1
|
Xiong W, Jiang GZ, He CF, Hua HK, Du MT, Huang WT, Xu HT, Zhou MT, Wang X, Guo HX, Wang AM, Sun SZ, Liu WB. Recombinant Bacillus subtilis expressing functional peptide and its effect on blunt snout bream (Megalobrama amblycephala) in two state of stress. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109980. [PMID: 39461393 DOI: 10.1016/j.fsi.2024.109980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
This study was conducted to investigate the effects of recombinant Bacillus subtilis CM66-P4' (secreting P4, which related to previous research in this laboratory) on the antioxidant capacity and immune function of blunt snout bream (Megalobrama amblycephala) through in vitro and in vivo experiment. The culture experiment was divided into 3 groups, including control group (CG, with no additional bacteria), original bacteria group (OBG, with 2 × 109 CFU/kg Bacillus subtilis CM66) and recombinant bacteria group (RBG, with 2 × 109 CFU/kg Bacillus subtilis CM66-P4'). After 8 weeks of feeding, a part of the fish were subjected to fishing stress, and the rest were subjected to starvation stress test. Blood samples were collected for the determination of immune and stress-related indexes. The hepatocytes were divided into control group (CG) and experiment group with P4 peptide (LTG and HTG). The cells were collected after starvation treatment and the expression of related genes was detected. The results showed as follows: compared with the CG group, the gene expressions of hepatocytic hsp60 and hsp70 in the LTG and HTG groups were significantly suppressed after 24 h starvation stress (P < 0.05). The content of MDA, the activities of AKP and ALT in OBG group were significantly changed after 30 days starvation (P < 0.05), while the indexes in RBG group had no significant change. The changes of plasma cortisol, malondialdehyde (MDA) and Immunoglobulin M (IgM) in CG and OBG groups were significantly changed at 4 h after fishing stress (P < 0.05), while the indexes in RBG group was not. In conclusion, this study confirmed that Bacillus subtilis CM66-P4' has great potential in preventing adverse effects of stress on aquatic livestock.
Collapse
Affiliation(s)
- Wei Xiong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Chao-Fan He
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Hao-Kun Hua
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Mian-Ting Du
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Wan-Ting Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Hui-Ting Xu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Mei-Ting Zhou
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China
| | - Ai-Min Wang
- Yancheng Inst Technol, Coll Econ, Key Lab Aquaculture & Ecol Coastal Pool Jiangsu P, Yancheng, PR China
| | - Shang-Zhi Sun
- Nanjing Omnipotent Peptide Biological Development Co., Ltd, PR China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, PR China.
| |
Collapse
|
2
|
Darby AM, Okoro DO, Aredas S, Frank AM, Pearson WH, Dionne MS, Lazzaro BP. High sugar diets can increase susceptibility to bacterial infection in Drosophila melanogaster. PLoS Pathog 2024; 20:e1012447. [PMID: 39133760 PMCID: PMC11341100 DOI: 10.1371/journal.ppat.1012447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/22/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Overnutrition with dietary sugar can worsen infection outcomes in diverse organisms including insects and humans, through generally unknown mechanisms. In the present study, we show that adult Drosophila melanogaster fed high-sugar diets became more susceptible to infection by the Gram-negative bacteria Providencia rettgeri and Serratia marcescens. We found that P. rettgeri and S. marcescens proliferate more rapidly in D. melanogaster fed a high-sugar diet, resulting in increased probability of host death. D. melanogaster become hyperglycemic on the high-sugar diet, and we find evidence that the extra carbon availability may promote S. marcescens growth within the host. However, we found no evidence that increased carbon availability directly supports greater P. rettgeri growth. D. melanogaster on both diets fully induce transcription of antimicrobial peptide (AMP) genes in response to infection, but D. melanogaster provided with high-sugar diets show reduced production of AMP protein. Thus, overnutrition with dietary sugar may impair host immunity at the level of AMP translation. Our results demonstrate that dietary sugar can shape infection dynamics by impacting both host and pathogen, depending on the nutritional requirements of the pathogen and by altering the physiological capacity of the host to sustain an immune response.
Collapse
Affiliation(s)
- Andrea M. Darby
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| | - Destiny O. Okoro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| | - Sophia Aredas
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
- University of California, Irvine, Irvine, California, United States of America
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Ashley M. Frank
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Battelle, Columbus, Ohio, United States of America
| | - William H. Pearson
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Marc S. Dionne
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
3
|
Frunze O, Kim H, Lee JH, Kwon HW. The Effects of Artificial Diets on the Expression of Molecular Marker Genes Related to Honey Bee Health. Int J Mol Sci 2024; 25:4271. [PMID: 38673857 PMCID: PMC11049949 DOI: 10.3390/ijms25084271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Honey bees are commonly used to study metabolic processes, yet the molecular mechanisms underlying nutrient transformation, particularly proteins and their effects on development, health, and diseases, still evoke varying opinions among researchers. To address this gap, we investigated the digestibility and transformation of water-soluble proteins from four artificial diets in long-lived honey bee populations (Apis mellifera ligustica), alongside their impact on metabolism and DWV relative expression ratio, using transcriptomic and protein quantification methods. Diet 2, characterized by its high protein content and digestibility, was selected for further analysis from the other studied diets. Subsequently, machine learning was employed to identify six diet-related molecular markers: SOD1, Trxr1, defensin2, JHAMT, TOR1, and vg. The expression levels of these markers were found to resemble those of honey bees who were fed with Diet 2 and bee bread, renowned as the best natural food. Notably, honey bees exhibiting chalkbrood symptoms (Control-N) responded differently to the diet, underscoring the unique nutritional effects on health-deficient bees. Additionally, we proposed a molecular model to elucidate the transition of long-lived honey bees from diapause to development, induced by nutrition. These findings carry implications for nutritional research and beekeeping, underscoring the vital role of honey bees in agriculture.
Collapse
Affiliation(s)
- Olga Frunze
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Hyunjee Kim
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Jeong-Hyeon Lee
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Hyung-Wook Kwon
- Department of Life Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; (O.F.); (J.-H.L.)
- Convergence Research Center for Insect Vectors (CRCIV), Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
4
|
Silva RCMC, Ramos IB, Travassos LH, Mendez APG, Gomes FM. Evolution of innate immunity: lessons from mammalian models shaping our current view of insect immunity. J Comp Physiol B 2024; 194:105-119. [PMID: 38573502 DOI: 10.1007/s00360-024-01549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/23/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity's evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.
Collapse
Affiliation(s)
- Rafael Cardoso M C Silva
- Laboratory of Immunoreceptors and Signaling, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Isabela B Ramos
- Laboratório de Ovogênese Molecular de Vetores, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil
| | - Leonardo H Travassos
- Laboratory of Immunoreceptors and Signaling, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Guzman Mendez
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio M Gomes
- Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil.
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Erler S, Cotter SC, Freitak D, Koch H, Palmer-Young EC, de Roode JC, Smilanich AM, Lattorff HMG. Insects' essential role in understanding and broadening animal medication. Trends Parasitol 2024; 40:338-349. [PMID: 38443305 DOI: 10.1016/j.pt.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Like humans, animals use plants and other materials as medication against parasites. Recent decades have shown that the study of insects can greatly advance our understanding of medication behaviors. The ease of rearing insects under laboratory conditions has enabled controlled experiments to test critical hypotheses, while their spectrum of reproductive strategies and living arrangements - ranging from solitary to eusocial communities - has revealed that medication behaviors can evolve to maximize inclusive fitness through both direct and indirect fitness benefits. Studying insects has also demonstrated in some cases that medication can act through modulation of the host's innate immune system and microbiome. We highlight outstanding questions, focusing on costs and benefits in the context of inclusive host fitness.
Collapse
Affiliation(s)
- Silvio Erler
- Institute for Bee Protection, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Braunschweig, Germany; Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.
| | | | - Dalial Freitak
- Institute for Biology, University of Graz, Graz, Austria
| | | | | | | | | | | |
Collapse
|
6
|
Csata E, Pérez-Escudero A, Laury E, Leitner H, Latil G, Heinze J, Simpson SJ, Cremer S, Dussutour A. Fungal infection alters collective nutritional intake of ant colonies. Curr Biol 2024; 34:902-909.e6. [PMID: 38307022 DOI: 10.1016/j.cub.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
In animals, parasitic infections impose significant fitness costs.1,2,3,4,5,6 Infected animals can alter their feeding behavior to resist infection,7,8,9,10,11,12 but parasites can manipulate animal foraging behavior to their own benefits.13,14,15,16 How nutrition influences host-parasite interactions is not well understood, as studies have mainly focused on the host and less on the parasite.9,12,17,18,19,20,21,22,23 We used the nutritional geometry framework24 to investigate the role of amino acids (AA) and carbohydrates (C) in a host-parasite system: the Argentine ant, Linepithema humile, and the entomopathogenic fungus, Metarhizium brunneum. First, using 18 diets varying in AA:C composition, we established that the fungus performed best on the high-amino-acid diet 1:4. Second, we found that the fungus reached this optimal diet when given various diet pairings, revealing its ability to cope with nutritional challenges. Third, we showed that the optimal fungal diet reduced the lifespan of healthy ants when compared with a high-carbohydrate diet but had no effect on infected ants. Fourth, we revealed that infected ant colonies, given a choice between the optimal fungal diet and a high-carbohydrate diet, chose the optimal fungal diet, whereas healthy colonies avoided it. Lastly, by disentangling fungal infection from host immune response, we demonstrated that infected ants foraged on the optimal fungal diet in response to immune activation and not as a result of parasite manipulation. Therefore, we revealed that infected ant colonies chose a diet that is costly for survival in the long term but beneficial in the short term-a form of collective self-medication.
Collapse
Affiliation(s)
- Enikő Csata
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France; Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland; Institute for Zoology, University of Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany.
| | - Alfonso Pérez-Escudero
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Emmanuel Laury
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Hanna Leitner
- ISTA (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Gérard Latil
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Jürgen Heinze
- Museum and Institute of Zoology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sylvia Cremer
- ISTA (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Audrey Dussutour
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
7
|
Ponton F, Tan YX, Forster CC, Austin AJ, English S, Cotter SC, Wilson K. The complex interactions between nutrition, immunity and infection in insects. J Exp Biol 2023; 226:jeb245714. [PMID: 38095228 DOI: 10.1242/jeb.245714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Insects are the most diverse animal group on the planet. Their success is reflected by the diversity of habitats in which they live. However, these habitats have undergone great changes in recent decades; understanding how these changes affect insect health and fitness is an important challenge for insect conservation. In this Review, we focus on the research that links the nutritional environment with infection and immune status in insects. We first discuss the research from the field of nutritional immunology, and we then investigate how factors such as intracellular and extracellular symbionts, sociality and transgenerational effects may interact with the connection between nutrition and immunity. We show that the interactions between nutrition and resistance can be highly specific to insect species and/or infection type - this is almost certainly due to the diversity of insect social interactions and life cycles, and the varied environments in which insects live. Hence, these connections cannot be easily generalised across insects. We finally suggest that other environmental aspects - such as the use of agrochemicals and climatic factors - might also influence the interaction between nutrition and resistance, and highlight how research on these is essential.
Collapse
Affiliation(s)
- Fleur Ponton
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | - Yin Xun Tan
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | - Casey C Forster
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | | | - Sinead English
- School of Biological Sciences , University of Bristol, Bristol, BS8 1QU, UK
| | | | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
8
|
Leitão AB, Geldman EM, Jiggins FM. Activation of immune defences against parasitoid wasps does not underlie the cost of infection. Front Immunol 2023; 14:1275923. [PMID: 38130722 PMCID: PMC10733856 DOI: 10.3389/fimmu.2023.1275923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Parasites reduce the fitness of their hosts, and different causes of this damage have fundamentally different consequences for the evolution of immune defences. Damage to the host may result from the parasite directly harming its host, often due to the production of virulence factors that manipulate host physiology. Alternatively, the host may be harmed by the activation of its own immune defences, as these can be energetically demanding or cause self-harm. A well-studied model of the cost of infection is Drosophila melanogaster and its common natural enemy, parasitoid wasps. Infected Drosophila larvae rely on humoral and cellular immune mechanisms to form a capsule around the parasitoid egg and kill it. Infection results in a developmental delay and reduced adult body size. To disentangle the effects of virulence factors and immune defences on these costs, we artificially activated anti-parasitoid immune defences in the absence of virulence factors. Despite immune activation triggering extensive differentiation and proliferation of immune cells together with hyperglycaemia, it did not result in a developmental delay or reduced body size. We conclude that the costs of infection do not result from these aspects of the immune response and may instead result from the parasite directly damaging the host.
Collapse
Affiliation(s)
- Alexandre B. Leitão
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Champalimaud Neuroscience Progamme, Champalimaud Centre for the Unknown, Champalimaud Foundation, Lisbon, Portugal
| | - Emma M. Geldman
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Primo MGS, da Silva LAA, de Carvalho VBL, de Azevedo MAF, Monteiro NVDN, Mendes VR, da Silva JKM, Oliveira ASDSS, Brito AKDS, Sales ALDCC, Mallet JRDS, Parente JML, de Matos Neto EM, Ferreira PMP, Arcanjo DDR, Martins MDCDCE. Relationship among Dietary Intake of Vitamin E, Lipid Peroxidation Markers, and C-Reactive Protein in Flu-Like Patients Diagnosed with COVID-19. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:8889213. [PMID: 39263681 PMCID: PMC11390186 DOI: 10.1155/2023/8889213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/05/2023] [Accepted: 09/30/2023] [Indexed: 09/13/2024]
Abstract
Objective This research aimed to assess the intake of vitamin E and its relationship with lipid peroxidation markers and C-reactive protein levels in patients with flu symptoms and COVID-19 diagnosis. Methods A cross-sectional study with 121 patients of both sexes assisted at two basic health units in the city of Teresina, Piauí, with COVID-19 diagnosis confirmed through real-time reverse transcription polymerase chain reaction, was performed between the 3rd and 7th days of flu symptoms. The global nutritional status and the measurement of waist circumference were assessed according to the World Health Organization recommendations. The dietary energy intake, macronutrients, and vitamin E consumption were assessed through the 24 hr food recall method. The malondialdehyde plasmatic concentration (MDA) was measured through the method of thiobarbituric acid-reactive substances. Myeloperoxidase (MPO) was assessed through the oxidation speed of the o-dianisidine substrate in the presence of hydrogen peroxide. C-reactive protein (CRP) levels were measured by a high-sensitivity immunoturbidimetry method. Results The most common symptoms reported by the participants were sore throat, fever, and cough. Regarding the global nutritional status evaluation, the majority of the sample had overweight. The dietary intake of vitamin E was 100% inadequate and presented a mild correlation (r = 0.197) with MDA, a redox status marker. No correlation was observed among MPO, CRP, and the dietary intake of vitamin E. Conclusion The dietary intake of vitamin E was related to MDA as the marker of redox status.
Collapse
|
10
|
Yan J, Kim CH, Chesser L, Ramirez JL, Stone CM. Nutritional stress compromises mosquito fitness and antiviral immunity, while enhancing dengue virus infection susceptibility. Commun Biol 2023; 6:1123. [PMID: 37932414 PMCID: PMC10628303 DOI: 10.1038/s42003-023-05516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
Diet-induced nutritional stress can influence pathogen transmission potential in mosquitoes by impacting life history traits, infection susceptibility, and immunity. To investigate these effects, we manipulate mosquito diets at larval and adult stages, creating two nutritional levels (low and normal), and expose adults to dengue virus (DENV). We observe that egg number is reduced by nutritional stress at both stages and viral exposure separately and jointly, while the likelihood of laying eggs is exclusively influenced by adult nutritional stress. Adult nutritional stress alone shortens survival, while any pairwise combination between both-stage stress and viral exposure have a synergistic effect. Additionally, adult nutritional stress increases susceptibility to DENV infection, while larval nutritional stress likely has a similar effect operating via smaller body size. Furthermore, adult nutritional stress negatively impacts viral titers in infected mosquitoes; however, some survive and show increased titers over time. The immune response to DENV infection is overall suppressed by larval and adult nutritional stress, with specific genes related to Toll, JAK-STAT, and Imd immune signaling pathways, and antimicrobial peptides being downregulated. Our findings underscore the importance of nutritional stress in shaping mosquito traits, infection outcomes, and immune responses, all of which impact the vectorial capacity for DENV transmission.
Collapse
Affiliation(s)
- Jiayue Yan
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Chang-Hyun Kim
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Leta Chesser
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jose L Ramirez
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, Peoria, IL, USA
| | - Chris M Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
11
|
Zhou L, Ma L, Liu L, Sun S, Jing X, Lu Z. The Effects of Diet on the Immune Responses of the Oriental Armyworm Mythimna separata. INSECTS 2023; 14:685. [PMID: 37623395 PMCID: PMC10455674 DOI: 10.3390/insects14080685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Nutrients can greatly affect host immune defenses against infection. Possessing a simple immune system, insects have been widely used as models to address the relationships between nutrition and immunity. The effects of high versus low protein-to-carbohydrate ratio (P:C) diets on insect immune responses vary in different studies. To reveal the dietary manipulation of immune responses in the polyphagous agricultural pest oriental armyworm, we examined immune gene expression, phenoloxidase (PO) activity, and phagocytosis to investigate the immune traits of bacteria-challenged oriental armyworms, which were fed different P:C ratio diets. We found the oriental armyworms that were fed a 35:7 (P:C) diet showed higher phenoloxidase (PO) activity and stronger melanization, and those reared on a 28:14 (P:C) diet showed higher antimicrobial activity. However, different P:C diets had no apparent effect on the hemocyte number and phagocytosis. These results overall indicate that high P:C diets differently optimize humoral immune defense responses in oriental armyworms, i.e., PO-mediated melanization and antimicrobial peptide synthesis in response to bacteria challenge.
Collapse
Affiliation(s)
- Lizhen Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
| | - Li Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
| | - Lu Liu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
| | - Shaolei Sun
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
| | - Xiangfeng Jing
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Integrated Pest Management on Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
12
|
Ghosh E, Tafesh-Edwards GSY, Eleftherianos I, Goldin SL, Ode PJ. The plant toxin 4-methylsulfinylbutyl isothiocyanate decreases herbivore performance and modulates cellular and humoral immunity. PLoS One 2023; 18:e0289205. [PMID: 37531339 PMCID: PMC10395821 DOI: 10.1371/journal.pone.0289205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
Insect herbivores frequently encounter plant defense molecules, but the physiological and ecological consequences for their immune systems are not fully understood. The majority of studies attempting to relate levels of plant defensive chemistry to herbivore immune responses have used natural population or species-level variation in plant defensive chemistry. Yet, this potentially confounds the effects of plant defense chemistry with other potential plant trait differences that may affect the expression of herbivore immunity. We used an artificial diet containing known quantities of a plant toxin (4-methylsulfinylbutyl isothiocyanate; 4MSOB-ITC or ITC, a breakdown product of the glucosinolate glucoraphanin upon herbivory) to explicitly explore the effects of a plant toxin on the cellular and humoral immune responses of the generalist herbivore Trichoplusia ni (Lepidoptera: Noctuidae) that frequently feeds on glucosinolate-containing plants. Caterpillars feeding on diets with high concentrations of ITC experienced reduced survivorship and growth rates. High concentrations of ITC suppressed the appearance of several types of hemocytes and melanization activity, which are critical defenses against parasitic Hymenoptera and microbial pathogens. In terms of T. ni humoral immunity, only the antimicrobial peptide (AMP) genes lebocin and gallerimycin were significantly upregulated in caterpillars fed on diets containing high levels of ITC relative to caterpillars that were provided with ITC-free diet. Surprisingly, challenging caterpillars with a non-pathogenic strain of Escherichia coli resulted in the upregulation of the AMP gene cecropin. Feeding on high concentrations of plant toxins hindered caterpillar development, decreased cellular immunity, but conferred mixed effects on humoral immunity. Our findings provide novel insights into the effects of herbivore diet composition on insect performance demonstrating the role of specific plant defense toxins that shape herbivore immunity and trophic interactions.
Collapse
Affiliation(s)
- Enakshi Ghosh
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, Unites States of America
| | - Ghada S Y Tafesh-Edwards
- Department of Biological Sciences, The George Washington University, Washington, D.C., Unites States of America
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, D.C., Unites States of America
| | - Stephanie L Goldin
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, Unites States of America
| | - Paul J Ode
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, Unites States of America
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, Unites States of America
| |
Collapse
|
13
|
Dho M, Candian V, Tedeschi R. Insect Antimicrobial Peptides: Advancements, Enhancements and New Challenges. Antibiotics (Basel) 2023; 12:952. [PMID: 37370271 DOI: 10.3390/antibiotics12060952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Several insects are known as vectors of a wide range of animal and human pathogens causing various diseases. However, they are also a source of different substances, such as the Antimicrobial Peptides (AMPs), which can be employed in the development of natural bioactive compounds for medical, veterinary and agricultural applications. It is well known that AMP activity, in contrast to most classical antibiotics, does not lead to the development of natural bacterial resistance, or at least the frequency of resistance is considered to be low. Therefore, there is a strong interest in assessing the efficacy of the various peptides known to date, identifying new compounds and evaluating possible solutions in order to increase their production. Moreover, implementing AMP modulation in insect rearing could preserve insect health in large-scale production. This review describes the current knowledge on insect AMPs, presenting the validated ones for the different insect orders. A brief description of their mechanism of action is reported with focus on proposed applications. The possible effects of insect diet on AMP translation and synthesis have been discussed.
Collapse
Affiliation(s)
- Matteo Dho
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Valentina Candian
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - Rosemarie Tedeschi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), University of Torino, Largo P. Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
14
|
Zhou Y, Cao D, Liu J, Li F, Han H, Lei Q, Liu W, Li D, Wang J. Chicken adaptive response to nutrient density: immune function change revealed by transcriptomic analysis of spleen. Front Immunol 2023; 14:1188940. [PMID: 37256135 PMCID: PMC10225541 DOI: 10.3389/fimmu.2023.1188940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/04/2023] [Indexed: 06/01/2023] Open
Abstract
Feed accounts for the largest portion (65-70%) of poultry production costs. The feed formulation is generally improved to efficiently meet the nutritional needs of chickens by reducing the proportion of crude protein (CP) and metabolizable energy (ME) levels in the diet. Although many studies have investigated the production performance during dietary restriction, there is a lack of research on the mechanisms by which immune cell function is altered. This study examined the effects of ME and CP restriction in the chicken diet on serum immunoglobulins and expression of immune function genes in spleen. Changes in serum immunoglobulins and immune-related gene expression were analyzed in 216 YS-909 broilers fed with 9 different dietary treatments, including experimental treatment diets containing low, standard, and high levels of ME or CP in the diet. At 42 days of age, serum immunoglobulins and expression of spleen immune genes in 6 female chickens selected randomly from each dietary treatment (3×3 factorial arrangement) group were measured by enzyme-linked immunosorbent assay (ELISA) and transcriptomic analysis using RNA sequencing, respectively. The results showed that the IgM level in the low ME group chickens was significantly (p < 0.05) lower than that in other groups. In addition, immune-related genes, such as MX1, USP18, TLR4, IFNG and IL18 were significantly upregulated when the dietary nutrient density was reduced, which may put the body in an inflammatory state. This study provided general information on the molecular mechanism of the spleen immune response to variable nutrient density.
Collapse
|
15
|
Pfenning‐Butterworth AC, Vetter RE, Hite JL. Natural variation in host feeding behaviors impacts host disease and pathogen transmission potential. Ecol Evol 2023; 13:e9865. [PMID: 36911315 PMCID: PMC9992943 DOI: 10.1002/ece3.9865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023] Open
Abstract
Animals ranging from mosquitoes to humans often vary their feeding behavior when infected or merely exposed to pathogens. These so-called "sickness behaviors" are part of the innate immune response with many consequences, including avoiding orally transmitted pathogens. Fully understanding the role of this ubiquitous behavior in host defense and pathogen evolution requires a quantitative account of its impact on host and pathogen fitness across environmentally relevant contexts. Here, we use a zooplankton host and fungal pathogen as a case study to ask if infection-mediated feeding behaviors vary across pathogen exposure levels and natural genetic variation in susceptibility to infection. Then, we connect these changes in behavior to pathogen transmission potential (spore yield) and fitness and growth costs to the host. Our results validate a protective effect of altered feeding behavior during pathogen exposure while also revealing significant variation in the magnitude of this response across host susceptibility and pathogen exposure levels. Across all four host genotypes, feeding rates were negatively correlated with susceptibility to infection and transmission potential. The most susceptible genotypes exhibited either strong anorexia, reducing food intake by 26%-42%, ("Standard") or pronounced hyperphagia, increasing food intake by 20%-54% ("A45"). Together, these results suggest that infection-mediated changes in host feeding behavior-which are traditionally interpreted as immunopathology- may in fact serve as crucial components of host defense strategies and warrant further investigation.
Collapse
Affiliation(s)
- Alaina C. Pfenning‐Butterworth
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Department of BotanyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Rachel E. Vetter
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
| | - Jessica L. Hite
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Department of Pathobiological SciencesUniversity of WisconsinMadisonWisconsinUSA
| |
Collapse
|
16
|
Gallon ME, Smilanich AM. Effects of Host Plants on Development and Immunity of a Generalist Insect Herbivore. J Chem Ecol 2023; 49:142-154. [PMID: 36763248 DOI: 10.1007/s10886-023-01410-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Secondary plant chemistry mediates a variety of communication signals among species, playing a fundamental role in the evolutionary diversification of communities and ecosystems. Herein, we explored diet-mediated host plant effects on development and immune response of a generalist insect herbivore. Vanessa cardui (Nymphalidae) caterpillars were reared on leaves of three host plants that vary in secondary metabolites, Plantago lanceolata (Plantaginaceae), Taraxacum officinale (Asteraceae) and Tithonia diversifolia (Asteraceae). Insect development was evaluated by larval and pupal viabilities, survivorship, and development rate. Immune response was measured as phenoloxidase (PO) activity. Additionally, chemical profiles of the host plants were obtained by liquid chromatograph-mass spectrometry (LC-MS) and the discriminant metabolites were determined using a metabolomic approach. Caterpillars reared on P. lanceolata exhibited the highest larval and pupal viabilities, as well as PO activity, and P. lanceolata leaves were chemically characterized by the presence of iridoid glycosides, phenylpropanoids and flavonoids. Taraxacum officinale leaves were characterized mainly by the presence of phenylpropanoids, flavones O-glycoside and germacranolide-type sesquiterpene lactones; caterpillars reared on this host plant fully developed to the adult stage, however they exhibited lower larval and pupal viabilities compared to individuals reared on P. lanceolata. Conversely, caterpillars reared on T. diversifolia leaves, which contain phenylpropanoids, flavones and diverse furanoheliangolide-type sesquiterpene lactones, were not able to complete larval development and exhibited the lowest PO activity. These findings suggested that V. cardui have adapted to tolerate potentially toxic metabolites occurring in P. lanceolata (iridoid glycosides), however caterpillars were not able to cope with potentially detrimental metabolites occurring in T. diversifolia (furanoheliangolides). Therefore, we suggest that furanoheliangolide-type sesquiterpene lactones were responsible for the poor development and immune response observed for caterpillars reared on T. diversifolia.
Collapse
Affiliation(s)
- Marilia Elias Gallon
- Department of Biology, University of Nevada, 1664 N. Virginia St., Reno, NV, 89557, USA. .,Núcleo de Pesquisa em Produtos Naturais e Sintéticos, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n°, Ribeirão Preto, SP, 14040-903, Brazil.
| | | |
Collapse
|
17
|
BourBour F, Mirzaei Dahka S, Gholamalizadeh M, Akbari ME, Shadnoush M, Haghighi M, Taghvaye-Masoumi H, Ashoori N, Doaei S. Nutrients in prevention, treatment, and management of viral infections; special focus on Coronavirus. Arch Physiol Biochem 2023; 129:16-25. [PMID: 32644876 DOI: 10.1080/13813455.2020.1791188] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) is a pandemic caused by coronavirus with mild to severe respiratory symptoms. This paper aimed to investigate the effect of nutrients on the immune system and their possible roles in the prevention, treatment, and management of COVID-19 in adults. METHODS This Systematic review was designed based on the guideline of the Preferred Reporting for Systematic Reviews (PRISMA). The articles that focussed on nutrition, immune system, viral infection, and coronaviruses were collected by searching databases for both published papers and accepted manuscripts from 1990 to 2020. Irrelevant papers and articles without English abstract were excluded from the review process. RESULTS Some nutrients are actively involved in the proper functioning and strengthening of the human immune system against viral infections including dietary protein, omega-3 fatty acids, vitamin A, vitamin D, vitamin E, vitamin B1, vitamin B6, vitamin B12, vitamin C, iron, zinc, and selenium. Few studies were done on the effect of dietary components on prevention of COVID-19, but supplementation with these nutrients may be effective in improving the health status of patients with viral infections. CONCLUSION Following a balanced diet and supplementation with proper nutrients may play a vital role in prevention, treatment, and management of COVID-19. However, further clinical trials are needed to confirm these findings and presenting the strong recommendations against this pandemic.
Collapse
Affiliation(s)
- Fatemeh BourBour
- Department of Clinical Nutrition and Dietetic, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Gholamalizadeh
- Student Research Committee, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Haghighi
- Anesthesiology Research Center, Guilan University of Medical Sciences (GUMS), Rasht, Iran
| | | | - Narjes Ashoori
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saied Doaei
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
18
|
Mo C, Smilanich AM. Feeding on an exotic host plant enhances plasma levels of phenoloxidase by modulating feeding efficiency in a specialist insect herbivore. Front Physiol 2023; 14:1127670. [PMID: 36909228 PMCID: PMC9998540 DOI: 10.3389/fphys.2023.1127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Exotic plant species represent a novel resource for invertebrates and many herbivorous insects have incorporated exotic plants into their diet. Using a new host plant can have physiological repercussions for these herbivores that may be beneficial or detrimental. In this study, we compared how using an exotic versus native host plant affected the immune system response and feeding efficiency of a specialist lepidopteran, the common buckeye (Junonia coenia: Nymphalidae, Hübner 1822). Materials and Methods: In a lab experiment, larvae were reared on either the exotic host plant, Plantago lanceolata (Plantaginaceae), or the native host plant, Mimulus guttatus (Phrymaceae). Beginning at second instar feeding efficiency data were collected every 2 days until fifth instar when immune assays were performed. Immune assays consisted of standing phenoloxidase activity, total phenoloxidase activity, and melanization. Results: Interestingly, we found that all three immune system parameters were higher on the exotic host plant compared to the native host plant. The exotic host plant also supported higher pupal weights, faster development time, greater consumption, and more efficient approximate digestibility. In contrast, the native host plant supported higher efficiency of conversion of ingested and digested food. The relationship between immunity and feeding efficiency was more complex but showed a large positive effect of greater host plant consumption on all immune parameters, particularly for the exotic host plant. While not as strong, the efficiency of conversion of digested food tended to show a negative effect on the three immune parameters. Conclusion: Overall, the exotic host plant proved to be beneficial for this specialist insect with regard to immunity and many of the feeding efficiency parameters and continued use of this host plant is predicted for populations already using it.
Collapse
Affiliation(s)
- Carmen Mo
- Department of Biology, University of Nevada, Reno, NV, United States
| | - Angela M Smilanich
- Department of Biology, University of Nevada, Reno, NV, United States.,Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV, United States
| |
Collapse
|
19
|
Mc Auley MT. Dietary restriction and ageing: Recent evolutionary perspectives. Mech Ageing Dev 2022; 208:111741. [PMID: 36167215 DOI: 10.1016/j.mad.2022.111741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 12/30/2022]
Abstract
Dietary restriction (DR) represents one of the most robust interventions for extending lifespan. It is not known how DR increases lifespan. The prevailing evolutionary hypothesis suggests the DR response redirects metabolic resources towards somatic maintenance at the expense of investment in reproduction. Consequently, DR acts as a proximate mechanism which promotes a pro-longevity phenotype. This idea is known as resource reallocation. However, growing findings suggest this paradigm could be incomplete. It has been argued that during DR it is not always possible to identify a trade-off between reproduction and lifespan. It is also suggested the relationship between reproduction and somatic maintenance can be uncoupled by the removal or inclusion of specific nutrients. These findings have created an imperative to re-explore the nexus between DR and evolutionary theory. In this review I will address this evolutionary conundrum. My overarching objectives are fourfold: (1) to outline some of the evidence for and against resource reallocation; (2) to examine recent findings which have necessitated a theoretical re-evaluation of the link between life history theory and DR; (3) to present alternatives to the resource reallocation model; (4) to present emerging variables which potentially influence how DR effects evolutionary trade-offs.
Collapse
Affiliation(s)
- Mark T Mc Auley
- Faculty of Science and Engineering, Thornton Science Park, University of Chester, Parkgate Road, Chester CH1 4BJ, UK.
| |
Collapse
|
20
|
Letendre C, Rios‐Villamil A, Williams A, Rapkin J, Sakaluk SK, House CM, Hunt J. Evolution of immune function in response to dietary macronutrients in male and female decorated crickets. J Evol Biol 2022; 35:1465-1474. [PMID: 36129960 PMCID: PMC9826279 DOI: 10.1111/jeb.14093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 01/11/2023]
Abstract
Although dietary macronutrients are known to regulate insect immunity, few studies have examined their evolutionary effects. Here, we evaluate this relationship in the cricket Gryllodes sigillatus by maintaining replicate populations on four diets differing in protein (P) to carbohydrate (C) ratio (P- or C-biased) and nutritional content (low- or high-nutrition) for >37 generations. We split each population into two; one maintained on their evolution diet and the other switched to their ancestral diet. We also maintained populations exclusively on the ancestral diet (baseline). After three generations, we measured three immune parameters in males and females from each population. Immunity was higher on P-biased than C-biased diets and on low- versus high-nutrition diets, although the latter was most likely driven by compensatory feeding. These patterns persisted in populations switched to their ancestral diet, indicating genetic divergence. Crickets evolving on C-biased diets had lower immunity than the baseline, whereas their P-biased counterparts had similar or higher immunity than the baseline, indicating that populations evolved with dietary manipulation. Although females exhibited superior immunity for all assays, the sexes showed similar immune changes across diets. Our work highlights the important role that macronutrient intake plays in the evolution of immunity in the sexes.
Collapse
Affiliation(s)
- Corinne Letendre
- School of ScienceWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Alejandro Rios‐Villamil
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Alexandria Williams
- School of ScienceWestern Sydney UniversityRichmondNew South WalesAustralia,Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - James Rapkin
- Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Scott K. Sakaluk
- School of Biological SciencesIllinois State UniversityNormalIllinoisUSA
| | - Clarissa M. House
- School of ScienceWestern Sydney UniversityRichmondNew South WalesAustralia
| | - John Hunt
- School of ScienceWestern Sydney UniversityRichmondNew South WalesAustralia,Centre for Ecology and Conservation, College of Life and Environmental SciencesUniversity of ExeterPenrynUK
| |
Collapse
|
21
|
Savola E, Vale PF, Walling CA. Larval diet affects adult reproduction, but not survival, independent of the effect of injury and infection in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 142:104428. [PMID: 35932926 DOI: 10.1016/j.jinsphys.2022.104428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Early-life conditions have profound effects on many life-history traits, where early-life diet affects both juvenile development, and adult survival and reproduction. Early-life diet also has consequences for the ability of adults to withstand environmental challenges such as starvation, temperature and desiccation. However, it is less well known how early-life diet influences the consequences of infection in adults. Here we test whether varying the larval diet of female Drosophila melanogaster (through altering protein to carbohydrate ratio, P:C) influences the long-term consequences of injury and infection with the bacterial pathogen Pseudomonasentomophila. Given previous work manipulating adult dietary P:C, we predicted that adults from larvae raised on higher P:C diets would have increased reproduction, but shorter lifespans and an increased rate of ageing, and that the lowest larval P:C diets would be particularly detrimental for adult survival in infected individuals. For larval development, we predicted that low P:C would lead to a longer development time and lower viability. We found that early-life and lifetime egg production were highest at intermediate to high larval P:C diets, but this was independent of injury and infection. There was no effect of larval P:C on adult survival. Larval development was quickest on intermediate P:C and egg-to-pupae and egg-to-adult viability were slightly higher on higher P:C. Overall, despite larval P:C affecting several measured traits, we saw no evidence that larval P:C altered the consequence of infection or injury for adult survival or early-life and lifetime reproduction. Taken together, these data suggest that larval diets appear to have a limited impact on the adult life history consequences of infection.
Collapse
Affiliation(s)
- Eevi Savola
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, UK
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, UK
| | - Craig A Walling
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, UK.
| |
Collapse
|
22
|
Macartney EL, Crean AJ, Bonduriansky R. Parental dietary protein effects on offspring viability in insects and other oviparous invertebrates: a meta-analysis. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100045. [PMID: 36683954 PMCID: PMC9846472 DOI: 10.1016/j.cris.2022.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 06/17/2023]
Abstract
Dietary protein is a key regulator of reproductive effort in animals, but protein consumption also tends to accelerate senescence and reduce longevity. Given this protein-mediated trade-off between reproduction and survival, how does protein consumption by parents affect the viability of their offspring? In insects, protein consumption by females enhances fecundity, but trade-offs between offspring quantity and quality could result in negative effects of protein consumption on offspring viability. Likewise, protein consumption by males tends to enhance the expression of sexual traits but could have negative effects on offspring viability, mediated by epigenetic factors transmitted via the ejaculate. It remains unclear whether dietary protein has consistent effects on offspring viability across species, and whether these effects are sex-specific. To address this, we conducted a meta-analysis of experimental studies that examined the effects of protein content in the maternal and/or paternal diet in insects and other oviparous invertebrates. We did not find consistent effects of paternal or maternal protein consumption on offspring viability. Rather, effects of dietary protein on offspring vary in both magnitude and sign across taxonomic groups. Further studies are needed to determine how the effects of dietary protein on offspring relate to variation in reproductive biology across species. Our findings also highlight important gaps in the literature and limitations in experiment design.
Collapse
Affiliation(s)
- Erin L. Macartney
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Angela J Crean
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
23
|
Dinh H, Lundbäck I, Kumar S, Than AT, Morimoto J, Ponton F. Sugar-rich larval diet promotes lower adult pathogen load and higher survival after infection in a polyphagous fly. J Exp Biol 2022; 225:276376. [PMID: 35904096 DOI: 10.1242/jeb.243910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022]
Abstract
Nutrition is a central factor influencing immunity and resistance to infection, but the extent to which nutrition during development affects adult responses to infections is poorly understood. Our study investigated how the nutritional composition of the larval diet affects the survival, pathogen load, and food intake of adult fruit flies, Bactrocera tryoni, after septic bacterial infection. We found a sex-specific effect of larval diet composition on survival post-infection: survival rate was higher and bacterial load was lower for infected females fed sugar-rich larval diet compared with females fed protein-rich larval diet, an effect that was absent in males. Both males and females were heavier when fed a balanced larval diet compared to protein- or sugar-rich diet, while body lipid reserves were higher in the sugar-rich larval diet compared with other diets. Body protein reserve was lower for sugar-rich larval diets compared to other diets in males, but not females. Both females and males shifted their nutrient intake to ingest a sugar-rich diet when infected compared with sham-infected flies without any effect of the larval diet, suggesting that sugar-rich diets can be beneficial to fight off bacterial infection as shown in previous literature. Overall, our findings show that nutrition during early life can shape individual fitness in adulthood.
Collapse
Affiliation(s)
- Hue Dinh
- School of Natural Sciences, Macquarie University, Australia
| | - Ida Lundbäck
- School of Natural Sciences, Macquarie University, Australia
| | - Sheemal Kumar
- School of Natural Sciences, Macquarie University, Australia
| | - Anh The Than
- School of Natural Sciences, Macquarie University, Australia.,Department of Entomology, Vietnam National University of Agriculture, Vietnam
| | - Juliano Morimoto
- School of Natural Sciences, Macquarie University, Australia.,School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, UK.,Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, 82590-300, Brazil
| | - Fleur Ponton
- School of Natural Sciences, Macquarie University, Australia
| |
Collapse
|
24
|
Early Queen Development in Honey Bees: Social Context and Queen Breeder Source Affect Gut Microbiota and Associated Metabolism. Microbiol Spectr 2022; 10:e0038322. [PMID: 35867384 PMCID: PMC9430896 DOI: 10.1128/spectrum.00383-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly social honey bee has dense populations but a significantly reduced repertoire of immune genes relative to solitary species, suggesting a greater reliance on social immunity. Here we investigate immune gene expression and gut microbial succession in queens during colony introduction. Recently mated queens were placed into an active colony or a storage hive for multiple queens: a queen-bank. Feeding intensity, social context, and metabolic demand differ greatly between the two environments. After 3 weeks, we examined gene expression associated with oxidative stress and immunity and performed high-throughput sequencing of the queen gut microbiome across four alimentary tract niches. Microbiota and gene expression in the queen hindgut differed by time, queen breeder source, and metabolic environment. In the ileum, upregulation of most immune and oxidative stress genes occurred regardless of treatment conditions, suggesting postmating effects on gut gene expression. Counterintuitively, queens exposed to the more social colony environment contained significantly less bacterial diversity indicative of social immune factors shaping the queens microbiome. Queen bank queens resembled much older queens with decreased Alpha 2.1, greater abundance of Lactobacillus firm5 and Bifidobacterium in the hindgut, and significantly larger ileum microbiotas, dominated by blooms of Snodgrassella alvi. Combined with earlier findings, we conclude that the queen gut microbiota experiences an extended period of microbial succession associated with queen breeder source, postmating development, and colony assimilation. IMPORTANCE In modern agriculture, honey bee queen failure is repeatedly cited as one of the major reasons for yearly colony loss. Here we discovered that the honey bee queen gut microbiota alters according to early social environment and is strongly tied to the identity of the queen breeder. Like human examples, this early life variation appears to set the trajectory for ecological succession associated with social assimilation and queen productivity. The high metabolic demand of natural colony assimilation is associated with less bacterial diversity, a smaller hindgut microbiome, and a downregulation of genes that control pathogens and oxidative stress. Queens placed in less social environments with low metabolic demand (queen banks) developed a gut microbiota that resembled much older queens that produce fewer eggs. The queens key reproductive role in the colony may rely in part on a gut microbiome shaped by social immunity and the early queen rearing environment.
Collapse
|
25
|
Meshrif WS, Elkayal SH, Soliman MA, Seif AI, Roeder T. Metabolic and immunological responses of Drosophila melanogaster to dietary restriction and bacterial infection differ substantially between genotypes in a population. Ecol Evol 2022; 12:e8960. [PMID: 35646322 PMCID: PMC9130643 DOI: 10.1002/ece3.8960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
To respond to changing environmental conditions, a population may either shift toward better‐adapted genotypes or adapt on an individual level. The present work aimed to quantify the relevance of these two processes by comparing the responses of defined Drosophila melanogaster populations to different stressors. To do this, we infected two homogeneous populations (isofemale lines), which differ significantly in fitness, and a synthetic heterogeneous population with a specific pathogen and/or exposed them to food restriction. Pectobacterium carotovorum was used to infect Drosophila larvae either fed standard or protein‐restricted diet. In particular, the two homogeneous groups, which diverged in their fitness, showed considerable differences in all parameters assessed (survivorship, protein and lipid contents, phenol‐oxidase (PO) activity, and antibacterial rate). Under fully nutritious conditions, larvae of the homogeneous population with low fitness exhibited lower survivorship and protein levels, as well as higher PO activity and antibacterial rate compared with the fitter population. A protein‐restricted diet and bacterial infection provoked a decrease in survivorship, and antibacterial rate in most populations. Bacterial infection elicited an opposite response in protein and lipid content in both isofemale lines tested. Interestingly, the heterogeneous population showed a complex response pattern. The response of the heterogeneous population followed the fit genotype in terms of survival and antibacterial activity but followed the unfit genotype in terms of PO activity. In conclusion, our results show that defined genotypes exhibit highly divergent responses to varying stressors that are difficult to predict. Furthermore, the responses of heterogeneous populations do not follow a fixed pattern showing a very high degree of plasticity and differences between different genotypes.
Collapse
Affiliation(s)
- Wesam S Meshrif
- Department of Zoology Faculty of Science Tanta University Tanta Egypt
| | - Sandy H Elkayal
- Faculty of Pharmacy Pharmaceutical Services Center Tanta University Tanta Egypt
| | - Mohamed A Soliman
- Department of Zoology Faculty of Science Tanta University Tanta Egypt
| | - Amal I Seif
- Department of Zoology Faculty of Science Tanta University Tanta Egypt
| | - Thomas Roeder
- Department of Molecular Physiology Zoological Institute Kiel University Kiel Germany.,Airway Research Center North German Center for Lung Research Kiel Germany
| |
Collapse
|
26
|
Letendre C, Duffield KR, Sadd BM, Sakaluk SK, House CM, Hunt J. Genetic covariance in immune measures and pathogen resistance in decorated crickets is sex and pathogen specific. J Anim Ecol 2022; 91:1471-1488. [PMID: 35470433 PMCID: PMC9545791 DOI: 10.1111/1365-2656.13709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/21/2022] [Indexed: 12/05/2022]
Abstract
Insects are important models for studying immunity in an ecological and evolutionary context. Yet, most empirical work on the insect immune system has come from phenotypic studies meaning we have a limited understanding of the genetic architecture of immune function in the sexes. We use nine highly inbred lines to thoroughly examine the genetic relationships between a suite of commonly used immune assays (haemocyte count, implant encapsulation, total phenoloxidase activity, antibacterial zone of inhibition and pathogen clearance) and resistance to infection by three generalist insect pathogens (the gram‐negative bacterium Serratia marcescens, the gram‐positive bacterium Bacillus cereus and the fungus Metarhizium robertsii) in male and female Gryllodes sigillatus. There were consistent positive genetic correlations between haemocyte count, antibacterial and phenoloxidase activity and resistance to S. marcescens in both sexes, but these relationships were less consistent for resistance to B. cereus and M. robertsii. In addition, the clearance of S. marcescens was genetically correlated with the resistance to all three pathogens in both sexes. Genetic correlations between resistances to the different pathogen species were inconsistent, indicating that resistance to one pathogen does not necessarily mean resistance to another. Finally, while there is ample genetic (co)variance in immune assays and pathogen resistance, these genetic estimates differed across the sexes and many of these measures were not genetically correlated across the sexes, suggesting that these measures could evolve independently in the sexes. Our finding that the genetic architecture of immune function is sex and pathogen specific suggests that the evolution of immune function in male and female G. sigillatus is likely to be complex. Similar quantitative genetic studies that measure a large number of assays and resistance to multiple pathogens in both sexes are needed to ascertain if this complexity extends to other species.
Collapse
Affiliation(s)
- Corinne Letendre
- School of Science, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Richmond, New South Wales, Australia
| | - Kristin R Duffield
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America.,Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Peoria, IL, United States of America
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Scott K Sakaluk
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Clarissa M House
- School of Science, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Richmond, New South Wales, Australia
| | - John Hunt
- School of Science, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Richmond, New South Wales, Australia.,Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Tremough Campus, Penryn, Cornwall, United Kingdom
| |
Collapse
|
27
|
Cotter SC, Al Shareefi E. Nutritional ecology, infection and immune defence - exploring the mechanisms. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100862. [PMID: 34952240 DOI: 10.1016/j.cois.2021.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Diet can impact the outcome of parasitic infection in three, non-mutually exclusive ways: 1) by changing the physiological environment of the host, such as the availability of key nutritional resources, the presence of toxic dietary chemicals, the pH or osmolality of the blood or gut, 2) by enhancing the immune response and 3) by altering the presence of host microbiota, which help to digest nutrients and are a potential source of antibiotics. We show that there are no clear patterns in the effects of diet across taxa and that good evidence for the mechanisms by which diet exerts its effects are often lacking. More studies are required to understand the mechanisms of action if we are to discern patterns that can be generalised across host and parasite taxa.
Collapse
Affiliation(s)
- Sheena C Cotter
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK.
| | - Ekhlas Al Shareefi
- Dept of Biology, College of Science for Women, University of Babylon, Hillah-Babil, Iraq
| |
Collapse
|
28
|
Muchoney ND, Bowers MD, Carper AL, Mason PA, Teglas MB, Smilanich AM. Use of an exotic host plant shifts immunity, chemical defense, and viral burden in wild populations of a specialist insect herbivore. Ecol Evol 2022; 12:e8723. [PMID: 35342612 PMCID: PMC8928866 DOI: 10.1002/ece3.8723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022] Open
Abstract
Defense against natural enemies constitutes an important driver of herbivore host range evolution in the wild. Populations of the Baltimore checkerspot butterfly, Euphydryas phaeton (Nymphalidae), have recently incorporated an exotic plant, Plantago lanceolata (Plantaginaceae), into their dietary range. To understand the tritrophic consequences of utilizing this exotic host plant, we examined immune performance, chemical defense, and interactions with a natural entomopathogen (Junonia coenia densovirus, Parvoviridae) across wild populations of this specialist herbivore. We measured three immune parameters, sequestration of defensive iridoid glycosides (IGs), and viral infection load in field-collected caterpillars using either P. lanceolata or a native plant, Chelone glabra (Plantaginaceae). We found that larvae using the exotic plant exhibited reduced immunocompetence, compositional differences in IG sequestration, and higher in situ viral burdens compared to those using the native plant. On both host plants, high IG sequestration was associated with reduced hemocyte concentration in the larval hemolymph, providing the first evidence of incompatibility between sequestered chemical defenses and the immune response (i.e., the "vulnerable host" hypothesis) from a field-based study. However, despite this negative relationship between IG sequestration and cellular immunity, caterpillars with greater sequestration harbored lower viral loads. While survival of virus-infected individuals decreased with increasing viral burden, it ultimately did not differ between the exotic and native plants. These results provide evidence that: (1) phytochemical sequestration may contribute to defense against pathogens even when immunity is compromised and (2) herbivore persistence on exotic plant species may be facilitated by sequestration and its role in defense against natural enemies.
Collapse
Affiliation(s)
- Nadya D. Muchoney
- Program in Ecology, Evolution, and Conservation BiologyUniversity of NevadaRenoNevadaUSA
- Department of BiologyUniversity of NevadaRenoNevadaUSA
| | - M. Deane Bowers
- Department of Ecology and Evolutionary Biology & Museum of Natural HistoryUniversity of ColoradoBoulderColoradoUSA
| | - Adrian L. Carper
- Department of Ecology and Evolutionary Biology & Museum of Natural HistoryUniversity of ColoradoBoulderColoradoUSA
| | - Peri A. Mason
- Department of Ecology and Evolutionary Biology & Museum of Natural HistoryUniversity of ColoradoBoulderColoradoUSA
| | - Mike B. Teglas
- Program in Ecology, Evolution, and Conservation BiologyUniversity of NevadaRenoNevadaUSA
- Department of Agriculture, Veterinary and Rangeland SciencesUniversity of NevadaRenoNevadaUSA
| | - Angela M. Smilanich
- Program in Ecology, Evolution, and Conservation BiologyUniversity of NevadaRenoNevadaUSA
- Department of BiologyUniversity of NevadaRenoNevadaUSA
| |
Collapse
|
29
|
Canché-Collí C, Estrella-Maldonado H, Medina-Medina LA, Moo-Valle H, Calvo-Irabien LM, Chan-Vivas E, Rodríguez R, Canto A. Effect of yeast and essential oil-enriched diets on critical determinants of health and immune function in Africanized Apis mellifera. PeerJ 2021; 9:e12164. [PMID: 34721958 PMCID: PMC8522645 DOI: 10.7717/peerj.12164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/25/2021] [Indexed: 12/01/2022] Open
Abstract
Nutrition is vital for health and immune function in honey bees (Apis mellifera). The effect of diets enriched with bee-associated yeasts and essential oils of Mexican oregano (Lippia graveolens) was tested on survival, food intake, accumulated fat body tissue, and gene expression of vitellogenin (Vg), prophenoloxidase (proPO) and glucose oxidase (GOx) in newly emerged worker bees. The enriched diets were provided to bees under the premise that supplementation with yeasts or essential oils can enhance health variables and the expression of genes related to immune function in worker bees. Based on a standard pollen substitute, used as a control diet, enriched diets were formulated, five with added bee-associated yeasts (Starmerella bombicola, Starmerella etchellsii, Starmerella bombicola 2, Zygosaccharomyces mellis, and the brewers’ yeast Saccharomyces cerevisiae) and three with added essential oils from L. graveolens (carvacrol, thymol, and sesquiterpenes). Groups of bees were fed one of the diets for 9 or 12 days. Survival probability was similar in the yeast and essential oils treatments in relation to the control, but median survival was lower in the carvacrol and sesquiterpenes treatments. Food intake was higher in all the yeast treatments than in the control. Fat body percentage in individual bees was slightly lower in all treatments than in the control, with significant decreases in the thymol and carvacrol treatments. Expression of the genes Vg, proPO, and GOx was minimally affected by the yeast treatments but was adversely affected by the carvacrol and thymol treatments.
Collapse
Affiliation(s)
- César Canché-Collí
- Unidad de Recursos Naturales, Centro de Investigacion Cientifica de Yucatan, A.C., Merida, Yucatan, Mexico
| | | | - Luis A Medina-Medina
- Departamento de Apicultura, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
| | - Humberto Moo-Valle
- Departamento de Apicultura, Campus de Ciencias Biologicas y Agropecuarias, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
| | - Luz Maria Calvo-Irabien
- Unidad de Recursos Naturales, Centro de Investigacion Cientifica de Yucatan, A.C., Merida, Yucatan, Mexico
| | - Elisa Chan-Vivas
- Unidad de Recursos Naturales, Centro de Investigacion Cientifica de Yucatan, A.C., Merida, Yucatan, Mexico
| | - Rosalina Rodríguez
- Unidad de Recursos Naturales, Centro de Investigacion Cientifica de Yucatan, A.C., Merida, Yucatan, Mexico
| | - Azucena Canto
- Unidad de Recursos Naturales, Centro de Investigacion Cientifica de Yucatan, A.C., Merida, Yucatan, Mexico
| |
Collapse
|
30
|
Digby Z, Tourlomousis P, Rooney J, Boyle JP, Bibo-Verdugo B, Pickering RJ, Webster SJ, Monie TP, Hopkins LJ, Kayagaki N, Salvesen GS, Warming S, Weinert L, Bryant CE. Evolutionary loss of inflammasomes in the Carnivora and implications for the carriage of zoonotic infections. Cell Rep 2021; 36:109614. [PMID: 34433041 PMCID: PMC8411117 DOI: 10.1016/j.celrep.2021.109614] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/25/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Zoonotic pathogens, such as COVID-19, reside in animal hosts before jumping species to infect humans. The Carnivora, like mink, carry many zoonoses, yet how diversity in host immune genes across species affect pathogen carriage is poorly understood. Here, we describe a progressive evolutionary downregulation of pathogen-sensing inflammasome pathways in Carnivora. This includes the loss of nucleotide-oligomerization domain leucine-rich repeat receptors (NLRs), acquisition of a unique caspase-1/-4 effector fusion protein that processes gasdermin D pore formation without inducing rapid lytic cell death, and the formation of a caspase-8 containing inflammasome that inefficiently processes interleukin-1β. Inflammasomes regulate gut immunity, but the carnivorous diet has antimicrobial properties that could compensate for the loss of these immune pathways. We speculate that the consequences of systemic inflammasome downregulation, however, can impair host sensing of specific pathogens such that they can reside undetected in the Carnivora.
Collapse
Affiliation(s)
- Zsofi Digby
- University of Cambridge, Department of Veterinary Medicine, Cambridge CB30ES, UK
| | | | - James Rooney
- University of Cambridge, Department of Veterinary Medicine, Cambridge CB30ES, UK
| | - Joseph P Boyle
- University of Cambridge, Department of Veterinary Medicine, Cambridge CB30ES, UK
| | - Betsaida Bibo-Verdugo
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines, La Jolla, CA 92037, USA
| | - Robert J Pickering
- University of Cambridge, School of Clinical Medicine, Box 111, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Steven J Webster
- University of Cambridge, Department of Veterinary Medicine, Cambridge CB30ES, UK
| | - Thomas P Monie
- University of Cambridge, Department of Veterinary Medicine, Cambridge CB30ES, UK
| | - Lee J Hopkins
- University of Cambridge, Department of Veterinary Medicine, Cambridge CB30ES, UK; University of Cambridge, School of Clinical Medicine, Box 111, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK
| | - Nobuhiko Kayagaki
- Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA
| | - Guy S Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines, La Jolla, CA 92037, USA
| | - Soren Warming
- Department of Molecular Biology, Genentech, South San Francisco, CA 94080, USA
| | - Lucy Weinert
- University of Cambridge, Department of Veterinary Medicine, Cambridge CB30ES, UK
| | - Clare E Bryant
- University of Cambridge, Department of Veterinary Medicine, Cambridge CB30ES, UK; University of Cambridge, School of Clinical Medicine, Box 111, Cambridge Biomedical Campus, Cambridge CB2 0SP, UK.
| |
Collapse
|
31
|
Birnbaum N, Reingold V, Matveev S, Kottakota C, Davidovitz M, Mani KA, Feldbaum R, Yaakov N, Mechrez G, Ment D. Not Only a Formulation: The Effects of Pickering Emulsion on the Entomopathogenic Action of Metarhizium brunneum. J Fungi (Basel) 2021; 7:jof7070499. [PMID: 34201446 PMCID: PMC8307842 DOI: 10.3390/jof7070499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 01/19/2023] Open
Abstract
Growing global population and environmental concerns necessitate the transition from chemical to eco-friendly pest management. Entomopathogenic fungi (EPF) are rising candidates for this task due to their ease of growing, broad host range and unique disease process, allowing EPF to infect hosts directly through its cuticle. However, EPF’s requirement for high humidity negates their integration into conventional agriculture. To mitigate this problem, we formulated Metarhizium brunneum conidia in an oil-in-water Pickering emulsion. Conidia in aqueous and emulsion formulations were sprayed on Ricinus communis leaves, and Spodoptera littoralis larvae were introduced under low or high humidity. The following were examined: conidial dispersion on leaf, larval mortality, conidial acquisition by larvae, effects on larval growth and feeding, and dynamic of disease progression. Emulsion was found to disperse conidia more efficiently and caused two-fold more adhesion of conidia to host cuticle. Mortality from conidia in emulsion was significantly higher than other treatments reaching 86.5% under high humidity. Emulsion was also found to significantly reduce larval growth and feeding, while conferring faster fungal growth in-host. Results suggest that a Pickering emulsion is able to improve physical interactions between the conidia and their surroundings, while weakening the host through a plethora of mechanisms, increasing the chance of an acute infection.
Collapse
Affiliation(s)
- Nitsan Birnbaum
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (N.B.); (V.R.); (S.M.); (C.K.)
- The Robert H. Smith Faculty of Agriculture, Food & Environment the Hebrew University of Jerusalem, Re-hovot 7610001, Israel;
| | - Victoria Reingold
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (N.B.); (V.R.); (S.M.); (C.K.)
- The Robert H. Smith Faculty of Agriculture, Food & Environment the Hebrew University of Jerusalem, Re-hovot 7610001, Israel;
| | - Sabina Matveev
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (N.B.); (V.R.); (S.M.); (C.K.)
| | - Chandrasekhar Kottakota
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (N.B.); (V.R.); (S.M.); (C.K.)
| | - Michael Davidovitz
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Karthik Ananth Mani
- The Robert H. Smith Faculty of Agriculture, Food & Environment the Hebrew University of Jerusalem, Re-hovot 7610001, Israel;
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (R.F.); (N.Y.); (G.M.)
| | - Reut Feldbaum
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (R.F.); (N.Y.); (G.M.)
| | - Noga Yaakov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (R.F.); (N.Y.); (G.M.)
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (R.F.); (N.Y.); (G.M.)
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO), Volcani Center, Rishon LeZion 7505101, Israel; (N.B.); (V.R.); (S.M.); (C.K.)
- Correspondence:
| |
Collapse
|
32
|
Roberts KE, Longdon B. Viral susceptibility across host species is largely independent of dietary protein to carbohydrate ratios. J Evol Biol 2021; 34:746-756. [PMID: 33586293 PMCID: PMC8436156 DOI: 10.1111/jeb.13773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/23/2022]
Abstract
The likelihood of a successful host shift of a parasite to a novel host species can be influenced by environmental factors that can act on both the host and parasite. Changes in nutritional resource availability have been shown to alter pathogen susceptibility and the outcome of infection in a range of systems. Here, we examined how dietary protein to carbohydrate altered susceptibility in a large cross-infection experiment. We infected 27 species of Drosophilidae with an RNA virus on three food types of differing protein to carbohydrate ratios. We then measured how viral load and mortality across species was affected by changes in diet. We found that changes in the protein:carbohydrate in the diet did not alter the outcomes of infection, with strong positive inter-species correlations in both viral load and mortality across diets, suggesting no species-by-diet interaction. Mortality and viral load were strongly positively correlated, and this association was consistent across diets. This suggests changes in diet may give consistent outcomes across host species, and may not be universally important in determining host susceptibility to pathogens.
Collapse
Affiliation(s)
- Katherine E. Roberts
- Centre for Ecology & ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Ben Longdon
- Centre for Ecology & ConservationCollege of Life and Environmental SciencesUniversity of ExeterPenrynUK
| |
Collapse
|
33
|
Littler AS, Garcia MJ, Teets NM. Laboratory diet influences cold tolerance in a genotype-dependent manner in Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110948. [PMID: 33819503 DOI: 10.1016/j.cbpa.2021.110948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/08/2021] [Accepted: 03/30/2021] [Indexed: 11/25/2022]
Abstract
Cold stress can reduce insect fitness and is an important determinant of species distributions and responses to climate change. Cold tolerance is influenced by genotype and environmental conditions, with factors such as day length and temperature having a particularly strong influence. Recent studies also indicate that diet impacts cold tolerance, but it is unclear whether diet-mediated shifts in cold tolerance are consistent across distinct genotypes. The goal of this study was to determine the extent to which commonly used artificial diets influence cold tolerance in Drosophila melanogaster, and whether these effects are consistent across genetically distinct lines. Specifically, we tested the impact of different fly diets on 1) ability to survive cold stress, 2) critical thermal minimum (CTmin), and 3) the ability to maintain reproduction after cold stress. Experiments were conducted across six isogenic lines from the Drosophila Genetic Reference Panel, and these lines were reared on different fly diets. Cold shock survival, CTmin, and reproductive output pre- and post-cold exposure varied considerably across diet and genotype combinations, suggesting strong genotype by environment interactions shape nutritionally mediated changes in cold tolerance. For example, in some lines cold shock survival remained consistently high or low across diets, while in others cold shock survival ranged from 5% to 75% depending on diet. Ultimately, these results add to a growing literature that cold tolerance is shaped by complex interactions between genotype and environment and inform practical considerations when selecting a laboratory diet for thermal tolerance experiments in Drosophila.
Collapse
Affiliation(s)
- Aerianna S Littler
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington 40546, United States of America
| | - Mark J Garcia
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington 40546, United States of America; Department of Biology, College of Arts & Sciences, University of Louisiana at Lafayette, Lafayette, LA 70506, United States of America.
| | - Nicholas M Teets
- Department of Entomology, College of Agriculture, Food, and Environment, University of Kentucky, Lexington 40546, United States of America
| |
Collapse
|
34
|
How insects protect themselves against combined starvation and pathogen challenges, and the implications for reductionism. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110564. [PMID: 33508422 DOI: 10.1016/j.cbpb.2021.110564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 01/19/2023]
Abstract
An explosion of data has provided detailed information about organisms at the molecular level. For some traits, this information can accurately predict phenotype. However, knowledge of the underlying molecular networks often cannot be used to accurately predict higher order phenomena, such as the response to multiple stressors. This failure raises the question of whether methodological reductionism is sufficient to uncover predictable connections between molecules and phenotype. This question is explored in this paper by examining whether our understanding of the molecular responses to food limitation and pathogens in insects can be used to predict their combined effects. The molecular pathways underlying the response to starvation and pathogen attack in insects demonstrates the complexity of real-world physiological networks. Although known intracellular signaling pathways suggest that food restriction should enhance immune function, a reduction in food availability leads to an increase in some immune components, a decrease in others, and a complex effect on disease resistance in insects such as the caterpillar Manduca sexta. However, our inability to predict the effects of food restriction on disease resistance is likely due to our incomplete knowledge of the intra- and extracellular signaling pathways mediating the response to single or multiple stressors. Moving from molecules to organisms will require novel quantitative, integrative and experimental approaches (e.g. single cell RNAseq). Physiological networks are non-linear, dynamic, highly interconnected and replete with alternative pathways. However, that does not make them impossible to predict, given the appropriate experimental and analytical tools. Such tools are still under development. Therefore, given that molecular data sets are incomplete and analytical tools are still under development, it is premature to conclude that methodological reductionism cannot be used to predict phenotype.
Collapse
|
35
|
Reyes-Ramírez A, Rocha-Ortega M, Córdoba-Aguilar A. Dietary macronutrient balance and fungal infection as drivers of spermatophore quality in the mealworm beetle. CURRENT RESEARCH IN INSECT SCIENCE 2021; 1:100009. [PMID: 36003606 PMCID: PMC9387488 DOI: 10.1016/j.cris.2021.100009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 11/28/2022]
Abstract
Males of many insects deliver ejaculates with nutritious substances to females in the form of a spermatophore. Different factors can affect spermatophore quality. We manipulated males' diet and health to determine the balance of macronutrients deposited in the spermatophores of Tenebrio molitor beetles. For diet, we varied the concentration of proteins and carbohydrates, while for health status we used a fungal infection. Males with different condition copulated with unmanipulated females, and spermatophores were extracted to measure the amount of proteins, lipids and carbohydrates. Diet and infection had an effect on the quality of the spermatophore. Diets with high protein and low carbohydrate contents produced spermatophores with higher protein, carbohydrate, and lipid contents. In contrast, diets with little protein and high in carbohydrates led to low quality spermatophores. Infected males produced spermatophores with the highest amount of all three macronutrients. In general, spermatophore content was carbohydrates>proteins>=lipids. The fact that sick males produced richer spermatophores can be explained as a terminal investment strategy. The large investment of carbohydrates may be related to the preparation of spermatozoa in males, and eggs in females.
Collapse
Affiliation(s)
- Alicia Reyes-Ramírez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, Ciudad de México, México
| | - Maya Rocha-Ortega
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, Ciudad de México, México
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Apdo. P. 70-275, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, Ciudad de México, México
| |
Collapse
|
36
|
Savola E, Montgomery C, Waldron FM, Monteith KM, Vale P, Walling C. Testing evolutionary explanations for the lifespan benefit of dietary restriction in fruit flies (Drosophila melanogaster). Evolution 2021; 75:450-463. [PMID: 33320333 PMCID: PMC8609428 DOI: 10.1111/evo.14146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
Dietary restriction (DR), limiting calories or specific nutrients without malnutrition, extends lifespan across diverse taxa. Traditionally, this lifespan extension has been explained as a result of diet-mediated changes in the trade-off between lifespan and reproduction, with survival favored when resources are scarce. However, a recently proposed alternative suggests that the selective benefit of the response to DR is the maintenance of reproduction. This hypothesis predicts that lifespan extension is a side effect of benign laboratory conditions, and DR individuals would be frailer and unable to deal with additional stressors, and thus lifespan extension should disappear under more stressful conditions. We tested this by rearing outbred female fruit flies (Drosophila melanogaster) on 10 different protein:carbohydrate diets. Flies were either infected with a bacterial pathogen (Pseudomonas entomophila), injured with a sterile pinprick, or unstressed. We monitored lifespan, fecundity, and measures of aging. DR extended lifespan and reduced reproduction irrespective of injury and infection. Infected flies on lower protein diets had particularly poor survival. Exposure to infection and injury did not substantially alter the relationship between diet and aging patterns. These results do not provide support for lifespan extension under DR being a side effect of benign laboratory conditions.
Collapse
Affiliation(s)
- Eevi Savola
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Clara Montgomery
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Fergal M Waldron
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Katy M Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Pedro Vale
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Craig Walling
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| |
Collapse
|
37
|
Xu X, Solon-Biet SM, Senior A, Raubenheimer D, Simpson SJ, Fontana L, Mueller S, Yang JYH. LC-N2G: a local consistency approach for nutrigenomics data analysis. BMC Bioinformatics 2020; 21:530. [PMID: 33203358 PMCID: PMC7672905 DOI: 10.1186/s12859-020-03861-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/04/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Nutrigenomics aims at understanding the interaction between nutrition and gene information. Due to the complex interactions of nutrients and genes, their relationship exhibits non-linearity. One of the most effective and efficient methods to explore their relationship is the nutritional geometry framework which fits a response surface for the gene expression over two prespecified nutrition variables. However, when the number of nutrients involved is large, it is challenging to find combinations of informative nutrients with respect to a certain gene and to test whether the relationship is stronger than chance. Methods for identifying informative combinations are essential to understanding the relationship between nutrients and genes. RESULTS We introduce Local Consistency Nutrition to Graphics (LC-N2G), a novel approach for ranking and identifying combinations of nutrients with gene expression. In LC-N2G, we first propose a model-free quantity called Local Consistency statistic to measure whether there is non-random relationship between combinations of nutrients and gene expression measurements based on (1) the similarity between samples in the nutrient space and (2) their difference in gene expression. Then combinations with small LC are selected and a permutation test is performed to evaluate their significance. Finally, the response surfaces are generated for the subset of significant relationships. Evaluation on simulated data and real data shows the LC-N2G can accurately find combinations that are correlated with gene expression. CONCLUSION The LC-N2G is practically powerful for identifying the informative nutrition variables correlated with gene expression. Therefore, LC-N2G is important in the area of nutrigenomics for understanding the relationship between nutrition and gene expression information.
Collapse
Affiliation(s)
- Xiangnan Xu
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Samantha M Solon-Biet
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Alistair Senior
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - David Raubenheimer
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Luigi Fontana
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Samuel Mueller
- Department of Mathematics and Statistics, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jean Y H Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia. .,Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
38
|
Moatt JP, Savola E, Regan JC, Nussey DH, Walling CA. Lifespan Extension Via Dietary Restriction: Time to Reconsider the Evolutionary Mechanisms? Bioessays 2020; 42:e1900241. [DOI: 10.1002/bies.201900241] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Joshua P. Moatt
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of Edinburgh Edinburgh EH9 3FL UK
| | - Eevi Savola
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of Edinburgh Edinburgh EH9 3FL UK
| | - Jennifer C. Regan
- Institute for Immunology and InfectionSchool of Biological ScienceUniversity of Edinburgh Edinburgh EH9 3FL UK
| | - Daniel H. Nussey
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of Edinburgh Edinburgh EH9 3FL UK
| | - Craig A. Walling
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of Edinburgh Edinburgh EH9 3FL UK
| |
Collapse
|
39
|
Wilson K, Holdbrook R, Reavey CE, Randall JL, Tummala Y, Ponton F, Simpson SJ, Smith JA, Cotter SC. Osmolality as a Novel Mechanism Explaining Diet Effects on the Outcome of Infection with a Blood Parasite. Curr Biol 2020; 30:2459-2467.e3. [DOI: 10.1016/j.cub.2020.04.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/19/2020] [Accepted: 04/22/2020] [Indexed: 12/30/2022]
|
40
|
Animals have a Plan B: how insects deal with the dual challenge of predators and pathogens. J Comp Physiol B 2020; 190:381-390. [PMID: 32529590 DOI: 10.1007/s00360-020-01282-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
When animals are faced with a life-threatening challenge, they mount an organism-wide response (i.e. Plan A). For example, both the stress response (i.e. fight-or-flight) and the immune response recruit molecular resources from other body tissues, and induce physiological changes that optimize the body for defense. However, pathogens and predators often co-occur. Animals that can optimize responses for a dual challenge, i.e. simultaneous predator and pathogen attacks, will have a selective advantage. Responses to a combined predator and pathogen attack have not been well studied, but this paper summarizes the existing literature in insects. The response to dual challenges (i.e. Plan B) results in a suite of physiological changes that are different from either the stress response or the immune response, and is not a simple summation of the two. It is also not a straight-forward trade-off of one response against the other. The response to a dual challenge (i.e. Plan B) appears to resolve physiological trade-offs between the stress and immune responses, and reconfigures both responses to provide the best overall defense. However, the dual response appears to be more costly than either response occurring singly, resulting in greater damage from oxidative stress, reduced growth rate, and increased mortality.
Collapse
|
41
|
Hite JL, Cressler CE. Parasite-Mediated Anorexia and Nutrition Modulate Virulence Evolution. Integr Comp Biol 2020; 59:1264-1274. [PMID: 31187120 DOI: 10.1093/icb/icz100] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Temporary but substantial reductions in voluntary food intake routinely accompany parasite infection in hosts ranging from insects to humans. This "parasite-mediated anorexia" drives dynamic nutrient-dependent feedbacks within and among hosts, which should alter the fitness of both hosts and parasites. Yet, few studies have examined the evolutionary and epidemiological consequences of this ubiquitous but overlooked component of infection. Moreover, numerous biomedical, veterinary, and farming practices (e.g., rapid biomass production via high-calorie or high-fat diets, low-level antibiotics to promote growth, nutritional supplementation, nonsteroidal anti-inflammatory drugs like Ibuprofen) directly or indirectly alter the magnitude of host anorexia-while also controlling host diet and therefore the nutrients available to hosts and parasites. Here, we show that anorexia can enhance or diminish disease severity, depending on whether the current dietary context provides nutrients that bolster or inhibit immune function. Feedbacks driven by nutrition-mediated competition between host immune function and parasite production can create a unimodal relationship between anorexia and parasite fitness. Subsequently, depending on the host's diet, medical or husbandry practices that suppress anorexia could backfire, and inadvertently select for more virulent parasites and larger epidemics. These findings carry implications for the development of integrated treatment programs that consider links between host feeding behavior, nutrition, and disease severity.
Collapse
Affiliation(s)
- Jessica L Hite
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Clayton E Cressler
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
42
|
Baeuerle G, Feldhaar H, Otti O. Comparing a Potential External Immune Defense Trait to Internal Immunity in Females of Wild Bumblebees. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
43
|
Liu X, Shi H, He Q, Lin F, Wang Q, Xiao S, Dai Y, Zhang Y, Yang H, Zhao H. Effect of starvation and refeeding on growth, gut microbiota and non-specific immunity in hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂). FISH & SHELLFISH IMMUNOLOGY 2020; 97:182-193. [PMID: 31790749 DOI: 10.1016/j.fsi.2019.11.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Environmental changes can lead to food deprivation among aquatic animals. The main objective of this present research was to assess the effect of starvation and refeeding on growth, gut microbiota and non-specific immunity in a hybrid grouper (Epinephelus fuscoguttatus♀×E. lanceolatus♂). A total of 120 fish with an average weight of 74.16 ± 12.08 g were randomly divided into two groups (control group and fasted-refed group). The control group was fed until satiation for 60 days, while the fasted-refed group was fasted for 30 days and then fed to satiation for 30 days. The results showed that starvation led to a significantly decreased growth performance parameters [weight gain rate (WGR) and specific weight gain rate (SGR), while the feeding rate (FR) ] increased during the refeeding, non-specific immunity was significantly improved (p < 0.05) during the first 15 days of starvation, such as superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), lysozyme (LYM) and catalase (CAT). However, non-specific immunity decreased at 30 days of starvation, the expression of genes related to immunity, such as TNF-α, was upregulated (p < 0.05) during starvation, while the expression levels of IL-17 and IFN-γ was reduced (p < 0.05). The expression of IFN-γ and IL-1β peaked during refeeding. Starvation led to significantly decreased abundance and diversity of intestinal microflora, with a higher abundance of Vibrio and a lower abundance of Brevibacillus, Bifidobacterium, Alloprevotella in the fasted-refed group during refeeding than in the control group. The above results reveal that starvation stimulates changes in growth, non-specific immunity, and the gut microbiota, providing new insights for the study of fish habitat selection and adaptability to environmental changes.
Collapse
Affiliation(s)
- Xiaochun Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Herong Shi
- Guangdong Marine Fishery Experiment Center, Huizhou, 516081, China
| | - Qi He
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Fangmei Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shiqiang Xiao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Yuantang Dai
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China
| | - Yanfa Zhang
- Huizhou Haiyan Aquaculture Technology Co., Ltd., Huizhou, 516081, China
| | - Huirong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China; Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huihong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510640, China.
| |
Collapse
|
44
|
Ponton F, Morimoto J, Robinson K, Kumar SS, Cotter SC, Wilson K, Simpson SJ. Macronutrients modulate survival to infection and immunity in Drosophila. J Anim Ecol 2019; 89:460-470. [PMID: 31658371 PMCID: PMC7027473 DOI: 10.1111/1365-2656.13126] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Immunity and nutrition are two essential modulators of individual fitness. However, while the implications of immune function and nutrition on an individual's lifespan and reproduction are well established, the interplay between feeding behaviour, infection and immune function remains poorly understood. Asking how ecological and physiological factors affect immune responses and resistance to infections is a central theme of eco‐immunology. In this study, we used the fruit fly, Drosophila melanogaster, to investigate how infection through septic injury modulates nutritional intake and how macronutrient balance affects survival to infection by the pathogenic Gram‐positive bacterium Micrococcus luteus. Our results show that infected flies maintain carbohydrate intake, but reduce protein intake, thereby shifting from a protein‐to‐carbohydrate (P:C) ratio of ~1:4 to ~1:10 relative to non‐infected and sham‐infected flies. Strikingly, the proportion of flies dying after M. luteus infection was significantly lower when flies were fed a low‐P high‐C diet, revealing that flies shift their macronutrient intake as means of nutritional self‐medication against bacterial infection. These results are likely due to the effects of the macronutrient balance on the regulation of the constitutive expression of innate immune genes, as a low‐P high‐C diet was linked to an upregulation in the expression of key antimicrobial peptides. Together, our results reveal the intricate relationship between macronutrient intake and resistance to infection and integrate the molecular cross‐talk between metabolic and immune pathways into the framework of nutritional immunology.
Collapse
Affiliation(s)
- Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Juliano Morimoto
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Katie Robinson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sheemal S Kumar
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
45
|
Hite JL, Pfenning AC, Cressler CE. Starving the Enemy? Feeding Behavior Shapes Host-Parasite Interactions. Trends Ecol Evol 2019; 35:68-80. [PMID: 31604593 DOI: 10.1016/j.tree.2019.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/05/2019] [Accepted: 08/07/2019] [Indexed: 01/09/2023]
Abstract
The loss of appetite that typically accompanies infection or mere exposure to parasites is traditionally considered a negative byproduct of infection, benefitting neither the host nor the parasite. Numerous medical and veterinary practices directly or indirectly subvert this 'illness-mediated anorexia'. However, the ecological factors that influence it, its effects on disease outcomes, and why it evolved remain poorly resolved. We explore how hosts use anorexia to defend against infection and how parasites manipulate anorexia to enhance transmission. Then, we use a coevolutionary model to illustrate how shifts in the magnitude of anorexia (e.g., via drugs) affect disease dynamics and virulence evolution. Anorexia could be exploited to improve disease management; we propose an interdisciplinary approach to minimize unintended consequences.
Collapse
Affiliation(s)
- Jessica L Hite
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | - Alaina C Pfenning
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Clayton E Cressler
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
46
|
Polyphenols, Mediterranean diet, and colon cancer. Support Care Cancer 2019; 27:4035-4036. [DOI: 10.1007/s00520-019-04835-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
|