1
|
Hou QL, Zhang HQ, Zhu JN, Chen EH. Tyrosine Hydroxylase Is Required for the Larval-Pupal Transformation and Immunity of Plutella xylostella: Potential for Pest Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27818-27829. [PMID: 39630615 DOI: 10.1021/acs.jafc.4c09279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Plutella xylostella has developed high levels of resistance to many commonly used insecticides. Tyrosine hydroxylase (TH) is essential for insect survival; thus, we evaluated whether TH could be a potential target for controlling P. xylostella. In this study, PxTH was identified; further qPCR analysis showed that PxTH increased its expression during larval pupation and was highly expressed in the head and epidermis of prepupa in P. xylostella. Subsequently, we found a significant decrease in insect pupation and eclosion rates after injection of dsPxTH or a feeding diet supplemented with 3-iodo-tyrosine (3-IT) as a TH inhibitor in P. xylostella. Moreover, this study suggested that PxTH enzyme activity and dopamine concentrations were significantly decreased, agreeing with the blockage of larval-pupal cuticle tanning, with thinner puparium and less melanization after feeding 3-IT. In addition, expression levels of four antimicrobial peptide genes were significantly inhibited after P. xylostella feeding with 3-IT, and injection of Escherichia coli resulted in 73.3% mortality, indicating that PxTH was required for immune responses. In summary, these results confirmed that PxTH was involved in the development and immunity of P. xylostella, suggesting a critical potential novel insecticide target for RNAi-based pest control.
Collapse
Affiliation(s)
- Qiu-Li Hou
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Han-Qiao Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jia-Ni Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| |
Collapse
|
2
|
Hou QL, Zhang HQ, Zhu JN, Chen EH. Functional analysis of dopa decarboxylase in the larval pupation and immunity of the diamondback moth, Plutella xylostella. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106195. [PMID: 39672624 DOI: 10.1016/j.pestbp.2024.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/26/2024] [Accepted: 10/26/2024] [Indexed: 12/15/2024]
Abstract
The diamondback moth (Plutella xylostella L.), a notorious pest infesting cruciferous vegetables worldwide, has developed a high level of resistance to various commonly used chemical pesticides. In this paper, we explore whether dopa decarboxylase (DDC), which is essential for survival and development in insects, could be used as a potential target for the control of P. xylostella. Here, the full-length cDNA (PxDDC) of P. xylostella was identified, with a complete open reading frame of 1434 bp in length, encoding a protein of 477 amino acids. The temporal and spatial expression analysis showed a periodical expression pattern of PxDDC during molting, reaching a peak during the process of pupation, and it was found to be highly expressed in the epidermis of prepupal stage, indicating a crucial role of PxDDC in larval-pupal metamorphosis of P. xylostella. Subsequently, there was a significant decreasing in pupation and eclosion rates, and less production of melanin in P. xylostella after the disruption of PxDDC function by the injection of dsPxDDC (RNAi, RNA interference) or feeding a larval diet supplemented with L-α-methyl-DOPA (L-α-M-D) as DDC inhibitor. In addition, we found four antimicrobial peptide genes were significantly inhibited after feeding P. xylostella with L-α-M-D, and the injection of Escherichia coli could significantly increase insect mortality of enzyme inhibitor treated P. xylostella, suggesting PxDDC was involved in immune responses as well. In summary, these results confirm that PxDDC is required for larval-pupal metamorphosis and immunity of P. xylostella, suggesting a critical potential future novel insecticide target for RNAi based pest control.
Collapse
Affiliation(s)
- Qiu-Li Hou
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Han-Qiao Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jia-Ni Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
3
|
Hou QL, Zhu JN, Fang M, Chen EH. Comparative transcriptome analysis provides comprehensive insight into the molecular mechanisms of heat adaption in Plutella xylostella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101300. [PMID: 39084150 DOI: 10.1016/j.cbd.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Plutella xylostella is one of the most destructive pests for cruciferous vegetables, and is adaptability to different environmental stressors. However, we still know little about the molecular mechanisms of how P. xylostella adapt to thermal stress. Here, the comparative transcriptome analysis was conducted from the samples of control (27 °C, CK) and heat treatment (40 °C, 40 T) P. xylostella. The results showed 1253 genes were differentially expressed, with 624 and 629 genes up- and down-regulated respectively. The annotation analysis demonstrated that "Energy production and conversion", "Protein processing in endoplasmic reticulum", "Peroxisome" and "Tyrosine metabolism" pathways were significantly enriched. Additionally, we found the expression levels of heat shock protein genes (Hsps), cuticle related genes and mitochondrial genes were significantly up-regulated in 40 T insects, suggesting their vital roles in improving adaption to heat stress. Importantly, the SOD activity and MDA content of P. xylostella were both identified to be increased under high temperature stress, indicating the elevated antioxidant reactions might be involved in response to heat stress. In conclusion, the present study offered us an overview of gene expression changes after 40 °C treatments, and found some critical pathways and genes of P. xylostella might play the critical roles in resisting heat stress.
Collapse
Affiliation(s)
- Qiu-Li Hou
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Jia-Ni Zhu
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Mei Fang
- College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
4
|
Yuan CY, Gao YF, Liu Y, Fan JY, Yuan YZ, Yi L, Jing TX, Dou W, Wang JJ. Candidatus Liberibacter asiaticus influences the emergence of the Asian citrus psyllid Diaphorina citri by regulating key cuticular proteins. INSECT SCIENCE 2024. [PMID: 38881212 DOI: 10.1111/1744-7917.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/16/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024]
Abstract
The Asian citrus psyllid, Diaphorina citri, is the primary vector of the HLB pathogen, Candidatus Liberibacter asiaticus (CLas). The acquisition of CLas shortens the developmental period of nymphs, accelerating the emergence into adulthood and thereby facilitating the spread of CLas. Cuticular proteins (CPs) are involved in insect emergence. In this study, we investigated the molecular mechanisms underlying CLas-promoted emergence in D. citri via CP mediation. Here, a total of 159 CP genes were first identified in the D. citri genome. Chromosomal location analysis revealed an uneven distribution of these CP genes across the 13 D. citri chromosomes. Proteomic analysis identified 54 differentially expressed CPs during D. citri emergence, with 14 CPs exhibiting significant differential expression after CLas acquisition. Five key genes, Dc18aa-1, Dc18aa-2, DcCPR-24, DcCPR-38 and DcCPR-58, were screened from the proteome and CLas acquisition. The silencing of these 5 genes through a modified feeding method significantly reduced the emergence rate and caused various abnormal phenotypes, indicating the crucial role that these genes play in D. citri emergence. This study provides a comprehensive overview of the role of CPs in D. citri and reveals that CLas can influence the emergence process of D. citri by regulating the expression of CPs. These key CPs may serve as potential targets for future research on controlling huanglongbing (HLB) transmission.
Collapse
Affiliation(s)
- Chen-Yang Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yi-Fan Gao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yi Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jia-Yao Fan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ying-Zhe Yuan
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing, China
| | - Long Yi
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi Province, China
| | - Tian-Xing Jing
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Wang H, Sun M, Liu N, Yin M, Lin T. Unraveling the Role of Cuticular Protein 3-like (HvCP3L) in the Chitin Pathway through RNAi and Methoxyfenozide Stress Response in Heortia vitessoides Moore. INSECTS 2024; 15:362. [PMID: 38786918 PMCID: PMC11122451 DOI: 10.3390/insects15050362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Cuticle proteins (CPs) constitute a multifunctional family; however, the physiological role of Cuticle Protein 3-like (CP3L) in Heortia vitessoides Moore remains largely unclear. In this study, we cloned the HvCP3L gene from the transcriptional library of Heortia vitessoides Moore. RT-qPCR results revealed that HvCP3L exhibited high expression levels during the larval stage of Heortia vitessoides Moore, particularly at the L5D1 stage, observed in both larval and adult heads. Through RNA interference, we successfully silenced the HvCP3L gene, resulting in a significant reduction in the survival rate of Heortia vitessoides Moore, with the survival rate from larvae to adults plummeting to a mere 17.7%, accompanied by phenotypic abnormalities. Additionally, we observed that the knockdown of HvCP3L led to the inhibition of genes in the chitin pathway. Following exposure to methoxyfenozide stress, the HvCP3L gene exhibited significant overexpression, coinciding with phenotypic abnormalities. These findings underscore the pivotal role of HvCP3L in the growth and development of Heortia vitessoides Moore.
Collapse
Affiliation(s)
| | | | | | | | - Tong Lin
- College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (H.W.); (M.S.); (N.L.); (M.Y.)
| |
Collapse
|
6
|
Saizonou H, Impoinvil LM, Derilus D, Omoke D, Okeyo S, Dada N, Corredor C, Mulder N, Lenhart A, Ochomo E, Djogbénou LS. Transcriptomic analysis of Anopheles gambiae from Benin reveals overexpression of salivary and cuticular proteins associated with cross-resistance to pyrethroids and organophosphates. BMC Genomics 2024; 25:348. [PMID: 38582836 PMCID: PMC10998338 DOI: 10.1186/s12864-024-10261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/27/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl). RESULTS Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin: 51.7% mortality; 2X alphacypermethrin: 47.4%) than Bassila (1X deltamethrin: 70.7%; 1X alphacypermethrin: 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X: 48.3% in Bassila and 1X: 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups. CONCLUSION Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.
Collapse
Affiliation(s)
- Helga Saizonou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi (UAC), Abomey-Calavi, Benin.
| | - Lucy Mackenzie Impoinvil
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Dieunel Derilus
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Diana Omoke
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
| | - Stephen Okeyo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
| | - Nsa Dada
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi (UAC), Abomey-Calavi, Benin
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Claudia Corredor
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nicola Mulder
- Human, Heredity, and Health in Africa H3ABionet network, Cape Town, South Africa
| | - Audrey Lenhart
- Entomology Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eric Ochomo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research (CGHR), Kisumu, Kenya
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi (UAC), Abomey-Calavi, Benin.
- Regional Institute of Public Health (IRSP), Ouidah, Benin.
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
7
|
Zheng Y, Feng Y, Li Z, Wang J. Genome-wide identification of cuticle protein superfamily in Frankliniella occidentalis provide insight into the control of both insect vectors and plant virus. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22102. [PMID: 38500452 DOI: 10.1002/arch.22102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/10/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
The structural cuticle proteins (CPs) play important roles in the development and fitness of insects. However, knowledge about CP gene superfamily is limited in virus-transmitting insect vectors, although its importance on transmission of plant virus has been gradually emphasized. In this study, the genome-wide identification of CP superfamily was conducted in western flower thrips Frankliniella occidentalis that is the globally invasive pest and plant virus vector pest. The pest transmits notorious tomato spotted wilt virus (TSWV) around the world, causing large damage to a wide array of plants. One hundred and twenty-eight F. occidentalis CP genes (FoCPs) were annotated in this study and they were classified into 10 distinct families, including 68 CPRs, 16 CPAP1s, 6 CPAP3s, 2 CPCFCs, 10 Tweedles, 4 CPFs, 16 CPLCPs, and 6 CPGs. The comprehensive analysis was performed including phylogenetic relationship, gene location and gene expression profiles during different development stages of F. occidentalis. Transcriptome analysis revealed more than 30% FoCPs were upregulated at least 1.5-fold when F. occidentalis was infected by TSWV, indicating their potential involvement in TSWV interactions. Our study provided an overview of F. occidentalis CP superfamily. The study gave a better understand of CP's role in development and virus transmission, which provided clues for reducing viral damages through silencing CP genes in insect vectors.
Collapse
Affiliation(s)
- Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yinghao Feng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhejin Li
- College of Biological and Agricultural Sciences, HongHe University, Mengzi, China
| | - Junwen Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Zheng J, Wu P, Huang Y, Zhang Y, Qiu L. Identification of insect cuticular protein genes LCP17 and SgAbd5 from Helicoverpa armigera and evaluation their roles in fenvalerate resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105775. [PMID: 38458682 DOI: 10.1016/j.pestbp.2024.105775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 03/10/2024]
Abstract
Insect cuticular protein (ICP) plays an important role in insect growth and development. However, research on the role of ICP in insecticide resistance is very limited. In this study, insect cuticular protein genes LCP17 and SgAbd5 were cloned and characterized in Helicoverpa armigera based on previous transcriptome data. The functions of LCP17 and SgAbd5 genes in fenvalerate resistance were assessed by RNA interference (RNAi), and their response to fenvalerate was further detected. The results showed that LCP17 and SgAbd5 were overexpressed in the fenvalerate-resistant strain comparing with a susceptible strain. The open reading frames of LCP17 and SgAbd5 genes were 423 bp and 369 bp, encoding 141 and 123 amino acids, respectively. LCP17 and SgAbd5 genes were highly expressed in the larval stage, but less expressed in the adult and pupal stages. The expression level of LCP17 and SgAbd5 genes increased significantly after fenvalerate treatment at 24 h. When the cotton bollworms larvae were exposed to fenvalerate at LD50 level, RNAi-mediated silencing of LCP17 and SgAbd5 genes increased the mortality from 50.68% to 68.67% and 63.89%, respectively; the mortality increased to even higher level, which was 73.61%, when these two genes were co-silenced. Moreover, silencing of these two genes caused the cuticle lamellar structure to become loose, which led to increased penetration of fenvalerate into the larvae. The results suggested that LCP17 and SgAbd5 may be involved in the resistance of cotton bollworm to fenvalerate, and LCP17 and SgAbd5 could serve as potential targets for H. armigera control.
Collapse
Affiliation(s)
- Junyue Zheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Peizhuo Wu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Huang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yu Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lihong Qiu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Yu N, Li J, Bao H, Zhang Y, Yang Z, Li F, Wang J, Liu Z. Chromosome-level genome of spider Pardosa pseudoannulata and cuticle protein genes in environmental stresses. Sci Data 2024; 11:121. [PMID: 38267470 PMCID: PMC10810088 DOI: 10.1038/s41597-024-02966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
Spiders are representative arthropods of adaptive radiation. The high-quality genomes have only been reported in several web weaver spider species, leaving the wandering spiders' genomic information scarce. The pond wolf spider, Pardosa pseudoannulata, is a representative species in the retrolateral titial apophysis (RTA) clade. We present a chromosome-level P. pseusoannulata genome assembly of 2.42 Gb in size with a scaffold N50 of 169.99 Mb. Hi-C scaffolding assigns 94.83% of the bases to 15 pseudo-chromosomes. The repeats account for 52.79% of the assembly. The assembly includes 96.2% of the complete arthropod universal single-copy orthologs. Gene annotation predicted 24,530 protein-coding genes with a BUSCO score of 95.8% complete. We identified duplicate clusters of Hox genes and an expanded cuticle protein gene family with 243 genes. The expression patterns of CPR genes change in response to environmental stresses such as coldness and insecticide exposure. The high-quality P. pseudoannulata genome provides valuable information for functional and comparative studies in spiders.
Collapse
Affiliation(s)
- Na Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jingjing Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Haibo Bao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Zhiming Yang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Fangfang Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Jingting Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
10
|
Li Z, Ouyang L, Wu Q, Peng Q, Zhang B, Qian W, Liu B, Wan F. Cuticular proteins in codling moth (Cydia pomonella) respond to insecticide and temperature stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115852. [PMID: 38141334 DOI: 10.1016/j.ecoenv.2023.115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
The insect cuticle consists of chitin and cuticular proteins (CPs), which stabilize the body shape and provide an effective physical barrier against the external environment. They are also potential target sites for developing environmentally friendly insect management through the utilization of physiology-based methods. The codling moth, Cydia pomonella, is a pest afflicting fruit orchards worldwide. This study used a comparative genomic approach, whole-genome resequencing, and transcriptome data to understand the role that CPs played in the environmental adaptation of the codling moth. A total of 182 putative CPs were identified in the codling moth genome, which were classified into 12 CP families. 119 CPR genes, including 54 RR-1, 60 RR-2, and 5 RR-3 genes were identified and accounted for 65.4% of the total CPs. Eight and seven gene clusters are formed in RR1 and RR2 subfamily and the ancestor-descendant relationship was explained. Five CPAP genes were highly expressed during the egg stage and exposed to high temperature, which indicated their potential role in aiding codling moth eggs in acclimating to varying external heat conditions. Moreover, six CPs belonging to the CPR and CPLCP families were identified in association with insecticide resistance by population resequencing. Their expression levels increased after exposure to insecticides, suggesting they might be involved in codling moth resistance to the insecticides azinphos-methyl or deltamethrin. Our results provide insight into the evolution of codling moth CPs and their association with high temperature adaptation and insecticide resistance, and provide an additional information required for further analysis of CPs in environmental adaptation.
Collapse
Affiliation(s)
- Zaiyuan Li
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lan Ouyang
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qiang Wu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Qi Peng
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bin Zhang
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Bo Liu
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Fanghao Wan
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
11
|
Cai T, Wang X, Liu B, Zhao H, Liu C, Zhang X, Zhang Y, Gao H, Schal C, Zhang F. A cuticular protein, BgCPLCP1, contributes to insecticide resistance by thickening the cockroach endocuticle. Int J Biol Macromol 2024; 254:127642. [PMID: 37898258 DOI: 10.1016/j.ijbiomac.2023.127642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Overuse of insecticides has led to severe environmental problems. Insect cuticle, which consists mainly of chitin, proteins and a thin outer lipid layer, serves multiple functions. Its prominent role is as a physical barrier that impedes the penetration of xenobiotics, including insecticides. Blattella germanica (L.) is a major worldwide indoor pest that causes allergic disease and asthma. Extensive use of pyrethroid insecticides, including β-cypermethrin, has selected for the rapid and independent evolution of resistance in cockroach populations on a global scale. We demonstrated that BgCPLCP1, the first CPLCP (cuticular proteins of low complexity with a highly repetitive proline-rich region) family cuticular protein in order Blattodea, contributes to insecticide penetration resistance. Silencing BgCPLCP1 resulted in 85.0 %-85.7 % and 81.0 %-82.0 % thinner cuticle (and especially thinner endocuticle) in the insecticide-susceptible (S) and β-cypermethrin-resistant (R) strains, respectively. The thinner and more permeable cuticles resulted in 14.4 % and 20.0 % lower survival of β-cypermethrin-treated S- and R-strain cockroaches, respectively. This study advances our understanding of cuticular penetration resistance in insects and opens opportunities for the development of new efficiently and environmentally friendly insecticides targeting the CPLCP family of cuticular proteins.
Collapse
Affiliation(s)
- Tong Cai
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Xuejun Wang
- Shandong Center for Disease Control and Prevention, Jinan 250013, China
| | - Baorui Liu
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Haizheng Zhao
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Caixia Liu
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Xiancui Zhang
- School of Life Science, Huzhou University, Huzhou 313000, China
| | - Yuting Zhang
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Huiyuan Gao
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA.
| | - Fan Zhang
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, China; Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
12
|
Meng LW, Yuan GR, Chen ML, Zheng LS, Dou W, Peng Y, Bai WJ, Li ZY, Vontas J, Wang JJ. Cuticular competing endogenous RNAs regulate insecticide penetration and resistance in a major agricultural pest. BMC Biol 2023; 21:187. [PMID: 37667263 PMCID: PMC10478477 DOI: 10.1186/s12915-023-01694-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND The continuously developing pesticide resistance is a great threat to agriculture and human health. Understanding the mechanisms of insecticide resistance is a key step in dealing with the phenomenon. Insect cuticle is recently documented to delay xenobiotic penetration which breaks the previous stereotype that cuticle is useless in insecticide resistance, while the underlying mechanism remains scarce. RESULTS Here, we find the integument contributes over 40.0% to insecticide resistance via different insecticide delivery strategies in oriental fruit fly. A negative relationship exists between cuticle thickening and insecticide penetration in resistant/susceptible, also in field strains of oriental fruit fly which is a reason for integument-mediated resistance. Our investigations uncover a regulator of insecticide penetration that miR-994 mimic treatment causes cuticle thinning and increases susceptibility to malathion, whereas miR-994 inhibitor results in opposite phenotypes. The target of miR-994 is a most abundant cuticle protein (CPCFC) in resistant/susceptible integument expression profile, which possesses capability of chitin-binding and influences the cuticle thickness-mediated insecticide penetration. Our analyses find an upstream transcriptional regulatory signal of miR-994 cascade, long noncoding RNA (lnc19419), that indirectly upregulates CPCFC in cuticle of the resistant strain by sponging miR-994. Thus, we elucidate the mechanism of cuticular competing endogenous RNAs for regulating insecticide penetration and demonstrate it also exists in field strain of oriental fruit fly. CONCLUSIONS We unveil a regulatory axis of lnc19419 ~ miR-994 ~ CPCFC on the cuticle thickness that leads to insecticide penetration resistance. These findings indicate that competing endogenous RNAs regulate insecticide resistance by modulating the cuticle thickness and provide insight into the resistance mechanism in insects.
Collapse
Affiliation(s)
- Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Meng-Ling Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Li-Sha Zheng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Peng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Wen-Jie Bai
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - Zhen-Yu Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, 11855, Greece
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400716, China.
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Tang PA, Hu HY, Du WW, Jian FJ, Chen EH. Identification of cuticular protein genes and analysis of their roles in phosphine resistance of the rusty grain beetle Cryptolestes ferrugineus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105491. [PMID: 37532352 DOI: 10.1016/j.pestbp.2023.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 08/04/2023]
Abstract
The rusty grain beetle, Cryptolestes ferrugineus (Stephens) is one of the most economically important stored grain pests, and it has evolved the high resistance to phosphine. Cuticular proteins (CPs) are the major structural components of insect cuticle, and previous studies have confirmed that CPs were involved in insecticide resistance. However, the CPs of C. ferrugineus are still poorly characterized, and thus we conducted transcriptome-wide identification of CP genes and analyze their possible relationships with phosphine resistance in this pest. In this study, a total of 122 putative CPs were annotated in the C. ferrugineus transcriptome data by blasting with the known CPs of Tribolium castaneum. The analysis of conserved motifs revealed these CPs of C. ferrugineus belonging to 9 different families, including 87 CPR, 13 CPAP1, 7 CPAP3, 3 Tweedle, 1 CPLCA, 1 CPLCG, 5 CPLCP, 2 CPCFC, and 3 CPFL proteins. The further phylogenetic analysis showed the different evolutionary patterns of CPs. Namely, we found some CPs (CPR family) formed species-specific protein clusters, indicating these CPs might occur independently among insect taxa, and while some other CPs (CPAP1 and CPAP3 family) shared a closer correlation based on the architecture of protein domains. Subsequently, the previous RNA-seq data were applied to establish the expression profiles of CPs in a phosphine susceptible and resistant populations of C. ferrugineus, and a large amount of CP genes were found to be over-expressed in resistant insects. Lastly, an up-regulated CP gene (CPR family) was selected for the further functional analysis, and after this gene was silenced via RNA interference (RNAi), the sensitivity to phosphine was significantly enhanced in C. ferrugineus. In conclusion, the present results provided us an overview of C. ferrugineus CPs, and which suggested that the CPs might play the critical roles in phosphine resistance.
Collapse
Affiliation(s)
- Pei-An Tang
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| | - Huai-Yue Hu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Wen-Wei Du
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Fu-Ji Jian
- Department of Biosystems Engineering, University of Manitoba, Winnipeg R3T 5V6, Canada
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
14
|
Li F, Xing G, Li Y, Chen P, Hu Q, Chen M, Li Y, Cao H, Huang Y. Expressions and functions of RR-1 cuticular protein genes in the integument of Mythimna separata. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:963-972. [PMID: 36964708 DOI: 10.1093/jee/toad053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 06/14/2023]
Abstract
As the most outer layer between itself and the environment, integuments are necessary for insects with various important functions. Cuticular proteins (CPs) are the main components in integuments, while the functions of CP genes remain unknown in Mythimna separata (Walker), which is a devastating agricultural pest. In this study, 79 CP genes were identified from the transcriptomes of larval integuments, 57 of which were from the family containing conserved Rebers & Riddiford (R&R) consensus (CPR family). Amongst these CPRs, 44 genes belonged to the subfamily with RR-1 motif (RR-1 genes) and clustered into three clades, with the top 15 most abundant RR-1 genes identified based on fragments per kilobase per million mapped fragments (FPKM) values. RT-qPCR analysis showed that most of RR-1 genes such as MsCPR1-4 were highly expressed at larval stages and in their integuments. The expression levels of RR-1 genes were generally decreased at the beginning but increased at the late stage of molting process. RNAi was applied for six RR-1 genes, and MsCPR1-4 were knocked down significantly. Silence of MsCPR2 resulted in abnormal integument formed after molting, while knockdown of MsCPR3 and MsCPR4 led to failure of molting, respectively. No phenotype was obtained for the RNAi of MsCPR1. Therefore, the expression of RR-1 genes and their functions were analyzed in the development of integuments in M. separata, providing new insights of RR-1 genes and potential targets for the development of growth regulators and new insecticides for M. separata.
Collapse
Affiliation(s)
- Fuyuan Li
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Gaoliang Xing
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Yixuan Li
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Peng Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Qin Hu
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Ming Chen
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Yiyu Li
- Institute of New Rural Development, Anhui Agricultural University, Hefei, PR China
| | - Haiqun Cao
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| | - Yong Huang
- Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, Hefei, PR China
| |
Collapse
|
15
|
Zheng Y, Liu C, Wang S, Qian K, Feng Y, Yu F, Wang J. Genome-wide analysis of cuticle protein family genes in rice stem borer Chilo suppressalis: Insights into their role in environmental adaptation and insecticidal stress response. Int J Biol Macromol 2023:124989. [PMID: 37244330 DOI: 10.1016/j.ijbiomac.2023.124989] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Insect cuticle plays a key role in insect survival, adaptation and prosperity by serving as the exoskeleton and the first barrier against environmental stresses. As the major components of insect cuticle, the diverse structural cuticle proteins (CPs) contribute to variation in physical properties and functions of cuticle. However, the roles of CPs in cuticular versatility, especially in the stress response or adaption, remain incompletely understood. In this study, we performed a genome-wide analysis of CP superfamily in the rice-boring pest Chilo suppressalis. A total of 211 CP genes were identified and their encoding proteins were classified into eleven families and three subfamilies (RR1, RR2, and RR3). The comparative genomic analysis of CPs revealed that C. suppressalis had fewer CP genes compared to other lepidopteran species, which largely resulted from a less expansion of his-rich RR2 genes involved in cuticular sclerotization, suggesting long-term boring life of C. suppressalis inside rice hosts might evolutionarily prefer cuticular elasticity rather than cuticular sclerotization. We also investigated the response pattern of all CP genes under insecticidal stresses. >50 % CsCPs were upregulated at least 2-fold under insecticidal stresses. Notably, the majority of the highly upregulated CsCPs formed gene pairs or gene clusters on chromosomes, indicating the rapid response of adjacent CsCPs to insecticidal stress. Most high-response CsCPs encoded AAPA/V/L motifs that are related to cuticular elasticity and >50 % of the sclerotization-related his-rich RR2 genes were also upregulated. These results suggested the potential roles of CsCPs in balancing the elasticity and sclerotization of cuticles, which is essential for the survival and adaptation of plant borers including C. suppressalis. Our study provides valuable information for further developing cuticle-based strategies of both pest management and biomimetic applications.
Collapse
Affiliation(s)
- Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou, China.
| | - Changpeng Liu
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Shuang Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yinghao Feng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Fuhai Yu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu 273155, Shandong, China
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Fu X, Chen M, Xia R, Li X, Li Q, Li Y, Cao H, Liu Y. Genome-Wide Identification and Transcriptome-Based Expression Profile of Cuticular Protein Genes in Antheraea pernyi. Int J Mol Sci 2023; 24:6991. [PMID: 37108155 PMCID: PMC10138643 DOI: 10.3390/ijms24086991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Antheraea pernyi is one of the most famous edible and silk-producing wild silkworms of Saturniidae. Structural cuticular proteins (CPs) are the primary component of insect cuticle. In this paper, the CPs in the genome of A. pernyi were identified and compared with those of the lepidopteran model species Bombyx mori, and expression patterns were analyzed based on the transcriptomic data from the larval epidermis/integument (epidermis in the following) and some non-epidermis tissues/organs of two silkworm species. A total of 217 CPs was identified in the A. pernyi genome, a comparable number to B. mori (236 CPs), with CPLCP and CPG families being the main contribution to the number difference between two silkworm species. We found more RR-2 genes expressed in the larval epidermis of fifth instar of A. pernyi than B. mori, but less RR-2 genes expressed in the prothoracic gland of A. pernyi than B. mori, which suggests that the hardness difference in the larval epidermis and prothoracic gland between the two species may be caused by the number of RR-2 genes expressed. We also revealed that, in B. mori, the number of CP genes expressed in the corpus allatum and prothoracic gland of fifth instar was higher than that in the larval epidermis. Our work provided an overall framework for functional research into the CP genes of Saturniidae.
Collapse
Affiliation(s)
- Xin Fu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Miaomiao Chen
- Research Group of Silkworm Breeding, Sericultural Institute of Liaoning Province, Liaoning Academy of Agricultural Sciences, 108 Fengshan Road, Fengcheng 118100, China
| | - Runxi Xia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Xinyu Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Qun Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Yuping Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Huiying Cao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Yanqun Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| |
Collapse
|
17
|
He C, Liang J, Yang J, Xue H, Huang M, Fu B, Wei X, Liu S, Du T, Ji Y, Yin C, Gong P, Hu J, Du H, Zhang R, Xie W, Wang S, Wu Q, Zhou X, Yang X, Zhang Y. Over-expression of CP9 and CP83 increases whitefly cell cuticle thickness leading to imidacloprid resistance. Int J Biol Macromol 2023; 233:123647. [PMID: 36780959 DOI: 10.1016/j.ijbiomac.2023.123647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/13/2023]
Abstract
Cuticular proteins (CPs) play an important role in protecting insects from adverse environmental conditions, like neonicotinoid insecticides, which are heavily used for numerous pests and caused environmental problems and public health concerns worldwide. However, the relationship between CPs and insecticides resistance in Bemisia tabaci, a serious and developed high insecticide resistance, is lacking. In this study, 125 CPs genes were identified in B. tabaci. Further phylogenetic tree showed the RR-2-type genes formed large gene groups in B. tabaci. Transcriptional expression levels of CPs genes at different developmental stages revealed that some CPs genes may play a specific role in insect development. The TEM results indicated that the cuticle thickness of susceptible strain was thinner than imidacloprid-resistance strain. Furthermore, 16 CPs genes (5 in RR-1 subfamily, 7 in RR-2 subfamily, 3 in CPAP3 subfamily and 1 in CPCFC subfamily) were activated in response to imidacloprid. And RNAi results indicated that CP9 and CP83 involved in imidacloprid resistance. In conclusion, this study was the first time to establish a basic information framework and evolutionary relationship between CPs and imidacloprid resistance in B. tabaci, which provides a basis for proposing integrated pest management strategies.
Collapse
Affiliation(s)
- Chao He
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinjin Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hu Xue
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingjiao Huang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Buli Fu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuegao Wei
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaonan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianhua Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Yin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipan Gong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - JinYu Hu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - He Du
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North, Lexington, KY 40546-0091, USA.
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
18
|
Shang Y, Feng Y, Ren L, Zhang X, Yang F, Zhang C, Guo Y. Pupal Age Estimation of Sarcophaga peregrina (Diptera: Sarcophagidae) at Different Constant Temperatures Utilizing ATR-FTIR Spectroscopy and Cuticular Hydrocarbons. INSECTS 2023; 14:143. [PMID: 36835712 PMCID: PMC9965786 DOI: 10.3390/insects14020143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Sarcophaga peregrina (Robineau-Desvoidy, 1830) (Diptera: Sarcophagidae) is a forensically important flesh fly that has potential value in estimating the PMImin. The precise pupal age estimation has great implications for PMImin estimation. During larval development, the age determination is straightforward by the morphological changes and variation of length and weight, however, the pupal age estimation is more difficult due to anatomical and morphological changes not being visible. Thus, it is necessary to find new techniques and methods that can be implemented by standard experiments for accurate pupal age estimation. In this study, we first investigated the potential of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and cuticular hydrocarbons (CHCs) for the age estimations of S. peregrina pupae at different constant temperatures (20 °C, 25 °C, and 30 °C). The orthogonal projections latent structure discrimination analysis (OPLS-DA) classification model was used to distinguish the pupae samples of different developmental ages. Then, a multivariate statistical regression model, partial least squares (PLS), was established with the spectroscopic and hydrocarbon data for pupal age estimations. We identified 37 CHCs with a carbon chain length between 11 and 35 in the pupae of S. peregrina. The results of the OPLS-DA model show a significant separation between different developmental ages of pupae (R2X > 0.928, R2Y > 0.899, Q2 > 0.863). The PLS model had a satisfactory prediction with a good fit between the actual and predicted ages of the pupae (R2 > 0.927, RMSECV < 1.268). The results demonstrate that the variation tendencies of spectroscopy and hydrocarbons were time-dependent, and ATR-FTIR and CHCs may be optimal for the age estimations of pupae of forensically important flies with implications for PMImin estimation in forensic practice.
Collapse
Affiliation(s)
- Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yakai Feng
- Department of Forensic Medicine, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830017, China
| | - Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Changquan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
19
|
Li J, Li F, Gao H, Zhang Y, Liu Z. Characterization of cuticular proteins in CPR family in the wolf spider, Pardosa pseudoannulata, and the response of one subfamily genes to environmental stresses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 150:103859. [PMID: 36265807 DOI: 10.1016/j.ibmb.2022.103859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Cuticular protein (CP) plays an essential role in the construction and function of exoskeleton in arthropods. CPR family, CP with Rebers and Riddiford (R&R) Consensus, is the largest CP family in insects, but it lacks systematic research in non-insect arthropods. In this study, we explored CPRs in the wolf spider, Pardosa pseudoannulata, a predator to many insect pests. We totally identified 152 CPRs in P. pseudoannulata genome, which were divided into two subgroups based on R&R Consensus sequences, with 12 CPRs in RR-1 and 140 in RR-2. All RR-2 members presented a novel Consensus with 34 amino acids, G-x(8)-G-x(6)-Y-x-A-x(3)-G-x(7)-N-E-x-G, which was a common characteristic for RR-2 CPRs in chelicerates. Transcriptome data was used to document the expression patterns of CPR genes in different tissues and ecdysis processes. The specific expressions were found for part CPR genes, such as five RR-2 genes that were specifically expressed in male genital bulbs and eleven RR-1 genes that were highly expressed in the integument. Due to the limited number and integument-specific expression of RR-1 genes, we further analyzed their responses to different environmental stresses at the transcriptional level. Except for PapsCPR11, ten RR-1 genes responded to at least one environmental stress, among with the expression of PapsCPR12 was significantly changed by three stresses (dryness, low temperature and imidacloprid treatments). Silencing PapsCPR12 increased the tolerance of P. pseudoannulata to imidacloprid. Overall, the results presented novel Consensus characteristics of CPRs in P. pseudoannulata, which was helpful for the identification and evolution analysis of CPRs in non-insect arthropods.
Collapse
Affiliation(s)
- Jingjing Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fangfang Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yixi Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
20
|
Hou Q, Zhang H, Zhu J, Liu F. Transcriptome Analysis to Identify Responsive Genes under Sublethal Concentration of Bifenazate in the Diamondback Moth, Plutella xylostella (Linnaeus, 1758) (Lepidoptera: Plutellidae). Int J Mol Sci 2022; 23:ijms232113173. [PMID: 36361960 PMCID: PMC9656211 DOI: 10.3390/ijms232113173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/28/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Bifenazate is a novel acaricide that has been widely used to control spider mites. Interestingly, we found bifenazate had a biological activity against the diamondback moth (Plutella xylostella), one of the most economically important pests on crucifer crops around the world. However, the molecular mechanisms underlying the response of P. xylostella to bifenazate treatment are not clear. In this study, we first estimated the LC30 dose of bifenazate for third-instar P. xylostella larvae. Then, in order to identify genes that respond to the treatment of this insecticide, the comparative transcriptome profiles were used to analyze the gene expression changes in P. xylostella larvae after exposure to LC30 of bifenazate. In total, 757 differentially expressed genes (DEGs) between bifenazate-treated and control P. xylostella larvae were identified, in which 526 and 231 genes were up-regulated and down-regulated, respectively. The further Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the xenobiotics metabolisms pathway was significantly enriched, with ten detoxifying enzyme genes (four P450s, five glutathione S-transferases (GSTs), and one UDP-Glucuronosyltransferase (UGT)) were up-regulated, and their expression patterns were validated by qRT-PCR as well. Interestingly, the present results showed that 17 cuticular protein (CP) genes were also remarkably up-regulated, including 15 CPR family genes. Additionally, the oxidative phosphorylation pathway was found to be activated with eight mitochondrial genes up-regulated in bifenazate-treated larvae. In contrast, we found some genes that were involved in tyrosine metabolism and purine pathways were down-regulated, indicating these two pathways of bifenazate-exposed larvae were significantly inhibited. In conclusion, the present study would help us to better understand the molecular mechanisms of sublethal doses of bifenazate detoxification and action in P. xylostella.
Collapse
|
21
|
Chi S, Wang Y, Wang Z, Li H, Gu S, Ren Y. A chromosome-level genome of Semiothisa cinerearia provides insights into its genome evolution and control. BMC Genomics 2022; 23:718. [PMID: 36271350 PMCID: PMC9585740 DOI: 10.1186/s12864-022-08949-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Semiothisa cinerearia belongs to Geometridae, which is one of the most species-rich families of lepidopteran insects. It is also one of the most economically significant pests of the Chinese scholar tree (Sophora japonica L.), which is an important urban greenbelt trees in China due to its high ornamental value. A genome assembly of S. cinerearia would facilitate study of the control and evolution of this species. RESULTS We present a reference genome for S. cinerearia; the size of the genome was ~ 580.89 Mb, and it contained 31 chromosomes. Approximately 43.52% of the sequences in the genome were repeat sequences, and 21,377 protein-coding genes were predicted. Some important gene families involved in the detoxification of pesticides (P450) have expanded in S. cinerearia. Cytochrome P450 gene family members play key roles in mediating relationships between plants and insects, and they are important in plant secondary metabolite detoxification and host-plant selection. Using comparative analysis methods, we find positively selected gene, Sox15 and TipE, which may play important roles during the larval-pupal metamorphosis development of S. cinerearia. CONCLUSION This assembly provides a new genomic resource that will aid future comparative genomic studies of Geometridae species and facilitate future evolutionary studies on the S. cinerearia.
Collapse
Affiliation(s)
- Shengqi Chi
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yanchun Wang
- College of Science and Information, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhongkai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haorong Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Songdong Gu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yandong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
22
|
Guo PL, Guo ZQ, Liu XD. Cuticular protein genes involve heat acclimation of insect larvae under global warming. INSECT MOLECULAR BIOLOGY 2022; 31:519-532. [PMID: 35403301 DOI: 10.1111/imb.12777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Cuticular proteins (CPs) play important roles in insect growth and development. However, it is unknown whether CPs are related to heat tolerance. Cnaphalocrocis medinalis, a serious pest of rice, occurs in summer and exhibits strong adaptability to high temperature, but the underlying mechanism is unclear. Here, the role of CP genes in heat acclimation was studied. Heat tolerance of the heat-acclimated larvae was significantly stronger than the unacclimated larvae. The cuticular protein content in the heat-acclimated larvae was higher than that of the unacclimated larvae. 191 presumed CP genes of C. medinalis (CmCPs) were identified. Expression patterns of 14 CmCPs were different between the heat acclimated (S39) and unacclimated (S27) larvae under heat stress. CmCPs were specifically expressed in epidermis and the head except CmCPR20 mainly expressed in Malpighian tubules. CmCPR20 was upregulated in S39 while downregulated in S27, but CmTweedle1 and CmCPG1 were upregulated in S27 and downregulated in S39. RNAi CmTweedle1 or CmCPG1 remarkably decreased heat tolerance and cuticular protein content of the heat-acclimated larvae but not the unacclimated larvae. RNAi CmCPR20 decreased heat tolerance and cuticular protein content of the unacclimated larvae but not the heat-acclimated larvae. CmTweedle1 and CmCPG1 genes involve heat acclimation of C. medinalis.
Collapse
Affiliation(s)
- Pan-Long Guo
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Zi-Qian Guo
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Dong Liu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Chen EH, Hou QL, Dou W, Yang PJ, Wang JJ. Expression profiles of tyrosine metabolic pathway genes and functional analysis of DOPA decarboxylase in puparium tanning of Bactrocera dorsalis (Hendel). PEST MANAGEMENT SCIENCE 2022; 78:344-354. [PMID: 34532962 DOI: 10.1002/ps.6648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Tanning is an important physiological process with critical roles in cuticle pigmentation and sclerotization. Previous studies have shown that insect cuticle tanning is closely associated with the tyrosine metabolism pathway, which consists of a series of enzymes. RESULTS In this study, 24 tyrosine metabolism pathway genes were identified in the oriental fruit fly Bactrocera dorsalis (Hendel) genome. Gene expression profiles throughout 15 developmental stages of B. dorsalis were established based on our previous RNA sequencing data, and we found that 13 enzyme genes could be involved in the process of pupariation. Accordingly, a tyrosine-mediated tanning pathway during the pupariation of B. dorsalis was predicted and a critical enzyme, 3,4-dihydroxyphenylalanine (DOPA) decarboxylase (DDC), was used to explore its possible roles in formation of the puparium. First, a real-time quantitative polymerase chain reaction confirmed that BdDDC had an epidermis-specific expression pattern, and was highly expressed during larval metamorphosis in B. dorsalis. Subsequent disruption of BdDDC by feeding 5-day-old larvae with DDC inhibitor (l-α-methyl-DOPA) could lead to: (i) a significant decrease in BdDDC enzyme activity and dopamine concentration; (ii) defects in puparium pigmentation; (iii) impairment of the morphology and less thickness of the puparium; and (iv) lower pupal weight and obstacles to eclosion. CONCLUSION This study provided a potential tyrosine metabolic pathway that was responsible for insect tanning during pupariation, and the BdDDC enzyme has been shown to have crucial roles in larval-pupal tanning of B. dorsalis. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Er-Hu Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Pei-Jin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
24
|
Genomic and Transcriptomic Analysis Reveals Cuticular Protein Genes Responding to Different Insecticides in Fall Armyworm Spodoptera frugiperda. INSECTS 2021; 12:insects12110997. [PMID: 34821798 PMCID: PMC8622913 DOI: 10.3390/insects12110997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
The fall armyworm (FAW), Spodoptera frugiperda, is a serious pest of crucial crops causing great threats to the food security of the world. It has evolved resistance to various insecticides, while the underlying molecular mechanisms remain largely unknown. Cuticular proteins (CPs), as primary components in cuticle, play an important role in insects' protection against environmental stresses. Few of them have been documented as participating in insecticide resistance in several insect species. In order to explore whether CP genes of the FAW exhibit a functional role in responding to insecticides stress, a total of 206 CPs, classified into eight families, were identified from the genome of the FAW through a homology-based approach coupled with manual efforts. The temporal expression profiles of all identified CP genes across developmental stages and their responses to 23 different insecticides were analyzed using the RNA-seq data. Expression profiling indicated that most of the CP genes displayed stage-specific expression patterns. It was found that the expression of 51 CP genes significantly changed after 48 h exposure to 17 different insecticides. The expression of eight CP genes responding to four insecticides were confirmed by RT-PCR analysis. The results showed that their overall expression profiles were consistent with RNA-seq analysis. The findings provide a basis for further functional investigation of CPs implied in insecticide stress in FAW.
Collapse
|
25
|
Hou QL, Chen EH, Dou W, Wang JJ. Knockdown of specific cuticular proteins analogous to peritrophin 3 genes disrupt larval and ovarian development in Bactrocera dorsalis (Diptera: Tephritidae). INSECT SCIENCE 2021; 28:1326-1337. [PMID: 32856386 DOI: 10.1111/1744-7917.12869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/12/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Cuticular proteins (CPs) are critical components of the insect cuticle and play important roles in maintaining normal insect development and defense against various environmental stresses. The oriental fruit fly (Bactrocera dorsalis) is one of the most destructive pests worldwide, and its eight CPs analogous to peritrophin 3 (BdCPAP3) family genes have been identified in our previous study. In the present study, we further explored the possible roles of CPAP3 genes in B. dorsalis development. Each sequence of BdCPAP3 genes contained three conserved ChtBD2 (chitin-binding) domains. Spatial and temporal expression patterns revealed that the four BdCPAP3 genes (BdCPAP3-A1, B, E, and E2) might play important roles in larval pupariation of B. dorsalis. Moreover, treatment with a juvenile hormone analog (methoprene) significantly restricted expression of these four CPAP3 genes, whereas treatment with 20-hydroxy-ecdysone induced expression. The RNA interference (RNAi) results revealed that down-regulated CPAP3 genes led to significant delay of pupariation, and injection of dsBdCPAP3-E into 5-d-old B. dorsalis larvae caused approximately 40% mortality. Interestingly, we also confirmed that BdCPAP3-D2 was involved in B. dorsalis ovarian development. This study showed that some specific CPAP3 genes had crucial roles in B. dorsalis development, and these CP genes could be used as potential targets to control this pest via RNAi.
Collapse
Affiliation(s)
- Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
| |
Collapse
|
26
|
Hou Y, Yang L, Xu S, Zhang Y, Cheng Y, Li Y, Gong J, Xia Q. Trypsin-type serine protease p37k hydrolyzes CPAP3-type cuticle proteins in the molting fluid of the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 137:103610. [PMID: 34182106 DOI: 10.1016/j.ibmb.2021.103610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Cuticular proteins analogous to peritrophin 3 (CPAP3)-type cuticle proteins constitute a family of proteins with three chitin-binding domains (CBDs) that play an important role in cuticle formation by associating with chitin. In our previous study, we identified CPAP3-type cuticle proteins in the silkworm genome, of which we characterized CPAP3-A2 (BmCBP1), a protein highly expressed in the epidermis. In this study, to elucidate the digestion mechanism of CPAP3-type cuticle proteins, we incubated CPAP3-A2 with molting fluid in vitro and found that its hydrolysis, which was inhibited by serine and cysteine protease inhibitors, produced two major bands with a molecular weight of approximately 22 kD and 11 kD. A trypsin-type serine protease, p37k, was presumed to be responsible for hydrolyzing CPAP3-A2 based on liquid chromatography-tandem mass spectrometry analysis of naturally purified molting fluid. To verify this, p37k was subsequently expressed in Sf9 cells using the Bac-to-Bac baculovirus expression system. In its active form, the recombinant protease could successfully hydrolyze CPAP3-A2. Finally, we analyzed the CPAP3-A2 molting fluid digestion site. When arginine 169 of CPAP3-A2 was mutated to alanine, a weaker hydrolysis of mutant CPAP3-A2 was observed compared to that of normal CPAP3-A2. Collectively, we identified a trypsin-type serine protease that is involved in the degradation of CPAP3-type cuticle proteins, including CPAP3-A2, suggesting that this protease plays an important role during molting in Bombyx mori. These findings provide the basis for further elucidation of the mechanisms underlying insect molting and metamorphosis.
Collapse
Affiliation(s)
- Yong Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China
| | - Lingzhen Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Shuping Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Yuhao Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Yuejing Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Yi Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China
| | - Jing Gong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Biological Science Research Center, Southwest University, Beibei, Chongqing, 400715, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
27
|
Chen EH, Hou QL. Identification and expression analysis of cuticular protein genes in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104943. [PMID: 34446209 DOI: 10.1016/j.pestbp.2021.104943] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/17/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Structural cuticular proteins (CPs) are major components of the insect cuticle, and they play critical roles in insect development and insecticide resistance. Here, a total of 196 CP genes were successfully annotated in the Plutella xylostella genome. On the basis of motif analysis, these CPs were classified into 10 different families, including 122 CPR, 12 CPAP1, 8 CPAP3, 9 CPLCP, 2 Tweedle, 1 CPF, 1 CPFL, 1 CPCFC, 17 CPG and 2 18 aa proteins, and the remaining 21 unclassified CPs were classed as cuticular proteins hypothetical (CPH). A phylogenetic analysis of CPs from different insects revealed species-specific clades of RR-1 and RR-2 genes, suggesting that CP gene duplication might occur independently among insect taxa, while we also found that some other CPs (such as CPAP1 and CPAP3) had a closer relationship based on their conserved domain architecture. Using available RNAseq libraries, the expression profiles of the CPs were analyzed over the four developmental stages of the insect (i.e., egg, larva, pupa, and adult), revealing stage-specific expression patterns for the CPs. In a chlorpyrifos resistant strain, 18 CP genes were found to be more than two-fold upregulated compared to the susceptible control strain, and qRT-PCR analysis showed that these CP genes were overexpressed after exposure to chlorpyrifos, suggesting a potential role in the molecular mechanism of insecticide resistance in P. xylostella. This study provides the tools and molecular basis to study the role of CPs in the post-embryonal development and the mechanisms of insecticide resistance of P. xylostella.
Collapse
Affiliation(s)
- Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China
| | - Qiu-Li Hou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
28
|
Hou QL, Chen EH. RNA-seq analysis of gene expression changes in cuticles during the larval-pupal metamorphosis of Plutella xylostella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100869. [PMID: 34171685 DOI: 10.1016/j.cbd.2021.100869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/02/2023]
Abstract
The diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) is a holometabolous insect that its cuticles must undergo the significant changes during the larval-pupal metamorphosis development. To elucidate these changes at molecular levels, RNA-seq analysis of cuticles from LLS (later fourth instar larval stage), PPS (prepupal stage) and PS (pupal stage) were performed in P. xylostella. In this paper, a total of 17,710 transcripts were obtained in the larval-pupal transition of P. xylostella, and out of which 2293 (881 up-regulated and 1412 down-regulated) and 2989 transcripts (2062 up-regulated and 927 down-regulated) were identified to be differentially expressed between LLS and PPS, as well as PPS and PS, respectively. The further GO and KEGG analysis of differentially expressed genes (DEGs) revealed that the 'structural constituent of cuticle', 'chitin metabolic process', 'chitin binding', 'tyrosine metabolism' and 'insect hormone biosynthesis' pathways were significantly enriched, indicating these pathways might be involved in the process of larval pupation in P. xylostella. Then, we found some genes that encoded cuticular proteins, chitinolytic enzymes, chitin synthesis enzymes, and cuticle tanning proteins changed their expression levels remarkably, indicating these genes might play important roles in the restruction (degradation and biosynthesis) of insect cuticles during the larval metamorphosis. Additionally, the significant changes in the mRNA levels of 20-hydroxyecdysone (20E) and juvenile hormone (JH) related genes suggested their crucial roles in regulating cuticle remodeling during the larval metamorphosis of P. xylostella. In conclusion, the present study provide us the comprehensive gene expression profiles to explore the molecular mechanisms of cuticle metamorphosis in P. xylostella, which laid a molecular basis to study roles of specific pathways and genes in insect development.
Collapse
Affiliation(s)
- Qiu-Li Hou
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Er-Hu Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
29
|
He W, Wei DD, Xu HQ, Yang Y, Miao ZQ, Wang L, Wang JJ. Molecular Characterization and Transcriptional Expression Analysis of ABC Transporter H Subfamily Genes in the Oriental Fruit Fly. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1298-1309. [PMID: 33822985 DOI: 10.1093/jee/toab045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephretidae), is a serious pest of fruits and vegetables and has developed high levels of insecticide resistance. ATP-binding cassette transporter genes (ABC transporters) are involved in mediating the energy-driven transport of many substances across membranes and are closely associated with development and insecticide detoxification. In this study, three ABC transporters in the H subfamily were identified, and the possible roles of these genes in B. dorsalis are discussed. Bioinformatics analysis revealed that those genes are conserved, typical of half-transporters. The expression profiles of BdABCH genes (BdABCHs) in the developmental stages, tissues, and following insecticide exposure, extreme temperature, warm- and cold-acclimated strain, starvation, and desiccation stress were determined by quantitative real-time PCR. Expression of BdABCHs can be detected in various tissues and in different developmental stages. They were most highly expressed in the hindgut and in newly emerged adults. The mRNA levels of BdABCHs in males (including most tissues and body segments) were higher than in females. The expression of BdABCH1 was significantly upregulated 3.8-fold in the cold-acclimated strain, and was significantly upregulated by 1.9-, 3.8- and 4.1-fold in the 0°C, starvation, and desiccation treatments, respectively. Treatment with malathion and avermectin at LD20 and LD30 concentrations produced no obvious changes in the levels of BdABCHs. BdABCHs may be involved in the transport of related hormones during eclosion, as well as water and inorganic salts. BdABCH1 also demonstrated that it is related to the ability to cope with adverse environments.
Collapse
Affiliation(s)
- Wang He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hui-Qian Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Yang Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Ze-Qing Miao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Lei Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
30
|
Volovych O, Lin Z, Du J, Jiang H, Zou Z. Identification and temporal expression profiles of cuticular proteins in the endoparasitoid wasp, Microplitis mediator. INSECT SCIENCE 2020; 27:998-1018. [PMID: 31317624 PMCID: PMC7497268 DOI: 10.1111/1744-7917.12711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 05/10/2023]
Abstract
Recently, parasitoid wasp species Microplitis mediator has evoked increasing research attention due to its possible use in the control of Lepidoptera insects. Because insect development involves changes in cuticle composition, identification and expression analysis of M. mediator cuticular proteins may clarify the mechanisms involved in parasite development processes. We found 70 cuticular proteins from the M. mediator transcriptome and divided them into seven distinct families. Expression profiling indicated that most of these cuticular protein genes have expression peaks specific for one particular developmental stage of M. mediator. Eggs and pupae have the highest number of transcriptionally active cuticular protein genes (47 and 52 respectively). Only 12 of these genes maintained high expression activity during late larval development. Functional analysis of two larval proteins, MmCPR3 and MmCPR14, suggested their important role in the proper organization of the cuticle layers of larvae. During M. mediator larval development, normal cuticle formation can be supported by a limited number of cuticular proteins.
Collapse
Affiliation(s)
- Olga Volovych
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Jie Du
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hong Jiang
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
31
|
Alston MA, Lee J, Moore ME, Kingsolver JG, Willett CS. The ghost of temperature past: interactive effects of previous and current thermal conditions on gene expression in Manduca sexta. J Exp Biol 2020; 223:jeb213975. [PMID: 32127377 DOI: 10.1242/jeb.213975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022]
Abstract
High temperatures can negatively impact the performance and survival of organisms, particularly ectotherms. While an organism's response to high temperature stress clearly depends on current thermal conditions, its response may also be affected by the temporal pattern and duration of past temperature exposures. We used RNA sequencing of Manduca sexta larvae fat body tissue to evaluate how diurnal temperature fluctuations during development affected gene expression both independently and in conjunction with subsequent heat stress. Additionally, we compared gene expression between two M. sexta populations, a lab colony and a genetically related field population that have been separated for >300 generations and differ in their thermal sensitivities. Lab-adapted larvae were predicted to show increased expression responses to both single and repeated thermal stress, whereas recurrent exposure could decrease later stress responses for field individuals. We found large differences in overall gene expression patterns between the two populations across all treatments, as well as population-specific transcriptomic responses to temperature; more differentially expressed genes were upregulated in the field compared with lab larvae. Developmental temperature fluctuations alone had minimal effects on long-term gene expression patterns, with the exception of a somewhat elevated stress response in the lab population. Fluctuating rearing conditions did alter gene expression during exposure to later heat stress, but this effect depended on both the population and the particular temperature conditions. This study contributes to increased knowledge of molecular mechanisms underlying physiological responses of organisms to temperature fluctuations, which is needed for the development of more accurate thermal performance models.
Collapse
Affiliation(s)
- Meggan A Alston
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeeyun Lee
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - M Elizabeth Moore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joel G Kingsolver
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Christopher S Willett
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
32
|
Noriega DD, Arias PL, Barbosa HR, Arraes FBM, Ossa GA, Villegas B, Coelho RR, Albuquerque EVS, Togawa RC, Grynberg P, Wang H, Vélez AM, Arboleda JW, Grossi-de-Sa MF, Silva MCM, Valencia-Jiménez A. Transcriptome and gene expression analysis of three developmental stages of the coffee berry borer, Hypothenemus hampei. Sci Rep 2019; 9:12804. [PMID: 31488852 PMCID: PMC6728347 DOI: 10.1038/s41598-019-49178-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/20/2019] [Indexed: 12/18/2022] Open
Abstract
Coffee production is a global industry valued at approximately 173 billion US dollars. One of the main challenges facing coffee production is the management of the coffee berry borer (CBB), Hypothenemus hampei, which is considered the primary arthropod pest of coffee worldwide. Current control strategies are inefficient for CBB management. Although biotechnological alternatives, including RNA interference (RNAi), have been proposed in recent years to control insect pests, characterizing the genetics of the target pest is essential for the successful application of these emerging technologies. In this study, we employed RNA-seq to obtain the transcriptome of three developmental stages of the CBB (larva, female and male) to increase our understanding of the CBB life cycle in relation to molecular features. The CBB transcriptome was sequenced using Illumina Hiseq and assembled de novo. Differential gene expression analysis was performed across the developmental stages. The final assembly produced 29,434 unigenes, of which 4,664 transcripts were differentially expressed. Genes linked to crucial physiological functions, such as digestion and detoxification, were determined to be tightly regulated between the reproductive and nonreproductive stages of CBB. The data obtained in this study help to elucidate the critical roles that several genes play as regulatory elements in CBB development.
Collapse
Affiliation(s)
- Daniel D Noriega
- Department of Cellular Biology, University of Brasília, Brasília-DF, Brazil.
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil.
| | - Paula L Arias
- Departamento de Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia
| | - Helena R Barbosa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Biotechnology Center, UFRGS, Porto Alegre-RS, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Biotechnology Center, UFRGS, Porto Alegre-RS, Brazil
| | - Gustavo A Ossa
- Departamento de Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia
| | - Bernardo Villegas
- Departamento de Producción Agropecuaria, Universidad de Caldas, Manizales, Colombia
| | - Roberta R Coelho
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | | - Roberto C Togawa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | | - Haichuan Wang
- University of Nebraska-Lincoln, Nebraska, United States of America
| | - Ana M Vélez
- University of Nebraska-Lincoln, Nebraska, United States of America
| | - Jorge W Arboleda
- Centro de Investigaciones en Medio Ambiente y Desarrollo - CIMAD, Universidad de Manizales, Manizales, Caldas, Colombia
| | - Maria F Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil.
- Catholic University of Brasília - Postgraduate Program in Genomic Sciences and Biotechnology, Brasília-DF, Brazil.
| | - Maria C M Silva
- Embrapa Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | |
Collapse
|
33
|
Dias RO, Cardoso C, Leal CS, Ribeiro AF, Ferreira C, Terra WR. Domain structure and expression along the midgut and carcass of peritrophins and cuticle proteins analogous to peritrophins in insects with and without peritrophic membrane. JOURNAL OF INSECT PHYSIOLOGY 2019; 114:1-9. [PMID: 30735683 DOI: 10.1016/j.jinsphys.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/22/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Most insects have a peritrophic membrane (matrix) (PM) surrounding the food bolus. This structure, similarly to the cuticle, is mainly composed of chitin and proteins. The main proteins forming PM are known as peritrophins (PMP), whereas some of the cuticle proteins are the cuticle proteins analogous to peritrophins (CPAP). Both proteins are composed of one or more chitin binding peritrophin-A domain (CBD) and no other recognized domain. Furthermore, insects containing PM usually have two chitin synthase (CS) genes, one mainly expressed in carcass and the other in midgut. In this work we identified PMP, CPAP and CS genes in the genome of insects from the Polyneoptera, Paraneoptera and Holometabola cohorts and analyzed their expression profile in different species from each group. In agreement with the absence of PM, we observed less CBD-containing proteins and only one CS gene in the genome of Paraneoptera species, except for the Phthiraptera Pediculus humanus. The lack of PM in Paraneoptera species was also confirmed by the micrographs of the midgut of two Hemiptera species, Dysdercus peruvianus and Mahanarva fimbriolata which agreed with the RNA-seq data of both species. Our analyses also highlighted a higher number of CBD-containing proteins in Holometabola in relation to the earlier divergent Polyneoptera group, especially regarding the genes composed of more than three CBDs, which are usually associated to PM formation. Finally, we observed a high number of CBD-containing proteins being expressed in both midgut and carcass tissues of several species, which we named as ubiquitous-CBD-containing proteins (UCBP), as their function is unclear. We hypothesized that these proteins can be involved in both cuticle and PM formation or that they can be involved in immune response and/or tracheolae formation.
Collapse
Affiliation(s)
- Renata O Dias
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Christiane Cardoso
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Camila S Leal
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, C.P. 11461, 05422-970 São Paulo, Brazil
| | - Alberto F Ribeiro
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, C.P. 11461, 05422-970 São Paulo, Brazil
| | - Clélia Ferreira
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
34
|
Zhou S, Zhou Y, Wang Y, Chen J, Pang L, Pan Z, Li C, Shi M, Huang J, Chen X. The developmental transcriptome of Trichopria drosophilae (Hymenoptera: Diapriidae) and insights into cuticular protein genes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:245-254. [DOI: 10.1016/j.cbd.2018.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/16/2018] [Indexed: 01/07/2023]
|