypertrophy, heart failure and cancers. Therefore, the finding that the miRNA miR-275 targets SERCA not only contributes to the knowledge of mosquito gut regulation but also significantly adds to the general understanding of mechanisms governing this critical molecule.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Keira J Lucas
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Tusar T Saha
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Jisu Ha
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, California, United States of America
| | - Lin Ling
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Vladimir A Kokoza
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Sourav Roy
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Alexander S Raikhel
- Department of Entomology and Institute for Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| |
Collapse
|
27
|
Transcriptome-wide microRNA and target dynamics in the fat body during the gonadotrophic cycle of Aedes aegypti. Proc Natl Acad Sci U S A 2017; 114:E1895-E1903. [PMID: 28223504 DOI: 10.1073/pnas.1701474114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mosquito Aedes aegypti is a major vector of numerous viral diseases, because it requires a blood meal to facilitate egg development. The fat body, a counterpart of mammalian liver and adipose tissues, is the metabolic center, playing a key role in reproduction. Therefore, understanding of regulatory networks controlling its functions is critical, and the role of microRNAs (miRNAs) in the process is largely unknown. We aimed to explore miRNA expression and potential targets in the female fat body of Ae. aegypti, as well as their changes postblood meal (PBM). Small RNA library analysis revealed five unique miRNA patterns sequentially expressed at five sampled time points, likely responding to, and affecting, waves of upstream hormonal signals and gene expression in the same period. To link miRNA identities with downstream targets, transcriptome-wide mRNA 3' UTR interaction sites were experimentally determined at 72 h posteclosion and 24 h PBM through Argonaute 1 cross-linking and immunoprecipitation followed by high-throughput sequencing. Several target sites were validated by means of in vitro luciferase assays with wild-type and mutated 3' UTRs for six miRNA families. With established transgenic lines, consistent results were observed with spatiotemporal knockdown of miR-8 and luciferase assays. We further investigated miRNAs potentially regulating various physiological processes based on Clusters of Orthologous Groups functional categories. Hence, the present work comprehensively elucidated miRNA expression and target dynamics in the female mosquito fat body, providing a solid foundation for future functional studies of miRNA regulation during the gonadotrophic cycle.
Collapse
|
28
|
Riabinina O, Task D, Marr E, Lin CC, Alford R, O'Brochta DA, Potter CJ. Organization of olfactory centres in the malaria mosquito Anopheles gambiae. Nat Commun 2016; 7:13010. [PMID: 27694947 PMCID: PMC5063964 DOI: 10.1038/ncomms13010] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/25/2016] [Indexed: 02/01/2023] Open
Abstract
Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory receptor neurons expressing the odorant receptor co-receptor (Orco) gene are labelled with GFP. These neurons project from the antennae and maxillary palps to the antennal lobe (AL) and from the labella on the proboscis to the suboesophageal zone (SEZ), suggesting integration of olfactory and gustatory signals occurs in this brain region. We present detailed anatomical maps of olfactory innervations in the AL and the SEZ, identifying glomeruli that may respond to human body odours or carbon dioxide. Our results pave the way for anatomical and functional neurogenetic studies of sensory processing in mosquitoes.
Collapse
Affiliation(s)
- Olena Riabinina
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Darya Task
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Elizabeth Marr
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Chun-Chieh Lin
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| | - Robert Alford
- University of Maryland College Park, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA
| | - David A O'Brochta
- University of Maryland College Park, 9600 Gudelsky Drive, Rockville, Maryland 20850, USA
| | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, 434 Rangos Building, Baltimore, Maryland 21205, USA
| |
Collapse
|
29
|
Zhao B, Hou Y, Wang J, Kokoza VA, Saha TT, Wang XL, Lin L, Zou Z, Raikhel AS. Determination of juvenile hormone titers by means of LC-MS/MS/MS and a juvenile hormone-responsive Gal4/UAS system in Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 77:69-77. [PMID: 27530057 PMCID: PMC5028310 DOI: 10.1016/j.ibmb.2016.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 05/16/2023]
Abstract
In anautogenous mosquitoes, juvenile hormone III (JH) plays an essential role in female post-eclosion (PE) development, preparing them for subsequent blood feeding and egg growth. We re-examined the JH titer during the reproductive cycle of female Aedes aegypti mosquitoes. Using liquid chromatography coupled with triple tandem mass spectrometry (LC-MS/MS/MS), we have shown that it reaches its peak at 48-54 h PE in the female hemolymph and at 72 h PE in whole body extracts. This method represents an effective assay for determination of JH titers. The 2.1-kb 5' promoter region of the Early Trypsin (ET) gene, which is specifically expressed in the female midgut under the control of JH during the PE phase, was utilized to genetically engineer the Ae. aegypti mosquito line with the ET-Gal4 activator. We then established the ET-GAL4>UAS-enhanced green fluorescent protein (EGFP) system in Ae. aegypti. In ET-Gal4>UAS-EGFP female mosquitoes, the intensity of the midgut-specific EGFP signal was observed to correspond to the ET gene transcript level and follow the JH titer during the PE phase. The EGFP signal and the EGFP transcript level were significantly diminished in midguts of transgenic female mosquitoes after RNA interference depletion of the JH receptor Methoprene-tolerant (Met), providing evidence of the control of ET gene expression by Met. Topical JH application caused premature enhancement of the EGFP signal and the EGFP transcript level in midguts of newly eclosed ET-Gal4>UAS-EGFP female mosquitoes, in which endogenous JH titer is still low. Hence, this novel ET-Gal4>UAS system permits JH-dependent gene overexpression in the midgut of Ae. aegypti female mosquitoes prior to a blood meal.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Yuan Hou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianjun Wang
- Department of Entomology, University of California, Riverside, CA, 92521, USA; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Vladimir A Kokoza
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Tusar T Saha
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Xue-Li Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ling Lin
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Alexander S Raikhel
- Department of Entomology, University of California, Riverside, CA, 92521, USA; The Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
30
|
Li W, Ou G. The application of somatic CRISPR-Cas9 to conditional genome editing in Caenorhabditis elegans. Genesis 2016; 54:170-81. [PMID: 26934570 DOI: 10.1002/dvg.22932] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 12/20/2022]
Abstract
Forward and reverse genetic approaches have been well developed in the nematode Caenorhabditis elegans; however, efficient genetic tools to generate conditional gene mutations are still in high demand. Recently, the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (CRISPR-Cas9) system for genome modification has provided an additional tool for C. elegans researchers to achieve simple and efficient conditional targeted mutagenesis. Here, we review recent advances in the somatic expression of Cas9 endonuclease for conditional gene editing. We present some practical considerations for improving the efficiency and reducing the off-target effects of somatic CRISPR-Cas9 and highlight a strategy to analyze somatic mutation at single-cell resolution. Finally, we outline future applications and consider challenges for this emerging genome editing platform that will need to be addressed in the future.
Collapse
Affiliation(s)
- Wei Li
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
31
|
Overcash JM, Aryan A, Myles KM, Adelman ZN. Understanding the DNA damage response in order to achieve desired gene editing outcomes in mosquitoes. Chromosome Res 2015; 23:31-42. [PMID: 25596822 DOI: 10.1007/s10577-014-9450-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mosquitoes are high-impact disease vectors with the capacity to transmit pathogenic agents that cause diseases such as malaria, yellow fever, chikungunya, and dengue. Continued growth in knowledge of genetic, molecular, and physiological pathways in mosquitoes allows for the development of novel control methods and for the continued optimization of existing ones. The emergence of site-specific nucleases as genomic engineering tools promises to expedite research of crucial biological pathways in these disease vectors. The utilization of these nucleases in a more precise and efficient manner is dependent upon knowledge and manipulation of the DNA repair pathways utilized by the mosquito. While progress has been made in deciphering DNA repair pathways in some model systems, research into the nature of the hierarchy of mosquito DNA repair pathways, as well as in mechanistic differences that may exist, is needed. In this review, we will describe progress in the use of site-specific nucleases in mosquitoes, along with the hierarchy of DNA repair in the context of mosquito chromosomal organization and structure, and how this knowledge may be manipulated to achieve precise chromosomal engineering in mosquitoes.
Collapse
Affiliation(s)
- Justin M Overcash
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, 305 Fralin Life Science Institute, 360 West Campus Dr., Blacksburg, VA, 24061, USA
| | | | | | | |
Collapse
|
32
|
Fu X, Li T, Chen J, Dong Y, Qiu J, Kang K, Zhang W. Functional screen for microRNAs of Nilaparvata lugens reveals that targeting of glutamine synthase by miR-4868b regulates fecundity. JOURNAL OF INSECT PHYSIOLOGY 2015; 83:22-9. [PMID: 26546713 DOI: 10.1016/j.jinsphys.2015.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 10/08/2015] [Accepted: 11/03/2015] [Indexed: 05/14/2023]
Abstract
Insect fecundity is regulated by the interaction of genotypes and the environment. MicroRNAs (miRNAs) also act in insect development and reproduction by regulating genes involved in these physiological processes. Although hundreds of insect miRNAs have been identified, the biological roles of most remain poorly understood. Here, we used a multi-algorithm approach for miRNA target prediction in 3'UTRs of fecundity-related genes in the brown planthopper (BPH) Nilaparvata lugens and identified 38 putative miRNAs targeting 9 fecundity-related genes. High-ranked miRNAs were selected for target validation. Using a dual luciferase reporter assay in S2 cells, we experimentally verified N. lugens glutamine synthetase (NlGS) as an authentic target of microRNA-4868b (miR-4868b). In the females, NlGS protein expression was down-regulated after injection of a miR-4868b mimic but up-regulated after injection of a miR-4868b inhibitor. In addition, overexpression of miR-4868b reduced fecundity, and disrupted ovary development and Vg expression in N. lugens. These findings showed that miR-4868b is involved in regulating N. lugens fecundity by targeting NlGS. Moreover, this study may lead to better understanding of the fecundity of this important agricultural insect pest.
Collapse
Affiliation(s)
- Xian Fu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tengchao Li
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Chen
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Dong
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jieqi Qiu
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kui Kang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
33
|
Smykal V, Raikhel AS. Nutritional Control of Insect Reproduction. CURRENT OPINION IN INSECT SCIENCE 2015; 11:31-38. [PMID: 26644995 PMCID: PMC4669899 DOI: 10.1016/j.cois.2015.08.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The amino acid-Target of Rapamycin (AA/TOR) and insulin pathways play a pivotal role in reproduction of female insects, serving as regulatory checkpoints that guarantee the sufficiency of nutrients for developing eggs. Being evolutionary older, the AA/TOR pathway functions as an initial nutritional sensor that not only activates nutritional responses in a tissue-specific manner, but is also involved in the control of insect insulin-like peptides (ILPs) secretion. Insulin and AA/TOR pathways also assert their nutritionally linked influence on reproductive events by contributing to the control of biosynthesis and secretion of juvenile hormone and ecdysone. This review covers the present status of our understanding of the contributions of AA/TOR and insulin pathways in insect reproduction.
Collapse
Affiliation(s)
| | - Alexander S. Raikhel
- Corresponding author. Department of Entomology, University of California Riverside, Riverside, CA 92521, USA. Tel.: 951 827 2129
| |
Collapse
|
34
|
Criscione F, O'Brochta DA, Reid W. Genetic technologies for disease vectors. CURRENT OPINION IN INSECT SCIENCE 2015; 10:90-97. [PMID: 29588019 DOI: 10.1016/j.cois.2015.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 06/08/2023]
Abstract
The first genetic technologies for insect vectors of disease were introduced 20 years ago. As of today there are 12 classes of genetic technologies used as functional genomic tools for insect vectors of important diseases. Although the applications of genetic technologies in insect disease vectors have been conducted primarily in mosquitoes, other insect systems could benefit from current technologies. While the various technological platforms are likely to function in diverse arthropods, the delivery of these technologies to cells and tissues of interest is the major technical constraint that limits their widespread adoption. Increased community resources of various types would enhance the adoption of these technologies and potentially eliminate technical limitations.
Collapse
Affiliation(s)
- Frank Criscione
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD 20850, United States.
| | - David A O'Brochta
- Institute for Bioscience and Biotechnology Research, Department of Entomology, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD 20850, United States.
| | - William Reid
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD 20850, United States.
| |
Collapse
|
35
|
Abstract
Transgenesis is an essential tool to investigate gene function and to introduce desired characters in laboratory organisms. Setting-up transgenesis in non-model organisms is challenging due to the diversity of biological life traits and due to knowledge gaps in genomic information. Some procedures will be broadly applicable to many organisms, and others have to be specifically developed for the target species. Transgenesis in disease vector mosquitoes has existed since the 2000s but has remained limited by the delicate biology of these insects. Here, we report a compilation of the transgenesis tools that we have designed for the malaria vector Anopheles gambiae, including new docking strains, convenient transgenesis plasmids, a puromycin resistance selection marker, mosquitoes expressing cre recombinase, and various reporter lines defining the activity of cloned promoters. This toolbox contributed to rendering transgenesis routine in this species and is now enabling the development of increasingly refined genetic manipulations such as targeted mutagenesis. Some of the reagents and procedures reported here are easily transferable to other nonmodel species, including other disease vector or agricultural pest insects.
Collapse
|
36
|
Kean J, Rainey SM, McFarlane M, Donald CL, Schnettler E, Kohl A, Pondeville E. Fighting Arbovirus Transmission: Natural and Engineered Control of Vector Competence in Aedes Mosquitoes. INSECTS 2015; 6:236-78. [PMID: 26463078 PMCID: PMC4553541 DOI: 10.3390/insects6010236] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/18/2015] [Accepted: 03/10/2015] [Indexed: 01/09/2023]
Abstract
Control of aedine mosquito vectors, either by mosquito population reduction or replacement with refractory mosquitoes, may play an essential role in the fight against arboviral diseases. In this review, we will focus on the development and application of biological approaches, both natural or engineered, to limit mosquito vector competence for arboviruses. The study of mosquito antiviral immunity has led to the identification of a number of host response mechanisms and proteins that are required to control arbovirus replication in mosquitoes, though more factors influencing vector competence are likely to be discovered. We will discuss key aspects of these pathways as targets either for selection of naturally resistant mosquito populations or for mosquito genetic manipulation. Moreover, we will consider the use of endosymbiotic bacteria such as Wolbachia, which in some cases have proven to be remarkably efficient in disrupting arbovirus transmission by mosquitoes, but also the use of naturally occurring insect-specific viruses that may interfere with arboviruses in mosquito vectors. Finally, we will discuss the use of paratransgenesis as well as entomopathogenic fungi, which are also proposed strategies to control vector competence.
Collapse
Affiliation(s)
- Joy Kean
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Stephanie M Rainey
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Melanie McFarlane
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Esther Schnettler
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
37
|
MicroRNA-8 targets the Wingless signaling pathway in the female mosquito fat body to regulate reproductive processes. Proc Natl Acad Sci U S A 2015; 112:1440-5. [PMID: 25605933 DOI: 10.1073/pnas.1424408112] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Female mosquitoes require a blood meal for reproduction, and this blood meal provides the underlying mechanism for the spread of many important vector-borne diseases in humans. A deeper understanding of the molecular mechanisms linked to mosquito blood meal processes and reproductive events is of particular importance for devising innovative vector control strategies. We found that the conserved microRNA miR-8 is an essential regulator of mosquito reproductive events. Two strategies to inhibit miR-8 function in vivo were used for functional characterization: systemic antagomir depletion and spatiotemporal inhibition using the miRNA sponge transgenic method in combination with the yeast transcriptional activator gal4 protein/upstream activating sequence system. Depletion of miR-8 in the female mosquito results in defects related to egg development and deposition. We used a multialgorithm approach for miRNA target prediction in mosquito 3' UTRs and experimentally verified secreted wingless-interacting molecule (swim) as an authentic target of miR-8. Our findings demonstrate that miR-8 controls the activity of the long-range Wingless (Wg) signaling by regulating Swim expression in the female fat body. We discovered that the miR-8/Wg axis is critical for the proper secretion of lipophorin and vitellogenin by the fat body and subsequent accumulation of these yolk protein precursors by developing oocytes.
Collapse
|
38
|
Vigoder FDM, Ritchie MG, Gibson G, Peixoto AA. Acoustic communication in insect disease vectors. Mem Inst Oswaldo Cruz 2014; 108 Suppl 1:26-33. [PMID: 24473800 PMCID: PMC4109177 DOI: 10.1590/0074-0276130390] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/30/2013] [Indexed: 11/21/2022] Open
Abstract
Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound "signatures" may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects.
Collapse
Affiliation(s)
- Felipe de Mello Vigoder
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz-Fiocruz, Brasil, Rio de JaneiroRJ, Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | - Michael Gordon Ritchie
- Centre for Biological Diversity, School of Biology, University of St Andrews, Scotland, Fife, Centre for Biological Diversity, School of Biology, University of St Andrews, Fife, Scotland, UK
| | - Gabriella Gibson
- Natural Resources Institute, University of Greenwich,, UK, Chatham MaritimeKent, Natural Resources Institute, University of Greenwich, Medway Campus, Chatham Maritime, Kent, UK
| | - Alexandre Afranio Peixoto
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz-Fiocruz, Brasil, Rio de JaneiroRJ, Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
39
|
Zhao B, Kokoza VA, Saha TT, Wang S, Roy S, Raikhel AS. Regulation of the gut-specific carboxypeptidase: a study using the binary Gal4/UAS system in the mosquito Aedes aegypti. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 54:1-10. [PMID: 25152428 PMCID: PMC4426967 DOI: 10.1016/j.ibmb.2014.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/31/2014] [Accepted: 08/03/2014] [Indexed: 05/26/2023]
Abstract
Pathogen transmission by mosquitoes is tightly linked to blood feeding which, in turn, is required for egg development. Studies of these processes would greatly benefit from genetic methods, such as the binary Gal4/UAS system. The latter has been well established for model organisms, but its availability is limited for mosquitoes. The objective of this study was to develop the blood-meal-activated, gut-specific Gal4/UAS system for the yellow-fever mosquito Aedes aegypti and utilize it to investigate the regulation of gut-specific gene expression. A 1.1-kb, 5(') upstream region of the carboxypeptidase A (CP) gene was used to genetically engineer the CP-Gal4 driver mosquito line. The CP-Gal4 specifically activated the Enhanced Green Fluorescent Protein (EGFP) reporter only after blood feeding in the gut of the CP-Gal4 > UAS-EGFP female Ae. aegypti. We used this system to study the regulation of CP gene expression. In vitro treatments with either amino acids (AAs) or insulin stimulated expression of the CP-Gal4 > UAS-EGFP transgene; no effect was observed with 20-hydroxyecdysone (20E) treatments. The transgene activation by AAs and insulin was blocked by rapamycin, the inhibitor of the Target-of-Rapamycin (TOR) kinase. RNA interference (RNAi) silence of the insulin receptor (IR) reduced the expression of the CP-Gal4 > UAS-EGFP transgene. Thus, in vitro and in vivo experiments have revealed that insulin and TOR pathways control expression of the digestive enzyme CP. In contrast, 20E, the major regulator of post-blood-meal vitellogenic events in female mosquitoes, has no role in regulating the expression of this gene. This novel CP-Gal4/UAS system permits functional testing of midgut-specific genes that are involved in blood digestion and interaction with pathogens in Ae. aegypti mosquitoes.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, CA 92521, USA.
| | - Vladimir A Kokoza
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| | - Tusar T Saha
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| | - Stephanie Wang
- Honors Undergraduate Program, University of California Riverside, Riverside, CA 92521, USA.
| | - Sourav Roy
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| | - Alexander S Raikhel
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA; The Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
40
|
Juvenile Hormone Biosynthesis in Insects: What Is New, What Do We Know, and What Questions Remain? INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:967361. [PMID: 27382622 PMCID: PMC4897325 DOI: 10.1155/2014/967361] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 07/26/2014] [Indexed: 12/02/2022]
Abstract
Our understanding of JH biosynthesis has significantly changed in the last years. In this review I would like to discuss the following topics: (1) the progresses in understanding the JH biosynthesis pathway. Access to genome sequences has facilitated the identification of all the genes encoding biosynthetic enzymes and the completion of comprehensive transcriptional studies, as well as the expression and characterization of recombinant enzymes. Now the existence of different flux directionalites, feed-back loops and pathway branching points in the JH biosynthesis pathways can be explored; (2) the new concepts in the modulation of JH synthesis by allatoregulators. The list of putative JH modulators is increasing. I will discuss their possible role during the different physiological states of the CA; (3) the new theoretical and physiological frameworks for JH synthesis analysis. I will discuss the bases of the flux model for JH biosynthesis. JH plays multiple roles in the control of ovary development in female mosquitoes; therefore, the CA presents different physiological states, where JH synthesis is altered by gating the flux at distinctive points in the pathway; (4) in the final section I will identify new challenges and future directions on JH synthesis research.
Collapse
|
41
|
Xu J, Wang YQ, Li ZQ, Ling L, Zeng BS, You L, Chen YZ, Aslam AFM, Huang YP, Tan AJ. Functional characterization of the vitellogenin promoter in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2014; 23:550-557. [PMID: 24828437 DOI: 10.1111/imb.12102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Genetic transformation and genome editing technologies have been successfully established in the lepidopteran insect model, the domesticated silkworm, Bombyx mori, providing great potential for functional genomics and practical applications. However, the current lack of cis-regulatory elements in B. mori gene manipulation research limits further exploitation in functional gene analysis. In the present study, we characterized a B. mori endogenous promoter, Bmvgp, which is a 798-bp DNA sequence adjacent to the 5'-end of the vitellogenin gene (Bmvg). PiggyBac-based transgenic analysis shows that Bmvgp precisely directs expression of a reporter gene, enhanced green fluorescent protein (EGFP), in a sex-, tissue- and stage-specific manner. In transgenic animals, EGFP expression can be detected in the female fat body from larval-pupal ecdysis to the following pupal and adult stage. Furthermore, in vitro and in vivo experiments revealed that EGFP expression can be activated by 20-hydroxyecdysone, which is consistent with endogenous Bmvg expression. These data indicate that Bmvgp is an effective endogenous cis-regulatory element in B. mori.
Collapse
Affiliation(s)
- J Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai Institutes for Biological Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Moretti DM, Ahuja LG, Nunes RD, Cudischevitch CO, Daumas-Filho CRO, Medeiros-Castro P, Ventura-Martins G, Jablonka W, Gazos-Lopes F, Senna R, Sorgine MHF, Hartfelder K, Capurro M, Atella GC, Mesquita RD, Silva-Neto MAC. Molecular analysis of Aedes aegypti classical protein tyrosine phosphatases uncovers an ortholog of mammalian PTP-1B implicated in the control of egg production in mosquitoes. PLoS One 2014; 9:e104878. [PMID: 25137153 PMCID: PMC4138107 DOI: 10.1371/journal.pone.0104878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 07/18/2014] [Indexed: 01/26/2023] Open
Abstract
Background Protein Tyrosine Phosphatases (PTPs) are enzymes that catalyze phosphotyrosine dephosphorylation and modulate cell differentiation, growth and metabolism. In mammals, PTPs play a key role in the modulation of canonical pathways involved in metabolism and immunity. PTP1B is the prototype member of classical PTPs and a major target for treating human diseases, such as cancer, obesity and diabetes. These signaling enzymes are, hence, targets of a wide array of inhibitors. Anautogenous mosquitoes rely on blood meals to lay eggs and are vectors of the most prevalent human diseases. Identifying the mosquito ortholog of PTP1B and determining its involvement in egg production is, therefore, important in the search for a novel and crucial target for vector control. Methodology/Principal Findings We conducted an analysis to identify the ortholog of mammalian PTP1B in the Aedes aegypti genome. We identified eight genes coding for classical PTPs. In silico structural and functional analyses of proteins coded by such genes revealed that four of these code for catalytically active enzymes. Among the four genes coding for active PTPs, AAEL001919 exhibits the greatest degree of homology with the mammalian PTP1B. Next, we evaluated the role of this enzyme in egg formation. Blood feeding largely affects AAEL001919 expression, especially in the fat body and ovaries. These tissues are critically involved in the synthesis and storage of vitellogenin, the major yolk protein. Including the classical PTP inhibitor sodium orthovanadate or the PTP substrate DiFMUP in the blood meal decreased vitellogenin synthesis and egg production. Similarly, silencing AAEL001919 using RNA interference (RNAi) assays resulted in 30% suppression of egg production. Conclusions/Significance The data reported herein implicate, for the first time, a gene that codes for a classical PTP in mosquito egg formation. These findings raise the possibility that this class of enzymes may be used as novel targets to block egg formation in mosquitoes.
Collapse
Affiliation(s)
- Debora Monteiro Moretti
- Laboratório de Sinalização Celular (LabSiCel), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Lalima Gagan Ahuja
- Department of Pharmacology, University of California San Diego, San Diego, California, United States of America
| | - Rodrigo Dutra Nunes
- Laboratório de Sinalização Celular (LabSiCel), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Cecília Oliveira Cudischevitch
- Laboratório de Sinalização Celular (LabSiCel), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Carlos Renato Oliveira Daumas-Filho
- Laboratório de Sinalização Celular (LabSiCel), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Priscilla Medeiros-Castro
- Laboratório de Sinalização Celular (LabSiCel), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Guilherme Ventura-Martins
- Laboratório de Sinalização Celular (LabSiCel), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Willy Jablonka
- Laboratório de Sinalização Celular (LabSiCel), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Felipe Gazos-Lopes
- Laboratório de Sinalização Celular (LabSiCel), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Raquel Senna
- Laboratório de Sinalização Celular (LabSiCel), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Marcos Henrique Ferreira Sorgine
- Laboratório de Sinalização Celular (LabSiCel), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Margareth Capurro
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Georgia Correa Atella
- Laboratório de Sinalização Celular (LabSiCel), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Rafael Dias Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| | - Mário Alberto Cardoso Silva-Neto
- Laboratório de Sinalização Celular (LabSiCel), Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
43
|
Akbari OS, Papathanos PA, Sandler JE, Kennedy K, Hay BA. Identification of germline transcriptional regulatory elements in Aedes aegypti. Sci Rep 2014; 4:3954. [PMID: 24492376 PMCID: PMC3912481 DOI: 10.1038/srep03954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022] Open
Abstract
The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UD(MEL), and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.
Collapse
Affiliation(s)
- Omar S Akbari
- 1] Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA [2]
| | - Philippos A Papathanos
- 1] Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA [2]
| | - Jeremy E Sandler
- Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Katie Kennedy
- Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bruce A Hay
- Division of Biology, MC 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
44
|
Novel Genetic and Molecular Tools for the Investigation and Control of Dengue Virus Transmission by Mosquitoes. CURRENT TROPICAL MEDICINE REPORTS 2014; 1:21-31. [PMID: 24693489 DOI: 10.1007/s40475-013-0007-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aedes aegypti is the principal vector of dengue virus (DENV) throughout the tropical world. This anthropophilic mosquito species needs to be persistently infected with DENV before it can transmit the virus through its saliva to a new vertebrate host. In the mosquito, DENV is confronted with several innate immune pathways, among which RNA interference is considered the most important. The Ae. aegypti genome project opened the doors for advanced molecular studies on pathogen-vector interactions including genetic manipulation of the vector for basic research and vector control purposes. Thus, Ae. aegypti has become the primary model for studying vector competence for arboviruses at the molecular level. Here, we present recent findings regarding DENV-mosquito interactions, emphasizing how innate immune responses modulate DENV infections in Ae. aegypti. We also describe the latest advancements in genetic manipulation of Ae. aegypti and discuss how this technology can be used to investigate vector transmission of DENV at the molecular level and to control transmission of the virus in the field.
Collapse
|
45
|
Lucas KJ, Myles KM, Raikhel AS. Small RNAs: a new frontier in mosquito biology. Trends Parasitol 2013; 29:295-303. [PMID: 23680188 DOI: 10.1016/j.pt.2013.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 12/23/2022]
Abstract
The discovery of small non-coding RNAs has revolutionized our understanding of regulatory networks governing multiple functions in animals and plants. However, our knowledge of mosquito small RNAs is limited. We discuss here the state of current knowledge regarding the roles of small RNAs and their targets in mosquitoes, and describe the ongoing efforts to understand the role of the RNA interference (RNAi) pathway in mosquito antiviral immunity and transposon silencing. Providing a clear picture into the role of small RNAs in mosquito vectors will pave the way to the utilization of these small molecules in developing novel control approaches that target mosquito immunity and/or reproductive events. Elucidation of the functions of small RNAs represents a new frontier in mosquito biology.
Collapse
Affiliation(s)
- Keira J Lucas
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | | | | |
Collapse
|
46
|
Nguyen C, Andrews E, Le C, Sun L, Annan Z, Clemons A, Severson DW, Duman-Scheel M. Functional genetic characterization of salivary gland development in Aedes aegypti. EvoDevo 2013; 4:9. [PMID: 23497573 PMCID: PMC3599648 DOI: 10.1186/2041-9139-4-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/07/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Despite the devastating global impact of mosquito-borne illnesses on human health, very little is known about mosquito developmental biology. In this investigation, functional genetic analysis of embryonic salivary gland development was performed in Aedes aegypti, the dengue and yellow fever vector and an emerging model for vector mosquito development. Although embryonic salivary gland development has been well studied in Drosophila melanogaster, little is known about this process in mosquitoes or other arthropods. RESULTS Mosquitoes possess orthologs of many genes that regulate Drosophila melanogaster embryonic salivary gland development. The expression patterns of a large subset of these genes were assessed during Ae. aegypti development. These studies identified a set of molecular genetic markers for the developing mosquito salivary gland. Analysis of marker expression allowed for tracking of the progression of Ae. aegypti salivary gland development in embryos. In Drosophila, the salivary glands develop from placodes located in the ventral neuroectoderm. However, in Ae. aegypti, salivary marker genes are not expressed in placode-like patterns in the ventral neuroectoderm. Instead, marker gene expression is detected in salivary gland rudiments adjacent to the proventriculus. These observations highlighted the need for functional genetic characterization of mosquito salivary gland development. An siRNA- mediated knockdown strategy was therefore employed to investigate the role of one of the marker genes, cyclic-AMP response element binding protein A (Aae crebA), during Ae. aegypti salivary gland development. These experiments revealed that Aae crebA encodes a key transcriptional regulator of the secretory pathway in the developing Ae. aegypti salivary gland. CONCLUSIONS The results of this investigation indicated that the initiation of salivary gland development in Ae. aegypti significantly differs from that of D. melanogaster. Despite these differences, some elements of salivary gland development, including the ability of CrebA to regulate secretory gene expression, are conserved between the two species. These studies underscore the need for further analysis of mosquito developmental genetics and may foster comparative studies of salivary gland development in additional insect species.
Collapse
Affiliation(s)
- Chilinh Nguyen
- University of Notre Dame, Notre Dame, Eck Institute for Global Health and Department of Biological Sciences, Notre Dame, IN 46556, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lucas K, Raikhel AS. Insect microRNAs: biogenesis, expression profiling and biological functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:24-38. [PMID: 23165178 PMCID: PMC3534889 DOI: 10.1016/j.ibmb.2012.10.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 10/24/2012] [Accepted: 10/28/2012] [Indexed: 05/09/2023]
Abstract
MicroRNAs (miRNA) are a class of endogenous regulatory RNA molecules 21-24 nucleotides in length that modulate gene expression at the post-transcriptional level via base pairing to target sites within messenger RNAs (mRNA). Typically, the miRNA "seed sequence" (nucleotides 2-8 at the 5' end) binds complementary seed match sites within the 3' untranslated region of mRNAs, resulting in either translational inhibition or mRNA degradation. MicroRNAs were first discovered in Caenorhabditis elegans and were shown to be involved in the timed regulation of developmental events. Since their discovery in the 1990s, thousands of potential miRNAs have since been identified in various organisms through small RNA cloning methods and/or computational prediction, and have been shown to play functionally important roles of gene regulation in invertebrates, vertebrates, plants, fungi and viruses. Numerous functions of miRNAs identified in Drosophila melanogaster have demonstrated a great significance of these regulatory molecules. However, elucidation of miRNA roles in non-drosophilid insects presents a challenging and important task.
Collapse
Affiliation(s)
- Keira Lucas
- Department of Entomology, University of California Riverside, Riverside, CA 92521, U.S.A
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, U.S.A
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California Riverside, Riverside, CA 92521, U.S.A
| | - Alexander S. Raikhel
- Department of Entomology, University of California Riverside, Riverside, CA 92521, U.S.A
- Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, U.S.A
- Corresponding author. Department of Entomology, University of California, Riverside, Riverside, CA 92521, U.S.A. Tel. +1 951 827 2129. (Keira Lucas); (Alexander S. Raikhel)
| |
Collapse
|
48
|
Caljon G, De Vooght L, Van Den Abbeele J. Options for the delivery of anti-pathogen molecules in arthropod vectors. J Invertebr Pathol 2012; 112 Suppl:S75-82. [PMID: 22841635 DOI: 10.1016/j.jip.2012.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/15/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
Blood feeding arthropods are responsible for the transmission of a large array of medically important infectious agents that include viruses, bacteria, protozoan parasites and helminths. The recent development of transgenic and paratransgenic technologies have enabled supplementing the immune system of these arthropod vectors with anti-pathogen effector molecules in view of compromising their vector competence for these microbial agents. The characteristics of the selected anti-pathogen compound will largely determine the efficacy and specificity of this approach. Low specificity will generally result in bystander effects, likely having a direct or indirect fitness cost for the arthropod. In contrast, the use of highly specific compounds from the adaptive immune system of vertebrates such as antibody derived fragments is more likely to enable highly specific effects without conferring a selective disadvantage to the (para)transgenic arthropods. Here, Nanobodies® are excellent candidates to increase the immune competence of arthropods. Moreover they were shown to exert a novel type of anti-pathogen activity that uniquely depends on their small size.
Collapse
Affiliation(s)
- Guy Caljon
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium.
| | | | | |
Collapse
|
49
|
Cruz J, Mane-Padros D, Zou Z, Raikhel AS. Distinct roles of isoforms of the heme-liganded nuclear receptor E75, an insect ortholog of the vertebrate Rev-erb, in mosquito reproduction. Mol Cell Endocrinol 2012; 349:262-71. [PMID: 22115961 PMCID: PMC3306807 DOI: 10.1016/j.mce.2011.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/15/2011] [Accepted: 11/07/2011] [Indexed: 11/24/2022]
Abstract
Mosquitoes are adapted to using vertebrate blood as a nutrient source to promote egg development and as a consequence serve as disease vectors. Blood-meal activated reproductive events in female mosquitoes are hormonally and nutritionally controlled with an insect steroid hormone 20-hydroxyecdysone (20E) playing a central role. The nuclear receptor E75 is an essential factor in the 20E genetic hierarchy, however functions of its three isoforms - E75A, E75B, and E75C - in mosquito reproduction are unclear. By means of specific RNA interference depletion of E75 isoforms, we identified their distinct roles in regulating the level and timing of expression of key genes involved in vitellogenesis in the fat body (an insect analog of vertebrate liver and adipose tissue) of the mosquito Aedes aegypti. Heme is required in a high level of expression of 20E-controlled genes in the fat body, and this heme action depends on E75. Thus, in mosquitoes, heme is an important signaling molecule, serving as a sensor of the availability of a protein meal for egg development. Disruption of this signaling pathway could be explored in the design of mosquito control approaches.
Collapse
Affiliation(s)
| | | | | | - Alexander S. Raikhel
- Corresponding author: Department of Entomology and Institute of Integrative Genome Biology, 900 University Avenue, Riverside, CA 92521, USA. Tel: +1 951 827 2129;
| |
Collapse
|
50
|
Lynd A, Lycett GJ. Development of the bi-partite Gal4-UAS system in the African malaria mosquito, Anopheles gambiae. PLoS One 2012; 7:e31552. [PMID: 22348104 PMCID: PMC3278442 DOI: 10.1371/journal.pone.0031552] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/13/2012] [Indexed: 11/19/2022] Open
Abstract
Functional genetic analysis in Anopheles gambiae would be greatly improved by the development of a binary expression system, which would allow the more rapid and flexible characterisation of genes influencing disease transmission, including those involved in insecticide resistance, parasite interaction, host and mate seeking behaviour. The Gal4-UAS system, widely used in Drosophila melanogaster functional genetics, has been significantly modified to achieve robust application in several different species. Towards this end, previous work generated a series of modified Gal4 constructs that were up to 20 fold more active than the native gene in An. gambiae cells. To examine the Gal4-UAS system in vivo, transgenic An. gambiae driver lines carrying a modified Gal4 gene under the control of the carboxypeptidase promoter, and responder lines carrying UAS regulated luciferase and eYFP reporter genes have been created. Crossing of the Gal4 and UAS lines resulted in progeny that expressed both reporters in the expected midgut specific pattern. Although there was minor variation in reporter gene activity between the different crosses examined, the tissue specific expression pattern was consistent regardless of the genomic location of the transgene cassettes. The results show that the modified Gal4-UAS system can be used to successfully activate expression of transgenes in a robust and tissue specific manner in Anopheles gambiae. The midgut driver and dual reporter responder constructs are the first to be developed and tested successfully in transgenic An. gambiae and provide the basis for further advancement of the system in this and other insect species.
Collapse
Affiliation(s)
- Amy Lynd
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Gareth John Lycett
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|