1
|
Merida Vieyra J, De Colsa Ranero A, Palacios Reyes D, Murata C, Aquino Andrade A. Chlamydophila pneumoniae-associated community-acquired pneumonia in paediatric patients of a tertiary care hospital in Mexico: molecular diagnostic and clinical insights. Sci Rep 2023; 13:21477. [PMID: 38052876 PMCID: PMC10698025 DOI: 10.1038/s41598-023-48701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023] Open
Abstract
Chlamydophila pneumoniae is a cause of community-acquired pneumonia (CAP) and responsible for 1-2% of cases in paediatric patients. In Mexico, information on this microorganism is limited. The aim of this study was to detect C. pneumoniae using two genomic targets in a real-time PCR and IgM/IgG serology assays in paediatric patients with CAP at a tertiary care hospital in Mexico City and to describe their clinical characteristics, radiological features, and outcomes. A total of 154 hospitalized patients with diagnosis of CAP were included. Detection of C. pneumoniae was performed by real-time PCR of the pst and arg genes. Complete blood cell count, C-reactive protein measurement and IgM and IgG detection were performed. Clinical-epidemiological and radiological data from the patients were collected. C. pneumoniae was detected in 25 patients (16%), of whom 88% had underlying disease (P = 0.014). Forty-eight percent of the cases occurred in spring, 36% in girls, and 40% in children older than 6 years. All patients had cough, and 88% had fever. Interstitial pattern on chest-X-ray was the most frequent (68%), consolidation was observed in 32% (P = 0.002). IgM was positive in 7% and IgG in 28.6%. Thirty-six percent presented complications. Four percent died. A high proportion showed co-infection with Mycoplasma pneumoniae (64%). This is the first clinical report of C. pneumoniae as a cause of CAP in Mexican paediatric patients, using two genomic target strategy and serology. We found a frequency of 16.2% with predominance in children under 6 years of age. In addition; cough and fever were the most common symptoms. Early detection of this pathogen allows timely initiation of specific antimicrobial therapy to reduce development of complications. This study is one of the few to describe the presence of C. pneumoniae in patients with underlying diseases.
Collapse
Affiliation(s)
- Jocelin Merida Vieyra
- Laboratory of Molecular Microbiology, Instituto Nacional de Pediatria, Insurgentes Sur 3700C, Insurgentes Cuicuilco, Coyoacan, 04530, Mexico City, Mexico
| | - Agustín De Colsa Ranero
- Department of Paediatric Infectious Diseases, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Deborah Palacios Reyes
- Department of Paediatric Infectious Diseases, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Chiharu Murata
- Department of Research Methodology, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Alejandra Aquino Andrade
- Laboratory of Molecular Microbiology, Instituto Nacional de Pediatria, Insurgentes Sur 3700C, Insurgentes Cuicuilco, Coyoacan, 04530, Mexico City, Mexico.
| |
Collapse
|
2
|
Lalbiaktluangi C, Yadav MK, Singh PK, Singh A, Iyer M, Vellingiri B, Zomuansangi R, Zothanpuia, Ram H. A cooperativity between virus and bacteria during respiratory infections. Front Microbiol 2023; 14:1279159. [PMID: 38098657 PMCID: PMC10720647 DOI: 10.3389/fmicb.2023.1279159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Respiratory tract infections remain the leading cause of morbidity and mortality worldwide. The burden is further increased by polymicrobial infection or viral and bacterial co-infection, often exacerbating the existing condition. Way back in 1918, high morbidity due to secondary pneumonia caused by bacterial infection was known, and a similar phenomenon was observed during the recent COVID-19 pandemic in which secondary bacterial infection worsens the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) condition. It has been observed that viruses paved the way for subsequent bacterial infection; similarly, bacteria have also been found to aid in viral infection. Viruses elevate bacterial infection by impairing the host's immune response, disrupting epithelial barrier integrity, expression of surface receptors and adhesion proteins, direct binding of virus to bacteria, altering nutritional immunity, and effecting the bacterial biofilm. Similarly, the bacteria enhance viral infection by altering the host's immune response, up-regulation of adhesion proteins, and activation of viral proteins. During co-infection, respiratory bacterial and viral pathogens were found to adapt and co-exist in the airways of their survival and to benefit from each other, i.e., there is a cooperative existence between the two. This review comprehensively reviews the mechanisms involved in the synergistic/cooperativity relationship between viruses and bacteria and their interaction in clinically relevant respiratory infections.
Collapse
Affiliation(s)
- C. Lalbiaktluangi
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Prashant Kumar Singh
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College, Aizawl, Mizoram, India
| | - Amit Singh
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Mahalaxmi Iyer
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | | | - Ruth Zomuansangi
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology, Mizoram University (A Central University), Pachhunga University College, Aizawl, Mizoram, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, India
| |
Collapse
|
3
|
Stein RA, Thompson LM. Epigenetic changes induced by pathogenic Chlamydia spp. Pathog Dis 2023; 81:ftad034. [PMID: 38031337 DOI: 10.1093/femspd/ftad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023] Open
Abstract
Chlamydia trachomatis, C. pneumoniae, and C. psittaci, the three Chlamydia species known to cause human disease, have been collectively linked to several pathologies, including conjunctivitis, trachoma, respiratory disease, acute and chronic urogenital infections and their complications, and psittacosis. In vitro, animal, and human studies also established additional correlations, such as between C. pneumoniae and atherosclerosis and between C. trachomatis and ovarian cancer. As part of their survival and pathogenesis strategies as obligate intracellular bacteria, Chlamydia spp. modulate all three major types of epigenetic changes, which include deoxyribonucleic acid (DNA) methylation, histone post-translational modifications, and microRNA-mediated gene silencing. Some of these epigenetic changes may be implicated in key aspects of pathogenesis, such as the ability of the Chlamydia spp. to induce epithelial-to-mesenchymal transition, interfere with DNA damage repair, suppress cholesterol efflux from infected macrophages, act as a co-factor in human papillomavirus (HPV)-mediated cervical cancer, prevent apoptosis, and preserve the integrity of mitochondrial networks in infected host cells. A better understanding of the individual and collective contribution of epigenetic changes to pathogenesis will enhance our knowledge about the biology of Chlamydia spp. and facilitate the development of novel therapies and biomarkers. Pathogenic Chlamydia spp. contribute to epigenetically-mediated gene expression changes in host cells by multiple mechanisms.
Collapse
Affiliation(s)
- Richard A Stein
- NYU Tandon School of Engineering, Department of Chemical and Biomolecular Engineering, 6 MetroTech Center, Brooklyn, NY 11201, United States
| | - Lily M Thompson
- NYU Tandon School of Engineering, Department of Chemical and Biomolecular Engineering, 6 MetroTech Center, Brooklyn, NY 11201, United States
| |
Collapse
|
4
|
Al-Abbad EA, Albarrak YAI, Al Shuqayfah NI, Nahhas AA, Alnemari AF, Alqurashi RK, Abu Thiyab SHM, Alqubali MK, Alhawiti MA. An Overview on Atypical Pneumonia Clinical Features and Management Approach. ARCHIVES OF PHARMACY PRACTICE 2022. [DOI: 10.51847/chge98elpc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
5
|
Kang SA, Khalaf SA, Nelson T. Immunoglobulin A vasculitis induced by atypical pneumonia infection with Chlamydophila pneumonia. IDCases 2022; 30:e01624. [PMID: 36193106 PMCID: PMC9526174 DOI: 10.1016/j.idcr.2022.e01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/24/2022] [Indexed: 11/26/2022] Open
Abstract
Infections are a common trigger for IgA vasculitis. Among the bacteria that cause atypical pneumonia, Mycoplasma pneumoniae infection has strongly been associated with IgA vasculitis, with Chlamydophila pneumoniae reported with IgA vasculitis in only one case. Though IgA vasculitis is a self-limiting disease, patients with infection-related vasculitis have shown to benefit from early identification and treatment with antimicrobial therapy. Here, we report a case of IgA vasculitis due to C. pneumoniae infection in a 19-year-old male who presented with an acute onset of rash, that was later followed by symptoms of cough and fever.
Collapse
|
6
|
Ou H, Chien WC, Chung CH, Chang HA, Kao YC, Wu PC, Tzeng NS. Association Between Antibiotic Treatment of Chlamydia pneumoniae and Reduced Risk of Alzheimer Dementia: A Nationwide Cohort Study in Taiwan. Front Aging Neurosci 2021; 13:701899. [PMID: 34489674 PMCID: PMC8416516 DOI: 10.3389/fnagi.2021.701899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Chlamydia pneumoniae (CPn) is a common community-acquired pneumonia. In the literature, CPn infection is demonstrated to exhibit an association with Alzheimer dementia (AD). We executed the present nationwide, population-based research with the goal of probing the association of CPn infection and antibiotic therapy with AD risk. Methods: We conducted a cohort study using a database extracted from Taiwan's National Health Insurance Research Database (NHIRD). All medical conditions for each enrolled individuals were categorized using the International Classification of Diseases, ninth Revision classifications. Hazard ratios (HRs) and 95% confidence intervals (CIs) for associations between CPn pneumonia-associated hospitalizations and AD were estimated using Fine and Gray's survival analysis and adjusted for comorbidities. The effects of the antibiotics on the HRs for AD in the patients with CPn pneumonia-associated hospitalization were also analyzed. Results: Our analyses included 6,628 individuals, including 1,657 CPn-infected patients, as well as 4,971 controls matched by age, index date, and sex (1:3). In this study, patients hospitalized for CPn pneumonia exhibited a significantly higher AD risk (adjusted HR = 1.599, 95% CI = 1.284-1.971, p < 0.001). We also noted an association of macrolide use (≥15 days) and fluoroquinolone use (≥15 days) with decreased AD risk. Conclusions: We determined CPn pneumonia to be associated with a relatively high AD risk. The result in this study confirmed the findings from previous literatures, by using a large, nationwide, population-based database. Appropriate macrolide and fluoroquinolone treatment may attenuate this risk.
Collapse
Affiliation(s)
- Hsun Ou
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Psychiatry, Tri-Service General Hospital, Song-Shan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Chuan Wu
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
7
|
Sixt BS. Host cell death during infection with Chlamydia: a double-edged sword. FEMS Microbiol Rev 2021; 45:5902849. [PMID: 32897321 PMCID: PMC7794043 DOI: 10.1093/femsre/fuaa043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
The phylum Chlamydiae constitutes a group of obligate intracellular bacteria that infect a remarkably diverse range of host species. Some representatives are significant pathogens of clinical or veterinary importance. For instance, Chlamydia trachomatis is the leading infectious cause of blindness and the most common bacterial agent of sexually transmitted diseases. Chlamydiae are exceptionally dependent on their eukaryotic host cells as a consequence of their developmental biology. At the same time, host cell death is an integral part of the chlamydial infection cycle. It is therefore not surprising that the bacteria have evolved exquisite and versatile strategies to modulate host cell survival and death programs to their advantage. The recent introduction of tools for genetic modification of Chlamydia spp., in combination with our increasing awareness of the complexity of regulated cell death in eukaryotic cells, and in particular of its connections to cell-intrinsic immunity, has revived the interest in this virulence trait. However, recent advances also challenged long-standing assumptions and highlighted major knowledge gaps. This review summarizes current knowledge in the field and discusses possible directions for future research, which could lead us to a deeper understanding of Chlamydia's virulence strategies and may even inspire novel therapeutic approaches.
Collapse
Affiliation(s)
- Barbara S Sixt
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
8
|
Zeidler H, Hudson AP. Reactive Arthritis Update: Spotlight on New and Rare Infectious Agents Implicated as Pathogens. Curr Rheumatol Rep 2021; 23:53. [PMID: 34196842 PMCID: PMC8247622 DOI: 10.1007/s11926-021-01018-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2021] [Indexed: 12/11/2022]
Abstract
Purpose of Review This article presents a comprehensive narrative review of reactive arthritis (ReA) with focus on articles published between 2018 and 2020. We discuss the entire spectrum of microbial agents known to be the main causative agents of ReA, those reported to be rare infective agents, and those reported to be new candidates causing the disease. The discussion is set within the context of changing disease terminology, definition, and classification over time. Further, we include reports that present at least a hint of effective antimicrobial therapy for ReA as documented in case reports or in double-blind controlled studies. Additional information is included on microbial products detected in the joint, as well as on the positivity of HLA-B27. Recent Findings Recent reports of ReA cover several rare causative microorganism such as Neisseria meningitides, Clostridium difficile, Escherichia coli, Hafnia alvei, Blastocytosis, Giardia lamblia, Cryptosporidium, Cyclospora cayetanensis, Entamoeba histolytica/dispar, Strongyloides stercoralis, β-haemolytic Streptococci, Mycobacterium tuberculosis, Mycoplasma pneumoniae, Mycobacterium bovis bacillus Calmette-Guerin, and Rickettsia rickettsii. The most prominent new infectious agents implicated as causative in ReA are Staphylococcus lugdunensis, placenta- and umbilical cord–derived Wharton’s jelly, Rothia mucilaginosa, and most importantly the SARS-CoV-2 virus. Summary In view of the increasingly large spectrum of causative agents, diagnostic consideration for the disease must include the entire panel of post-infectious arthritides termed ReA. Diagnostic procedures cannot be restricted to the well-known HLA-B27-associated group of ReA, but must also cover the large number of rare forms of arthritis following infections and vaccinations, as well as those elicited by the newly identified members of the ReA group summarized herein. Inclusion of these newly identified etiologic agents must necessitate increased research into the pathogenic mechanisms variously involved, which will engender important insights for treatment and management of ReA. Supplementary Information The online version contains supplementary material available at 10.1007/s11926-021-01018-6.
Collapse
Affiliation(s)
- Henning Zeidler
- Division of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Alan P Hudson
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
9
|
Dueck NP, Epstein S, Franquet T, Moore CC, Bueno J. Atypical Pneumonia: Definition, Causes, and Imaging Features. Radiographics 2021; 41:720-741. [PMID: 33835878 DOI: 10.1148/rg.2021200131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pneumonia is among the most common causes of death worldwide. The epidemiologic and clinical heterogeneity of pneumonia results in challenges in diagnosis and treatment. There is inconsistency in the definition of the group of microorganisms that cause "atypical pneumonia." Nevertheless, the use of this term in the medical and radiologic literature is common. Among the causes of community-acquired pneumonia, atypical bacteria are responsible for approximately 15% of cases. Zoonotic and nonzoonotic bacteria, as well as viruses, have been considered among the causes of atypical pneumonia in a patient who is immunocompetent and have been associated with major community outbreaks of respiratory infection, with relevant implications in public health policies. Considering the difficulty of isolating atypical microorganisms and the significant overlap in clinical manifestations, a targeted empirical therapy is not possible. Imaging plays an important role in the diagnosis and management of atypical pneumonia, as in many cases its findings may first suggest the possibility of an atypical infection. Clarifying and unifying the definition of atypical pneumonia among the medical community, including radiologists, are of extreme importance. The prompt diagnosis and prevention of community spread of some atypical microorganisms can have a relevant impact on local, regional, and global health policies. ©RSNA, 2021.
Collapse
Affiliation(s)
- Nicholas P Dueck
- From the Department of Radiology and Medical Imaging (N.P.D., S.E., J.B.) and Department of Infectious Diseases and International Health (C.C.M.), University of Virginia Medical Center, 1215 Lee St, PO Box 800170, Charlottesville, VA 22908; and Department of Radiology, Hospital de Sant Pau-Universidad Autónoma de Barcelona, Barcelona, Spain (T.F.)
| | - Samantha Epstein
- From the Department of Radiology and Medical Imaging (N.P.D., S.E., J.B.) and Department of Infectious Diseases and International Health (C.C.M.), University of Virginia Medical Center, 1215 Lee St, PO Box 800170, Charlottesville, VA 22908; and Department of Radiology, Hospital de Sant Pau-Universidad Autónoma de Barcelona, Barcelona, Spain (T.F.)
| | - Tomás Franquet
- From the Department of Radiology and Medical Imaging (N.P.D., S.E., J.B.) and Department of Infectious Diseases and International Health (C.C.M.), University of Virginia Medical Center, 1215 Lee St, PO Box 800170, Charlottesville, VA 22908; and Department of Radiology, Hospital de Sant Pau-Universidad Autónoma de Barcelona, Barcelona, Spain (T.F.)
| | - Christopher C Moore
- From the Department of Radiology and Medical Imaging (N.P.D., S.E., J.B.) and Department of Infectious Diseases and International Health (C.C.M.), University of Virginia Medical Center, 1215 Lee St, PO Box 800170, Charlottesville, VA 22908; and Department of Radiology, Hospital de Sant Pau-Universidad Autónoma de Barcelona, Barcelona, Spain (T.F.)
| | - Juliana Bueno
- From the Department of Radiology and Medical Imaging (N.P.D., S.E., J.B.) and Department of Infectious Diseases and International Health (C.C.M.), University of Virginia Medical Center, 1215 Lee St, PO Box 800170, Charlottesville, VA 22908; and Department of Radiology, Hospital de Sant Pau-Universidad Autónoma de Barcelona, Barcelona, Spain (T.F.)
| |
Collapse
|
10
|
Zagà V, Dell'Omo M, Murgia N, Mura M. Tobacco Worker's Lung: A Neglected Subtype of Hypersensitivity Pneumonitis. Lung 2021; 199:13-19. [PMID: 33427972 DOI: 10.1007/s00408-020-00416-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Tobacco worker's lung (TWL) is a type of hypersensitivity pneumonitis (HP) affecting workers exposed to tobacco leaves and molds in the humidified environment of the tobacco production industry. Limited epidemiological data point to a prevalence of TWL that is not negligible and probably underestimated. As in other types of HP, an acute vs. chronic presentation depends on the pattern of the exposure. Therefore, the clinical presentation can vary from an acute influenza-like syndrome, mostly self-limiting with the removal of the exposure, to an insidious onset of cough, exertional dyspnea, fatigue and weight loss in chronic presentations, where fibrotic changes may be observed. The main treatment strategy is the removal of the exposure to tobacco dust and molds, while the main aim of corticosteroid therapy is to reduce morbidity and prevent complications, namely the development of pulmonary fibrosis and permanent lung dysfunction. Despite the fact that TWL is quite well described, preventive measures are not usually adopted in the tobacco production industry. We present here a state of the art review of this neglected, preventable, but still prevalent and occupational-related subtype of HP.
Collapse
Affiliation(s)
- Vincenzo Zagà
- Italian Society of Tobaccology (SITAB), Bologna, Italy
| | - Marco Dell'Omo
- Section of Occupational Medicine, Respiratory Diseases and Toxicology, University of Perugia, Perugia, Italy
| | - Nicola Murgia
- Section of Occupational Medicine, Respiratory Diseases and Toxicology, University of Perugia, Perugia, Italy
| | - Marco Mura
- Division of Respirology, Western University, London, ON, Canada. .,Victoria Hospital, London Health Science Centre, 800 Commissioners Road East, Room E6-203, London, ON, N6A 5W9, Canada.
| |
Collapse
|
11
|
Zhao L, Wang H, Thomas R, Gao X, Bai H, Shekhar S, Wang S, Yang J, Zhao W, Yang X. NK cells modulate T cell responses via interaction with dendritic cells in Chlamydophila pneumoniae infection. Cell Immunol 2020; 353:104132. [DOI: 10.1016/j.cellimm.2020.104132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
|
12
|
De Luigi G, Zgraggen L, Kottanattu L, Simonetti GD, Terraneo L, Vanoni F, Terrani I, Bianchetti MG, Lava SAG, Milani GP. Skin and Mucous Membrane Eruptions Associated with Chlamydophila Pneumoniae Respiratory Infections: Literature Review. Dermatology 2020; 237:230-235. [PMID: 32222707 DOI: 10.1159/000506460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/12/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mycoplasma pneumoniae pneumonia is sometimes associated with skin or mucous membrane eruptions. Available reviews do not address the association of Chlamydophila pneumoniae pneumonia with skin eruptions. We therefore conducted a systematic review of the literature addressing this issue. The National Library of Medicine, Excerpta Medica, and Web of Science databases were employed. SUMMARY In two reports, skin lesions and especially urticaria were more common (p < 0.05) in atypical pneumonia caused by C. pneumoniae as compared with M. pneumoniae. We found 47 patients (<18 years, n = 16; ≥18 years, n = 31) affected by a C. pneumoniae atypical pneumonia, which was associated with erythema nodosum, erythema multiforme minus, erythema multiforme majus, isolated mucositis, or cutaneous vasculitis. We also found the case of a boy with C. pneumoniae pneumonia and acute generalized exanthematous pustulosis. We did not find any case of C. pneumoniae respiratory infection associated with either Gianotti-Crosti syndrome, pityriasis lichenoides et varioliformis acuta Mucha-Habermann, or varicella-like skin eruptions.
Collapse
Affiliation(s)
| | - Lorenzo Zgraggen
- Pediatric Institute of Southern Switzerland, Ospedale San Giovanni, Bellinzona, Switzerland
| | - Lisa Kottanattu
- Pediatric Institute of Southern Switzerland, Ospedale San Giovanni, Bellinzona, Switzerland
| | - Giacomo D Simonetti
- Università della Svizzera Italiana, Lugano, Switzerland.,Pediatric Institute of Southern Switzerland, Ospedale San Giovanni, Bellinzona, Switzerland
| | - Luisa Terraneo
- Pediatric Institute of Southern Switzerland, Ospedale San Giovanni, Bellinzona, Switzerland
| | - Federica Vanoni
- Pediatric Institute of Southern Switzerland, Ospedale San Giovanni, Bellinzona, Switzerland
| | - Isabella Terrani
- Department of Dermatology Ente Ospedaliero Cantonale, Ospedale Regionale di Lugano, Lugano, Switzerland
| | - Mario G Bianchetti
- Università della Svizzera Italiana, Lugano, Switzerland.,Pediatric Institute of Southern Switzerland, Ospedale San Giovanni, Bellinzona, Switzerland
| | - Sebastiano A G Lava
- Pediatric Cardiology Unit, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland,
| | - Gregorio P Milani
- Pediatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Chlamydia pneumoniae Infections in an Immunocompetent Patient Compared With a Neutropenic Cancer Patient. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2020. [DOI: 10.1097/ipc.0000000000000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Wang C, Zhang N, Gao L. Association between Chlamydia pneumoniae infection and lung cancer: a meta-analysis. Transl Cancer Res 2019; 8:2813-2819. [PMID: 35117038 PMCID: PMC8797589 DOI: 10.21037/tcr.2019.10.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Background The aim of this study is to explore the correlation between Chlamydia pneumoniae (C. pneumoniae) infection and lung carcinoma. Methods Databases of PubMed, Embase, Embase, Ovid, Wanfang and China National Knowledge Infrastructure (CNKI) database were investigated for eligible literatures from their establishments to February, 2019. Included studies were selected according to specific eligibility criteria. Statistical analysis was performed by RevMan 5.3 software. Results Thirteen studies with 2,553 lung carcinoma cases and 2,460 controls were eligible for meta-analysis. The pooled results indicated that the C. pneumoniae infection IgA significantly increased the risk of lung carcinoma (OR =3.19; 95% CI, 1.96-5.19; P<0.00001) by random effect model. And for serum IgG, the pooled OR was 2.02 (95% CI, 1.29-3.16; P<0.00001) by using the random effects model. The results indicated that the IgA positive rate was significantly higher in lung cancer patients than healthy controls. Conclusions This meta-analysis revealed that C. pneumoniae infection may be a potential risk factor for lung carcinoma. However, due to its significant heterogeneity in the included studies, the consequence should be understood with caution.
Collapse
Affiliation(s)
- Chunxi Wang
- Department of Respiration, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin 300170, China
| | - Naxin Zhang
- Department of Respiration, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin 300170, China
| | - Liang Gao
- Department of Respiration, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin 300170, China
| |
Collapse
|
15
|
Amin M, Haghparasti F, Savari M, Montazeri EA. Relative frequency of Chlamydia pneumoniae in patients with respiratory infections using the PCR and ELISA methods in Ahvaz, Iran. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Abstract
PURPOSE OF REVIEW Recent studies regarding the frequency of Chlamydia-induced reactive arthritis (ReA) are reviewed, with a focus on the question of whether the entity is in fact disappearing or whether it is simply being underdiagnosed/underreported. Epidemiological reports indicate diversity in the frequency of Chlamydia-associated ReA in various parts of the world, with evidence of declining incidence in some regions. RECENT FINDINGS The hypothesis that early effective treatment with antibiotics prevents the manifestation of Chlamydia-associated ReA requires further investigation. For clinicians, it is important to remember that ReA secondary to Lymphogranuloma venereum (LGV) serovars L1-L3 of C. trachomatis is probably underestimated due to a limited awareness of this condition, the re-emergence in Western countries of LGV overall, and the present increasingly rare classical inguinal presentation.
Collapse
|
17
|
Insertional mutagenesis in the zoonotic pathogen Chlamydia caviae. PLoS One 2019; 14:e0224324. [PMID: 31697687 PMCID: PMC6837515 DOI: 10.1371/journal.pone.0224324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/11/2019] [Indexed: 11/19/2022] Open
Abstract
The ability to introduce targeted genetic modifications in microbial genomes has revolutionized our ability to study the role and mode of action of individual bacterial virulence factors. Although the fastidious lifestyle of obligate intracellular bacterial pathogens poses a technical challenge to such manipulations, the last decade has produced significant advances in our ability to conduct molecular genetic analysis in Chlamydia trachomatis, a major bacterial agent of infertility and blindness. Similar approaches have not been established for the closely related veterinary Chlamydia spp., which cause significant economic damage, as well as rare but potentially life-threatening infections in humans. Here we demonstrate the feasibility of conducting site-specific mutagenesis for disrupting virulence genes in C. caviae, an agent of guinea pig inclusion conjunctivitis that was recently identified as a zoonotic agent in cases of severe community-acquired pneumonia. Using this approach, we generated C. caviae mutants deficient for the secreted effector proteins IncA and SinC. We demonstrate that C. caviae IncA plays a role in mediating fusion of the bacteria-containing vacuoles inhabited by C. caviae. Moreover, using a chicken embryo infection model, we provide first evidence for a role of SinC in C. caviae virulence in vivo.
Collapse
|
18
|
Elkolaly RM, Shams Eldeen MA. Easy and rapid diagnosis of Mycoplasma pneumonia: is it possible? THE EGYPTIAN JOURNAL OF BRONCHOLOGY 2019. [DOI: 10.4103/ejb.ejb_46_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Atypical and Typical Bacteria in Children with Community Acquired Pneumonia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019. [PMID: 31016635 DOI: 10.1007/5584_2019_377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2023]
Abstract
This study seeks to determine the pathogens in respiratory specimens and blood serum obtained from children who present with community acquired pneumonia (CAP) diagnosed on the basis of clinical and radiological evidence. The study group consisted of 46 hospitalized children aged 1-11 years. The material for research consisted of pharyngeal swabs and samples of blood serum. One hundred and thirty eight pharyngeal swabs were examined for the presence of C. pneumoniae antigen, C. pneumoniae DNA, and for typical pathogens. C. pneumoniae DNA was detected in pharyngeal swabs with nested PCR. Classical microbiological culture was used for detection of typical bacteria. ELISA test were used for detection anti-C. pneumoniae and anti-M. pneumoniae antibodies in the serum. C. pneumoniae DNA was identified in 10.9% of children. Positive culture for typical pathogens was observed in 8.7% of children. Specific anti-C. pneumoniae IgM antibodies were found in 8.7% of children, and IgG and IgA antibodies in 1 child each. Specific anti-M. pneumoniae IgG antibodies were found in 13.1% of children and IgM antibodies in 1 child. We conclude that the underlying bacterial etiology of CAP is rather rarely conclusively confirmed in children. Nonetheless, determining the etiology of CAP is essential for the choice of treatment to optimize the use and effectiveness of antimicrobials and to avoid adverse effect. Due to considerable variations in the power of detection of the type of atypical bacteria causing CAP, the search for the optimum diagnostic methods continues.
Collapse
|
20
|
Cockburn CL, Green RS, Damle SR, Martin RK, Ghahrai NN, Colonne PM, Fullerton MS, Conrad DH, Chalfant CE, Voth DE, Rucks EA, Gilk SD, Carlyon JA. Functional inhibition of acid sphingomyelinase disrupts infection by intracellular bacterial pathogens. Life Sci Alliance 2019; 2:e201800292. [PMID: 30902833 PMCID: PMC6431796 DOI: 10.26508/lsa.201800292] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022] Open
Abstract
Intracellular bacteria that live in host cell-derived vacuoles are significant causes of human disease. Parasitism of low-density lipoprotein (LDL) cholesterol is essential for many vacuole-adapted bacteria. Acid sphingomyelinase (ASM) influences LDL cholesterol egress from the lysosome. Using functional inhibitors of ASM (FIASMAs), we show that ASM activity is key for infection cycles of vacuole-adapted bacteria that target cholesterol trafficking-Anaplasma phagocytophilum, Coxiella burnetii, Chlamydia trachomatis, and Chlamydia pneumoniae. Vacuole maturation, replication, and infectious progeny generation by A. phagocytophilum, which exclusively hijacks LDL cholesterol, are halted and C. burnetii, for which lysosomal cholesterol accumulation is bactericidal, is killed by FIASMAs. Infection cycles of Chlamydiae, which hijack LDL cholesterol and other lipid sources, are suppressed but less so than A. phagocytophilum or C. burnetii A. phagocytophilum fails to productively infect ASM-/- or FIASMA-treated mice. These findings establish the importance of ASM for infection by intracellular bacteria and identify FIASMAs as potential host-directed therapies for diseases caused by pathogens that manipulate LDL cholesterol.
Collapse
Affiliation(s)
- Chelsea L Cockburn
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Ryan S Green
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Sheela R Damle
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Naomi N Ghahrai
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Punsiri M Colonne
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marissa S Fullerton
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| | - Charles E Chalfant
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Elizabeth A Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, VA, USA
| |
Collapse
|
21
|
Almeida NCC, Queiroz MAF, Lima SS, Brasil Costa I, Ayin Fossa MA, Vallinoto ACR, Ishak MDOG, Ishak R. Association of Chlamydia trachomatis, C. pneumoniae, and IL-6 and IL-8 Gene Alterations With Heart Diseases. Front Immunol 2019; 10:87. [PMID: 30804931 PMCID: PMC6370681 DOI: 10.3389/fimmu.2019.00087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 01/11/2019] [Indexed: 12/02/2022] Open
Abstract
Atherosclerosis is a progressive disease characterized by chronic inflammation of the arterial walls, associated with genetic and infectious factors. The present study investigated the involvement of Chlamydia trachomatis and Chlamydia pneumoniae infections and immunological markers (C-reactive protein, CRP, TNF-α, IL-6, IL-8, and IL-10) in the process of atherosclerosis. The evaluation included 159 patients for surgical revascularization (CAD) and 71 patients for surgical heart valve disease (HVD) at three hospitals in Belém, Brazil. The control group (CG) comprised 300 healthy individuals. Blood samples collected before surgery were used for antibodies detection (enzyme immunoassay), CRP (immunoturbidimetry) and IL-6 levels (enzyme immunoassay). Tissue fragments (atheroma plaque, heart valve and ascending aorta) were collected during surgery and subjected to qPCR for detection of bacterial DNA. Promoter region polymorphisms of each marker and relative quantification of TNF-α, IL-8, and IL-10 gene expression were performed. Demography and social information were similar to the general population involved with both diseases. Antibody prevalence to C. trachomatis was 30.6, 20.3, and 36.7% (in the CAD, HVD, and CG, respectively) and to C. pneumoniae was 83.6, 84.5, and 80.3% (in the CAD, HVD, and CG, respectively). C. trachomatis cryptic plasmid DNA was detected in 7.4% of the samples. Frequency of IL6−174G>C polymorphism was higher in CAD and HVD than in CG regardless of previous exposure to Chlamydia. Previous C. trachomatis infection showed involvement in HVD and CAD. Significant association between disease and previous C. pneumoniae infection was found only among HVD. GG genotype of IL6−174G>C is apparently a risk factor for heart disease, whereas AT genotype of IL8−251A>T was mainly involved in valvulopathies, including patients with prior exposure to C. pneumoniae.
Collapse
Affiliation(s)
| | | | - Sandra Souza Lima
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | | | | | | | - Ricardo Ishak
- Virus Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
22
|
Abstract
By nearly any criteria, pneumonia (infection of the pulmonary parenchyma) must be considered one of the most important categories of disease affecting the respiratory system. This chapter is organized primarily as a general discussion of the clinical problem of pneumonia. As appropriate, the focus on individual etiologic agents highlights some characteristic features of each that are particularly useful to the physician. Also covered is a commonly used categorization of pneumonia based on the clinical setting: community-acquired versus nosocomial (hospital-acquired) pneumonia. In current clinical practice, the approach to evaluation and management of these two types of pneumonia is often quite different. The chapter concludes with a brief discussion of several infections that were uncommon or primarily of historical interest until recently, as the threat of bioterrorism emerged. In addition to reviewing inhalational anthrax, the chapter briefly describes two other organisms considered to be of concern as potential weapons of bioterrorism: Yersinia pestis (the cause of plague) and Francisella tularensis (the cause of tularemia).
Collapse
|
23
|
Wiese KM, Coates BM, Ridge KM. The Role of Nucleotide-Binding Oligomerization Domain-Like Receptors in Pulmonary Infection. Am J Respir Cell Mol Biol 2017; 57:151-161. [PMID: 28157451 PMCID: PMC5576584 DOI: 10.1165/rcmb.2016-0375tr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022] Open
Abstract
Pneumonia is caused by both viral and bacterial pathogens and is responsible for a significant health burden in the Unites States. The innate immune system is the human body's first line of defense against these pathogens. The recognition of invading pathogens via pattern recognition receptors leads to proinflammatory cytokine and chemokine production, followed by recruitment and activation of effector immune cells. The nonspecific inflammatory nature of the innate immune response can result in immunopathology that is detrimental to the host. In this review, we focus on one class of pattern recognition receptors, the nucleotide-binding oligomerization domain (NOD)-like receptors, specifically NOD1 and NOD2, and their role in host defense against viral and bacterial pathogens of the lung, including influenza, respiratory syncytial virus, Streptococcus pneumoniae, Chlamydophila pneumoniae, and Staphylococcus aureus. It is hoped that improved understanding of NOD1 and NOD2 activity in pneumonia will facilitate the development of novel therapies and promote improved patient outcomes.
Collapse
Affiliation(s)
| | - Bria M. Coates
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | |
Collapse
|
24
|
Abstract
Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics.
Collapse
Affiliation(s)
- Barbara S Sixt
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710; .,Centre de Recherche des Cordeliers, INSERM U1138, Paris 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France.,Université Pierre et Marie Curie, Paris 75005, France
| | - Raphael H Valdivia
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710;
| |
Collapse
|
25
|
Sharma L, Losier A, Tolbert T, Dela Cruz CS, Marion CR. Atypical Pneumonia: Updates on Legionella, Chlamydophila, and Mycoplasma Pneumonia. Clin Chest Med 2016; 38:45-58. [PMID: 28159161 DOI: 10.1016/j.ccm.2016.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Community-acquired pneumonia (CAP) has multiple causes and is associated with illness that requires admission to the hospital and mortality. The causes of atypical CAP include Legionella species, Chlamydophila, and Mycoplasma. Atypical CAP remains a diagnostic challenge and, therefore, likely is undertreated. This article reviews the advancements in the evaluation and treatment of patients and discusses current conflicts and controversies of atypical CAP.
Collapse
Affiliation(s)
- Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, 300 Cedar Street, TAC S440, New Haven, CT 06510, USA
| | - Ashley Losier
- Department of Internal Medicine, Norwalk Hospital, 34 Maple Street, Norwalk, CT 06856, USA
| | - Thomas Tolbert
- Department of Internal Medicine, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, 300 Cedar Street, TAC S440, New Haven, CT 06510, USA
| | - Chad R Marion
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, 300 Cedar Street, TAC S440, New Haven, CT 06510, USA.
| |
Collapse
|
26
|
Murdoch DR. How recent advances in molecular tests could impact the diagnosis of pneumonia. Expert Rev Mol Diagn 2016; 16:533-40. [PMID: 26891612 PMCID: PMC7103682 DOI: 10.1586/14737159.2016.1156536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 12/21/2022]
Abstract
Molecular diagnostic tests have been the single major development in pneumonia diagnostics over recent years. Nucleic acid detection tests (NATs) have greatly improved the ability to detect respiratory viruses and bacterial pathogens that do not normally colonize the respiratory tract. In contrast, NATs do not yet have an established role for diagnosing pneumonia caused by bacteria that commonly colonize the nasopharynx due to difficulties discriminating between pathogens and coincidental carriage strains. New approaches are needed to distinguish infection from colonization, such as through use of quantitative methods and identification of discriminating cut-off levels. The recent realization that the lung microbiome exists has provided new insights into the pathogenesis of pneumonia involving the interaction between multiple microorganisms. New developments in molecular diagnostics must account for this new paradigm.
Collapse
Affiliation(s)
- David R. Murdoch
- Department of Pathology, University of Otago, Christchurch, and Microbiology Unit, Canterbury Health Laboratories, Christchurch, New Zealand
| |
Collapse
|
27
|
Herrera M, Aguilar YA, Rueda ZV, Muskus C, Vélez LA. Comparison of serological methods with PCR-based methods for the diagnosis of community-acquired pneumonia caused by atypical bacteria. J Negat Results Biomed 2016; 15:3. [PMID: 26932735 PMCID: PMC4774004 DOI: 10.1186/s12952-016-0047-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/05/2016] [Indexed: 02/01/2023] Open
Abstract
Background The diagnosis of community-acquired pneumonia (CAP) caused by Legionella pneumophila, Mycoplasma pneumoniae, and Chlamydophila pneumoniae is traditionally based on cultures and serology, which have special requirements, are time-consuming, and offer delayed results that limit their clinical usefulness of these techniques. We sought to develop a multiplex PCR (mPCR) method to diagnosis these bacterial infections in CAP patients and to compare the diagnostic yields obtained from mPCR of nasopharyngeal aspirates (NPAs), nasopharyngeal swabs (NPSs), and induced sputum (IS) with those obtained with specifc PCR commercial kits, paired serology, and urinary antigen. Results A total of 225 persons were included. Of these, 10 patients showed serological evidence of L. pneumophila infection, 30 of M. pneumoniae, and 18 of C. pneumoniae; 20 individuals showed no CAP. The sensitivities were mPCR-NPS = 23.1 %, mPCR-IS = 57.1 %, Seeplex®-IS = 52.4 %, and Speed-oligo®-NPA/NPS = 11.1 %, and the specificities were mPCR-NPS = 97.1 %, mPCR-IS = 77.8 %, Seeplex®-IS = 92.6 %, and Speed-oligo®-NPA/NPS = 96.1 %. The concordance between tests was poor (kappa <0.4), except for the concordance between mPCR and the commercial kit in IS (0.67). In individuals with no evidence of CAP, positive reactions were observed in paired serology and in all PCRs. Conclusions All PCRs had good specificity but low sensitivity in nasopharyngeal samples. The sensitivity of mPCR and Seeplex® in IS was approximately 60 %; thus, better diagnostic techniques for these three bacteria are required. Electronic supplementary material The online version of this article (doi:10.1186/s12952-016-0047-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariana Herrera
- Grupo Investigador de Problemas en Enfermedades Infecciosas (GRIPE), Sede de Investigación Universitaria, Calle 62 # 52-59, Laboratorio 630, Universidad de Antioquia, Medellín, Colombia. .,Corporación de Ciencias Básicas Biomédicas, Universidad de Antioquia UdeA, Medellín, Colombia.
| | - Yudy Alexandra Aguilar
- Grupo Investigador de Problemas en Enfermedades Infecciosas (GRIPE), Sede de Investigación Universitaria, Calle 62 # 52-59, Laboratorio 630, Universidad de Antioquia, Medellín, Colombia. .,Corporación de Ciencias Básicas Biomédicas, Universidad de Antioquia UdeA, Medellín, Colombia.
| | | | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Universidad de Antioquia UdeA, Medellín, Colombia.
| | - Lázaro Agustín Vélez
- Grupo Investigador de Problemas en Enfermedades Infecciosas (GRIPE), Sede de Investigación Universitaria, Calle 62 # 52-59, Laboratorio 630, Universidad de Antioquia, Medellín, Colombia. .,Infectious Disease Section, School of Medicine, Universidad de Antioquia UdeA, Medellín, Colombia.
| |
Collapse
|
28
|
Engel AC, Herbst F, Kerres A, Galle JN, Hegemann JH. The Type III Secretion System-Related CPn0809 from Chlamydia pneumoniae. PLoS One 2016; 11:e0148509. [PMID: 26895250 PMCID: PMC4760673 DOI: 10.1371/journal.pone.0148509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 01/20/2016] [Indexed: 11/19/2022] Open
Abstract
Chlamydia pneumoniae is an intracellular Gram-negative bacterium that possesses a type III secretion system (T3SS), which enables the pathogen to deliver, in a single step, effector proteins for modulation of host-cell functions into the human host cell cytosol to establish a unique intracellular niche for replication. The translocon proteins located at the top of the T3SS needle filament are essential for its function, as they form pores in the host-cell membrane. Interestingly, unlike other Gram-negative bacteria, C. pneumoniae has two putative translocon operons, named LcrH_1 and LcrH_2. However, little is known about chlamydial translocon proteins. In this study, we analyzed CPn0809, one of the putative hydrophobic translocators encoded by the LcrH_1 operon, and identified an 'SseC-like family' domain characteristic of T3S translocators. Using bright-field and confocal microscopy, we found that CPn0809 is associated with EBs during early and very late phases of a C. pneumoniae infection. Furthermore, CPn0809 forms oligomers, and interacts with the T3SS chaperone LcrH_1, via its N-terminal segment. Moreover, expression of full-length CPn0809 in the heterologous host Escherichia coli causes a grave cytotoxic effect that leads to cell death. Taken together, our data indicate that CPn0809 likely represents one of the translocon proteins of the C. pneumoniae T3SS, and possibly plays a role in the translocation of effector proteins in the early stages of infection.
Collapse
Affiliation(s)
- Astrid C. Engel
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Frauke Herbst
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Anne Kerres
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jan N. Galle
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Johannes H. Hegemann
- Lehrstuhl für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
29
|
Berebichez-Fridman R, Blachman-Braun R, Azrad-Daniel S, Vázquez-Campuzano R, Vázquez-López R. Atypical pneumonias caused by Legionella pneumophila, Chlamydophila pneumoniae and Mycoplasma pneumonia. REVISTA MÉDICA DEL HOSPITAL GENERAL DE MÉXICO 2015. [DOI: 10.1016/j.hgmx.2015.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Shekhar S, Joyee AG, Yang X. Dynamics of NKT-Cell Responses to Chlamydial Infection. Front Immunol 2015; 6:233. [PMID: 26029217 PMCID: PMC4432794 DOI: 10.3389/fimmu.2015.00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/30/2015] [Indexed: 12/03/2022] Open
Abstract
Natural killer T (NKT) cells have gained great attention owing to their critical functional roles in immunity to various pathogens. In this review, we provide an overview of the current knowledge on the role of NKT cells in host defense against and pathogenesis due to Chlamydia, which is an intracellular bacterial pathogen that poses a threat to the public health worldwide. Accumulating evidence has demonstrated that NKT cells, particularly invariant NKT (iNKT) cells, play a crucial role in host defense against chlamydial infections, especially in C. pneumoniae infection. iNKT cells can promote type-1 protective responses to C. pneumoniae by inducing enhanced production of IL-12 by dendritic cells (DCs), in particular CD8α+ DCs, which promote the differentiation of naive T cells into protective IFN-γ-producing Th1/Tc1 type CD4+/CD8+ T cells. This iNKT-cell-mediated modulation of DC function is largely dependent upon CD40–CD40L interaction, IFN-γ production, and cell-to-cell contact. In addition, iNKT cells modulate the function of natural killer cells. NKT cells may be also involved in the pathogenesis of some chlamydial diseases by inducing different patterns of cytokine production. A better understanding of NKT-cell biology will enable us to rationally design prophylactic and therapeutic tools to combat infectious diseases.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada
| | - Antony George Joyee
- Department of Immunology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada
| | - Xi Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada ; Department of Immunology, Faculty of Medicine, University of Manitoba , Winnipeg, MB , Canada
| |
Collapse
|
31
|
Miyashita N, Kawai Y, Tanaka T, Akaike H, Teranishi H, Wakabayashi T, Nakano T, Ouchi K, Okimoto N. Antibody responses of Chlamydophila pneumoniae pneumonia: Why is the diagnosis of C. pneumoniae pneumonia difficult? J Infect Chemother 2015; 21:497-501. [PMID: 25840889 DOI: 10.1016/j.jiac.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/22/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
The ELNAS Plate Chlamydophila pneumoniae commercial test kit for the detection of anti-C. pneumoniae-specific immunoglobulin M (IgM), IgA and IgG antibodies has become available in Japan recently. To determine the optimum serum collection point for the ELNAS plate in the diagnosis of C. pneumoniae pneumonia, we analyzed the kinetics of the antibody response in patients with laboratory-confirmed C. pneumoniae pneumonia. We enrolled five C. pneumoniae pneumonia cases and collected sera from patients for several months. The kinetics of the IgM and IgG antibody responses were similar among the five patients. Significant increases in IgM and IgG antibody titer between paired sera were observed in all patients. IgM antibodies appeared approximately 2-3 weeks after the onset of illness, reached a peak after 4-5 weeks, and were generally undetectable after 3-5 months. IgG antibodies developed slowly for the first 30 days and reached a plateau approximately 3-4 months after the onset of illness. The kinetics of IgA antibody responses were different among the five patients, and significant increases in IgA antibody titer between paired sera were observed in only two patients. Although the sample size was small, the best serum collection time seemed to be approximately 3-6 weeks after onset of illness when using a single serum sample for the detection of IgM antibodies. Paired sera samples should be obtained at least 4 weeks apart. IgA antibody analysis using ELNAS may not be a useful marker for acute C. pneumoniae pneumonia.
Collapse
Affiliation(s)
- Naoyuki Miyashita
- Department of Internal Medicine I, Kawasaki Medical School, Okayama, Japan.
| | - Yasuhiro Kawai
- Department of Internal Medicine I, Kawasaki Medical School, Okayama, Japan
| | - Takaaki Tanaka
- Department of Pediatrics, Kawasaki Medical School, Okayama, Japan
| | - Hiroto Akaike
- Department of Pediatrics, Kawasaki Medical School, Okayama, Japan
| | - Hideto Teranishi
- Department of Pediatrics, Kawasaki Medical School, Okayama, Japan
| | | | - Takashi Nakano
- Department of Pediatrics, Kawasaki Medical School, Okayama, Japan
| | - Kazunobu Ouchi
- Department of Pediatrics, Kawasaki Medical School, Okayama, Japan
| | - Niro Okimoto
- Department of Internal Medicine I, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
32
|
Corsaro D, Venditti D. Detection of novel Chlamydiae and Legionellales from human nasal samples of healthy volunteers. Folia Microbiol (Praha) 2015; 60:325-34. [PMID: 25697709 DOI: 10.1007/s12223-015-0378-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 02/05/2015] [Indexed: 01/23/2023]
Abstract
Chlamydiae are intracellular bacterial parasites of eukaryotes, ranging from amoebae to humans. They comprise many novel members and are investigated as emerging pathogens. Environmental studies highlighted similarities between the ecologies of chlamydiae and legionellae, both groups being important agents of respiratory infections. Herein, we analyzed nasal samples from healthy persons, searching for the presence of amoebae, chlamydiae and legionellae. From a total of 25 samples, we recovered by PCR eight samples positive to chlamydiae and six samples positive to legionellae. Among these samples, four were positive to both organisms. The sequencing of 16S rDNAs allowed to identify (i) among Chlamydiae: Parachlamydia acanthamoebae, Chlamydophila psittaci, Chlamydophila felis, and members of Rhabdochlamydiaceae, Simkaniaceae and E6 lineage and (ii) among Legionellaceae: Legionella longbeachae, Legionella bozemanii and Legionella impletisoli. Unexpectedly, we also recovered Diplorickettsia sp. Amoebae collected from nasal mucosae, Acanthamoeba and Vermamoeba, were endosymbiont-free, and chlamydiae revealed refractory to amoeba coculture. This study shows common exposure to chlamydiae and legionellae and suggests open air activities like gardening as a probable additional source of infection.
Collapse
Affiliation(s)
- Daniele Corsaro
- CHLAREAS Chlamydia Research Association, 12 rue du Maconnais, 54500, Vandoeuvre-lès-Nancy, France,
| | | |
Collapse
|
33
|
Draft Genome Sequence of High-Temperature-Adapted Protochlamydia sp. HS-T3, an Amoebal Endosymbiotic Bacterium Found in Acanthamoeba Isolated from a Hot Spring in Japan. GENOME ANNOUNCEMENTS 2015; 3:3/1/e01507-14. [PMID: 25657277 PMCID: PMC4319609 DOI: 10.1128/genomea.01507-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Here, we report the draft genome sequence of high-temperature-adapted Protochlamydia sp. strain HS-T3, an environmental chlamydia. This bacterium is an amoebal endosymbiont, found in Acanthamoeba isolated from a hot spring in Japan. Strain HS-T3 readily grew in mammalian cells at 37°C, a characteristic not previously reported for environmental chlamydiae.
Collapse
|
34
|
Amoebal endosymbiont Parachlamydia acanthamoebae Bn9 can grow in immortal human epithelial HEp-2 cells at low temperature; an in vitro model system to study chlamydial evolution. PLoS One 2015; 10:e0116486. [PMID: 25643359 PMCID: PMC4314085 DOI: 10.1371/journal.pone.0116486] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/08/2014] [Indexed: 01/07/2023] Open
Abstract
Ancient chlamydiae diverged into pathogenic and environmental chlamydiae 0.7–1.4 billion years ago. However, how pathogenic chlamydiae adapted to mammalian cells that provide a stable niche at approximately 37°C, remains unknown, although environmental chlamydiae have evolved as endosymbionts of lower eukaryotes in harsh niches of relatively low temperatures. Hence, we assessed whether an environmental chlamydia, Parachlamydia Bn9, could grow in human HEp-2 cells at a low culture temperature of 30°C. The assessment of inclusion formation by quantitative RT-PCR revealed that the numbers of bacterial inclusion bodies and the transcription level of 16SrRNA significantly increased after culture at 30°C compared to at 37°C. Confocal microscopy showed that the bacteria were located close to HEp-2 nuclei and were actively replicative. Transmission electron microscopy also revealed replicating bacteria consisting of reticular bodies, but with a few elementary bodies. Cytochalasin D and rifampicin inhibited inclusion formation. Lactacystin slightly inhibited bacterial inclusion formation. KEGG analysis using a draft genome sequence of the bacteria revealed that it possesses metabolic pathways almost identical to those of pathogenic chlamydia. Interestingly, comparative genomic analysis with pathogenic chlamydia revealed that the Parachlamydia similarly possess the genes encoding Type III secretion system, but lacking genes encoding inclusion membrane proteins (IncA to G) required for inclusion maturation. Taken together, we conclude that ancient chlamydiae had the potential to grow in human cells, but overcoming the thermal gap was a critical event for chlamydial adaptation to human cells.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW We present the key advances in the infections that clinicians conventionally associate with atypical pneumonia: legionellosis, Mycoplasma pneumonia, Chlamydophila species pneumonia and Q fever. RECENT FINDINGS There have been significant developments in molecular diagnosis to include Mycoplasma pneumoniae and Chlamydophila pneumoniae in multiplex PCR of respiratory specimens. There are diagnostic challenges in distinguishing carriage from infection, which is recognized in C. pneumoniae and now also evident in M. pneumoniae. Macrolide-resistant M. pneumoniae has emerged in Asia. There are new antimicrobials on the horizon in the ketolide class with activity against typical and atypical pathogens and useful empirical agents. SUMMARY There are few advances in our knowledge of the epidemiology of atypical pathogens or the effectiveness of antimicrobial therapy--empirical or pathogen specific. However, if molecular testing becomes widely implemented, there will be an increased understanding of the epidemiology and presentation of atypical pneumonia and a shift to more targeted antimicrobial therapy.
Collapse
|
36
|
Shekhar S, Joyee AG, Gao X, Peng Y, Wang S, Yang J, Yang X. Invariant Natural Killer T Cells Promote T Cell Immunity by Modulating the Function of Lung Dendritic Cells during Chlamydia pneumoniae Infection. J Innate Immun 2014; 7:260-74. [PMID: 25531453 DOI: 10.1159/000368779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 10/01/2014] [Indexed: 01/23/2023] Open
Abstract
In this study, we examined the effect of invariant natural killer T (iNKT) cells on the function of lung dendritic cells (LDCs) in eliciting protective immunity against Chlamydia pneumoniae (Cpn) lung infection. We employed a combination of approaches including the use of iNKT cell-deficient, Jα18-knockout (KO) mice and LDC adoptive transfer. We found that iNKT cells significantly altered the number, phenotype and cytokine profile of LDCs following infection. Furthermore, coculture of T cells with LDCs from Cpn-infected wild-type (WT) and KO mice induced type-1 and type-2 responses, respectively. More importantly, upon adoptive transfer, LDCs from Cpn-infected WT mice (WT-LDCs) conferred protective immunity, whereas LDCs from KO mice (KO-LDCs) increased the severity of disease after challenge infection. Further cytokine analyses of the lung tissues and lung-draining lymph node cells showed that KO-LDC-recipient mice exhibited a type-2 cytokine production pattern, while WT-LDC recipients exhibited a type-1 cytokine profile. Taken together, our results provide in vivo evidence that iNKT cells play a critical role in modulating LDC function to generate protective T-cell immunity, particularly in a clinically relevant intracellular bacterial infection.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Laboratory for Infection and Immunity, Department of Medical Microbiology, University of Manitoba, Winnipeg, Man., Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Al-Zeer MA, Al-Younes HM, Kerr M, Abu-Lubad M, Gonzalez E, Brinkmann V, Meyer TF. Chlamydia trachomatis remodels stable microtubules to coordinate Golgi stack recruitment to the chlamydial inclusion surface. Mol Microbiol 2014; 94:1285-97. [PMID: 25315131 DOI: 10.1111/mmi.12829] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2014] [Indexed: 12/31/2022]
Abstract
Chlamydia trachomatis (Ctr), an obligate intracellular bacterium, survives and replicates within a membrane-bound vacuole, termed the inclusion, which intercepts host exocytic pathways to acquire nutrients. Ctr subverts cellular trafficking pathways from the Golgi by targeting small GTPases, including Rab proteins, to sustain intracellular bacterial replication; however, the precise mechanisms involved remain incompletely understood. Here, we show that Chlamydia infection in human epithelial cells induces microtubule remodeling, in particular the formation of detyrosinated stable MTs, to recruit Golgi ministacks, but not recycling endosomes, to the inclusion. These stable microtubules show increased resistance to chemically induced depolymerization, and their selective depletion results in reduced bacterial infectivity. Rab6 knockdown reversibly prevented not only Golgi ministack formation but also detyrosinated microtubule association with the inclusion. Our data demonstrate that Chlamydia co-opts the function of stable microtubules to support its development.
Collapse
Affiliation(s)
- Munir A Al-Zeer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitèplatz 1, 10117, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Dendritic cells from aged subjects display enhanced inflammatory responses to Chlamydophila pneumoniae. Mediators Inflamm 2014; 2014:436438. [PMID: 25253920 PMCID: PMC4165882 DOI: 10.1155/2014/436438] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 01/07/2023] Open
Abstract
Chlamydophila pneumoniae (CPn) is a common respiratory pathogen that causes a chronic and persistent airway infection. The elderly display an increased susceptibility and severity to this infection. However, the underlying mechanisms are not well understood. Dendritic cells (DCs) are the initiators and regulators of immune responses. Therefore, we investigated the role of DCs in the age-associated increased CPn infection in vitro in humans. Though the expression of activation markers was comparable between the two age groups, DCs from aged subjects secreted enhanced levels of proinflammatory mediators such as TNF-α and CXCL-10 in response to CPn. In contrast, the secretion of IL-10 and innate interferons, IFN-α and IFN-λ, was severely impaired in DCs from aged donors. The increased activation of DCs from aged subjects to CPn also resulted in enhanced proliferation of CD4 and CD8 T cells in a DC-T coculture. Furthermore, T cells primed with CPn-stimulated DCs from aged subjects secreted increased levels of IFN-γ and reduced levels of IL-10 compared to DCs obtained from young subjects. In summary, DCs from the elderly displayed enhanced inflammatory response to CPn which may result in airway remodeling and increase the susceptibility of the elderly to respiratory diseases such as asthma.
Collapse
|
39
|
Leonard CA, Borel N. Chronic Chlamydial Diseases: From Atherosclerosis to Urogenital Infections. CURRENT CLINICAL MICROBIOLOGY REPORTS 2014. [DOI: 10.1007/s40588-014-0005-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Abu-Lubad M, Meyer TF, Al-Zeer MA. Chlamydia trachomatis inhibits inducible NO synthase in human mesenchymal stem cells by stimulating polyamine synthesis. THE JOURNAL OF IMMUNOLOGY 2014; 193:2941-51. [PMID: 25114102 DOI: 10.4049/jimmunol.1400377] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chlamydia trachomatis is considered the most common agent of sexually transmitted disease worldwide. As an obligate intracellular bacterium, it relies on the host for survival. Production of NO is an effective antimicrobial defense mechanism of the innate immune system. However, whether NO is able to arrest chlamydial growth remains unclear. Similarly, little is known about the mechanisms underlying subversion of cellular innate immunity by C. trachomatis. By analyzing protein and mRNA expression in infected human mesenchymal stem cells, combined with RNA interference and biochemical assays, we observed that infection with C. trachomatis led to downregulated expression of inducible NO synthase (iNOS) in human mesenchymal stem cells in vitro. Furthermore, infection upregulated the expression of the rate-limiting enzyme in the polyamine biosynthetic pathway, ornithine decarboxylase, diverting the iNOS substrate l-arginine toward the synthesis of polyamines. Inhibition of ornithine decarboxylase activity using small interfering RNA or the competitive inhibitor difluoromethylornithine restored iNOS protein expression and activity in infected cells and inhibited chlamydial growth. This inhibition was mediated through tyrosine nitration of chlamydial protein by peroxynitrite, an NO metabolite. Thus, Chlamydia evades innate immunity by inhibiting NO production through induction of the alternative polyamine pathway.
Collapse
Affiliation(s)
- Mohammad Abu-Lubad
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Munir A Al-Zeer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| |
Collapse
|
41
|
Houdouin V, Pouessel G, Angoulvant F, Brouard J, Derelle J, Fayon M, Ferroni A, Gangneux JP, Hau I, Le Bourgeois M, Lorrot M, Menotti J, Nathan N, Vabret A, Wallet F, Bonacorsi S, Cohen R, de Blic J, Deschildre A, Gandemer V, Pin I, Labbe A, Le Roux P, Martinot A, Rammaert B, Dubus JC, Delacourt C, Marguet C. Recommandations sur l’utilisation des nouveaux outils diagnostiques étiologiques des infections respiratoires basses de l’enfant de plus de trois mois. Arch Pediatr 2014; 21:418-23. [DOI: 10.1016/j.arcped.2014.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/16/2013] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
|
42
|
Omsland A, Sixt BS, Horn M, Hackstadt T. Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiol Rev 2014; 38:779-801. [PMID: 24484402 DOI: 10.1111/1574-6976.12059] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 01/07/2023] Open
Abstract
Chlamydiae are a group of obligate intracellular bacteria comprising important human and animal pathogens as well as symbionts of ubiquitous protists. They are characterized by a developmental cycle including two main morphologically and physiologically distinct stages, the replicating reticulate body and the infectious nondividing elementary body. In this review, we reconstruct the history of studies that have led to our current perception of chlamydial physiology, focusing on their energy and central carbon metabolism. We then compare the metabolic capabilities of pathogenic and environmental chlamydiae highlighting interspecies variability among the metabolically more flexible environmental strains. We discuss recent findings suggesting that chlamydiae may not live as energy parasites throughout the developmental cycle and that elementary bodies are not metabolically inert but exhibit metabolic activity under appropriate axenic conditions. The observed host-free metabolic activity of elementary bodies may reflect adequate recapitulation of the intracellular environment, but there is evidence that this activity is biologically relevant and required for extracellular survival and maintenance of infectivity. The recent discoveries call for a reconsideration of chlamydial metabolism and future in-depth analyses to better understand how species- and stage-specific differences in chlamydial physiology may affect virulence, tissue tropism, and host adaptation.
Collapse
Affiliation(s)
- Anders Omsland
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, NIAID, NIH, Hamilton, MT, USA
| | | | | | | |
Collapse
|
43
|
Pneumonia. PRINCIPLES OF PULMONARY MEDICINE 2014. [PMCID: PMC7170200 DOI: 10.1016/b978-1-4557-2532-8.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
44
|
|
45
|
Chen J, Zhu M, Ma G, Zhao Z, Sun Z. Chlamydia pneumoniae infection and cerebrovascular disease: a systematic review and meta-analysis. BMC Neurol 2013; 13:183. [PMID: 24261578 PMCID: PMC4222774 DOI: 10.1186/1471-2377-13-183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 11/12/2013] [Indexed: 01/20/2023] Open
Abstract
Background A wealth of published studies have been published on association between Chlamydia pneumoniae (C.pneumoniae) infection and cerebrovascular (CV) disease, but the results were inconsistent. This meta-analysis provides a systematic review of the available evidence from all serological and pathological studies of CV disease and C.pneumoniae. Methods A comprehensive research was conducted of MEDLINE, EMBASE, CNKI, WanFang technological periodical database and reference lists of articles to identify eligible case-control and cohort studies. Odds radio (OR) was calculated for each study outcome. Random effect model was used as pooling method and publication bias was estimated for the results. Results Fifty-two published studies that met criteria were selected. In case control studies, an association between C.pneumoniae infection and CV disease was revealed by serum specific IgG (OR, 1.61; 95% CI: 1.34 to 1.94), serum IgA (OR, 2.33; 95% CI: 1.76 to 3.08) and PCR technique of C.pneumoniae in peripheral blood cells (OR, 1.90; 95% CI: 1.17 to 3.07). No significant association was found in serum anti-C.pneumonae IgM seropositivity or in-situ-detection of C.pneumoniae in arterial biopsies with CV disease. Subgroup analysis by available studies suggested that C.pneumoniae may paly a role in atherosclerotic stroke, but be less significant in stroke of cardioembolism or other etiologies. Conclusion Association between C.pneumoniae infection and CV disease depends on the analytical method adopted, which seems stronger with stroke due to large artery atherosclerosis. Establishing a causal relationship between C.peumoniae infection and CV disease will require more prospective studies with combination of techniques and stratified by etiological subtypes.
Collapse
Affiliation(s)
- Juan Chen
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, 66 Jingshi Road, Jinan, Shandong province 250014, China.
| | | | | | | | | |
Collapse
|
46
|
Sampo A, Matsuo J, Yamane C, Yagita K, Nakamura S, Shouji N, Hayashi Y, Yamazaki T, Yoshida M, Kobayashi M, Ishida K, Yamaguchi H. High-temperature adapted primitive Protochlamydia found in Acanthamoeba isolated from a hot spring can grow in immortalized human epithelial HEp-2 cells. Environ Microbiol 2013; 16:486-97. [PMID: 24460765 DOI: 10.1111/1462-2920.12266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/03/2013] [Accepted: 08/26/2013] [Indexed: 11/27/2022]
Abstract
To elucidate how ancient pathogenic chlamydiae could overcome temperature barriers to adapt to human cells, we characterized a primitive chlamydia found in HS-T3 amoebae (Acanthamoeba) isolated from a hot spring. Phylogenetic analysis revealed the primitive species to be Protochlamydia. In situ hybridization staining showed broad distribution into the amoebal cytoplasm, which was supported by transmission electron microscopic analysis showing typical chlamydial features, with inclusion bodies including both elementary and reticular bodies. Interestingly, although most amoebae isolated from natural environments show reduced growth at 37°C, the HS-T3 amoebae harbouring the Protochlamydia grew well at body temperature. Although infection with Protochlamydia did not confer temperature tolerance to the C3 amoebae, the number of infectious progenies rapidly increased at 37°C with amoebal lysis. In immortalized human epithelial HEp-2 cells, fluorescence microscopic study revealed atypical inclusion of the Protochlamydia, and quantitative real-time polymerase chain reaction analyses also showed an increase in 16S ribosomal RNA DNA amounts. Together, these results showed that the Protochlamydia found in HS-T3 amoebae isolated from a hot spring successfully adapted to immortalized human HEp-2 cells at 37°C, providing further information on the evolution of ancient Protochlamydia to the present pathogenic chlamydiae.
Collapse
Affiliation(s)
- Aya Sampo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, North-12, West-5, Kita-ku, Sapporo, 060-0812, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Lagkouvardos I, Weinmaier T, Lauro FM, Cavicchioli R, Rattei T, Horn M. Integrating metagenomic and amplicon databases to resolve the phylogenetic and ecological diversity of the Chlamydiae. ISME JOURNAL 2013; 8:115-25. [PMID: 23949660 DOI: 10.1038/ismej.2013.142] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 11/09/2022]
Abstract
In the era of metagenomics and amplicon sequencing, comprehensive analyses of available sequence data remain a challenge. Here we describe an approach exploiting metagenomic and amplicon data sets from public databases to elucidate phylogenetic diversity of defined microbial taxa. We investigated the phylum Chlamydiae whose known members are obligate intracellular bacteria that represent important pathogens of humans and animals, as well as symbionts of protists. Despite their medical relevance, our knowledge about chlamydial diversity is still scarce. Most of the nine known families are represented by only a few isolates, while previous clone library-based surveys suggested the existence of yet uncharacterized members of this phylum. Here we identified more than 22,000 high quality, non-redundant chlamydial 16S rRNA gene sequences in diverse databases, as well as 1900 putative chlamydial protein-encoding genes. Even when applying the most conservative approach, clustering of chlamydial 16S rRNA gene sequences into operational taxonomic units revealed an unexpectedly high species, genus and family-level diversity within the Chlamydiae, including 181 putative families. These in silico findings were verified experimentally in one Antarctic sample, which contained a high diversity of novel Chlamydiae. In our analysis, the Rhabdochlamydiaceae, whose known members infect arthropods, represents the most diverse and species-rich chlamydial family, followed by the protist-associated Parachlamydiaceae, and a putative new family (PCF8) with unknown host specificity. Available information on the origin of metagenomic samples indicated that marine environments contain the majority of the newly discovered chlamydial lineages, highlighting this environment as an important chlamydial reservoir.
Collapse
Affiliation(s)
- Ilias Lagkouvardos
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Weinmaier
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Federico M Lauro
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Thomas Rattei
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Matthias Horn
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Matsuo J, Nakamura S, Ito A, Yamazaki T, Ishida K, Hayashi Y, Yoshida M, Takahashi K, Sekizuka T, Takeuchi F, Kuroda M, Nagai H, Hayashida K, Sugimoto C, Yamaguchi H. Protochlamydia induces apoptosis of human HEp-2 cells through mitochondrial dysfunction mediated by chlamydial protease-like activity factor. PLoS One 2013; 8:e56005. [PMID: 23409113 PMCID: PMC3569409 DOI: 10.1371/journal.pone.0056005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/04/2013] [Indexed: 11/22/2022] Open
Abstract
Obligate amoebal endosymbiotic bacterium Protochlamydia with ancestral pathogenic chlamydial features evolved to survive within protist hosts, such as Acanthamoba, 0.7–1.4 billion years ago, but not within vertebrates including humans. This observation raises the possibility that interactions between Protochlamydia and human cells may result in a novel cytopathic effect, leading to new insights into host-parasite relationships. Previously, we reported that Protochlamydia induces apoptosis of the immortalized human cell line, HEp-2. In this study, we attempted to elucidate the molecular mechanism underlying this apoptosis. We first confirmed that, upon stimulation with the bacteria, poly (ADP-ribose) polymerase (PARP) was cleaved at an early stage in HEp-2 cells, which was dependent on the amount of bacteria. A pan-caspase inhibitor and both caspase-3 and -9 inhibitors similarly inhibited the apoptosis of HEp-2 cells. A decrease of the mitochondrial membrane potential was also confirmed. Furthermore, lactacystin, an inhibitor of chlamydial protease-like activity factor (CPAF), blocked the apoptosis. Cytochalasin D also inhibited the apoptosis, which was dependent on the drug concentration, indicating that bacterial entry into cells was required to induce apoptosis. Interestingly, Yersinia type III inhibitors (ME0052, ME0053, and ME0054) did not have any effect on the apoptosis. We also confirmed that the Protochlamydia used in this study possessed a homologue of the cpaf gene and that two critical residues, histidine-101 and serine-499 of C. trachomatis CPAF in the active center, were conserved. Thus, our results indicate that after entry, Protochlamydia-secreted CPAF induces mitochondrial dysfunction with a decrease of the membrane potential, followed by caspase-9, caspase-3 and PARP cleavages for apoptosis. More interestingly, because C. trachomatis infection can block the apoptosis, our finding implies unique features of CPAF between pathogenic and primitive chlamydiae.
Collapse
Affiliation(s)
- Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shinji Nakamura
- Division of Biomedical Imaging Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Ito
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomohiro Yamazaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kasumi Ishida
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiro Hayashi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mitsutaka Yoshida
- Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaori Takahashi
- Division of Ultrastructural Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Fumihiko Takeuchi
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Nagai
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kyoko Hayashida
- Research Center for Zoonosis Control, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Chihiro Sugimoto
- Research Center for Zoonosis Control, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
49
|
Choroszy-Krol I, Frej-Madrzak M, Jama-Kmiecik A, Sarowska J, Serek P, Pirogowicz I, Nittner-Marszalska M. Detection of Chlamydophila Pneumoniae Antigens in Patients with Chronic Cough. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 788:47-50. [DOI: 10.1007/978-94-007-6627-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Maier CJ, Maier RH, Virok DP, Maass M, Hintner H, Bauer JW, Onder K. Construction of a highly flexible and comprehensive gene collection representing the ORFeome of the human pathogen Chlamydia pneumoniae. BMC Genomics 2012; 13:632. [PMID: 23157390 PMCID: PMC3534531 DOI: 10.1186/1471-2164-13-632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/11/2012] [Indexed: 12/02/2022] Open
Abstract
Background The Gram-negative bacterium Chlamydia pneumoniae (Cpn) is the leading intracellular human pathogen responsible for respiratory infections such as pneumonia and bronchitis. Basic and applied research in pathogen biology, especially the elaboration of new mechanism-based anti-pathogen strategies, target discovery and drug development, rely heavily on the availability of the entire set of pathogen open reading frames, the ORFeome. The ORFeome of Cpn will enable genome- and proteome-wide systematic analysis of Cpn, which will improve our understanding of the molecular networks and mechanisms underlying and governing its pathogenesis. Results Here we report the construction of a comprehensive gene collection covering 98.5% of the 1052 predicted and verified ORFs of Cpn (Chlamydia pneumoniae strain CWL029) in Gateway® ‘entry’ vectors. Based on genomic DNA isolated from the vascular chlamydial strain CV-6, we constructed an ORFeome library that contains 869 unique Gateway® entry clones (83% coverage) and an additional 168 PCR-verified ‘pooled’ entry clones, reaching an overall coverage of ~98.5% of the predicted CWL029 ORFs. The high quality of the ORFeome library was verified by PCR-gel electrophoresis and DNA sequencing, and its functionality was demonstrated by expressing panels of recombinant proteins in Escherichia coli and by genome-wide protein interaction analysis for a test set of three Cpn virulence factors in a yeast 2-hybrid system. The ORFeome is available in different configurations of resource stocks, PCR-products, purified plasmid DNA, and living cultures of E. coli harboring the desired entry clone or pooled entry clones. All resources are available in 96-well microtiterplates. Conclusion This first ORFeome library for Cpn provides an essential new tool for this important pathogen. The high coverage of entry clones will enable a systems biology approach for Cpn or host–pathogen analysis. The high yield of recombinant proteins and the promising interactors for Cpn virulence factors described here demonstrate the possibilities for proteome-wide studies.
Collapse
Affiliation(s)
- Christina J Maier
- Department of Dermatology, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|