1
|
Scanlan JL, Robin C. Genetic characterization of candidate ecdysteroid kinases in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae204. [PMID: 39208453 DOI: 10.1093/g3journal/jkae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/26/2024] [Indexed: 09/04/2024]
Abstract
Ecdysteroids are major hormones in insects and control molting, growth, reproduction, physiology, and behavior. The biosynthesis of ecdysteroids such as 20-hydroxyecdysone (20E) from dietary sterols is well characterized, but ecdysteroid catabolism is poorly understood. Ecdysteroid kinases (EcKs) mediate the reversible phosphorylation of ecdysteroids, which has been implicated in ecdysteroid recycling during embryogenesis and reproduction in various insects. However, to date, only 2 EcK-encoding genes have been identified, in the silkworm Bombyx mori and the mosquito Anopheles gambiae. Previously, we identified 2 ecdysteroid kinase-like (EcKL) genes-Wallflower (Wall) and Pinkman (pkm)-in the model fruit fly Drosophila melanogaster that are orthologs of the ecdysteroid 22-kinase gene BmEc22K. Here, using gene knockdown, knockout, and misexpression, we explore Wall and pkm's possible functions and genetically test the hypothesis that they encode EcKs. Wall and pkm null mutants are viable and fertile, suggesting that they are not essential for development or reproduction, whereas phenotypes arising from RNAi and somatic CRISPR appear to derive from off-target effects or other artifacts. However, misexpression of Wall results in dramatic phenotypes, including developmental arrest, and defects in trachea, cuticle, and pigmentation. Wall misexpression fails to phenocopy irreversible ecdysteroid catabolism through misexpression of Cyp18a1, suggesting that Wall does not directly inactivate 20E. Additionally, Wall misexpression phenotypes are not attenuated in Cyp18a1 mutants, strongly suggesting that Wall is not an ecdysteroid 26-kinase. We hypothesize that the substrate of Wall in this misexpression experiment and possibly generally is an unknown, atypical ecdysteroid that plays essential roles in Drosophila development, and may highlight aspects of insect endocrinology that are as-yet uncharacterized. We also provide preliminary evidence that CG5644 encodes an ecdysteroid 22-kinase conserved across Diptera.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria 3010, Australia
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria 3010, Australia
| |
Collapse
|
2
|
Thayer RC, Polston ES, Xu J, Begun DJ. Regional specialization, polyploidy, and seminal fluid transcripts in the Drosophila female reproductive tract. Proc Natl Acad Sci U S A 2024; 121:e2409850121. [PMID: 39453739 PMCID: PMC11536144 DOI: 10.1073/pnas.2409850121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024] Open
Abstract
Sexual reproduction requires the choreographed interaction of female cells and molecules with sperm and seminal fluid. In internally fertilizing animals, these interactions are managed by specialized tissues within the female reproductive tract (FRT), such as a uterus, glands, and sperm storage organs. However, female somatic reproductive tissues remain understudied, hindering insight into the molecular interactions that support fertility. Here, we report the identification, molecular characterization, and analysis of cell types throughout the somatic FRT in the premier Drosophila melanogaster model system. We find that the uterine epithelia is composed of 11 distinct cell types with well-delineated spatial domains, likely corresponding to functionally specialized surfaces that interact with gametes and reproductive fluids. Polyploidy is pervasive: More than half of lower reproductive tract cells are ≥4C. While seminal fluid proteins (SFPs) are typically thought of as male products that are transferred to females, we find that specialized cell types in the sperm storage organs heavily invest in expressing SFP genes. Rates of amino acid divergence between closely related species indicate heterogeneous evolutionary processes acting on male-limited versus female-expressed seminal fluid genes. Together, our results emphasize that more than 40% of annotated seminal fluid genes are better described as shared components of reproductive transcriptomes, which may function cooperatively to support spermatozoa. More broadly, our work provides the molecular foundation for improved technologies to catalyze the functional characterization of the FRT.
Collapse
Affiliation(s)
- Rachel C. Thayer
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | | | - Jixiang Xu
- Department of Evolution and Ecology, University of California, Davis, CA95616
| | - David J. Begun
- Department of Evolution and Ecology, University of California, Davis, CA95616
| |
Collapse
|
3
|
Miao YH, Dou WH, Liu J, Huang DW, Xiao JH. Single-cell transcriptome sequencing reveals that Wolbachia induces gene expression changes in Drosophila ovary cells to favor its own maternal transmission. mBio 2024; 15:e0147324. [PMID: 39194189 PMCID: PMC11481584 DOI: 10.1128/mbio.01473-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Wolbachia is an obligate endosymbiont that is maternally inherited and widely distributed in arthropods and nematodes. It remains in the mature eggs of female hosts over generations through multiple strategies and manipulates the reproduction system of the host to enhance its spreading efficiency. However, the transmission of Wolbachia within the host's ovaries and its effects on ovarian cells during oogenesis, have not been extensively studied. We used single-cell RNA sequencing to comparatively analyze cell-typing and gene expression in Drosophila ovaries infected and uninfected with Wolbachia. Our findings indicate that Wolbachia significantly affects the transcription of host genes involved in the extracellular matrix, cytoskeleton organization, and cytomembrane mobility in multiple cell types, which may make host ovarian cells more conducive for the transmission of Wolbachia from extracellular to intracellular. Moreover, the genes nos and orb, which are related to the synthesis of ribonucleoprotein complexes, are specifically upregulated in early germline cells of ovaries infected with Wolbachia, revealing that Wolbachia can increase the possibility of its localization to the host oocytes by enhancing the binding with host ribonucleoprotein-complex processing bodies (P-bodies). All these findings provide novel insights into the maternal transmission of Wolbachia between host ovarian cells.IMPORTANCEWolbachia, an obligate endosymbiont in arthropods, can manipulate the reproduction system of the host to enhance its maternal transmission and reside in the host's eggs for generations. Herein, we performed single-cell RNA sequencing of ovaries from Drosophila melanogaster and observed the effects of Wolbachia (strain wMel) infection on different cell types to discuss the potential mechanism associated with the transmission and retention of Wolbachia within the ovaries of female hosts. It was found that the transcriptions of multiple genes in the ovary samples infected with Wolbachia are significantly altered, which possibly favors the maternal transmission of Wolbachia. Meanwhile, we also discovered that Wolbachia may flexibly regulate the expression level of specific host genes according to their needs rather than rigidly changing the expression level in one direction to achieve a more suitable living environment in the host's ovarian cells. Our findings contribute to a further understanding of the maternal transmission and possible universal effects of Wolbachia within the host.
Collapse
Affiliation(s)
- Yun-heng Miao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Wei-hao Dou
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jing Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Da-wei Huang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jin-hua Xiao
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Li S, Lao J, Sun Y, Hua X, Lin P, Wang F, Shen G, Zhao P, Xia Q. CRISPR/Cas9-Mediated Editing of BmEcKL1 Gene Sequence Affected Silk Gland Development of Silkworms ( Bombyx mori). Int J Mol Sci 2024; 25:1907. [PMID: 38339188 PMCID: PMC10856159 DOI: 10.3390/ijms25031907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
The silkworm (Bombyx mori) has served humankind through silk protein production. However, traditional sericulture and the silk industry have encountered considerable bottlenecks and must rely on major technological breakthroughs to keep up with the current rapid developments. The adoption of gene editing technology has nevertheless brought new hope to traditional sericulture and the silk industry. The long period and low efficiency of traditional genetic breeding methods to obtain high silk-yielding silkworm strains have hindered the development of the sericulture industry; the use of gene editing technology to specifically control the expression of genes related to silk gland development or silk protein synthesis is beneficial for obtaining silkworm strains with excellent traits. In this study, BmEcKL1 was specifically knocked out in the middle (MSGs) and posterior (PSGs) silk glands using CRISPR/Cas9 technology, and ΔBmEcKL1-MSG and ΔBmEcKL1-PSG strains with improved MSGs and PSGs and increased silk production were obtained. This work identifies and proves that BmEcKL1 directly or indirectly participates in silk gland development and silk protein synthesis, providing new perspectives for investigating silk gland development and silk protein synthesis mechanisms in silkworms, which is of great significance for selecting and breeding high silk-yielding silkworm varieties.
Collapse
Affiliation(s)
- Shimin Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
| | - Junjie Lao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
| | - Yue Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
| | - Xiaoting Hua
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Ping Lin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Feng Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Guanwang Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400716, China; (S.L.); (J.L.); (X.H.); (P.L.); (F.W.); (G.S.); (P.Z.)
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400716, China
| |
Collapse
|
5
|
Scanlan JL, Robin C. Phylogenomics of the Ecdysteroid Kinase-like (EcKL) Gene Family in Insects Highlights Roles in Both Steroid Hormone Metabolism and Detoxification. Genome Biol Evol 2024; 16:evae019. [PMID: 38291829 PMCID: PMC10859841 DOI: 10.1093/gbe/evae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
The evolutionary dynamics of large gene families can offer important insights into the functions of their individual members. While the ecdysteroid kinase-like (EcKL) gene family has previously been linked to the metabolism of both steroid molting hormones and xenobiotic toxins, the functions of nearly all EcKL genes are unknown, and there is little information on their evolution across all insects. Here, we perform comprehensive phylogenetic analyses on a manually annotated set of EcKL genes from 140 insect genomes, revealing the gene family is comprised of at least 13 subfamilies that differ in retention and stability. Our results show the only two genes known to encode ecdysteroid kinases belong to different subfamilies and therefore ecdysteroid metabolism functions must be spread throughout the EcKL family. We provide comparative phylogenomic evidence that EcKLs are involved in detoxification across insects, with positive associations between family size and dietary chemical complexity, and we also find similar evidence for the cytochrome P450 and glutathione S-transferase gene families. Unexpectedly, we find that the size of the clade containing a known ecdysteroid kinase is positively associated with host plant taxonomic diversity in Lepidoptera, possibly suggesting multiple functional shifts between hormone and xenobiotic metabolism. Our evolutionary analyses provide hypotheses of function and a robust framework for future experimental studies of the EcKL gene family. They also open promising new avenues for exploring the genomic basis of dietary adaptation in insects, including the classically studied coevolution of butterflies with their host plants.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
6
|
Chen J, Wang MK, Xie QX, Bing XL, Li TP, Hong XY. NDUFA8 potentially rescues Wolbachia-induced cytoplasmic incompatibility in Laodelphax striatellus. INSECT SCIENCE 2023; 30:1689-1700. [PMID: 36744754 DOI: 10.1111/1744-7917.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/11/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The endosymbiont Wolbachia manipulates host reproduction by several strategies, one of the most important of which is cytoplasmic incompatibility (CI). CI can be rescued when Wolbachia-infected males mate with females infected with the same Wolbachia strain. However, the potential rescue mechanism of CI in the small brown planthopper Laodelphax striatellus is unclear. In this study, comparative transcriptome analysis was applied to explore the effect of Wolbachia on L. striatellus eggs. A total of 1387 differentially expressed genes were identified. RNA interference of 7 Wolbachia-upregulated key planthopper genes reduced egg reproduction, suggesting that Wolbachia might improve fecundity in L. striatellus by affecting these 7 genes. Suppressing the expression of another upregulated gene, NDUFA8 (encoding NADH dehydrogenase [ubiquinone] 1 α subcomplex subunit 8-like) by RNA interference significantly increased the mortality of early embryos without affecting the number of deposited eggs. Wolbachia infection upregulated the mRNA level of NDUFA8, and dsNDUFA8 treatment of Wolbachia-infected females recreated CI-like symptoms, suggesting that NDUFA8 is associated with the rescue phenotype. Because all L. striatellus populations worldwide are infected with Wolbachia, NDUFA8 is a potential pest control target.
Collapse
Affiliation(s)
- Jie Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Meng-Ke Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Qi-Xian Xie
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Tong-Pu Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Chen MY, Duan X, Wang Q, Ran MJ, Ai H, Zheng Y, Wang YF. Cytochrome c1-like is required for mitochondrial morphogenesis and individualization during spermatogenesis in Drosophila melanogaster. J Exp Biol 2023; 226:286665. [PMID: 36645102 DOI: 10.1242/jeb.245277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
The Drosophila testis is an excellent system for studying the process from germ stem cells to motile sperm, including the proliferation of male germ cells, meiosis of primary spermatocytes, mitochondrial morphogenesis, and spermatid individualization. We previously demonstrated that ocnus (ocn) plays an essential role in male germ cell development. Among those genes and proteins whose expression levels were changed as a result of ocn knockdown, cytochrome c1-like (cyt-c1L) was downregulated significantly. Here, we show that cyt-c1L is highly expressed in the testis of D. melanogaster. Knockdown or mutation of cyt-c1L in early germ cells of flies resulted in male sterility. Immunofluorescence staining showed that cyt-c1L knockdown testes had no defects in early spermatogenesis; however, in late stages, in contrast to many individualization complexes (ICs) composed of F-actin cones that appeared at different positions in control testes, no actin cones or ICs were observed in cyt-c1L knockdown testes. Furthermore, no mature sperm were found in the seminal vesicle of cyt-c1L knockdown testes whereas the control seminal vesicle was full of mature sperm with needle-like nuclei. cyt-c1L knockdown also caused abnormal mitochondrial morphogenesis during spermatid elongation. Excessive apoptotic signals accumulated in the base of cyt-c1L knockdown fly testes. These results suggest that cyt-c1L may play an important role in spermatogenesis by affecting the mitochondrial morphogenesis and individualization of sperm in D. melanogaster.
Collapse
Affiliation(s)
- Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Xin Duan
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Qian Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Mao-Jiu Ran
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Hui Ai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
8
|
Dou W, Sun B, Miao Y, Huang D, Xiao J. Single-cell transcriptome sequencing reveals Wolbachia-mediated modification in early stages of Drosophila spermatogenesis. Proc Biol Sci 2023; 290:20221963. [PMID: 36629101 PMCID: PMC9832550 DOI: 10.1098/rspb.2022.1963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Wolbachia are the most widely distributed intracellular bacteria, and their most common effect on host phenotype is cytoplasmic incompatibility (CI). A variety of models have been proposed to decipher the molecular mechanism of CI, among which the host modification (HM) model predicts that Wolbachia effectors play an important role in sperm modification. However, owing to the complexity of spermatogenesis and testicular cell-type heterogeneity, whether Wolbachia have different effects on cells at different stages of spermatogenesis or whether these effects are linked with CI remains unknown. Therefore, we used single-cell RNA sequencing to analyse gene expression profiles in adult male Drosophila testes that were infected or uninfected by Wolbachia. We found that Wolbachia significantly affected the proportion of different types of germ cells and affected multiple metabolic pathways in germ cells. Most importantly, Wolbachia had the greatest impact on germline stem cells, resulting in dysregulated expression of genes related to DNA compaction, and Wolbachia infection also influenced the histone-to-protamine transition in the late stage of sperm development. These results support the HM model and suggest that future studies on Wolbachia-induced CI should focus on cells in the early stages of spermatogenesis.
Collapse
Affiliation(s)
- Weihao Dou
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Baofa Sun
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Yunheng Miao
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Dawei Huang
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | - Jinhua Xiao
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
9
|
Shah S, Zhang SS, Elgizawy KK, Yan WH, Tang N, Wu G, Yang FL. Diallyl trisulfide reduced the reproductive capacity of male Sitotroga cerealella via the regulation of juvenile and ecdysone hormones. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114304. [PMID: 36403303 DOI: 10.1016/j.ecoenv.2022.114304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/21/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Environmental pollution and resistance in animals are major concerns for the application of synthetic pesticides. Diallyl trisulfide (DAT), an active compound in garlic essential oil, is a novel tool for active and safe control of agricultural insect pests. In this study, we analysed the effects of DAT (0.01 μL/L) on the protein content in male reproductive tissues (accessory glands, ejaculatory ducts, and testis), and juvenile hormone (JH) and ecdysone titres in a highly detrimental pest of stored products, Sitotroga cerealella. Evaluation of the expression profile of JH and ecdysone pathway-related genes in various tissues indicated that the accessory gland protein and ecdysone titres were markedly decreased after DAT fumigation, whereas the testis protein content and JH titre were increased. However, the protein content of the ejaculatory ducts remained unchanged between the treated and control groups. Further investigation revealed that DAT disrupted the mRNA expression of key enzymes involved in JH and ecdysone pathways. While increased mRNA levels of juvenile hormone acid O-methyltransferase (JHMAT) and Kruppel homologue 1 (Kr-h1) were observed after 4 and 7 h of DAT fumigation, the levels of juvenile hormone epoxide hydrolase (JHEH) were substantially reduced 3 h post-fumigation. mRNA levels of the ecdysone-responsive gene, FTZF1, and cytochrome P450 enzyme, CYP315A1, were notably decreased at 7 h and 4 h, respectively, post-fumigation, whereas CYP314A1 and CYP302A1 mRNA levels decreased after 3 h and 4 h, respectively. While DAT fumigation disrupted sperm number in the testis, ejaculatory ducts, and seminal vesicles, topical application of the 20-hydroxyecdysone (20E) analogue also lowered sperm number in the ejaculatory ducts. Topical application of methoprene, a JH analogue, increased the protein content in the testes, but not in the accessory glands or ejaculatory ducts. However, the survival rate was not affected by the topical application of methoprene or 20E. These data suggest that DAT regulates JH and ecdysone via its molecular pathway genes and modulates endocrine secretion during the male reproductive process.
Collapse
Affiliation(s)
- Sakhawat Shah
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Su-Su Zhang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Karam Khamis Elgizawy
- Plant Protection Department, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Wen-Han Yan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Ning Tang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Gang Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China
| | - Feng-Lian Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
10
|
Mao B, Zhang W, Zheng Y, Li D, Chen MY, Wang YF. Comparative phosphoproteomics reveal new candidates in the regulation of spermatogenesis of Drosophila melanogaster. INSECT SCIENCE 2022; 29:1703-1720. [PMID: 35271765 DOI: 10.1111/1744-7917.13031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The most common phenotype induced by the endosymbiont Wolbachia in insects is cytoplasmic incompatibility, where none or fewer progenies can be produced when Wolbachia-infected males mate with uninfected females. This suggests that some modifications are induced in host sperms during spermatogenesis by Wolbachia. To identify the proteins whose phosphorylation states play essential roles in male reproduction in Drosophila melanogaster, we applied isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic strategy combined with titanium dioxide (TiO2 ) enrichment to compare the phosphoproteome of Wolbachia-infected with that of uninfected male reproductive systems in D. melanogaster. We identified 182 phosphopeptides, defining 140 phosphoproteins, that have at least a 1.2 fold change in abundance with a P-value of <0.05. Most of the differentially abundant phosphoproteins (DAPPs) were associated with microtubule cytoskeleton organization and spermatid differentiation. The DAPPs included proteins already known to be associated with spermatogenesis, as well as many not previously studied during this process. Six genes coding for DAPPs were knocked down, respectively, in Wolbachia-free fly testes. Among them, Slmap knockdown caused the most severe damage in spermatogenesis, with no mature sperm observed in seminal vesicles. Immunofluorescence staining showed that the formation of individualization complex composed of actin cones was completely disrupted. These results suggest that Wolbachia may induce wide changes in the abundance of phosphorylated proteins which are closely related to male reproduction. By identifying phospho-modulated proteins we also provide a significant candidate set for future studies on their roles in spermatogenesis.
Collapse
Affiliation(s)
- Bin Mao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Wei Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Dong Li
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
11
|
Kyritsis GA, Koskinioti P, Bourtzis K, Papadopoulos NT. Effect of Wolbachia Infection and Adult Food on the Sexual Signaling of Males of the Mediterranean Fruit Fly Ceratitis capitata. INSECTS 2022; 13:737. [PMID: 36005362 PMCID: PMC9409120 DOI: 10.3390/insects13080737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Sexual signaling is a fundamental component of sexual behavior of Ceratitis capitata that highly determines males' mating success. Nutritional status and age are dominant factors known to affect males' signaling performance and define the female decision to accept a male as a sexual partner. Wolbachia pipientis, a widespread endosymbiotic bacterium of insects and other arthropods, exerts several biological effects on its hosts. However, the effects of Wolbachia infection on the sexual behavior of medfly and the interaction between Wolbachia infection and adult food remain unexplored. This study was conducted to determine the effects of Wolbachia on sexual signaling of protein-fed and protein-deprived males. Our findings demonstrate that: (a) Wolbachia infection reduced male sexual signaling rates in both food regimes; (b) the negative effect of Wolbachia infection was more pronounced on protein-fed than protein-deprived males, and it was higher at younger ages, indicating that the bacterium regulates male sexual maturity; (c) Wolbachia infection alters the daily pattern of sexual signaling; and (d) protein deprivation bears significant descent on sexual signaling frequency of the uninfected males, whereas no difference was observed for the Wolbachia-infected males. The impact of our findings on the implementation of Incompatible Insect Technique (IIT) or the combined SIT/IIT towards controlling insect pests is discussed.
Collapse
Affiliation(s)
- Georgios A. Kyritsis
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 New Ionia, Greece
| | - Panagiota Koskinioti
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 New Ionia, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 2444 Seibersdorf, Austria
| | - Nikos T. Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 New Ionia, Greece
| |
Collapse
|
12
|
Wang W, Cui W, Yang H. Toward an accurate mechanistic understanding of Wolbachia-induced cytoplasmic incompatibility. Environ Microbiol 2022; 24:4519-4532. [PMID: 35859330 DOI: 10.1111/1462-2920.16125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/27/2022]
Abstract
Wolbachia are the most successful intracellular bacteria in arthropods. They can manipulate host reproduction to favour infected females, which transmit Wolbachia to their progeny and increase the presence of Wolbachia in the population. The reproductive alterations caused by Wolbachia include feminization, parthenogenesis, male killing and cytoplasmic incompatibility (CI), among which CI is the most common. CI leads to embryonic lethality when Wolbachia-infected males mate with uninfected females or those infected with an incompatible strain. This lethality can be rescued if females are infected with a compatible strain. Although CI was described in the 1960s and its connection to Wolbachia was made in the 1970s, the genes responsible for CI, called CI factors, were not identified until recently. Since then, significant progress has been made in understanding the molecular mechanism of CI using a combination of genetic, phylogenetic, biochemical and structural approaches. The detailed molecular mechanisms behind this fascinating endosymbiotic bacteria-induced phenotype have begun to emerge. Here, we summarize recent progress in understanding the molecular mechanism of CI, especially focusing on the recently solved CI factor structures and discussing what these new structures brought in terms of CI mechanism.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wen Cui
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China
| |
Collapse
|
13
|
Burdina EV, Gruntenko NE. Physiological Aspects of Wolbachia pipientis–Drosophila melanogaster Relationship. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Horard B, Terretaz K, Gosselin-Grenet AS, Sobry H, Sicard M, Landmann F, Loppin B. Paternal transmission of the Wolbachia CidB toxin underlies cytoplasmic incompatibility. Curr Biol 2022; 32:1319-1331.e5. [DOI: 10.1016/j.cub.2022.01.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/18/2021] [Accepted: 01/19/2022] [Indexed: 02/09/2023]
|
15
|
Scanlan JL, Battlay P, Robin C. Ecdysteroid kinase-like (EcKL) paralogs confer developmental tolerance to caffeine in Drosophila melanogaster. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100030. [PMID: 36003262 PMCID: PMC9387500 DOI: 10.1016/j.cris.2022.100030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 10/29/2022]
|
16
|
Hakala SM, Meurville MP, Stumpe M, LeBoeuf AC. Biomarkers in a socially exchanged /fluid reflect colony maturity, behavior, and distributed metabolism. eLife 2021; 10:74005. [PMID: 34725037 PMCID: PMC8608388 DOI: 10.7554/elife.74005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
In cooperative systems exhibiting division of labor, such as microbial communities, multicellular organisms, and social insect colonies, individual units share costs and benefits through both task specialization and exchanged materials. Socially exchanged fluids, like seminal fluid and milk, allow individuals to molecularly influence conspecifics. Many social insects have a social circulatory system, where food and endogenously produced molecules are transferred mouth-to-mouth (stomodeal trophallaxis), connecting all the individuals in the society. To understand how these endogenous molecules relate to colony life, we used quantitative proteomics to investigate the trophallactic fluid within colonies of the carpenter ant Camponotus floridanus. We show that different stages of the colony life cycle circulate different types of proteins: young colonies prioritize direct carbohydrate processing; mature colonies prioritize accumulation and transmission of stored resources. Further, colonies circulate proteins implicated in oxidative stress, ageing, and social insect caste determination, potentially acting as superorganismal hormones. Brood-caring individuals that are also closer to the queen in the social network (nurses) showed higher abundance of oxidative stress-related proteins. Thus, trophallaxis behavior could provide a mechanism for distributed metabolism in social insect societies. The ability to thoroughly analyze the materials exchanged between cooperative units makes social insect colonies useful models to understand the evolution and consequences of metabolic division of labor at other scales. Division of labor is essential for cooperation, because groups can achieve more when individuals specialize in different tasks. This happens across the natural world, from different cells in organisms performing specific roles, to the individuals in an ant colony carrying out diverse duties. In both of these systems, individuals work together to ensure the survival of the collective unit – the body or the colony – instead of competing against each other. One of the main ways division of labor is evident within these two systems is regarding reproduction. Both in the body and in an ant colony, only one or a few individual units can reproduce, while the rest provide support. In the case of ant colonies, only queens and males reproduce, while the young workers nurse the brood and older workers forage for food. This intense cooperation requires close communication between individual units – in the case of some species of ants, by sharing fluids mouth-to-mouth. These fluids contain food but also many molecules produced by the ants themselves, including proteins. Given that both individuals and the colony as a whole change as they age – with workers acquiring new roles, and new queens and males only reared once the colony is mature – it is likely that the proteins transmitted in the fluid also change. To better understand whether the lifecycles of individuals and the age of the colony affect the fluids shared by carpenter ants Camponotus floridanus, Hakala et al. examined the ant-produced proteins in these fluids. This revealed differences in the proteins shared by young and mature colonies, and young nurse ants and older forager ants. In young colonies, the fluids contained proteins involved in fast sugar processing; while in mature colonies, the fluids contained more proteins to store nutrients, which help insect larvae grow into larger individuals, like queens. Young worker ants, who spend their time nursing the brood, produced more anti-aging proteins. This may be because these ants are in close contact with the queen, who lives much longer than the rest of the ants in the colony. Taken together, these observations suggest that ants divide the labor of metabolism, as well as work and reproduction. Dividing the labor of metabolism among individuals is one more similarity between ants and the cells of a multicellular organism, like a fly or a human. Division of labor allows the sharing of burden, with some individuals lightening the load of others. Understanding how ants achieve this by sharing fluids could shed new light on this complex exchange at other scales or in other organisms. By matching proteins to life stages, researchers have a starting point to examine individual molecules in more detail.
Collapse
Affiliation(s)
- Sanja M Hakala
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Michael Stumpe
- Metabolomics and Proteomics Platform, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Adria C LeBoeuf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
17
|
Shared evolutionary trajectories of three independent neo-sex chromosomes in Drosophila. Genome Res 2021; 31:2069-2079. [PMID: 34675069 PMCID: PMC8559708 DOI: 10.1101/gr.275503.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
Dosage compensation (DC) on the X Chromosome counteracts the deleterious effects of gene loss on the Y Chromosome. However, DC is not efficient if the X Chromosome also degenerates. This indeed occurs in Drosophila miranda, in which both the neo-Y and the neo-X are under accelerated pseudogenization. To examine the generality of this pattern, we investigated the evolution of two additional neo-sex chromosomes that emerged independently in D. albomicans and D. americana and reanalyzed neo-sex chromosome evolution in D. miranda. Comparative genomic and transcriptomic analyses revealed that the pseudogenization rate on the neo-X is also accelerated in D. albomicans and D. americana although to a lesser extent than in D. miranda. In males, neo-X-linked genes whose neo-Y-linked homologs are pseudogenized tended to be up-regulated more than those whose neo-Y-linked homologs remain functional. Moreover, genes under strong functional constraint and genes highly expressed in the testis tended to remain functional on the neo-X and neo-Y, respectively. Focusing on the D. miranda and D. albomicans neo-sex chromosomes that emerged independently from the same autosome, we further found that the same genes tend to become pseudogenized in parallel on the neo-Y. These genes include Idgf6 and JhI-26, which may be unnecessary or even harmful in males. Our results indicate that neo-sex chromosomes in Drosophila share a common evolutionary trajectory after their emergence, which may prevent sex chromosomes from being an evolutionary dead end.
Collapse
|
18
|
Zhang HB, Cao Z, Qiao JX, Zhong ZQ, Pan CC, Liu C, Zhang LM, Wang YF. Metabolomics provide new insights into mechanisms of Wolbachia-induced paternal defects in Drosophila melanogaster. PLoS Pathog 2021; 17:e1009859. [PMID: 34383852 PMCID: PMC8384202 DOI: 10.1371/journal.ppat.1009859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/24/2021] [Accepted: 08/01/2021] [Indexed: 12/22/2022] Open
Abstract
Wolbachia is a group of intracellular symbiotic bacteria that widely infect arthropods and nematodes. Wolbachia infection can regulate host reproduction with the most common phenotype in insects being cytoplasmic incompatibility (CI), which results in embryonic lethality when uninfected eggs fertilized with sperms from infected males. This suggests that CI-induced defects are mainly in paternal side. However, whether Wolbachia-induced metabolic changes play a role in the mechanism of paternal-linked defects in embryonic development is not known. In the current study, we first use untargeted metabolomics method with LC-MS to explore how Wolbachia infection influences the metabolite profiling of the insect hosts. The untargeted metabolomics revealed 414 potential differential metabolites between Wolbachia-infected and uninfected 1-day-old (1d) male flies. Most of the differential metabolites were significantly up-regulated due to Wolbachia infection. Thirty-four metabolic pathways such as carbohydrate, lipid and amino acid, and vitamin and cofactor metabolism were affected by Wolbachia infection. Then, we applied targeted metabolomics analysis with GC-MS and showed that Wolbachia infection resulted in an increased energy expenditure of the host by regulating glycometabolism and fatty acid catabolism, which was compensated by increased food uptake. Furthermore, overexpressing two acyl-CoA catabolism related genes, Dbi (coding for diazepam-binding inhibitor) or Mcad (coding for medium-chain acyl-CoA dehydrogenase), ubiquitously or specially in testes caused significantly decreased paternal-effect egg hatch rate. Oxidative stress and abnormal mitochondria induced by Wolbachia infection disrupted the formation of sperm nebenkern. These findings provide new insights into mechanisms of Wolbachia-induced paternal defects from metabolic phenotypes.
Collapse
Affiliation(s)
- Hua-Bao Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Zheng Cao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jun-Xue Qiao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Zi-Qian Zhong
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Chen-Chen Pan
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Chen Liu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| | - Li-Min Zhang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
19
|
Xia X, Peng CW, Cui JR, Jin PY, Yang K, Hong XY. Wolbachia affects reproduction in the spider mite Tetranychus truncatus (Acari: Tetranychidae) by regulating chorion protein S38-like and Rop. INSECT MOLECULAR BIOLOGY 2021; 30:18-29. [PMID: 32945029 DOI: 10.1111/imb.12669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/20/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Wolbachia-induced reproductive regulation in hosts has been used to control pest populations, but little is known about the molecular mechanism underlying Wolbachia regulation of host genes. Here, reproductive regulation by Wolbachia in the spider mite Tetranychus truncatus was studied at the molecular level. Infection with Wolbachia resulted in decreasing oviposition and cytoplasmic incompatibility in T. truncatus. Further RNA-seq revealed genes regulated by Wolbachia in T. truncatus. Real-time quantitative polymerase chain reaction (qPCR) showed that genes, including chorion protein S38-like and Rop were down-regulated by Wolbachia. RNA interference (RNAi) of chorion protein S38-like and Rop in Wolbachia-uninfected T. truncatus decreased oviposition, which was consistent with Wolbachia-induced oviposition decrease. Interestingly, suppressing Rop in Wolbachia-infected T. truncatus led to increased Wolbachia titres in eggs; however, this did not occur after RNAi of chorion protein S38-like. This is the first study to show that chorion protein S38-like and Rop facilitate Wolbachia-mediated changes in T. truncatus fertility. In addition, RNAi of Rop turned the body colour of Wolbachia-uninfected T. truncatus black, which indicates that the role of Rop is not limited to the reproductive regulation of T. truncatus.
Collapse
Affiliation(s)
- X Xia
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - C-W Peng
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - J-R Cui
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - P-Y Jin
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - K Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Doremus MR, Stouthamer CM, Kelly SE, Schmitz-Esser S, Hunter MS. Cardinium Localization During Its Parasitoid Wasp Host's Development Provides Insights Into Cytoplasmic Incompatibility. Front Microbiol 2020; 11:606399. [PMID: 33424808 PMCID: PMC7793848 DOI: 10.3389/fmicb.2020.606399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 11/23/2022] Open
Abstract
Arthropods harbor heritable intracellular symbionts that may manipulate host reproduction to favor symbiont transmission. In cytoplasmic incompatibility (CI), the symbiont sabotages the reproduction of infected males such that high levels of offspring mortality result when they mate with uninfected females. In crosses with infected males and infected females, however (the “rescue” cross), normal numbers of offspring are produced. A common CI-inducing symbiont, Cardinium hertigii, causes variable levels of CI mortality in the parasitoid wasp, Encarsia suzannae. Previous work correlated CI-induced mortality with male development time in this system, although the timing of Cardinium CI-induction and the relationship between development time and CI mortality was not well understood. Here, using a combination of crosses, manipulation of development time, and fluorescence microscopy, we identify the localization and the timing of the CI-induction step in the Cardinium-E. suzannae system. Antibiotic treatment of adult Cardinium-infected males did not reduce the mortality associated with the CI phenotype, suggesting that CI-alteration occurs prior to adulthood. Our results suggest that the alteration step occurs during the pupal period, and is limited by the duration of pupal development: 1) Encarsia produces most sperm prior to adulthood, 2) FISH localization of Cardinium in testes showed an association with sperm nuclei throughout spermatogenesis but not with mature sperm, and 3) two methods of prolonging the pupal period (cool temperatures and the juvenile hormone analog methoprene) both caused greater CI mortality, suggesting the degree of alteration is limited by the duration of the pupal stage. Based on these results, we compare two models for potential mechanisms of Cardinium sperm modification in the context of what is known about analogous mechanisms of Wolbachia, a more extensively studied CI-inducing symbiont.
Collapse
Affiliation(s)
- Matthew R Doremus
- Graduate Interdisciplinary Program in Entomology and Insect Science, University of Arizona, Tucson, AZ, United States
| | | | - Suzanne E Kelly
- Department of Entomology, University of Arizona, Tucson, AZ, United States
| | | | - Martha S Hunter
- Department of Entomology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
21
|
Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S. Mapping the past, present and future research landscape of paternal effects. BMC Biol 2020; 18:183. [PMID: 33246472 PMCID: PMC7694421 DOI: 10.1186/s12915-020-00892-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Although in all sexually reproducing organisms an individual has a mother and a father, non-genetic inheritance has been predominantly studied in mothers. Paternal effects have been far less frequently studied, until recently. In the last 5 years, research on environmentally induced paternal effects has grown rapidly in the number of publications and diversity of topics. Here, we provide an overview of this field using synthesis of evidence (systematic map) and influence (bibliometric analyses). RESULTS We find that motivations for studies into paternal effects are diverse. For example, from the ecological and evolutionary perspective, paternal effects are of interest as facilitators of response to environmental change and mediators of extended heredity. Medical researchers track how paternal pre-fertilization exposures to factors, such as diet or trauma, influence offspring health. Toxicologists look at the effects of toxins. We compare how these three research guilds design experiments in relation to objects of their studies: fathers, mothers and offspring. We highlight examples of research gaps, which, in turn, lead to future avenues of research. CONCLUSIONS The literature on paternal effects is large and disparate. Our study helps in fostering connections between areas of knowledge that develop in parallel, but which could benefit from the lateral transfer of concepts and methods.
Collapse
Affiliation(s)
- Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Russell Bonduriansky
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, BEES, The University of New South Wales, Sydney, Australia
| |
Collapse
|
22
|
Semiatizki A, Weiss B, Bagim S, Rohkin-Shalom S, Kaltenpoth M, Chiel E. Effects, interactions, and localization of Rickettsia and Wolbachia in the house fly parasitoid, Spalangia endius. MICROBIAL ECOLOGY 2020; 80:718-728. [PMID: 32488484 DOI: 10.1007/s00248-020-01520-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Many insect species harbor facultative microbial symbionts that affect their biology in diverse ways. Here, we studied the effects, interactions, and localization of two bacterial symbionts-Wolbachia and Rickettsia-in the parasitoid Spalangia endius. We crossed between four S. endius colonies-Wolbachia only (W), Rickettsia only (R), both (WR), and none (aposymbiotic, APS) (16 possible crosses) and found that Wolbachia induces incomplete cytoplasmic incompatibility (CI), both when the males are W or WR. Rickettsia did not cause reproductive manipulations and did not rescue the Wolbachia-induced CI. However, when R females were crossed with W or WR males, significantly less offspring were produced compared with that of control crosses. In non-CI crosses, the presence of Wolbachia in males caused a significant reduction in offspring numbers. Females' developmental time was significantly prolonged in the R colony, with adults starting to emerge one day later than the other colonies. Other fitness parameters did not differ significantly between the colonies. Using fluorescence in situ hybridization microscopy in females, we found that Wolbachia is localized alongside Rickettsia inside oocytes, follicle cells, and nurse cells in the ovaries. However, Rickettsia is distributed also in muscle cells all over the body, in ganglia, and even in the brain.
Collapse
Affiliation(s)
- Amit Semiatizki
- Department of Biology and Environment, University of Haifa-Oranim, 36006, Tivon, Israel
| | - Benjamin Weiss
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Shir Bagim
- Department of Biology and Environment, University of Haifa-Oranim, 36006, Tivon, Israel
| | - Sarit Rohkin-Shalom
- Department of Biology and Environment, University of Haifa-Oranim, 36006, Tivon, Israel
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Elad Chiel
- Department of Biology and Environment, University of Haifa-Oranim, 36006, Tivon, Israel.
| |
Collapse
|
23
|
Biwot JC, Zhang HB, Liu C, Qiao JX, Yu XQ, Wang YF. Wolbachia-induced expression of kenny gene in testes affects male fertility in Drosophila melanogaster. INSECT SCIENCE 2020; 27:869-882. [PMID: 31617302 DOI: 10.1111/1744-7917.12730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Wolbachia are Gram-negative endosymbionts that are known to cause embryonic lethality when infected male insects mate with uninfected females or with females carrying a different strain of Wolbachia, a situation characterized as cytoplasmic incompatibility (CI). However, the mechanism of CI is not yet fully understood, although recent studies on Drosophila melanogaster have achieved great progress. Here, we found that Wolbachia infection caused changes in the expressions of several immunity-related genes, including significant upregulation of kenny (key), in the testes of D. melanogaster. Overexpression of key in fly testes led to a significant decrease in egg hatch rates when these flies mate with wild-type females. Wolbachia-infected females could rescue this embryonic lethality. Furthermore, in key overexpressing testes terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling signal was significantly stronger than in the control testes, and the level of reactive oxygen species was significantly increased. Overexpression of key also resulted in alterations of some other immunity-related gene expressions, including the downregulation of Zn72D. Knockdown of Zn72D in fly testes also led to a significant decrease in egg hatch rates. These results suggest that Wolbachia might induce the defect in male host fertility by immunity-related pathways and thus cause an oxidative damage and cell death in male testes.
Collapse
Affiliation(s)
- John C Biwot
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Hua-Bao Zhang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Chen Liu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Jun-Xue Qiao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Xiao-Qiang Yu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, China
| |
Collapse
|
24
|
Bi J, Wang Y. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. INSECT SCIENCE 2020; 27:846-858. [PMID: 31631529 PMCID: PMC7496987 DOI: 10.1111/1744-7917.12731] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/25/2019] [Accepted: 09/10/2019] [Indexed: 05/10/2023]
Abstract
As one of the most successful intracellular symbiotic bacteria, Wolbachia can infect many arthropods and nematodes. Wolbachia infection usually affects the reproduction of their hosts to promote their own proliferation and transmission. Currently, most of the studies focus on the mechanisms of Wolbachia interactions with host reproduction. However, in addition to distribution in the reproductive tissues, Wolbachia also infect various somatic tissues of their hosts, including the brain. This raises the potential that Wolbachia may influence some somatic processes, such as behaviors in their hosts. So far, information about the effects of Wolbachia infection on host behavior is still very limited. The present review presents the current literature on different aspects of the influence of Wolbachia on various behaviors, including sleep, learning and memory, mating, feeding and aggression in their insect hosts. We then highlight ongoing scientific efforts in the field that need addressing to advance this field, which can have significant implications for further developing Wolbachia as environmentally friendly biocontrol agents to control insect-borne diseases and agricultural pests.
Collapse
Affiliation(s)
- Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal UniversityWuhanChina
| | - Yu‐Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal UniversityWuhanChina
| |
Collapse
|
25
|
Shropshire JD, Leigh B, Bordenstein SR. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife 2020; 9:61989. [PMID: 32975515 PMCID: PMC7518888 DOI: 10.7554/elife.61989] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is the most common symbiont-induced reproductive manipulation. Specifically, symbiont-induced sperm modifications cause catastrophic mitotic defects in the fertilized embryo and ensuing lethality in crosses between symbiotic males and either aposymbiotic females or females harboring a different symbiont strain. However, if the female carries the same symbiont strain, then embryos develop properly, thereby imparting a relative fitness benefit to symbiont-transmitting mothers. Thus, CI drives maternally-transmitted bacteria to high frequencies in arthropods worldwide. In the past two decades, CI experienced a boom in interest due to its (i) deployment in worldwide efforts to curb mosquito-borne diseases, (ii) causation by bacteriophage genes, cifA and cifB, that modify sexual reproduction, and (iii) important impacts on arthropod speciation. This review serves as a gateway to experimental, conceptual, and quantitative themes of CI and outlines significant gaps in understanding CI’s mechanism that are ripe for investigation from diverse subdisciplines in the life sciences.
Collapse
Affiliation(s)
- J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, United States.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, United States
| |
Collapse
|
26
|
Scanlan JL, Gledhill-Smith RS, Battlay P, Robin C. Genomic and transcriptomic analyses in Drosophila suggest that the ecdysteroid kinase-like (EcKL) gene family encodes the 'detoxification-by-phosphorylation' enzymes of insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103429. [PMID: 32540344 DOI: 10.1016/j.ibmb.2020.103429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Phosphorylation is a phase II detoxification reaction that, among animals, occurs near exclusively in insects, but the enzymes responsible have never been cloned or otherwise identified. We propose the hypothesis that members of the arthropod-specific ecdysteroid kinase-like (EcKL) gene family encode detoxicative kinases. To test this hypothesis, we annotated the EcKL gene family in 12 species of Drosophila and explored their evolution within the genus. Many ancestral EcKL clades are evolutionarily unstable and have experienced repeated gene gain and loss events, while others are conserved as single-copy orthologs. Leveraging multiple published gene expression datasets from D. melanogaster, and using the cytochrome P450s-a classical detoxification family-as a test case, we demonstrate relationships between xenobiotic induction, detoxification tissue-enriched expression and evolutionary instability in the EcKLs and the P450s. We devised a systematic method for identifying candidate detoxification genes in large gene families that is concordant with experimentally determined functions of P450 genes in D. melanogaster. Applying this method to the EcKLs suggested a significant proportion of these genes play roles in detoxification, and that the EcKLs may constitute a detoxification gene family in insects. Additionally, we estimate that between 11 and 16 uncharacterised D. melanogaster P450s are strong detoxification candidates. Lastly, we also found previously unreported genomic and transcriptomic variation in a number of EcKLs and P450s associated with toxic stress phenotypes using a targeted phenome-wide association study (PheWAS) approach in D. melanogaster, presenting multiple future avenues of research for detoxification genetics in this species.
Collapse
Affiliation(s)
- Jack L Scanlan
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| | - Rebecca S Gledhill-Smith
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| | - Paul Battlay
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Parkville Campus, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
27
|
Kyritsis GA, Augustinos AA, Livadaras I, Cáceres C, Bourtzis K, Papadopoulos NT. Medfly-Wolbachia symbiosis: genotype x genotype interactions determine host's life history traits under mass rearing conditions. BMC Biotechnol 2019; 19:96. [PMID: 31847836 PMCID: PMC6918550 DOI: 10.1186/s12896-019-0586-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wolbachia pipientis is a widespread, obligatory intracellular and maternally inherited bacterium, that induces a wide range of reproductive alterations to its hosts. Cytoplasmic Incompatibility (CI) is causing embryonic lethality, the most common of them. Despite that Wolbachia-borne sterility has been proposed as an environmental friendly pest control method (Incompatible Insect Technique, IIT) since 1970s, the fact that Wolbachia modifies important fitness components of its hosts sets severe barriers to IIT implementation. Mass rearing of Mediterranean fruit fly, Ceratitis capitata (medfly), is highly optimized given that this pest is a model species regarding the implementation of another sterility based pest control method, the Sterile Insect Technique (SIT). We used the medfly-Wolbachia symbiotic association, as a model system, to study the effect of two different Wolbachia strains, on the life history traits of 2 C. capitata lines with different genomic background. RESULTS Wolbachia effects are regulated by both C. capitata genetic background and the Wolbachia strain. Wolbachia infection reduces fertility rates in both C. capitata genetic backgrounds and shortens the pre-pupa developmental duration in the GSS strain. On the other hand, regardless of the strain of Wolbachia (wCer2, wCer4) infection does not affect either the sex ratio or the longevity of adults. wCer4 infection imposed a reduction in females' fecundity but wCer2 did not. Male mating competitiveness, adults flight ability and longevity under water and food deprivation were affected by both the genetic background of medfly and the strain of Wolbachia (genotype by genotype interaction). CONCLUSION Wolbachia infection could alter important life history traits of mass-reared C. capitata lines and therefore the response of each genotype on the Wolbachia infection should be considered toward ensuring the productivity of the Wolbachia-infected insects under mass-rearing conditions.
Collapse
Affiliation(s)
- Georgios A. Kyritsis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 N, Ionia Magnisia, Greece
| | - Antonios A. Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
| | - Ioannis Livadaras
- Foundation for Research and Technology - Hellas (FORTH) Institute of Molecular Biology and Biotechnology, FORTH, Nikolaou Plastira 100, Vassilika Vouton, GR - 700 13 Heraklion, Crete Greece
| | - Carlos Cáceres
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, A-1400 Vienna, Austria
| | - Nikos T. Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Phytokou St., 38446 N, Ionia Magnisia, Greece
| |
Collapse
|
28
|
Zheng Y, Shen W, Bi J, Chen MY, Wang RF, Ai H, Wang YF. Small RNA analysis provides new insights into cytoplasmic incompatibility in Drosophila melanogaster induced by Wolbachia. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103938. [PMID: 31491378 DOI: 10.1016/j.jinsphys.2019.103938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Wolbachia is a genus of endosymbiotic bacteria that induce a wide range of effects on their insect hosts. Cytoplasmic incompatibility (CI) is the most common phenotype mediated by Wolbachia and results in embryonic lethality when Wolbachia-infected males mate with uninfected females. Studies have revealed that bacteria can regulate many cellular processes in their hosts using small non-coding RNAs, so we investigated the involvement of small RNAs (sRNAs) in CI. Comparison of sRNA libraries between Wolbachia-infected and uninfected Drosophila melanogaster testes revealed 18 novel microRNAs (miRNAs), of which 12 were expressed specifically in Wolbachia-infected flies and one specifically in Wolbachia-uninfected flies. Furthermore, ten miRNAs showed differential expression, with four upregulated and six downregulated in Wolbachia-infected flies. Of the upregulated miRNAs, nov-miR-12 exhibited the highest upregulation in the testes of D. melanogaster. We then identified pipsqueak (psq) as the target gene of nov-miR-12 with the greatest complementarity in its 3' untranslated region (UTR). Wolbachia infection was correlated with reduced psq expression in D. melanogaster, and luciferase assays demonstrated that nov-miR-12 could downregulate psq through binding to its 3'UTR region. Knockdown of psq in Wolbachia-free fly testes significantly reduced egg hatching rate and mimicked the cellular abnormalities of Wolbachia-induced CI in embryos, including asynchronous nuclear division, chromatin bridging, and chromatin fragmentation. These results suggest that Wolbachia may induce CI in insect hosts by miRNA-mediated changes in host gene expression. Moreover, these findings reveal a potential molecular strategy for elucidating the complex interactions between endosymbionts and their insect hosts, such as Wolbachia-driven CI.
Collapse
Affiliation(s)
- Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Wei Shen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Meng-Yan Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Rui-Fang Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Hui Ai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
29
|
Huang HJ, Cui JR, Chen J, Bing XL, Hong XY. Proteomic analysis of Laodelphax striatellus gonads reveals proteins that may manipulate host reproduction by Wolbachia. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 113:103211. [PMID: 31425852 DOI: 10.1016/j.ibmb.2019.103211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Wolbachia are intracellular bacteria that manipulate host reproduction by several mechanisms including cytoplasmic incompatibility (CI). However, the underlying mechanisms of Wolbachia-induced CI are not entirely clear. Here, we monitored the Wolbachia distribution in the male gonads of the small brown planthopper (Laodelphax striatellus, SBPH) at different development stages, and investigated the influence of Wolbachia on male gonads by a quantitative proteomic analysis. A total of 276 differentially expressed proteins were identified, with the majority of them participating in metabolism, modification, and reproduction. Knocking down the expression of outer dense fiber protein (ODFP) and venom allergen 5-like (VA5L) showed decreased egg reproduction, and these two genes might be responsible for Wolbachia improved fecundity in infected L. striatellus; whereas knocking down the expression of cytosol amino-peptidase-like (CAL) significantly decreased the egg hatch rate in Wolbachia-uninfected L. striatellus, but not in the Wolbachia-infected one. Considering that the mRNA/protein level of CAL was downregulated by Wolbachia infection and dsCAL treatment closely mimicked Wolbachia-induced CI, we presumed that CAL might be one of the factors determining the CI phenotype.
Collapse
Affiliation(s)
- Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Rong Cui
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jie Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Li Bing
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
30
|
He Z, Zheng Y, Yu WJ, Fang Y, Mao B, Wang YF. How do Wolbachia modify the Drosophila ovary? New evidences support the "titration-restitution" model for the mechanisms of Wolbachia-induced CI. BMC Genomics 2019; 20:608. [PMID: 31340757 PMCID: PMC6657171 DOI: 10.1186/s12864-019-5977-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Background Cytoplasmic incompatibility (CI) is the most common phenotype induced by endosymbiont Wolbachia and results in embryonic lethality when Wolbachia-modified sperm fertilize eggs without Wolbachia. However, eggs carrying the same strain of Wolbachia can rescue this embryonic death, thus producing viable Wolbachia-infected offspring. Hence Wolbachia can be transmitted mainly by hosts’ eggs. One of the models explaining CI is “titration-restitution”, which hypothesized that Wolbachia titrated-out some factors from the sperm and the Wolbachia in the egg would restitute the factors after fertilization. However, how infected eggs rescue CI and how hosts’ eggs ensure the proliferation and transmission of Wolbachia are not well understood. Results By RNA-seq analyses, we first compared the transcription profiles of Drosophila melanogaster adult ovaries with and without the wMel Wolbachia and identified 149 differentially expressed genes (DEGs), of which 116 genes were upregulated and 33 were downregulated by Wolbachia infection. To confirm the results obtained from RNA-seq and to screen genes potentially associated with reproduction, 15 DEGs were selected for quantitative RT-PCR (qRT-PCR). Thirteen genes showed the same changing trend as RNA-seq analyses. To test whether these genes are associated with CI, we also detected their expression levels in testes. Nine of them exhibited different changing trends in testes from those in ovaries. To investigate how these DEGs were regulated, sRNA sequencing was performed and identified seven microRNAs (miRNAs) that were all upregulated in fly ovaries by Wolbachia infection. Matching of miRNA and mRNA data showed that these seven miRNAs regulated 15 DEGs. Wolbachia-responsive genes in fly ovaries were involved in biological processes including metabolism, transportation, oxidation-reduction, immunity, and development. Conclusions Comparisons of mRNA and miRNA data from fly ovaries revealed 149 mRNAs and seven miRNAs that exhibit significant changes in expression due to Wolbachia infection. Notably, most of the DEGs showed variation in opposite directions in ovaries versus testes in the presence of Wolbachia, which generally supports the “titration-restitution” model for CI. Furthermore, genes related to metabolism were upregulated, which may benefit maximum proliferation and transmission of Wolbachia. This provides new insights into the molecular mechanisms of Wolbachia-induced CI and Wolbachia dependence on host ovaries. Electronic supplementary material The online version of this article (10.1186/s12864-019-5977-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhen He
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Wen-Juan Yu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yang Fang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Bin Mao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, 430079, People's Republic of China.
| |
Collapse
|
31
|
Liu L, Zhang KJ, Rong X, Li YY, Liu H. Identification of Wolbachia-Responsive miRNAs in the Small Brown Planthopper, Laodelphax striatellus. Front Physiol 2019; 10:928. [PMID: 31396100 PMCID: PMC6668040 DOI: 10.3389/fphys.2019.00928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/09/2019] [Indexed: 11/13/2022] Open
Abstract
Laodelphax striatellus is naturally infected with the Wolbachia strain wStri, which induces strong cytoplasmic incompatibility of its host. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs that play a critical role in the regulation of gene expression at post-transcriptional level in various biological processes. Despite various studies reporting that Wolbachia affects the miRNA expression of their hosts, the molecular mechanism underlying interactions between Wolbachia and their host miRNAs has not been well understood. In order to better understand the impact of Wolbachia infection on its host, we investigated the differentially expressed miRNAs between Wolbachia-infected and Wolbachia-uninfected strains of L. striatellus. Compared with uninfected strains, Wolbachia infection resulted in up-regulation of 18 miRNAs and down-regulation of 6 miRNAs in male, while 25 miRNAs were up-regulated and 15 miRNAs were down-regulated in female. The target genes of these differentially expressed miRNAs involved in immune response regulation, reproduction, redox homeostasis and ecdysteroidogenesis were also annotated in both sexes. We further verified the expression of several significantly differentially expressed miRNAs and their predicted target genes by qRT-PCR method. The results suggested that Wolbachia appears to reduce the expression of genes related to fertility in males and increase the expression of genes related to fecundity in females. At the same time, Wolbachia may enhance the expression of immune-related genes in both sexes. All of the results in this study may be helpful in further exploration of the molecular mechanisms by which Wolbachia affects on its hosts.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Kai-Jun Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Xia Rong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Ya-Ying Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Huai Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
32
|
Bi J, Zheng Y, Wang RF, Ai H, Haynes PR, Brownlie JC, Yu XQ, Wang YF. Wolbachia infection may improve learning and memory capacity of Drosophila by altering host gene expression through microRNA. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 106:47-54. [PMID: 30468769 DOI: 10.1016/j.ibmb.2018.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Wolbachia are endosymbiotic bacteria present in a wide range of invertebrates. Although their dramatic effects on host reproductive biology have been well studied, little is known about the effects of Wolbachia on the learning and memory capacity (LMC) of hosts, despite their distribution in the host nervous system, including brain. In this study, we found that Wolbachia infection significantly enhanced LMC in both Drosophila melanogaster and D. simulans. Expression of LMC-related genes was significantly increased in the head of D. melanogaster infected with the wMel strain, and among these genes, crebA was up-regulated the most. Knockdown of crebA in Wolbachia-infected flies significantly decreased LMC, while overexpression of crebA in Wolbachia-free flies significantly enhanced the LMC of flies. More importantly, a microRNA (miRNA), dme-miR-92b, was identified to be complementary to the 3'UTR of crebA. Wolbachia infection was correlated with reduced expression of dme-miR-92b in D. melanogaster, and dme-miR-92b negatively regulated crebA through binding to its 3'UTR region. Overexpression of dme-miR-92b in Wolbachia-infected flies by microinjection of agomirs caused a significant decrease in crebA expression and LMC, while inhibition of dme-miR-92b in Wolbachia-free flies by microinjection of antagomirs resulted in a significant increase in crebA expression and LMC. These results suggest that Wolbachia may improve LMC in Drosophila by altering host gene expression through a miRNA-target pathway. Our findings help better understand the host-endosymbiont interactions and, in particular, the impact of Wolbachia on cognitive processes in invertebrate hosts.
Collapse
Affiliation(s)
- Jie Bi
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Ya Zheng
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Rui-Fang Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Hui Ai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China
| | - Paula R Haynes
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeremy C Brownlie
- School of Natural Science, Griffith University, Nathan, QLD 4111, Australia
| | - Xiao-Qiang Yu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China; School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
33
|
Gruntenko NE, Karpova EK, Adonyeva NV, Andreenkova OV, Burdina EV, Ilinsky YY, Bykov RA, Menshanov PN, Rauschenbach IY. Drosophila female fertility and juvenile hormone metabolism depends on the type of Wolbachia infection. J Exp Biol 2019; 222:jeb195347. [PMID: 30679245 DOI: 10.1242/jeb.195347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/14/2019] [Indexed: 08/02/2024]
Abstract
Maternally inherited intracellular bacteria Wolbachia cause both parasitic and mutualistic effects on their numerous insect hosts, including manipulating the host reproductive system in order to increase the bacteria spreading in a host population, and increasing the host fitness. Here, we demonstrate that the type of Wolbachia infection determines the effect on Drosophila melanogaster egg production as a proxy for fecundity, and metabolism of juvenile hormone (JH), which acts as gonadotropin in adult insects. For this study, we used six D. melanogaster lineages carrying the nuclear background of interbred Bi90 lineage and cytoplasmic backgrounds with or without Wolbachia of different genotype variants. The wMelCS genotype of Wolbachia decreases egg production in infected D. melanogaster females in the beginning of oviposition and increases it later (from the sixth day after eclosion), whereas the wMelPop Wolbachia strain causes the opposite effect, and the wMel, wMel2 and wMel4 genotypes of Wolbachia do not show any effect on these traits compared with uninfected Bi90 D. melanogaster females. The intensity of JH catabolism negatively correlates with the fecundity level in the flies carrying both wMelCS and wMelPop Wolbachia The JH catabolism in females infected with genotypes of the wMel group does not differ from that in uninfected females. The effects of wMelCS and wMelPop infection on egg production can be levelled by the modulation of JH titre (via precocene/JH treatment of the flies). Thus, at least one of the mechanisms promoting the effect of Wolbachia on D. melanogaster female fecundity is mediated by JH.
Collapse
Affiliation(s)
- Nataly E Gruntenko
- Department of Insects Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Evgenia K Karpova
- Department of Insects Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Natalya V Adonyeva
- Department of Insects Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Olga V Andreenkova
- Department of Insects Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Elena V Burdina
- Department of Insects Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Yury Yu Ilinsky
- Department of Insects Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
- Laboratory of Molecular Genetics Technologies, Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| | - Roman A Bykov
- Department of Insects Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | - Petr N Menshanov
- Department of Insects Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
- Laser Systems Department, Novosibirsk State Technical University, Novosibirsk 630087, Russia
| | - Inga Yu Rauschenbach
- Department of Insects Genetics, Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
34
|
Zirbel KE, Alto BW. Maternal and paternal nutrition in a mosquito influences offspring life histories but not infection with an arbovirus. Ecosphere 2018. [DOI: 10.1002/ecs2.2469] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Kylie E. Zirbel
- Florida Medical Entomology Laboratory, Entomology and Nematology Department; Institute of Food and Agricultural Sciences; University of Florida; Vero Beach Florida 32962 USA
| | - Barry W. Alto
- Florida Medical Entomology Laboratory, Entomology and Nematology Department; Institute of Food and Agricultural Sciences; University of Florida; Vero Beach Florida 32962 USA
| |
Collapse
|
35
|
Zheng Y, Bi J, Hou MY, Shen W, Zhang W, Ai H, Yu XQ, Wang YF. Ocnus is essential for male germ cell development in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2018; 27:545-555. [PMID: 29732657 DOI: 10.1111/imb.12393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The ocnus (ocn) gene encodes a protein abundant in the testes, implying its role in testis development. When Drosophila melanogaster is infected with the endosymbiont wMel Wolbachia, which affects the spermatogenesis of its hosts, ocn is downregulated in the third-instar larval testes, suggesting a role of ocn in spermatogenesis. In this study, we knocked down ocn in the testes and found that the hatch rates of embryos derived from ocn-knockdown males were significantly decreased, and 84.38% of the testes were much smaller in comparison to controls. Analysis of the smaller testes showed no germ cells but they had an extended hub. Using RNA-sequencing (RNA-Seq), we identified 69 genes with at least a twofold change (q-value < 5%) in their expression after ocn knockdown; of these, eight testes-specific and three reproduction-related genes were verified to be significantly downregulated using quantitative reverse transcription-PCR. Three genes (orientation disruptor, p24-2 and CG13541) were also significantly downregulated in the presence of Wolbachia. Furthermore, 98 genes were not expressed when ocn was knocked down in testes. These results suggest that ocn plays a crucial role in male germ cell development in Drosophila, possibly by regulating the expression of multiple spermatogenesis-related genes. Our data provide important information to help understand the molecular regulatory mechanisms underlying spermatogenesis.
Collapse
Affiliation(s)
- Y Zheng
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - J Bi
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - M-Y Hou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - W Shen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - W Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - H Ai
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - X-Q Yu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Y-F Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
36
|
Mohorianu I, Fowler EK, Dalmay T, Chapman T. Control of seminal fluid protein expression via regulatory hubs in Drosophila melanogaster. Proc Biol Sci 2018; 285:20181681. [PMID: 30257913 PMCID: PMC6170815 DOI: 10.1098/rspb.2018.1681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/03/2018] [Indexed: 12/25/2022] Open
Abstract
Highly precise, yet flexible and responsive coordination of expression across groups of genes underpins the integrity of many vital functions. However, our understanding of gene regulatory networks (GRNs) is often hampered by the lack of experimentally tractable systems, by significant computational challenges derived from the large number of genes involved or from difficulties in the accurate identification and characterization of gene interactions. Here we used a tractable experimental system in which to study GRNs: the genes encoding the seminal fluid proteins that are transferred along with sperm (the 'transferome') in Drosophila melanogaster fruit flies. The products of transferome genes are core determinants of reproductive success and, to date, only transcription factors have been implicated in the modulation of their expression. Hence, as yet, we know nothing about the post-transcriptional mechanisms underlying the tight, responsive and precise regulation of this important gene set. We investigated this omission in the current study. We first used bioinformatics to identify potential regulatory motifs that linked the transferome genes in a putative interaction network. This predicted the presence of putative microRNA (miRNA) 'hubs'. We then tested this prediction, that post-transcriptional regulation is important for the control of transferome genes, by knocking down miRNA expression in adult males. This abolished the ability of males to respond adaptively to the threat of sexual competition, indicating a regulatory role for miRNAs in the regulation of transferome function. Further bioinformatics analysis then identified candidate miRNAs as putative regulatory hubs and evidence for variation in the strength of miRNA regulation across the transferome gene set. The results revealed regulatory mechanisms that can underpin robust, precise and flexible regulation of multiple fitness-related genes. They also help to explain how males can adaptively modulate ejaculate composition.
Collapse
Affiliation(s)
- Irina Mohorianu
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- School of Computing Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Emily K Fowler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tamas Dalmay
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
37
|
He Z, Zhang HB, Li ST, Yu WJ, Biwot J, Yu XQ, Peng Y, Wang YF. Effects of Wolbachia infection on the postmating response in Drosophila melanogaster. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2561-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Rauschenbach IY, Adonyeva NV, Karpova EK, Ilinsky YY, Gruntenko NE. Effect of Gonadotropic Hormones on Stress Resistance of Drosophila melanogaster Females Infected with Different Wolbachia pipientis Genotypes. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418070128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Caragata EP, Pais FS, Baton LA, Silva JBL, Sorgine MHF, Moreira LA. The transcriptome of the mosquito Aedes fluviatilis (Diptera: Culicidae), and transcriptional changes associated with its native Wolbachia infection. BMC Genomics 2017; 18:6. [PMID: 28049478 PMCID: PMC5210266 DOI: 10.1186/s12864-016-3441-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
Background Wolbachia is a bacterial endosymbiont that naturally infects a wide range of insect species, and causes drastic changes to host biology. Stable infections of Wolbachia in mosquitoes can inhibit infection with medically important pathogens such as dengue virus and malaria-causing Plasmodium parasites. However, some native Wolbachia strains can enhance infection with certain pathogens, as is the case for the mosquito Aedes fluviatilis, where infection with Plasmodium gallinaceum is enhanced by the native wFlu Wolbachia strain. To better understand the biological interactions between mosquitoes and native Wolbachia infections, and to investigate the process of pathogen enhancement, we used RNA-Seq to generate the transcriptome of Ae. fluviatilis with and without Wolbachia infection. Results In total, we generated 22,280,160 Illumina paired-end reads from Wolbachia-infected and uninfected mosquitoes, and used these to make a de novo transcriptome assembly, resulting in 58,013 contigs with a median sequence length of 443 bp and an N50 of 2454 bp. Contigs were annotated through local alignments using BlastX, and associated with both gene ontology and KEGG orthology terms. Through baySeq, we identified 159 contigs that were significantly upregulated due to Wolbachia infection, and 98 that were downregulated. Critically, we saw no changes to Toll or IMD immune gene transcription, but did see evidence that wFlu infection altered the expression of several bacterial recognition genes, and immune-related genes that could influence Plasmodium infection. wFlu infection also had a widespread effect on a number of host physiological processes including protein, carbohydrate and lipid metabolism, and oxidative stress. We then compared our data set with transcriptomic data for other Wolbachia infections in Aedes aegypti, and identified a core set of 15 gene groups associated with Wolbachia infection in mosquitoes. Conclusions While the scale of transcriptional changes associated with wFlu infection might be small, the scope is rather large, which confirms that native Wolbachia infections maintain intricate molecular relationships with their mosquito hosts even after lengthy periods of co-evolution. We have also identified several potential means through which wFlu infection might influence Plasmodium infection in Ae. fluviatilis, and these genes should form the basis of future investigation into the enhancement of Plasmodium by Wolbachia. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3441-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E P Caragata
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - F S Pais
- Grupo de Informática de Biossistemas e Genômica, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - L A Baton
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - J B L Silva
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - M H F Sorgine
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L A Moreira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
40
|
Wu CH, Zong Q, Du AL, Zhang W, Yao HC, Yu XQ, Wang YF. Knockdown of Dynamitin in testes significantly decreased male fertility in Drosophila melanogaster. Dev Biol 2016; 420:79-89. [DOI: 10.1016/j.ydbio.2016.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 10/09/2016] [Accepted: 10/09/2016] [Indexed: 10/20/2022]
|
41
|
Hong Y, Yi T, Tan X, Zhao Z, Ge F. High Ozone (O 3) Affects the Fitness Associated with the Microbial Composition and Abundance of Q Biotype Bemisia tabaci. Front Microbiol 2016; 7:1593. [PMID: 27799921 PMCID: PMC5065991 DOI: 10.3389/fmicb.2016.01593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/23/2016] [Indexed: 12/22/2022] Open
Abstract
Ozone (O3) affects the fitness of an insect, such as its development, reproduction and protection against fungal pathogens, but the mechanism by which it does so remains unclear. Here, we compared the fitness (i.e., the growth and development time, reproduction and protection against Beauveria bassiana (B. bassiana) of Q biotype whiteflies fumigated under hO3 (280 ± 20 ppb) and control O3 (50 ± 10 ppb) concentrations. Moreover, we determined that gene expression was related to development, reproduction and immunity to B. bassiana and examined the abundance and composition of bacteria and fungi inside of the body and on the surface of the Q biotype whitefly. We observed a significantly enhanced number of eggs that were laid by a female, shortened developmental time, prolonged adult lifespan, decreased weight of one eclosion, and reduced immunity to B. bassiana in whiteflies under hO3, but hO3 did not significantly affect the expression of genes related to development, reproduction and immunity. However, hO3 obviously changed the composition of the bacterial communities inside of the body and on the surface of the whiteflies, significantly reducing Rickettsia and enhancing Candidatus_Cardinium. Similarly, hO3 significantly enhanced Thysanophora penicillioides from the Trichocomaceae family and reduced Dothideomycetes (at the class level) inside of the body. Furthermore, positive correlations were found between the abundance of Candidatus_Cardinium and the female whitefly ratio and the fecundity of a single female, and positive correlations were found between the abundance of Rickettsia and the weight of adult whiteflies just after eclosion and immunity to B. bassiana. We conclude that hO3 enhances whitefly development and reproduction but impairs immunity to B. bassiana, and our results also suggest that the changes to the microbial environments inside of the body and on the surface could be crucial factors that alter whitefly fitness under hO3.
Collapse
Affiliation(s)
- Yanyun Hong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijing, China; College of Plant Protection, Hunan Agricultural UniversityChangsha, China
| | - Tuyong Yi
- College of Plant Protection, Hunan Agricultural University Changsha, China
| | - Xiaoling Tan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Zihua Zhao
- Department of Entomology, College of Plant Protection, China Agricultural University Beijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
42
|
Vale PF, Jardine MD. Sex-specific behavioural symptoms of viral gut infection and Wolbachia in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2015; 82:28-32. [PMID: 26301521 DOI: 10.1016/j.jinsphys.2015.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 05/11/2023]
Abstract
All organisms are infected with a range of symbionts spanning the spectrum of beneficial mutualists to detrimental parasites. The fruit fly Drosophila melanogaster is a good example, as both endosymbiotic Wolbachia, and pathogenic Drosophila C Virus (DCV) commonly infect it. While the pathophysiology and immune responses against both symbionts are the focus of intense study, the behavioural effects of these infections have received less attention. Here we report sex-specific behavioural responses to these infections in D. melanogaster. DCV infection caused increased sleep in female flies, but had no detectable effect in male flies. The presence of Wolbachia did not reduce this behavioural response to viral infection. We also found evidence for a sex-specific cost of Wolbachia, as male flies infected with the endosymbiont became more lethargic when awake. We discuss these behavioural symptoms as potentially adaptive sickness behaviours.
Collapse
Affiliation(s)
- Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom; Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.
| | - Michael D Jardine
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|
43
|
Yuan LL, Chen X, Zong Q, Zhao T, Wang JL, Zheng Y, Zhang M, Wang Z, Brownlie JC, Yang F, Wang YF. Quantitative Proteomic Analyses of Molecular Mechanisms Associated with Cytoplasmic Incompatibility in Drosophila melanogaster Induced by Wolbachia. J Proteome Res 2015. [DOI: 10.1021/acs.jproteome.5b00191] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lin-Ling Yuan
- Hubei
Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Xiulan Chen
- Key
Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of
Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Qiong Zong
- Hubei
Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Ting Zhao
- Hubei
Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Jia-Lin Wang
- Hubei
Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Ya Zheng
- Hubei
Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Ming Zhang
- Hubei
Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China
| | - Zailong Wang
- Novartis Pharmaceuticals, East Hanover, New Jersey 07936, United States
| | - Jeremy C. Brownlie
- School
of Natural Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Fuquan Yang
- Key
Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of
Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Yu-Feng Wang
- Hubei
Key Laboratory of Genetic Regulation and Integrative Biology, School
of Life Sciences, Central China Normal University, Wuhan 430079, People’s Republic of China
| |
Collapse
|
44
|
Chen YN, Wu CH, Zheng Y, Li JJ, Wang JL, Wang YF. Knockdown of ATPsyn-b caused larval growth defect and male infertility in Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:144-154. [PMID: 25336344 DOI: 10.1002/arch.21209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ATPsyn-b encoding for subunit b of ATP synthase in Drosophila melanogaster is proposed to act in ATP synthesis and phagocytosis, and has been identified as one of the sperm proteins in both Drosophila and mammals. At present, its details of functions in animal growth and spermatogenesis have not been reported. In this study, we knocked down ATPsyn-b using Drosophila lines expressing inducible hairpin RNAi constructs and Gal4 drivers. Ubiquitous knockdown of ATPsyn-b resulted in growth defects in larval stage as the larvae did not grow bigger than the size of normal second-instar larvae. Knockdown in testes did not interrupt the developmental excursion to viable adult flies, however, these male adults were sterile. Analyses of testes revealed disrupted nuclear bundles during spermatogenesis and abnormal shaping in spermatid elongation. There were no mature sperm in the seminal vesicle of ATPsyn-b knockdown male testes. These findings suggest us that ATPsyn-b acts in growth and male fertility of Drosophila.
Collapse
Affiliation(s)
- Ya-Na Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, P. R. China
| | | | | | | | | | | |
Collapse
|
45
|
LePage DP, Jernigan KK, Bordenstein SR. The relative importance of DNA methylation and Dnmt2-mediated epigenetic regulation on Wolbachia densities and cytoplasmic incompatibility. PeerJ 2014; 2:e678. [PMID: 25538866 PMCID: PMC4266856 DOI: 10.7717/peerj.678] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 11/06/2014] [Indexed: 12/30/2022] Open
Abstract
Wolbachia pipientis is a worldwide bacterial parasite of arthropods that infects germline cells and manipulates host reproduction to increase the ratio of infected females, the transmitting sex of the bacteria. The most common reproductive manipulation, cytoplasmic incompatibility (CI), is expressed as embryonic death in crosses between infected males and uninfected females. Specifically, Wolbachia modify developing sperm in the testes by unknown means to cause a post-fertilization disruption of the sperm chromatin that incapacitates the first mitosis of the embryo. As these Wolbachia-induced changes are stable, reversible, and affect the host cell cycle machinery including DNA replication and chromosome segregation, we hypothesized that the host methylation pathway is targeted for modulation during cytoplasmic incompatibility because it accounts for all of these traits. Here we show that infection of the testes is associated with a 55% increase of host DNA methylation in Drosophila melanogaster, but methylation of the paternal genome does not correlate with penetrance of CI. Overexpression and knock out of the Drosophila DNA methyltransferase Dnmt2 neither induces nor increases CI. Instead, overexpression decreases Wolbachia titers in host testes by approximately 17%, leading to a similar reduction in CI levels. Finally, strength of CI induced by several different strains of Wolbachia does not correlate with levels of DNA methylation in the host testes. We conclude that DNA methylation mediated by Drosophila’s only known methyltransferase is not required for the transgenerational sperm modification that causes CI.
Collapse
Affiliation(s)
- Daniel P LePage
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA
| | - Kristin K Jernigan
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA ; Department of Cell and Developmental Biology, Vanderbilt University , Nashville, TN , USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University , Nashville, TN , USA ; Department of Pathology, Microbiology and Immunology, Vanderbilt University , Nashville, TN , USA
| |
Collapse
|
46
|
Asgharian H, Chang PL, Mazzoglio PJ, Negri I. Wolbachia is not all about sex: male-feminizing Wolbachia alters the leafhopper Zyginidia pullula transcriptome in a mainly sex-independent manner. Front Microbiol 2014; 5:430. [PMID: 25225494 PMCID: PMC4150536 DOI: 10.3389/fmicb.2014.00430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/30/2014] [Indexed: 11/29/2022] Open
Abstract
Wolbachia causes the feminization of chromosomally male embryos in several species of crustaceans and insects, including the leafhopper Zyginidia pullula. In contrast to the relatively well-established ecological aspects of male feminization (e.g., sex ratio distortion and its consequences), the underlying molecular mechanisms remain understudied and unclear. We embarked on an exploratory study to investigate the extent and nature of Wolbachia's effect on gene expression pattern in Z. pullula. We sequenced whole transcriptomes from Wolbachia-infected and uninfected adults. 18147 loci were assembled de novo, including homologs of several Drosophila sex determination genes. A number of transcripts were flagged as candidate Wolbachia sequences. Despite the resemblance of Wolbachia-infected chromosomal males to uninfected and infected chromosomal females in terms of sexual morphology and behavior, principal component analysis revealed that gene expression patterns did not follow these sexual phenotype categories. The principal components generated by differentially expressed genes specified a strong sex-independent Wolbachia effect, followed by a weaker Wolbachia-sexual karyotype interaction effect. Approaches to further examine the molecular mechanism of Wolbachia-host interactions have been suggested based on the presented findings.
Collapse
Affiliation(s)
- Hosseinali Asgharian
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Peter L Chang
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Peter J Mazzoglio
- DISAFA - Department of Agricultural, Forest and Food Sciences, University of Torino Grugliasco (TO), Italy
| | - Ilaria Negri
- DISAFA - Department of Agricultural, Forest and Food Sciences, University of Torino Grugliasco (TO), Italy
| |
Collapse
|