1
|
Ma J, Dai J, Cao C, Su L, Cao M, He Y, Li M, Zhang Z, Chen J, Cui S, Yang B. Prevalence, serotype, antimicrobial susceptibility, contamination factors, and control methods of Salmonella spp. in retail fresh fruits and vegetables: A systematic review and meta-analysis. Compr Rev Food Sci Food Saf 2024; 23:e13407. [PMID: 39030802 DOI: 10.1111/1541-4337.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 06/22/2024] [Indexed: 07/22/2024]
Abstract
This research presents a comprehensive review of Salmonella presence in retail fresh fruits and vegetables from 2010 to 2023, utilizing data from recognized sources such as PubMed, Scopus, and Web of Science. The study incorporates a meta-analysis of prevalence, serovar distribution, antimicrobial susceptibility, and antimicrobial resistance genes (ARGs). Additionally, it scrutinizes the heterogeneous sources across various food categories and geographical regions The findings show a pooled prevalence of 2.90% (95% CI: 0.0180-0.0430), with an increase from 4.63% in 2010 to 5.32% in 2022. Dominant serovars include S. Typhimurium (29.14%, 95% CI: 0.0202-0.6571) and S. Enteritidis (21.06%, 95% CI: 0.0181-0.4872). High resistance rates were noted for antimicrobials like erythromycin (60.70%, 95% CI: 0.0000-1.0000) and amoxicillin (39.92%, 95% CI: 0.0589-0.8020). The most prevalent ARGs were blaTEM (80.23%, 95% CI: 0.5736-0.9692) and parC mutation (66.67%, 95% CI: 0.3213-0.9429). Factors such as pH, water activity, and nutrient content, along with external factors like the quality of irrigation water and prevailing climatic conditions, have significant implications on Salmonella contamination. Nonthermal sterilization technologies, encompassing chlorine dioxide, ozone, and ultraviolet light, are emphasized as efficacious measures to control Salmonella. This review stresses the imperative need to bolster prevention strategies and control measures against Salmonella in retail fresh fruits and vegetables to alleviate related food safety risks.
Collapse
Affiliation(s)
- Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zengfeng Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Shi H, Li C, Lu H, Zhu J, Tian S. Synergistic effect of electrolyzed water generated by sodium chloride combined with dimethyl dicarbonate for inactivation of Listeria monocytogenes on lettuce. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7905-7913. [PMID: 37490703 DOI: 10.1002/jsfa.12884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/11/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Electrolyzed water (EW) is recognized as an effective way to control and reduce pathogens in vegetables. However, the disinfection efficacy of EW alone is limited. In this work, the bactericidal activity and biofilm removal capability of EW, generated by adding NaCl to a portable EW generator, were investigated with special reference to Listeria monocytogenes. Furthermore, the impact of EW in combination with dimethyl dicarbonate (DMDC) in reducing the microbial load and improving the overall quality of lettuce during refrigerated storage was evaluated. RESULTS EW with 0.3% NaCl (SEW) had the highest bactericidal activity against L. monocytogenes. The pathogen treated with SEW exhibited lower superoxide dismutase activity and more leakage of proteins and nucleic acids than in the case of EW. Furthermore, the use of SEW resulted in changes in the cell permeability and morphology of L. monocytogenes. A decrease in adhesion and collapse of the biofilm architecture were also observed, indicating that SEW was more effective for inactivating L. monocytogenes cells compared to EW. For untreated lettuce, the populations of the total plate count and inoculated L. monocytogenes decreased by 2.47 and 2.35 log CFU g-1 , respectively, after the combined SEW/DMDC treatment for 3 min. The use of SEW alone or combined with DMDC did not negatively impact the lettuce color values, titratable acid, ascorbic acid and soluble solids compared to the control group. CONCLUSION SEW in combination with DMDC can be used as a novel and potentially effective disinfection strategy for ensuring the safety of vegetable consumption. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Honghui Shi
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Chunliu Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Haixia Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Shiyi Tian
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| |
Collapse
|
3
|
Chen Q, Zhou Y, Yun X, Zhao N, Bu H, Dong T. Bactericidal Efficacy and Mechanisms of Non-Electrolytic Slightly Acidic Hypochlorous Water on Pseudomonas fragi and Pseudomonas fluorescens. Foods 2023; 12:3980. [PMID: 37959099 PMCID: PMC10647583 DOI: 10.3390/foods12213980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 11/15/2023] Open
Abstract
Chilled pork is frequently contaminated with Pseudomonas fragi and Pseudomonas fluorescens. In this study, the bactericidal efficacy and mechanisms of non-electrolytic slightly acidic hypochlorous water (NE-SAHW) against two strains of these two species were evaluated. The results showed that the antibacterial efficacy of NE-SAHW was positively correlated with the concentration level of NE-SAHW and negatively correlated with the initial populations of the strains. The strains of small populations were completely inhibited when provided with each level of NE-SAHW. The killed cells of P. fragi were 0.94, 1.39, 4.02, and 5.60 log10 CFU/mL, respectively, and of P. fluorescens they were 1.21, 1.52, 4.14, and 5.74 log10 CFU/mL, respectively, when the initial populations of the strains were at high levels (about 7 log10 CFU/mL). Both strains were completely killed within 12 s with the available chlorine concentration (ACC) of 50 mg/L of NE-SAHW. Morphological changes in both cells were observed by using a Scanning Electron Microscope (SEM) and it was discovered that the cell membranes were damaged, which led to the leakage of the intracellular substances, including K+, nucleic acid, and protein. In terms of the Fourier Transform Infrared Spectroscopy (FTIR) results, NE-SAHW destroyed the structures of membrane proteins and cell structure proteins, and influenced the composition of polysaccharides. The bacteria were definitely dead after treatment by NE-SAHW compared to the control according to the results of flow cytometry. These results demonstrated the potential bactericidal property of NE-SAHW when applied to the meat and other food sterilization industries.
Collapse
Affiliation(s)
- Qianru Chen
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Q.C.); (Y.Z.); (X.Y.)
| | - Yanfang Zhou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Q.C.); (Y.Z.); (X.Y.)
| | - Xueyan Yun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Q.C.); (Y.Z.); (X.Y.)
| | - Namula Zhao
- Shanghai Wanlay Environmental Technology Co., Ltd., Shanghai 200129, China;
| | - Hongyu Bu
- Inner Mongolia Institute for Drug Control, West Taoli Street, Hohhot 010020, China;
| | - Tungalag Dong
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (Q.C.); (Y.Z.); (X.Y.)
| |
Collapse
|
4
|
Yang G, Xu J, Xu Y, Guan X, Ramaswamy HS, Lyng JG, Li R, Wang S. Recent developments in applications of physical fields for microbial decontamination and enhancing nutritional properties of germinated edible seeds and sprouts: a review. Crit Rev Food Sci Nutr 2023:1-32. [PMID: 37712259 DOI: 10.1080/10408398.2023.2255671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Germinated edible seeds and sprouts have attracted consumers because of their nutritional values and health benefits. To ensure the microbial safety of the seed and sprout, emerging processing methods involving physical fields (PFs), having the characteristics of high efficiency and environmental safety, are increasingly proposed as effective decontamination processing technologies. This review summarizes recent progress on the application of PFs to germinating edible seeds, including their impact on microbial decontamination and nutritional quality and the associated influencing mechanisms in germination. The effectiveness, application scope, and limitation of the various physical techniques, including ultrasound, microwave, radio frequency, infrared heating, irradiation, pulsed light, plasma, and high-pressure processing, are symmetrically reviewed. Good application potential for improving seed germination and sprout growth is also described for promoting the accumulation of bioactive compounds in sprouts, and subsequently enhancing the antioxidant capacity under favorable PFs processing conditions. Moreover, the challenges and future directions of PFs in the application to germinated edible seeds are finally proposed. This review also attempts to provide an in-depth understanding of the effects of PFs on microbial safety and changes in nutritional properties of germinating edible seeds and a theoretical reference for the future development of PFs in processing safe sprouted seeds.
Collapse
Affiliation(s)
- Gaoji Yang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Juanjuan Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanmei Xu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangyu Guan
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Hosahalli S Ramaswamy
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, Canada
| | - James G Lyng
- Institute of Food and Health, University College Dublin, Belfield, Ireland
| | - Rui Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, China
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, USA
| |
Collapse
|
5
|
Li C, Sun W, Liu S, Pan C, Wang D, Feng Y, Cen J, Chen S. Efficient aluminum removal and microorganism inhibition in ready-to-eat jellyfish by slightly acidic electrolyzed water. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
Seed Disinfestation Practices to Control Seed-Borne Fungi and Bacteria in Home Production of Sprouts. Foods 2023; 12:foods12040747. [PMID: 36832822 PMCID: PMC9955435 DOI: 10.3390/foods12040747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Concern over microbial contamination limits the adoption of home production of sprouts as a nutritious and sustainable food. Simple, accessible approaches to seed disinfection could support safe home seed sprouting. Here, we quantify bacterial and fungal contamination of seeds of 14 plant cultivars sold for home sprout production and test a range of chemical and physical methods for seed disinfestation appropriate for home use. Most seeds are contaminated with a variety of bacteria and fungi, and those microbes are usually limited to the seed surface. Heat treatments are not effective for seed disinfection because the high temperatures needed to effectively reduce microbial contamination also reduce seed germination. Two chlorine-based chemical disinfectants-dilute household bleach (0.6% sodium hypochlorite) and freshly generated hypochlorous acid (800 ppm chlorine)-were the most effective disinfection agents tested (up to a 5-log reduction in bacteria) that also did not harm seed germination.
Collapse
|
7
|
Hu M, Dong Q, Liu Y, Sun T, Gu M, Zhu H, Xia X, Li Z, Wang X, Ma Y, Yang S, Qin X. A Meta-Analysis and Systematic Review of Listeria monocytogenes Response to Sanitizer Treatments. Foods 2022; 12:foods12010154. [PMID: 36613373 PMCID: PMC9818549 DOI: 10.3390/foods12010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous organism that can be found in food-related environments, and sanitizers commonly prevent and control it. The aim of this study is to perform a meta-analysis of L. monocytogenes response to sanitizer treatments. According to the principle of systematic review, we extracted 896 records on the mean log-reduction of L. monocytogenes from 84 publications as the dataset for this study. We applied a mixed-effects model to describe L. monocytogenes response to sanitizer treatment by considering sanitizer type, matrix type, biofilm status, sanitizer concentration, treatment time, and temperature. Based on the established model, we compared the response of L. monocytogenes under different hypothetical conditions using forest plots. The results showed that environmental factors (i.e., sanitizer concentration, temperature, and treatment time) affected the average log-reduction of L. monocytogenes (p < 0.05). L. monocytogenes generally exhibited strong resistance to citric acid and sodium hypochlorite but had low resistance to electrolyzed water. The planktonic cells of L. monocytogenes were less resistant to peracetic acid and sodium hypochlorite than the adherent and biofilm cells. Additionally, the physical and chemical properties of the contaminated or inoculated matrix or surface also influenced the sanitizer effectiveness. This review may contribute to increasing our knowledge of L. monocytogenes resistance to sanitizers and raising awareness of appropriate safety precautions.
Collapse
Affiliation(s)
- Minmin Hu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence:
| | - Tianmei Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mingliang Gu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Huajian Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuo Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
8
|
Kaur K, Pandiselvam R, Kothakota A, Padma Ishwarya S, Zalpouri R, Mahanti NK. Impact of ozone treatment on food polyphenols – A comprehensive review. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Anjali KU, Reshma C, Sruthi NU, Pandiselvam R, Kothakota A, Kumar M, Siliveru K, Marszałek K, Mousavi Khaneghah A. Influence of ozone treatment on functional and rheological characteristics of food products: an updated review. Crit Rev Food Sci Nutr 2022; 64:3687-3701. [PMID: 36268992 DOI: 10.1080/10408398.2022.2134292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this milieu, ozone technology has emerged as an avant-garde non-thermal mode of disinfection with potential applications in the food industry. This eco-friendly technology has a comprehendible adeptness in replacing alternative chemical sanitizers and is recognized as a generally safe disinfectant for fruits and vegetables. Several researchers have been focusing on the biochemical impacts of ozone on different quantitative and qualitative aspects of fruits and vegetables. A collection of those works is presented in this review highlighting the effect of ozone on the functional, antioxidant, and rheological properties of food. This can be a benevolent tool for discovering the processing states of ozone applications and ensuing influence on safety and quality attributes of previously studied foods and opening further research areas. It extends shelf life and never leaves any harmful residues on the product since it decomposes to form oxygen. It was seen that the impact on a specific property of food was dependent on the ozone concentration and treatment time, and the adverse effects of ozone exposure can be alleviated once the processing conditions are optimized. The present review can be used as a baseline for designing different food processing operations involving ozone.
Collapse
Affiliation(s)
- K U Anjali
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - C Reshma
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - N U Sruthi
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - R Pandiselvam
- Physiology, Biochemistry, and Post-harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Kaliramesh Siliveru
- Department of Grain Science & Industry, Kansas State University, Manhattan, Kansas, USA
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
10
|
Yan P, Jo HY, Chelliah R, Jo KH, Woo NC, Wook MS, Oh DH. Optimization and Effect of Water Hardness for the Production of Slightly Acidic Electrolyzed Water on Sanitization Efficacy. Front Microbiol 2022; 13:816671. [PMID: 35308354 PMCID: PMC8924475 DOI: 10.3389/fmicb.2022.816671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Slightly acidic electrolyzed water (SAEW) has been recently proposed as a novel promising sanitizer and cleaner in the agricultural and food industries. However, several factors, including water hardness, were considered to strongly affect the physical properties and sanitization efficacy of SAEW. To study the effect of water hardness on the SAEW production, we evaluated the production properties and sanitization effect of SAEW, which was generated from water sources in 16 representatively geographical locations of South Korea. The results showed that the hardness of water sources from Kangwon-do, Jeollanam-do, and Daegu was 22-41 ppm; that from Busan, Gyeongnam-do, Gwangju Bukgu was 80-443 ppm, and that from seven other locations was 41-79 ppm. SAEW is produced from water hardness less than 50 ppm and greater than 80 ppm was beyond the accepted pH range (5.0-6.5). Notably, high-hardness water (>80 ppm) containing 5% HCl could be used to produce SAEW with accepted pH. The SAEW generated from low-hardness water with additions of 2% HCl and 2 M NaCl at 7 A showed accepted pH and higher germicidal effect. Furthermore, SAEW with the available chlorine concentration of 27-41 mg/L for 1 min was sufficient to completely inactivate non-spore-forming foodborne pathogens. Sanitization efficacy was not markedly affected by storage conditions for SAEW at 40 ppm. Our results demonstrated that the degree of water hardness is an important factor in the production of SAEW, which would provide a foundation for commercial application of SAEW.
Collapse
Affiliation(s)
- Pianpian Yan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| | | | - Ramachandran Chelliah
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| | - Kyoung Hee Jo
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| | - Nam Chan Woo
- Seoulin Bioscience Company, Seongnam-si, South Korea
| | | | - Deog Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| |
Collapse
|
11
|
Sun Y, Wu Z, Zhang Y, Wang J. Use of aqueous ozone rinsing to improve the disinfection efficacy and shorten the processing time of ultrasound-assisted washing of fresh produce. ULTRASONICS SONOCHEMISTRY 2022; 83:105931. [PMID: 35092941 PMCID: PMC8801763 DOI: 10.1016/j.ultsonch.2022.105931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 05/16/2023]
Abstract
In minimal processing industry, chlorine is widely used in the disinfection process and ultrasound (US) increases the disinfection efficacy of chlorine and reduces the cross-contamination incidence during washing. Tap water (TW), which has no disinfection effect, is generally used to rinse off sanitizer residues on the surface of disinfected fresh-cut vegetables. In this study, aqueous ozone (AO), a low-cost and residue-free sanitizer, was used to replace TW rinsing in combination with US (28 kHz)-chlorine (free chlorine [FC] at 10 ppm, a concentration recommended for industrial use) for the disinfection of fresh-cut lettuce as a model. US-chlorine (40 s) + 2.0 ppm AO (60 s) treatment resulted in browning spots on lettuce surface at the end of storage. In contrast, US-chlorine (40 s) + 1.0 ppm AO (60 s) did not lead to deterioration of the sensory quality (sensory crispness, color, and flavor) and a change in total color difference, and the activities of browning-related enzymes were significantly lower. Moreover, US-chlorine (40 s) + 1.0 ppm of AO (60 s) treatment led to significantly lower counts of Escherichia coli O157:H7, Salmonella Typhimurium, aerobic mesophilic (AMC), and molds and yeasts (M&Y) on days 0-7 than US-chlorine (60 s) + TW (60 s) and single 1.0 ppm AO (120 s) treatments, suggesting that AO provided an additional disinfection effect over TW, while reducing the overall processing time by 20 s. Cell membrane permeability analysis (alkaline phosphatase, protein, nucleotide, and adenosine triphosphate leakage) showed that the combination with 1.0 ppm AO caused more severe cell membrane damage in E. coli O157:H7 and S. Typhimurium, explaining the higher disinfection efficacy. 16S rRNA sequencing revealed that following US-chlorine (40 s) + 1.0 ppm of AO (60 s) treatment, Massilia and Acinetobacter had higher relative abundances (RAs) on day 7 than after US-chlorine (60 s) + TW (60 s) treatment, whereas the RAs of Escherichia-Shigella was significantly lower, indicating that the former treatment has a superior capacity in maintaining a stable microbial composition. This explains from an ecological point of view why US-chlorine (40 s) + 1.0 ppm of AO (60 s) led to the lowest AMC and M&Y counts during storage. The study results provide evidence that AO has potential as an alternative to TW rinsing to increase the disinfection efficacy of US-chlorine.
Collapse
Affiliation(s)
- Yeting Sun
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Yangyang Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| |
Collapse
|
12
|
Wang J, Huang K, Wu Z, Yu Y. Effects of ultrasound-assisted low-concentration chlorine washing on ready-to-eat winter jujube (Zizyphus jujuba Mill. cv. Dongzao): Cross-contamination prevention, decontamination efficacy, and fruit quality. ULTRASONICS SONOCHEMISTRY 2022; 82:105905. [PMID: 34974393 PMCID: PMC8799748 DOI: 10.1016/j.ultsonch.2021.105905] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/28/2021] [Indexed: 05/09/2023]
Abstract
Wash water is circulated for use in the minimal processing industry, and inefficient disinfection methods can lead to pathogen cross-contamination. Moreover, few disinfection strategies are available for ready-to-eat fruits that do not need to be cut. In this study, the use of chlorine and ultrasound, two low-cost disinfection methods, were evaluated to disinfect winter jujube, a delicious, nutritious, and widely sold fruit in China. Ultrasound treatment (28 kHz) alone could not decrease the cross-contamination incidence of Escherichia coli O157:H7, non-O157 E. coli, and Salmonella Typhimurium, and free chlorine treatment at 10 ppm decreased the incidence from 55.00% to 5.00% for E. coli O157:H7, 65.00% to 6.67% for non-157 E. coli, and 70.00% to 6.67% for S. Typhimurium. The cross-contamination incidence was completely reduced (pathogens were not detected in sample) when the treatments were combined. The counts of aerobic mesophiles, aerobic psychrophiles, molds, yeasts, and three pathogens in the group subjected to combination treatment (28 kHz ultrasound + 10 ppm free chlorine) were significantly lower than those in the control, chlorine-treated, and ultrasound-treated groups during storage (0-7 d at 4 °C). Analysis of weight loss, sensory quality (crispness, color, and flavor), instrument color (a*/b*), soluble matter contents (total soluble solids, reducing sugar, total soluble sugar, and titratable acid), and nutritional properties (ascorbic acid and polyphenolic contents) indicated that treatment with ultrasound, chlorine, and their combination did not lead to additional quality loss compared with properties of the control. Additionally, the activities of phenylalanine ammonia-lyase and polyphenol oxidase were not significantly increased in the treatment group, consistent with the quality analysis results. These findings provide insights into disinfection of uncut ready-to-eat fruits using a minimum dose of disinfectant for cross-contamination prevention under ultrasonication. The use of ultrasound alone to decontaminate fresh produce is accompanied by a high risk of pathogen contamination, and the use of sanitizers to decrease cross-contamination incidence is recommended.
Collapse
Affiliation(s)
- Jiayi Wang
- Key Laboratory of New Eco-liquor-making Technology and Application of Hunan Universities, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Kun Huang
- Key Laboratory of New Eco-liquor-making Technology and Application of Hunan Universities, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| | - Yougui Yu
- Key Laboratory of New Eco-liquor-making Technology and Application of Hunan Universities, College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| |
Collapse
|
13
|
Research Trends on the Application of Electrolyzed Water in Food Preservation and Sanitation. Processes (Basel) 2021. [DOI: 10.3390/pr9122240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Electrolyzed water (EW) has been proposed as a novel promising sanitizer and cleaner in recent years. It is an effective antimicrobial and antibiofilm agent that has several advantages of being on the spot, environmentally friendly, cheap, and safe for human beings. Therefore, EW has been applied widely in various fields, including agriculture, food sanitation, livestock management, medical disinfection, clinical, and other fields using antibacterial technology. Currently, EW has potential significance for high-risk settings in hospitals and other clinical facilities. The research focus has been shifted toward the application of slightly acidic EW as more effective with some supplemental chemical and physical treatment methods such as ultraviolet radiations and ultrasound. This review article summarizes the possible mechanism of action and highlights the latest research studies in antimicrobial applications.
Collapse
|
14
|
Edible Plant Sprouts: Health Benefits, Trends, and Opportunities for Novel Exploration. Nutrients 2021; 13:nu13082882. [PMID: 34445042 PMCID: PMC8398379 DOI: 10.3390/nu13082882] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
The consumption of plant sprouts as part of human day-to-day diets is gradually increasing, and their health benefit is attracting interest across multiple disciplines. The purpose of this review was to (a) critically evaluate the phytochemicals in selected sprouts (alfalfa, buckwheat, broccoli, and red cabbage), (b) describe the health benefits of sprouts, (c) assess the recent advances in sprout production, (d) rigorously evaluate their safety, and (e) suggest directions that merit special consideration for further novel research on sprouts. Young shoots are characterized by high levels of health-benefitting phytochemicals. Their utility as functional ingredients have been extensively described. Tremendous advances in the production and safety of sprouts have been made over the recent past and numerous reports have appeared in mainstream scientific journals describing their nutritional and medicinal properties. However, subjects such as application of sprouted seed flours in processed products, utilizing sprouts as leads in the synthesis of nanoparticles, and assessing the dynamics of a relationship between sprouts and gut health require special attention for future clinical exploration. Sprouting is an effective strategy allowing manipulation of phytochemicals in seeds to improve their health benefits.
Collapse
|
15
|
Wang J, Zhang Y, Yu Y, Wu Z, Wang H. Combination of ozone and ultrasonic-assisted aerosolization sanitizer as a sanitizing process to disinfect fresh-cut lettuce. ULTRASONICS SONOCHEMISTRY 2021; 76:105622. [PMID: 34126525 PMCID: PMC8202344 DOI: 10.1016/j.ultsonch.2021.105622] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/09/2021] [Accepted: 06/04/2021] [Indexed: 05/24/2023]
Abstract
Reduction of sanitizer dosage and development of non-immersion disinfection methods have become major focuses of research. Here, we examined the disinfection efficacy of combining gaseous ozone (4 and 8 ppm) with aerosolized oxidizing sanitizer [sodium hypochlorite (SH, 100 and 200 ppm)] and aerosolized organic acid [acetic acid (AA, 1% and 2%) and lactic acid (LA, 1% and 2%)]. Notably, 1% AA and 4 ppm gaseous ozone were ineffective for disinfecting Salmonella Typhimurium, and treatment with 1% AA + 8 ppm ozone caused browning of lettuce leaves and stimulated increases in aerobic mesophilic count (AMC), aerobic psychrotrophic count (APC), S. Typhimurium, and Escherichia coli O157:H7. Treatment with 2% LA + 8 ppm ozone resulted in the lowest S. Typhimurium, E. coli O157:H7, Listeria monocytogenes, AMC, APC, and molds and yeasts during storage (0-7 days at 4 °C). Quality analysis indicates that LA + 8 ppm ozone and SH + 8 ppm ozone did not negatively affect L*, a*, b*, polyphenolic content, weight loss, and sensory properties; however, the levels of two individual phenolic compounds (3,4-dihydroxybenzoic acid and vanillin), responsible for phenylpropanoid synthesis, were significantly increased after treatment with 2% LA + 8 ppm ozone. These findings provided insights into the use of LA combined with gaseous ozone for application in disinfecting fresh produce.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Yangyang Zhang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Yougui Yu
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | | |
Collapse
|
16
|
Kim GH, Lee CL, Yoon KS. Combined Hurdle Technologies Using UVC Waterproof LED for Inactivating Foodborne Pathogens on Fresh-Cut Fruits. Foods 2021; 10:foods10081712. [PMID: 34441489 PMCID: PMC8394945 DOI: 10.3390/foods10081712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
This study investigated the combined bactericidal efficacy of slightly acidic electrolyzed water (SAEW), fumaric acid (FA), and ultravioletC waterproof light-emitting diodes (UVC W-LED) for the control of Staphylococcus aureus and Listeria monocytogenes in fresh-cut fruits. Cherry tomato, grape, apple, and pineapple were inoculated with S. aureus and L. monocytogenes and then washed with 30 ppm SAEW containing 0.5% FA in a container equipped with two UVC W-LEDs. Behaviors of S. aureus and L. monocytogenes and quality properties of fresh-cut fruits were monitored after storage at 10 °C and 15 °C for 7 days. The most effective reductions of S. aureus (1.65 log CFU/g) and L. monocytogenes (2.63 log CFU/g) were observed in the group with the combined treatment of SAEW + FA and UVC W-LED. At 10 °C and 15 °C, populations of both pathogens in the combined treatment group were lower than those in a control. Combined treatment showed no negative effect on moisture retention in the fruit. Moreover, visual changes were less significant than in the control. These results demonstrate that the combined treatment can improve the microbial safety and the quality of fruits. If it is properly used in the sanitizing step of the fresh produce industry, a positive effect can be expected.
Collapse
|
17
|
Rahman MM, Azad MOK, Uddain J, Adnan M, Ali MC, Al-Mujahidy SKMJ, Roni MZK, Rahman MS, Islam MJ, Rahman MH, Choi KY, Naznin MT. Microbial Quality Assessment and Efficacy of Low-Cost Disinfectants on Fresh Fruits and Vegetables Collected from Urban Areas of Dhaka, Bangladesh. Foods 2021; 10:1325. [PMID: 34207589 PMCID: PMC8227336 DOI: 10.3390/foods10061325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/21/2023] Open
Abstract
This study aimed to examine the total viable bacteria (TVBC); total coliform (TCC); fecal coliform (TFC); pathogenic Pseudomonas spp., Staphylococcus aureus, and total fungi (TF); and the effect of different low-cost disinfectants (sterile water, salt water, blanched, and vinegar) in decontamination of 12 types of fruit and 10 types of vegetables. In fruit samples, the lowest TVBC was enumerated at 3.18 ± 0.27 log CFU/g in Indian gooseberry and the highest at 6.47 ± 0.68 log CFU/g in guava. Staphylococci (2.04 ± 0.53-5.10 ± 0.02 log CFU/g), Pseudomonas (1.88 ± 0.03-5.38 ± 0.08 log CFU/g), and total fungi (2.60 ± 0.18-7.50 ± 0.15 log CFU/g) were found in all fruit samples; however, no Salmonella was detected in fruit samples. Similarly, the lowest TVBC recorded 5.67± 0.49 log CFU/g in cucumber and the highest 7.37 ± 0.06 log CFU/g in yard long bean. The Staphylococci (3.48 ± 0.13-4.81 ± 0.16 log CFU/g), Pseudomonas (3.57± 0.21- 4.75 ± 0.23 log CFU/g), TCC (1.85 ± 1.11-56.50 ± 37.14 MPN/g), TFC (1.76 ± 0.87- 3.78 ± 3.76 MPN/g), and TF (3.79 ± 0.18-4.40 ± 0.38 log CFU/g) were recorded in all vegetables samples, but no Salmonella was detected in yard long bean, pointed gourd, carrot, tomato, cucumber, or brinjal. However, vinegar showed the highest microbial load reduction of selected fruit and vegetables among the different treatments. With vinegar treatment, the highest reduction of TVBC (1.61-log) and TF (2.54-log) was observed for fruits, and TVBC (2.31-log) and TF (2.41-log) for vegetables. All the disinfectant treatments resulted in significant (p < 0.01) bacterial load reduction compared to control for the studied fruits and vegetable samples.
Collapse
Affiliation(s)
- Md. Mafizur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (M.M.R.); (M.C.A.); (S.M.J.A.-M.)
| | - Md. Obyedul Kalam Azad
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.O.K.A.); (M.A.); (M.J.I.); (M.H.R.)
| | - Jasim Uddain
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Md. Adnan
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.O.K.A.); (M.A.); (M.J.I.); (M.H.R.)
| | - Md. Chayan Ali
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (M.M.R.); (M.C.A.); (S.M.J.A.-M.)
| | - SK. Md. Jakaria Al-Mujahidy
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (M.M.R.); (M.C.A.); (S.M.J.A.-M.)
| | - Md. Zohurul Kadir Roni
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), 1091-1 Maezato-Kawarabaru, Ishigaki, Okinawa 907-0002, Japan;
| | - Mohammed Saifur Rahman
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 75007 Alnarp, Sweden;
| | - Md. Jahirul Islam
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.O.K.A.); (M.A.); (M.J.I.); (M.H.R.)
| | - Md. Hafizur Rahman
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.O.K.A.); (M.A.); (M.J.I.); (M.H.R.)
| | - Ki Young Choi
- Department of Controlled Agriculture, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Most Tahera Naznin
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 75007 Alnarp, Sweden;
| |
Collapse
|
18
|
Mir SA, Farooq S, Shah MA, Sofi SA, Dar B, Hamdani AM, Mousavi Khaneghah A. An overview of sprouts nutritional properties, pathogens and decontamination technologies. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110900] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Yan H, Cui Z, Manoli T, Zhang H. Recent advances in non-thermal disinfection technologies in the food industry. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Han Yan
- School of Food Science, Henan Institute of Science and Technology
| | - ZhenKun Cui
- School of Food Science, Henan Institute of Science and Technology
| | - Tatiana Manoli
- Faculty of Technology and Commodity Science of Food Products and Food Business, Odessa National Academy of Food Technologies
| | - Hao Zhang
- School of Food Science, Henan Institute of Science and Technology
| |
Collapse
|
20
|
Machado-Moreira B, Tiwari BK, Richards KG, Abram F, Burgess CM. Application of plasma activated water for decontamination of alfalfa and mung bean seeds. Food Microbiol 2020; 96:103708. [PMID: 33494890 DOI: 10.1016/j.fm.2020.103708] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Microbial contamination of fresh produce is a major public health concern, with the number of associated disease outbreaks increasing in recent years. The consumption of sprouted beans and seeds is of particular concern, as these foodstuffs are generally consumed raw, and are produced in conditions favourable for the growth of zoonotic pathogens, if present in seeds prior to sprouting or in irrigation water. This work aimed to evaluate the activity of plasma activated water (PAW) as a disinfecting agent for alfalfa (Medicago sativa) and mung bean (Vigna radiata) seeds, during seed soaking. Each seed type was inoculated with Escherichia coli O157, E. coli O104, Listeria monocytogenes or Salmonella Montevideo, and treated with PAW for different times. A combination of PAW and ultrasound treatment was also evaluated. The germination and growth rate of both seeds were assessed after PAW treatments. PAW was demonstrated to have disinfecting ability on sprouted seeds, with reductions of up to Log10 1.67 cfu/g in alfalfa seeds inoculated with E. coli O104, and a reduction of Log10 1.76 cfu/g for mung bean seeds inoculated with E. coli O157 observed. The germination and growth rate of alfalfa and mung bean sprouts were not affected by the PAW treatments. The combination of a PAW treatment and ultrasound resulted in increased antimicrobial activity, with a reduction of Log10 3.48 cfu/g of S. Montevideo in mung bean seeds observed. These results demonstrate the potential for PAW to be used for the inactivation of pathogenic microorganisms which may be present on sprouted seeds and beans, thereby providing greater assurance of produce safety.
Collapse
Affiliation(s)
- Bernardino Machado-Moreira
- Teagasc Food Research Centre, Ashtown, Dublin, Ireland; Functional Environmental Microbiology, National University of Ireland Galway, Galway, Ireland
| | | | - Karl G Richards
- Teagasc Johnstown Castle Environmental Research Centre, Wexford, Ireland
| | - Florence Abram
- Functional Environmental Microbiology, National University of Ireland Galway, Galway, Ireland
| | | |
Collapse
|
21
|
Nie M, Wu C, Xiao Y, Song J, Zhang Z, Li D, Liu C. Efficacy of aqueous ozone combined with sodium metasilicate on microbial load reduction of fresh-cut cabbage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1842446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Meimei Nie
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yadong Xiao
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Jiangfeng Song
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Zhongyuan Zhang
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Dajing Li
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Chunquan Liu
- Institute of Agro-product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
22
|
Mohammad Z, Kalbasi-Ashtari A, Riskowski G, Juneja V, Castillo A. Inactivation of Salmonella and Shiga toxin-producing Escherichia coli (STEC) from the surface of alfalfa seeds and sprouts by combined antimicrobial treatments using ozone and electrolyzed water. Food Res Int 2020; 136:109488. [PMID: 32846570 DOI: 10.1016/j.foodres.2020.109488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 01/24/2023]
Abstract
Individual chemical and non-chemical treatments have failed to disinfect alfalfa seeds and sprouts from pathogens thoroughly. This study investigated the disinfection of alfalfa seeds and sprouts using a procedure combining ozone with acidic (pH 3.0) electrolyzed water (AEW). Inoculated alfalfa seeds with a cocktail of 3 strains Salmonella and 3 strains of STEC were treated sequentially with aqueous ozone followed by AEW. Treatment started by immersing the samples into ozonated water (5 mg/L ozone) for 15 or 20 min with persistent oxygen feeding pressurized with 10 psi. The samples then were immersed in 1 L of AEW for 15 min. Salmonella and STEC were significantly (P < 0.05) reduced by 3.6 and 2.9 log CFU/g on seeds respectively, and by 3.1 and 3.0 log CFU/g reduction on sprouts. Significant differences (P < 0.05) were found in the magnitude of the log reduction between Salmonella and STEC on seeds and between seeds and sprouts. Using combined treatments showed no significant changes in the quality, including shelf life, weight, and color in sprouts as compared to controls. The findings suggest that the combination of ozone and AEW is effective in inactivation of Salmonella and STEC on alfalfa seeds and sprouts with no adverse effects on sprouts quality.
Collapse
Affiliation(s)
- Zahra Mohammad
- Department of Nutrition and Food Science, Texas A&M University, 373 Olsen Blvd, College Station, TX 77843, United States
| | - Ahmed Kalbasi-Ashtari
- Department of Biological and Agricultural Engineering, Texas A&M University, 333 Spence St, College Station, TX 77843, United States
| | - Gerald Riskowski
- Department of Biological and Agricultural Engineering, Texas A&M University, 333 Spence St, College Station, TX 77843, United States
| | - Vijay Juneja
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, United States
| | - Alejandro Castillo
- Department of Animal Sciences, Texas A&M University, 474 Olsen Blvd., College Station, TX 77845, United States.
| |
Collapse
|
23
|
Applications of Electrolyzed Water as a Sanitizer in the Food and Animal-By Products Industry. Processes (Basel) 2020. [DOI: 10.3390/pr8050534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Food demand is increasing every year and, usually animal-derived products are generated far from consumer-places. New technologies are being developed to preserve quality characteristics during processing and transportation. One of them is electrolyzed water (EW) that helps to avoid or decrease the development of foodborne pathogens, or losses by related bacteria. Initially, EW was used in ready-to-eat foods such as spinach, lettuce, strawberries, among others; however, its application in other products is under study. Every product has unique characteristics that require an optimized application of EW. Different sanitizers have been developed; unfortunately, they could have undesirable effects like deterioration of quality or alterations in sensory properties. Therefore, EW is gaining popularity in the food industry due to its characteristics: easy application and storage, no corrosion of work surfaces, absence of mucosal membrane irritation in workers handling food, and it is considered environmentally friendly. This review highlights the advantages of using EW in animal products like chicken, pork, beef, eggs and fish to preserve their safety and quality.
Collapse
|
24
|
|
25
|
Levario-Gómez A, Ávila-Sosa R, Gutiérrez-Méndez N, López-Malo A, Nevárez-Moorillón GV. Modeling the Combined Effect of pH, Protein Content, and Mexican Oregano Essential Oil Against Food Spoilage Molds. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
Effects of washing and packaging combined treatments on the quality of satsuma mandarins during storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Saraiva M, Moreira Filho A, Vasconcelos P, Nascimento P, Azevedo P, Freitas Neto O, Givisiez P, Gebreyes W, Oliveira C. Chemical treatment of poultry litter affects the conjugation of plasmid-mediated extended-spectrum beta-lactamase resistance genes in E. coli. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2019.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
28
|
Hussain MS, Kwon M, Park EJ, Seheli K, Huque R, Oh DH. Disinfection of Bacillus cereus biofilms on leafy green vegetables with slightly acidic electrolyzed water, ultrasound and mild heat. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Deng LZ, Mujumdar AS, Pan Z, Vidyarthi SK, Xu J, Zielinska M, Xiao HW. Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Crit Rev Food Sci Nutr 2019; 60:2481-2508. [PMID: 31389257 DOI: 10.1080/10408398.2019.1649633] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With a growing demand for safe, nutritious, and fresh-like produce, a number of disinfection technologies have been developed. This review comprehensively examines the working principles and applications of several emerging disinfection technologies. The chemical treatments, including chlorine dioxide, ozone, electrolyzed water, essential oils, high-pressure carbon dioxide, and organic acids, have been improved as alternatives to traditional disinfection methods to meet current safety standards. Non-thermal physical treatments, such as UV-light, pulsed light, ionizing radiation, high hydrostatic pressure, cold plasma, and high-intensity ultrasound, have shown significant advantages in improving microbial safety and maintaining the desirable quality of produce. However, using these disinfection technologies alone may not meet the requirement of food safety and high product quality. Several hurdle technologies have been developed, which achieved synergistic effects to maximize lethality against microorganisms and minimize deterioration of produce quality. The review also identifies further research opportunities for the cost-effective commercialization of these technologies.
Collapse
Affiliation(s)
- Li-Zhen Deng
- College of Engineering, China Agricultural University, Beijing, China.,Engineering Research Center for Modern Agricultural Equipment & Facilities, Ministry of Education, Beijing, China.,Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, USA
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, USA
| | | | - Jinwen Xu
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA, USA
| | - Magdalena Zielinska
- Department of Systems Engineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China.,Engineering Research Center for Modern Agricultural Equipment & Facilities, Ministry of Education, Beijing, China
| |
Collapse
|
30
|
Liang D, Wang Q, Zhao D, Han X, Hao J. Systematic application of slightly acidic electrolyzed water (SAEW) for natural microbial reduction of buckwheat sprouts. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
31
|
Xiang Q, Liu X, Liu S, Ma Y, Xu C, Bai Y. Effect of plasma-activated water on microbial quality and physicochemical characteristics of mung bean sprouts. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.11.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Inactivation kinetics of slightly acidic electrolyzed water combined with benzalkonium chloride and mild heat treatment on vegetative cells, spores, and biofilms of Bacillus cereus. Food Res Int 2019; 116:157-167. [DOI: 10.1016/j.foodres.2018.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/24/2018] [Accepted: 08/02/2018] [Indexed: 11/21/2022]
|
33
|
Kang IB, Kim DH, Jeong D, Park JH, Seo KH. Heat resistance of Salmonella Enteritidis under prolonged exposure to acid-salt combined stress and subsequent refrigeration. Int J Food Microbiol 2018; 285:165-172. [DOI: 10.1016/j.ijfoodmicro.2018.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/25/2018] [Accepted: 08/12/2018] [Indexed: 01/11/2023]
|
34
|
Maisanaba S, Guzmán-Guillén R, Valderrama R, Meca G, Font G, Jos Á, Cameán AM. Bioaccessibility and decomposition of cylindrospermopsin in vegetables matrices after the application of an in vitro digestion model. Food Chem Toxicol 2018; 120:164-171. [PMID: 29981788 DOI: 10.1016/j.fct.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/14/2018] [Accepted: 07/05/2018] [Indexed: 01/19/2023]
Abstract
Research on the human exposure to Cylindrospermopsin (CYN) via consumption of contaminated food is of great interest for risk assessment purposes. The aim of this work is to evaluate for the first time the CYN bioaccessibility in contaminated vegetables (uncooked lettuce and spinach, and boiled spinach) after an in vitro digestion model, including the salivar, gastric and duodenal phases and, colonic fermentation under lactic acid bacteria. The results obtained showed that the digestion processes are able to diminish CYN levels, mainly in the colonic phase, especially in combination with the boiling treatment, decreasing CYN levels in a significant way. Moreover, the potential decomposition products in a pure CYN solution and in CYN-contaminated vegetables were evaluated using UHPLC-MS/MS Orbitrap. Under the conditions assayed, only two diastereoisomers of the same fragment with m/z 292.09617 have been detected in all the analysed samples, with the exception of digested vegetables. Therefore, in terms of risk assessment, the digestion seems to play an important role in reducing the final bioaccesibility of CYN, and the consumption of cooked vegetables (spinach) would be safer in comparison to raw vegetables.
Collapse
Affiliation(s)
- Sara Maisanaba
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | | | - Rocío Valderrama
- Mass Spectrometry Facility, Centro de Investigacion Tecnologica e Investigacion (CITIUS), University of Sevilla, Spain
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Guillermina Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
35
|
Ngnitcho PFK, Tango CN, Khan I, Daliri EBM, Chellian R, Oh DH. The applicability of Weibull model for the kinetics inactivation of Listeria monocytogenes and Escherichia coli O157: H7 on soybean sprouts submitted to chemical sanitizers in combination with ultrasound at mild temperatures. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.01.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Prieto AI, Guzmán-Guillén R, Díez-Quijada L, Campos A, Vasconcelos V, Jos Á, Cameán AM. Validation of a Method for Cylindrospermopsin Determination in Vegetables: Application to Real Samples Such as Lettuce (Lactuca sativa L.). Toxins (Basel) 2018; 10:E63. [PMID: 29389882 PMCID: PMC5848164 DOI: 10.3390/toxins10020063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 01/08/2023] Open
Abstract
Reports on the occurrence of the cyanobacterial toxin cylindrospermopsin (CYN) have increased worldwide because of CYN toxic effects in humans and animals. If contaminated waters are used for plant irrigation, these could represent a possible CYN exposure route for humans. For the first time, a method employing solid phase extraction and quantification by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) of CYN was optimized in vegetables matrices such as lettuce (Lactuca sativa). The validated method showed a linear range, from 5 to 500 ng CYN g-1 of fresh weight (f.w.), and detection and quantitation limits (LOD and LOQ) of 0.22 and 0.42 ng CYN g-1 f.w., respectively. The mean recoveries ranged between 85 and 104%, and the intermediate precision from 12.7 to 14.7%. The method showed to be robust for the three different variables tested. Moreover, it was successfully applied to quantify CYN in edible lettuce leaves exposed to CYN-contaminated water (10 µg L-1), showing that the tolerable daily intake (TDI) in the case of CYN could be exceeded in elderly high consumers. The validated method showed good results in terms of sensitivity, precision, accuracy, and robustness for CYN determination in leaf vegetables such as lettuce. More studies are needed in order to prevent the risks associated with the consumption of CYN-contaminated vegetables.
Collapse
Affiliation(s)
- Ana I Prieto
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Remedios Guzmán-Guillén
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Alexandre Campos
- Interdisciplinary Centre of Marine and Environmental Research-CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research-CIIMAR/CIMAR, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4069-007 Porto, Portugal.
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| |
Collapse
|
37
|
Tango CN, Wei S, Khan I, Hussain MS, Kounkeu PFN, Park JH, Kim SH, Oh DH. Microbiological Quality and Safety of Fresh Fruits and Vegetables at Retail Levels in Korea. J Food Sci 2018; 83:386-392. [PMID: 29337344 DOI: 10.1111/1750-3841.13992] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/15/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
Abstract
The aim of this study was to evaluate the microbiological quality and safety of fresh produce at retail level in Korea in order to periodically update information and establish available risks associated with consumption of fresh fruits and vegetables. The samples from different markets located in 3 provinces of South Korea were collected. The protocol in the Korean Food Standards Codex was applied and generic Escherichia coli, coliforms, aerobic mesophilic bacteria (AMB), and yeast and mold (YM) in 360 packaged and unpackaged fresh fruits and vegetables were analyzed. Presence of pathogens was examined using real-time polymerase chain reaction (q-PCR) after enrichment of samples. For all, the microbial counts ranged from 1.7 to 10.6 log cfu/g for AMB, 2.2 to 7.9 log cfu/g for coliforms, and 5.5 to 7.9 log cfu/g for YM. Three lettuce samples were contaminated by E. coli with a bacterial load ranging from 2 to 4 log cfu/g. Salmonella spp. were not detected in any fresh produce. Listeria monocytogenes, E. coli O157:H7, and Staphylococcus aureus were found in 1 (0.6%), 3 (0.8%), and 5 (1.4%) fresh produce samples, respectively. Bacillus cereus (50.3%) and Clostridium perfringens (13.3%) had the highest prevalence. These results indicate the need for employing strict control measures and developing preventive strategies to improve the quality and safety of fresh produce in Korea.
Collapse
Affiliation(s)
- Charles Nkufi Tango
- Dept. of Food Science and Biotechnology, Coll. of Agriculture and Life Science, Kangwon National Univ., Hyoja 2 dong, Chunchon 200-701, Republic of Korea
- Dept. of Chemistry and Agricultural Industries, Faculty of Agronomy, Univ. of Kinshasa, P.O. Box 117 Kinshasa XI, D.R. Congo
| | - Shuai Wei
- Dept. of Food Science and Biotechnology, Coll. of Agriculture and Life Science, Kangwon National Univ., Hyoja 2 dong, Chunchon 200-701, Republic of Korea
| | - Imran Khan
- Dept. of Food Science and Biotechnology, Coll. of Agriculture and Life Science, Kangwon National Univ., Hyoja 2 dong, Chunchon 200-701, Republic of Korea
| | - Mohammad Shakhawat Hussain
- Dept. of Food Science and Biotechnology, Coll. of Agriculture and Life Science, Kangwon National Univ., Hyoja 2 dong, Chunchon 200-701, Republic of Korea
| | - Paul-François Ngnitcho Kounkeu
- Dept. of Food Science and Biotechnology, Coll. of Agriculture and Life Science, Kangwon National Univ., Hyoja 2 dong, Chunchon 200-701, Republic of Korea
| | - Joong-Hyun Park
- Dept. of Food Science and Biotechnology, Coll. of Agriculture and Life Science, Kangwon National Univ., Hyoja 2 dong, Chunchon 200-701, Republic of Korea
| | - Se-Hun Kim
- Dept. of Food Science and Biotechnology, Coll. of Agriculture and Life Science, Kangwon National Univ., Hyoja 2 dong, Chunchon 200-701, Republic of Korea
| | - Deog Hwan Oh
- Dept. of Food Science and Biotechnology, Coll. of Agriculture and Life Science, Kangwon National Univ., Hyoja 2 dong, Chunchon 200-701, Republic of Korea
| |
Collapse
|