1
|
Li X, Sha Y, Li S, Wang Z, Yang Y, Jiao T, Zhao S. Dietary resveratrol improves immunity and antioxidant defense in ewes by regulating the rumen microbiome and metabolome across different reproductive stages. Front Immunol 2024; 15:1462805. [PMID: 39464877 PMCID: PMC11502325 DOI: 10.3389/fimmu.2024.1462805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Resveratrol (Res), a natural plant antitoxin polyphenol, is widely used in animal husbandry due to its antioxidant and anti-inflammatory properties, and current research has focused on humans, sows, and female mice. This study aimed to analyze the effects of dietary Res supplementation in ewes on antioxidant activity, immune responses, hormone levels, rumen microbiota and metabolites across various reproductive stages (estrus, pregnancy, and lactation). Methods Twenty-four healthy ewe lambs (Hu sheep, 2 months old) with a similar body weight (BW) (mean: 21.79 ± 2.09 kg) were selected and randomly divided into two groups: the control group (Con) and the Res group (Res). The Res group received 10 mg/kg Res (based on BW) in addition to their basal diet. Results Res increased the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) in ewes at sexual maturity (p < 0.05). Additionally, Res supplementation induced significant increases in serum glutathione peroxidase (GSH-Px), IgG, FSH, and LH levels during estrus (p < 0.05); serum IgA, IgG and IgM during pregnancy and lactation (p < 0.05); and serum LH, glucose, GSH-Px, and catalase (CAT) levels during lactation (p < 0.05). Meanwhile, serum interleukin 1β (IL-1β) (p =0.005) and cholesterol levels (p = 0.041) during the lactation stage decreased following Res supplementation. Notably, colostrum IgA, IgG, and fat concentrations were significantly higher in the Res group than in the Con group (p < 0.05). Moreover, Res altered the rumen microbiota in ewes. Specifically, the relative abundance of Prevotella (p < 0.05) during pregnancy and Rikenellaceae_RC9_gut_group (p < 0.001) during lactation were significantly increased in ewes under Res treatment. The abundance of Rikenellaceae_RC9_gut_group was positively correlated with the levels of Ig A, Ig M, E2, FSH, LH, GSH-PX, and CAT. Additionally, Res altered the activity of metabolic pathways such as progesterone-mediated oocyte maturation, the estrogen signaling pathway, ovarian steroidogenesis, and the AMPK signaling pathway, and the levels of AICAR and 2-hydroxyestradiol metabolites, both during pregnancy and lactation. Discussion There findings show that Res can improve health, antioxidant status, and immune activity throughout the reproductive cycle in ewes by regulating rumen microorganisms and metabolites.
Collapse
Affiliation(s)
- Xiongxiong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Sha
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shuyan Li
- Major in Pratacultural Science of Gansu Agricultural University, Key Laboratory of Grass Ecosystem, Ministry of Education, Sino–US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, China
| | - Zhengwen Wang
- Major in Pratacultural Science of Gansu Agricultural University, Key Laboratory of Grass Ecosystem, Ministry of Education, Sino–US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, China
| | - Yanan Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ting Jiao
- Major in Pratacultural Science of Gansu Agricultural University, Key Laboratory of Grass Ecosystem, Ministry of Education, Sino–US Grassland Animal Husbandry Sustainable Development Research Center, Lanzhou, China
| | - Shengguo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
2
|
Monadhel H, Abbas A, Mohammed A. COVID-19 vaccinations and their side effects: a scoping systematic review. F1000Res 2024; 12:604. [PMID: 39512911 PMCID: PMC11541072 DOI: 10.12688/f1000research.134171.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction: The COVID-19 virus has impacted people worldwide, causing significant changes in their lifestyles. Since the emergence of the epidemic, attempts have begun to prepare a vaccine that can eliminate the virus and restore balance to life in the entire world. Over the past two years, countries and specialized companies have competed to obtain a license from the World Health Organization for the vaccines that were discovered. After the appearance of vaccines in the health community, comparisons and fears of their side effects began, but people don't get an answer to the question of which is the best vaccine. Methods: IEEE Xplore, ScienceDirect, the New England Journal of Medicine, Google Scholar, and PubMed databases were searched for literature on the COVID-19 vaccine and its side effects. we surveyed the literature on the COVID-19 vaccine's side effects and the sorts of side effects observed after vaccination. Depending on data from the literature, we compared these vaccines in terms of side effects, then we analyzed the gaps and obstacles of previous studies and made proposals to process these gaps in future studies. Results: Overall, 17 studies were included in this scoping systematic review as they fulfilled the criteria specified, the majority of which were cross-sectional and retrospective cross-sectional studies. Most of the side effects were mild, self-limiting, and common. Thus, they usually resolve within 1-3 days after vaccination. Factors associated with higher side effects included advanced age, allergic conditions, those taking other medications (particularly immunosuppressive ones), those with a history of type II diabetes, heart disease, hypertension, COVID-19 infection, and female sex. Our meta-analyses also found that mRNA vaccines looked to be more effective, while inactivated vaccinations had fewer side effects. Conclusion: This review shows that the COVID-19 vaccine is safe to administer and induces protection.
Collapse
Affiliation(s)
- Hind Monadhel
- Computer Science, University of Technology-Iraq, Baghdad, 10053, Iraq
| | - Ayad Abbas
- Computer Science, University of Technology-Iraq, Baghdad, 10053, Iraq
| | - Athraa Mohammed
- Computer Science, University of Technology-Iraq, Baghdad, 10053, Iraq
| |
Collapse
|
3
|
Gagliardo CM, Noto D, Giammanco A, Catanzaro A, Cimino MC, Presti RL, Tuttolomondo A, Averna M, Cefalù AB. Derivation and validation of a predictive mortality model of in-hospital patients with Acinetobacter baumannii nosocomial infection or colonization. Eur J Clin Microbiol Infect Dis 2024; 43:1109-1118. [PMID: 38607579 PMCID: PMC11178602 DOI: 10.1007/s10096-024-04818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE Acinetobacter baumannii (Ab) is a Gram-negative opportunistic bacterium responsible for nosocomial infections or colonizations. It is considered one of the most alarming pathogens due to its multi-drug resistance and due to its mortality rate, ranging from 34 to 44,5% of hospitalized patients. The aim of the work is to create a predictive mortality model for hospitalized patient with Ab infection or colonization. METHODS A cohort of 140 sequentially hospitalized patients were randomized into a training cohort (TC) (100 patients) and a validation cohort (VC) (40 patients). Statistical bivariate analysis was performed to identify variables discriminating surviving patients from deceased ones in the TC, considering both admission time (T0) and infection detection time (T1) parameters. A custom logistic regression model was created and compared with models obtained from the "status" variable alone (Ab colonization/infection), SAPS II, and APACHE II scores. ROC curves were built to identify the best cut-off for each model. RESULTS Ab infection status, use of penicillin within 90 days prior to ward admission, acidosis, Glasgow Coma Scale, blood pressure, hemoglobin and use of NIV entered the logistic regression model. Our model was confirmed to have a better sensitivity (63%), specificity (85%) and accuracy (80%) than the other models. CONCLUSION Our predictive mortality model demonstrated to be a reliable and feasible model to predict mortality in Ab infected/colonized hospitalized patients.
Collapse
Affiliation(s)
- Carola Maria Gagliardo
- Department of Health Promotion, Maternal and Child Health, Internal and Specialized Medicine of Excellence "G. D. Alessandro" (PROMISE), University of Palermo, Via del Vespro 127, Palermo, 90127, Italy
| | - Davide Noto
- Department of Health Promotion, Maternal and Child Health, Internal and Specialized Medicine of Excellence "G. D. Alessandro" (PROMISE), University of Palermo, Via del Vespro 127, Palermo, 90127, Italy.
| | - Antonina Giammanco
- Department of Health Promotion, Maternal and Child Health, Internal and Specialized Medicine of Excellence "G. D. Alessandro" (PROMISE), University of Palermo, Via del Vespro 127, Palermo, 90127, Italy
| | - Andrea Catanzaro
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Maria Concetta Cimino
- Department of Health Promotion, Maternal and Child Health, Internal and Specialized Medicine of Excellence "G. D. Alessandro" (PROMISE), University of Palermo, Via del Vespro 127, Palermo, 90127, Italy
| | - Rosalia Lo Presti
- Department of Psychological, Pedagogical, Exercise and Training Sciences, University of Palermo, Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Child Health, Internal and Specialized Medicine of Excellence "G. D. Alessandro" (PROMISE), University of Palermo, Via del Vespro 127, Palermo, 90127, Italy
| | - Maurizio Averna
- Department of Health Promotion, Maternal and Child Health, Internal and Specialized Medicine of Excellence "G. D. Alessandro" (PROMISE), University of Palermo, Via del Vespro 127, Palermo, 90127, Italy
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Angelo Baldassare Cefalù
- Department of Health Promotion, Maternal and Child Health, Internal and Specialized Medicine of Excellence "G. D. Alessandro" (PROMISE), University of Palermo, Via del Vespro 127, Palermo, 90127, Italy
| |
Collapse
|
4
|
Lin Y, Liang S, Zhang Y, Yu Y. The antibacterial mechanism of (-)-epigallocatechin-3-gallate (EGCG) against Campylobacter jejuni through transcriptome profiling. J Food Sci 2024; 89:2384-2396. [PMID: 38389445 DOI: 10.1111/1750-3841.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) has been shown antibacterial activity against Campylobacter jejuni; however, the relevant antibacterial mechanism is unknown. In this study, phenotypic experiments and RNA sequencing were used to explore the antibacterial mechanism. The minimum inhibitory concentration of EGCG on C. jejuni was 32 µg/mL. EGCG-treated was able to increase intracellular reactive oxygen species levels and decline bacterial motility. The morphology and cell membrane of C. jejuni after EGCG treatment were observed collapsed, broken, and agglomerated by field emission scanning electron microscopy and fluorescent microscopy. The RNA-seq analysis presents that there are 36 and 72 differential expressed genes after C. jejuni was treated by EGCG with the concentration of 16 and 32 µg/mL, respectively. EGCG-treated increased the thioredoxin expression, which was a critical protein to resist oxidative stress. Moreover, downregulation of the flgH and flgM gene in flagellin biosynthesis of C. jejuni was able to impair the flagella, reducing cell motility and virulence. The primary antibacterial mechanism revealed by RNA-seq is that EGCG with iron-chelating activity competes with C. jejuni for iron, causing iron deficiency in C. jejuni, which potentially impacts the survival and virulence of C. jejuni. The results suggested a new direction for exploring the activity of EGCG against C. jejuni in the food industry. PRACTICAL APPLICATION: A deeper understanding of the antibacterial mechanism of EGCG against C. jejuni was more beneficial in improving the food safety, eliminating concerns about human health caused by C. jejuni in future food, and promoting the natural antibacterial agent EGCG application in the food industry.
Collapse
Affiliation(s)
- Yilin Lin
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Siwei Liang
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Yehui Zhang
- Sericulture & Agri-food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, China
| | - Yigang Yu
- Research Center of Food Safety and Detection, School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Essential factors, advanced strategies, challenges, and approaches involved for efficient expression of recombinant proteins in Escherichia coli. Arch Microbiol 2024; 206:152. [PMID: 38472371 DOI: 10.1007/s00203-024-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Zhou Y, Cheng Y, Ma T, Wang J, Li S, Wang J, Han L, Hou X, Ma X, Jiang S, Li P, Lv J, Han B, Da R. Transcriptomic and phenotype analysis revealed the role of rpoS in stress resistance and virulence of a novel ST3355 ESBL-producing hypervirulent Klebsiella pneumoniae isolate. Front Cell Infect Microbiol 2023; 13:1259472. [PMID: 37937207 PMCID: PMC10627032 DOI: 10.3389/fcimb.2023.1259472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/29/2023] [Indexed: 11/09/2023] Open
Abstract
Introduction An extended-spectrum beta-lactamase (ESBL)-hypervirulent Klebsiella pneumoniae (HvKP) strain HKE9 was isolated from the blood in an outpatient. Methods The effect of the global regulatory factor RpoS on antimicrobial resistance, pathogenicity, and environmental adaptability was elucidated. Results HKE9 is a novel ST3355 (K20/O2a) hypervirulent strain with a positive string test and resistant to cephems except cefotetan. It has a genome size of 5.6M, including two plasmids. CTX-M-15 was found in plasmid 2, and only ompk37 was found in the chromosome. HKE9 could produce bacterial siderophores, and genes of enterobactin, yersiniabactin, aerobactin, and salmochelin have been retrieved in the genome. As a global regulatory factor, knockout of rpoS did not change antimicrobial resistance or hemolytic phenotype while increasing the virulence to Galleria mellonella larvae and showing higher viscosity. Moreover, rpoS knockout can increase bacterial competitiveness and cell adhesion ability. Interestingly, HKE9-M-rpoS decreased resistance to acidic pH, high osmotic pressure, heat shock, and ultraviolet and became sensitive to disinfectants (H2O2, alcohol, and sodium hypochlorite). Although there were 13 Type 6 secretion system (T6SS) core genes divided into two segments with tle1 between segments in the chromosome, transcriptomic analysis showed that rpoS negatively regulated T4SS located on plasmid 2, type 1, and type 3 fimbriae and positively regulate genes responsible for acidic response, hyperosmotic pressure, heat shock, oxidative stress, alcohol and hypochlorous acid metabolism, and quorum sensing. Discussion Here, this novel ST3355 ESBL-HvKP strain HKE9 may spread via various clonal types. The important regulation effect of rpoS is the enhanced tolerance and resistance to environmental stress and disinfectants, which may be at the cost of reducing virulence and regulated by T4SS.
Collapse
Affiliation(s)
- Yi Zhou
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yue Cheng
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Tianyou Ma
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jun Wang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
- Department of Microbiology Laboratory, Tongchuan Center for Disease Control and Prevention, Tongchuan, Shaanxi, China
| | - Shaoru Li
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jingdan Wang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Lei Han
- School of Basic Medicine, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xinyao Hou
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xinxin Ma
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Sijin Jiang
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Pu Li
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jia Lv
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Bei Han
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Rong Da
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
7
|
Huang Q, Hong Z, Hong Q. Cryptococcal meningoencephalitis with Actinomyces odontolyticus sepsis: a case report and literature review. BMC Infect Dis 2023; 23:434. [PMID: 37365493 DOI: 10.1186/s12879-023-08391-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The combined infection of actinomyces odontolyticus sepsis and cryptococcal encephalitis is rare in routine clinical practice. Thus, we presented this case report and literature review to provide clues to improve such patients' diagnoses and treatment processes. CASE PRESENTATION The main clinical manifestations of the patient were high fever and intracranial hypertension. Then, we completed the routine cerebrospinal fluid examination, biochemical detection, cytological examination, bacterial culture, and India ink staining. Firstly, the blood culture suggested actinomyces odontolyticus infection, considering the possibility of actinomyces odontolyticus sepsis and intracranial actinomyces odontolyticus infection. Accordingly, the patient was administered penicillin for treatment. Although the fever was slightly relieved, the symptoms of intracranial hypertension did not relieve. After 7 days, the characteristics of brain magnetic resonance imaging and the results of pathogenic metagenomics sequencing and cryptococcal capsular polysaccharide antigen suggested that cryptococcal infection. Based on the above results, the patient was diagnosed with a combined infection of cryptococcal meningoencephalitis and actinomyces odontolyticus sepsis. Anti-infection therapy with 'penicillin, amphotericin, and fluconazole' was provided, improving the clinical manifestations and objective indexes. CONCLUSION The combined infection of Actinomyces odontolyticus sepsis and cryptococcal encephalitis is first reported in this case report, and combined antibiotics with 'penicillin, amphotericin, and fluconazole' are effective.
Collapse
Affiliation(s)
- Qingyu Huang
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Zhuquan Hong
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Quanlong Hong
- Department of Neurology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
8
|
Liang Y, Li J, Xu Y, He Y, Jiang B, Wu C, Shan B, Shi H, Song G. Genomic variations in polymyxin-resistant Pseudomonas aeruginosa clinical isolates and their effects on polymyxin resistance. Braz J Microbiol 2023; 54:655-664. [PMID: 36930447 PMCID: PMC10234930 DOI: 10.1007/s42770-023-00933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 03/18/2023] Open
Abstract
Infection with P. aeruginosa, one of the most relevant opportunistic pathogens in hospital-acquired infections, can lead to high mortality due to its low antibiotic susceptibility to limited choices of antibiotics. Polymyxin as last-resort antibiotics is used in the treatment of systemic infections caused by multidrug-resistant P. aeruginosa strains, so studying the emergence of polymyxin-resistant was a must. The present study was designed to define genomic differences between paired polymyxin-susceptible and polymyxin-resistant P. aeruginosa strains and established polymyxin resistance mechanisms, and common chromosomal mutations that may confer polymyxin resistance were characterized. A total of 116 CRPA clinical isolates from patients were collected from three tertiary care hospitals in China during 2017-2021. Our study found that polymyxin B resistance represented 3.45% of the isolated carbapenem-resistant P. aeruginosa (CRPA). No polymyxin-resistant isolates were positive for mcr (1-8 and 10) gene and efflux mechanisms. Key genetic variations identified in polymyxin-resistant isolates involved missense mutations in parR, parS, pmrB, pmrA, and phoP. The waaL and PA5005 substitutions related to LPS synthesis were detected in the highest levels of resistant strain (R1). The missense mutations H398R in ParS (4/4), Y345H in PmrB (4/4), and L71R in PmrA (3/4) were the predominant. Results of the PCR further confirmed that mutation of pmrA, pmrB, and phoP individually or simultaneously did affect the expression level of resistant populations and can directly increase the expression of arnBCADTEF operon to contribute to polymyxin resistance. In addition, we reported 3 novel mutations in PA1945 (2129872_A < G, 2130270_A < C, 2130272_T < G) that may confer polymyxin resistance in P. aeruginosa. Our findings enriched the spectrum of chromosomal mutations, highlighted the complexity at the molecular level, and multifaceted interplay mechanisms underlying polymyxin resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Yuan Liang
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China
| | - Jie Li
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China
| | - Yunmin Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China
| | - Yuan He
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China
| | - Bo Jiang
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China
| | - Chunyan Wu
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China
| | - Bin Shan
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China
| | - Hongqiong Shi
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China.
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China.
| | - Guibo Song
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China.
- Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China.
| |
Collapse
|
9
|
Shrief R, El-Ashry AH, Mahmoud R, El-Mahdy R. Effect of Colistin, Fosfomycin and Meropenem/Vaborbactam on Carbapenem-Resistant Enterobacterales in Egypt: A Cross-Sectional Study. Infect Drug Resist 2022; 15:6203-6214. [PMID: 36324668 PMCID: PMC9621046 DOI: 10.2147/idr.s385411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose The increasing multi-drug carbapenem resistance among Enterobacterales are a severe health problem limiting therapeutic options and worsen the prognosis. This study characterizes carbapenemase genes and integrons among uropathogenic carbapenem resistant Enterobacterales (CRE) isolates recovered from Mansoura University Hospitals and evaluates the effect of colistin, fosfomycin and meropenem-vaborbactam on these isolates. Patients and Methods A total of 200 Enterobacterales isolates were collected from patients with urinary tract infections. Antimicrobial susceptibility testing was performed by the disc diffusion method. Colistin susceptibility was tested using the broth microdilution method and fosfomycin and meropenem/vaborbactam susceptibility were tested by MIC Test Strips. Carbapenem resistant isolates were screened for carbapenemase activity phenotypically using the modified carbapenem inactivation method and EDTA-modified carbapenem inactivation method and genotypically by multiplex PCR. Integrons class 1 and 2 and fosA gene were assayed by PCR. Data were statistically analyzed using the Statistical Package for Social Sciences (SPSS) version 16. The Chi-square or Fisher's exact test was used to compare groups, as appropriate. Results Ninety-two Enterobacterales isolates were resistant to meropenem (46%); 52 E. coli and 40 K. pneumoniae strains. All CRE isolates were multi-drug resistant (MDR). Sensitivity of CRE isolates to colistin, fosfomycin and meropenem/vaborbactam were 67.4%, 82.6% and 58.7%, respectively. Carbapenemase genes were detected by multiplex PCR in 69.6% of CRE isolates (Carbapenemase producing Enterobacterales (CPE) mainly blaNDM (37%). CPE isolates were significantly more resistant to meropenem/vaborbactam than non-CPE isolates; 51.6% vs 17.8%, respectively (P = 0.003) especially blaNDM carrying isolates (70.6%). Class 1 integrons and fosA gene were detected in 91.3% and 11.9% of CRE isolates, respectively. Conclusion This study revealed that about half of the uropathogenic Enterobacterales isolates were MDR CRE. Carbapenemase gene blaNDM was the main gene among CRE isolates. Meropenem/vaborbactam sensitivity was significantly higher on non-CPE than CPE isolates and limited by the predominance of blaNDM .
Collapse
Affiliation(s)
- Raghdaa Shrief
- Medical Microbiology and Immunology Department, Faculty of Medicine, Damietta University, Damietta, Egypt
| | - Amira H El-Ashry
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rasha Mahmoud
- Internal Medicine Department, Nephrology and Dialysis Unit, Mansoura University, Mansoura, Egypt
| | - Rasha El-Mahdy
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Xue S, Rogers LR, Zheng M, He J, Piermarocchi C, Mias GI. Applying differential network analysis to longitudinal gene expression in response to perturbations. Front Genet 2022; 13:1026487. [PMID: 36324501 PMCID: PMC9618823 DOI: 10.3389/fgene.2022.1026487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Differential Network (DN) analysis is a method that has long been used to interpret changes in gene expression data and provide biological insights. The method identifies the rewiring of gene networks in response to external perturbations. Our study applies the DN method to the analysis of RNA-sequencing (RNA-seq) time series datasets. We focus on expression changes: (i) in saliva of a human subject after pneumococcal vaccination (PPSV23) and (ii) in primary B cells treated ex vivo with a monoclonal antibody drug (Rituximab). The DN method enabled us to identify the activation of biological pathways consistent with the mechanisms of action of the PPSV23 vaccine and target pathways of Rituximab. The community detection algorithm on the DN revealed clusters of genes characterized by collective temporal behavior. All saliva and some B cell DN communities showed characteristic time signatures, outlining a chronological order in pathway activation in response to the perturbation. Moreover, we identified early and delayed responses within network modules in the saliva dataset and three temporal patterns in the B cell data.
Collapse
Affiliation(s)
- Shuyue Xue
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Lavida R.K. Rogers
- Department of Biological Sciences, University of the Virgin Islands, St Thomas, US Virgin Islands
| | - Minzhang Zheng
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Jin He
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Carlo Piermarocchi
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
| | - George I. Mias
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
11
|
Streptomyces: Derived Active Extract Inhibits Candida albicans Biofilm Formation. Curr Microbiol 2022; 79:332. [PMID: 36155861 DOI: 10.1007/s00284-022-03013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/27/2022] [Indexed: 11/03/2022]
Abstract
Candida albicans is an opportunistic pathogen that causes biofilm-associated infections. C. albicans biofilms are known to display reduced susceptibility to antimicrobials and high rates of acquired antibiotic resistance, and biofilm forming in C. albicans further hampers treatment options and highlights the need for new antibiofilm strategies. Identifying active components from desert actinomycetes strains to inhibit the formation of C. albicans biofilms represents an effective treatment strategy. In this study, actinomycetes that can inhibit C. albicans biofilm formation were isolated from the Taklimakan Desert, and the underlying mechanisms were explored. After screening the anti-C.albicans biofilm activities of culture supernatants from 170 Actinomycete strains, six strains showed significant inhibition of C. albicans biofilm formation. Microscopic examination showed a reduction in biofilm formation of C. albicans treated with supernatants from actinomycetes. Scanning electron microscopy showed that the morphological changes in biofilm cells were caused by cell membrane rupture and cell material leakage. Then, C.albicans biofilms were destroyed by changing the content of extracellular polysaccharides or degrading extracellular DNA. Finally, a preliminary study on active substances extracted from a new species (TRM43335) showed that the substances that inhibited the formation of biofilms might be peptides. This study provides preliminary evidence that desert actinomyces strains have inhibitory effects on the biofilm development of C. albicans.
Collapse
|
12
|
Martinez MN, Miller RA, Martín-Jiménez T, Sharkey MJ. Application of pharmacokinetic/pharmacodynamic concepts to the development of treatment regimens for sporadic canine urinary tract infections: Challenges and paths forward. J Vet Pharmacol Ther 2022; 45:415-425. [PMID: 35906854 DOI: 10.1111/jvp.13088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022]
Abstract
Antimicrobial efficacy can be predicted based on infection site exposure to the antimicrobial agent relative to the in vitro susceptibility of the pathogen to that agent. When infections occur in soft tissues (e.g., muscle, blood, and ligaments), exposure at the infection site is generally assumed to reflect an equilibrium between the unbound concentrations in plasma and that in the interstitial fluids. In contrast, for sporadic urinary tract infections (UTIs) in dogs and uncomplicated UTIs in humans, the primary site of infection is the bladder wall. Infection develops when bacteria invade the host bladder urothelium (specifically, the umbrella cells that form the urine-contacting layer of the stratified uroepithelium) within which these bacteria can avoid exposure to host defenses and antimicrobial agents. Traditionally, pathogen susceptibility has been estimated using standardized in vitro tests that measure the minimal concentration that will inhibit pathogen growth (MIC). When using exposure-response relationships during drug development to explore dose optimization, these relationships can either be based upon an assessment of a correlation between clinical outcome, drug exposure at the infection site, and pathogen MIC, or upon benchmark exposure-response relationships (i.e., pharmacokinetic/pharmacodynamic indices) typically used for the various drug classes. When using the latter approach, it is essential that the unbound concentrations at the infection site be considered relative to the MIC within the biological matrix to which the pathogen will be exposed. For soft tissue infections, this typically is the unbound plasma concentrations versus MICs determined in standardized media such as cation-adjusted Mueller Hinton broth, which is how many indices were originally established. However, for UTIs, it is the unbound drug concentrations within the urine versus the MICs in the actual urine biophase that needs to be considered. The importance of these relationships and how they are influenced by drug resistance, resilience, and inoculum are discussed in this review using fluoroquinolones and beta-lactams as examples.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Rockville, Maryland, USA
| | - Ron A Miller
- Division of Human Food Safety, Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Rockville, Maryland, USA
| | - Tomás Martín-Jiménez
- Division of Scientific Support, Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Rockville, Maryland, USA
| | - Michele J Sharkey
- Division of Companion Animal Drugs, Food and Drug Administration, Center for Veterinary Medicine, Office of New Animal Drug Evaluation, Rockville, Maryland, USA
| |
Collapse
|
13
|
Wang X, Chen Y, Shi H, Zou P. Erythromycin Estolate Is a Potent Inhibitor Against HCoV-OC43 by Directly Inactivating the Virus Particle. Front Cell Infect Microbiol 2022; 12:905248. [PMID: 35873167 PMCID: PMC9301004 DOI: 10.3389/fcimb.2022.905248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/10/2022] [Indexed: 12/22/2022] Open
Abstract
In addition to antibacterial effects, macrolide antibiotics exhibit other extensive pharmacological effects, such as anti-inflammatory and antiviral activities. Erythromycin estolate, one of the macrolide antibiotics, was previously investigated to effectively inhibit infections of various flaviviruses including Zika virus, dengue virus, and yellow fever virus, but its antiviral effect against human coronavirus remains unknown. Thus, the current study was designed to evaluate the antiviral efficacy of erythromycin estolate against human coronavirus strain OC43 (HCoV-OC43) and to illustrate the underlying mechanisms. Erythromycin estolate effectively inhibited HCoV-OC43 infection in different cell types and significantly reduced virus titers at safe concentration without cell cytotoxicity. Furthermore, erythromycin estolate was identified to inhibit HCoV-OC43 infection at the early stage and to irreversibly inactivate virus by disrupting the integrity of the viral membrane whose lipid component might be the target of action. Together, it was demonstrated that erythromycin estolate could be a potential therapeutic drug for HCoV-OC43 infection.
Collapse
Affiliation(s)
- Xiaohuan Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yongkang Chen
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Huichun Shi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Peng Zou
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- *Correspondence: Peng Zou,
| |
Collapse
|
14
|
Abdel-Gawad HI, Abdel-Gawad AH. Discrete and continuum models of COVID-19 virus, formal solutions, stability and comparison with real data. MATHEMATICS AND COMPUTERS IN SIMULATION 2021; 190:222-230. [PMID: 34007097 PMCID: PMC8119295 DOI: 10.1016/j.matcom.2021.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Accepted: 05/10/2021] [Indexed: 05/13/2023]
Abstract
Very recently, various mathematical models, for the dynamics of COVID-19 with main contribution of suspected-exposed-infected-recovered people have been proposed. Some models that account for the deceased, quarantined or social distancing functions were also presented. However, in any local space the real data reveals that the effects of lock-down and traveling are significant in decreasing and increasing the impact of this virus respectively. Here, discrete and continuum models for the dynamics of this virus are suggested. The continuum dynamical model is studied in detail. The present model deals with exposed, infected, recovered and deceased individuals (EIRD), which accounts for the health isolation and travelers (HIT) effects. Up to now no exact solutions of the parametric-dependent, nonlinear dynamical system NLDS were found. In this work, our objective is to find the exact solutions of a NLDS. To this issue, a novel approach is presented where a NLDS is recast to a linear dynamical system LDS. This is done by implementing the unified method (UM), with auxiliary equations, which are taken coupled linear ODE's (LDS). Numerical results of the exact solutions are evaluated, which can be applied to data in a local space (or anywhere) when the initial data for the IRD are known. Here, as an example, initial conditions for the components in the model equation of COVID-19, are taken from the real data in Egypt. The results of susceptible, infected, recovered and deceased people are computed. The comparison between the computed results and the real data shows an agreement up to a relative error 1 0 - 3 . On the other hand it is remarked that locking-down plays a dominant role in decreasing the number of infected people. The equilibrium states are determined and it is found that they are stable. This reveals a relevant result that the COVID-19 can be endemic in the case of a disturbance in the number of the exposed people. A disturbance in the form of an increase in the exposed number, leads to an increase in the number of infected people. This result is, globally, valid. Furthermore, initial states control is analyzed, where region of initial conditions for infected and exposed is determined. We developed a software tool to interact with the model and facilitate applying various data of different local spaces.
Collapse
Affiliation(s)
| | - Ahmed H Abdel-Gawad
- Computer Engineering Department, Faculty of Engineering, Cairo University, Egypt
| |
Collapse
|
15
|
Parlak C, Alver Ö, Ouma CNM, Rhyman L, Ramasami P. Interaction between favipiravir and hydroxychloroquine and their combined drug assessment: in silico investigations. ACTA ACUST UNITED AC 2021; 76:1471-1478. [PMID: 34744292 PMCID: PMC8562770 DOI: 10.1007/s11696-021-01946-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022]
Abstract
Hydroxychloroquine (HCQ) and favipiravir (FPV) are known to be effective antivirals, and there are reports about their use to fight the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) despite that these are not conclusive. The use of combined drugs is common in drug discovery, and thus, we investigated HCQ and FPV as a combined drug. The density functional theory method was used for the optimization of geometries, spectroscopic analysis and calculation of reactivity parameters. The quantum theory of atoms in molecules was applied to explain the nature of the hydrogen bonds and confirm the higher stability of the combined drug. We also evaluated the absorption, distribution, metabolism and excretion (ADME) parameters to assess their drug actions jointly using SwissADME. The preliminary findings of our theoretical study are promising for further investigations of more potent and selective antiviral drugs.
Collapse
Affiliation(s)
- Cemal Parlak
- Department of Physics, Science Faculty, Ege University, Izmir, 35100 Turkey
| | - Özgür Alver
- Department of Physics, Science Faculty, Eskisehir Technical University, Eskisehir, Turkey
| | - Cecil Naphtaly Moro Ouma
- HySA-Infrastructure CoC, Faculty of Engineering, North-West University, Private Bag X6001, Potchefstroom, 2531 South Africa
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837 Mauritius.,Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028 South Africa
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837 Mauritius.,Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028 South Africa
| |
Collapse
|
16
|
Investigational Agents for the Treatment of Resistant Yeasts and Molds. CURRENT FUNGAL INFECTION REPORTS 2021; 15:104-115. [PMID: 34075318 PMCID: PMC8162489 DOI: 10.1007/s12281-021-00419-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
Purpose of Review This review summarizes the investigational antifungals in clinical development with the potential to address rising drug resistance patterns. The relevant pharmacodynamics, spectrum of activity, preclinical studies, and latest clinical trial data are described. Recent Findings Agricultural and medicinal antifungal use has been selected for inherently drug-resistant fungi and acquired resistance mechanisms. The rates of fungal infections and immunocompromised populations continue to grow as few new antifungals have hit the market. Several agents with the potential to address the emergence of multidrug-resistant (MDR) molds and yeasts are in clinical development. Summary Evolved formulations of echinocandins, polyenes, and triazoles offer less toxicity, convenient dosing, and greater potency, potentially expanding these classes’ indications. Ibrexafungerp, olorofim, oteseconazole, and fosmanogepix possess novel mechanisms of actions with potent activity against MDR fungi. Successful clinical development is neither easy nor guaranteed; thus, perpetual efforts to discover new antifungals are needed.
Collapse
|
17
|
De Simone B, Chouillard E, Sartelli M, Biffl WL, Di Saverio S, Moore EE, Kluger Y, Abu-Zidan FM, Ansaloni L, Coccolini F, Leppänemi A, Peitzmann AB, Pagani L, Fraga GP, Paolillo C, Picetti E, Valentino M, Pikoulis E, Baiocchi GL, Catena F. The management of surgical patients in the emergency setting during COVID-19 pandemic: the WSES position paper. World J Emerg Surg 2021; 16:14. [PMID: 33752721 PMCID: PMC7983964 DOI: 10.1186/s13017-021-00349-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Since the COVID-19 pandemic has occurred, nations showed their unpreparedness to deal with a mass casualty incident of this proportion and severity, which resulted in a tremendous number of deaths even among healthcare workers. The World Society of Emergency Surgery conceived this position paper with the purpose of providing evidence-based recommendations for the management of emergency surgical patients under COVID-19 pandemic for the safety of the patient and healthcare workers. METHOD A systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta-analysis Protocols (PRISMA-P) through the MEDLINE (PubMed), Embase and SCOPUS databases. Synthesis of evidence, statements and recommendations were developed in accordance with the GRADE methodology. RESULTS Given the limitation of the evidence, the current document represents an effort to join selected high-quality articles and experts' opinion. CONCLUSIONS The aim of this position paper is to provide an exhaustive guidelines to perform emergency surgery in a safe and protected environment for surgical patients and for healthcare workers under COVID-19 and to offer the best management of COVID-19 patients needing for an emergency surgical treatment. We recommend screening for COVID-19 infection at the emergency department all acute surgical patients who are waiting for hospital admission and urgent surgery. The screening work-up provides a RT-PCR nasopharyngeal swab test and a baseline (non-contrast) chest CT or a chest X-ray or a lungs US, depending on skills and availability. If the COVID-19 screening is not completed we recommend keeping the patient in isolation until RT-PCR swab test result is not available, and to manage him/she such as an overt COVID patient. The management of COVID-19 surgical patients is multidisciplinary. If an immediate surgical procedure is mandatory, whether laparoscopic or via open approach, we recommend doing every effort to protect the operating room staff for the safety of the patient.
Collapse
Affiliation(s)
- Belinda De Simone
- Service de Chirurgie Générale, Digestive, Metabolique, Centre Hospitalier de Poissy/Saint Germain en Laye, Poissy, France
| | - Elie Chouillard
- Service de Chirurgie Générale, Digestive, Metabolique, Centre Hospitalier de Poissy/Saint Germain en Laye, Poissy, France
| | - Massimo Sartelli
- Department of General Surgery, Macerata’s Hospital, Macerata, Italy
| | - Walter L. Biffl
- Department of Trauma and Acute Care Surgery, Scripps Memorial Hospital, La Jolla, CA USA
| | - Salomone Di Saverio
- Department of General Surgery, University Hospital of Varese, University of Insubria, Varese, Italy
| | | | - Yoram Kluger
- Department of Emergency and Trauma Surgery, Rambam Health Campus, Haifa, Israel
| | - Fikri M. Abu-Zidan
- Department of Surgery, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | - Luca Ansaloni
- Department of Emergency and Trauma Surgery, Bufalini Hospital, Cesena, Italy
| | | | - Ari Leppänemi
- Abdominal Center, University Hospital Meilahti, Helsinki, Finland
| | - Andrew B. Peitzmann
- University of Pittsburgh School of Medicine, F-1281, UPMC-Presbyterian, Pittsburgh, PA 15213 USA
| | - Leonardo Pagani
- Infectious Diseases Unit, Bolzano Central Hospital, Bolzano, Italy
| | - Gustavo P. Fraga
- Departamento de Cirurgia, Faculdade de Ciências Médicas (FCM) –Unicamp, Campinas, SP Brazil
| | - Ciro Paolillo
- Spedali Civili di Brescia, ASST degli Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | | | - Emmanouil Pikoulis
- Department of Surgery, Attikon General Hospital, National & Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Fausto Catena
- Department of Emergency and Trauma Surgery, Parma University Hospital, Parma, Italy
| |
Collapse
|
18
|
Adeleye OA, Femi-Oyewo MN, Bamiro OA, Bakre LG, Alabi A, Ashidi JS, Balogun-Agbaje OA, Hassan OM, Fakoya G. Ethnomedicinal herbs in African traditional medicine with potential activity for the prevention, treatment, and management of coronavirus disease 2019. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:72. [PMID: 33778086 PMCID: PMC7980728 DOI: 10.1186/s43094-021-00223-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ethnomedicine, a study of traditional medicine, is significant in drug discovery and development. African traditional medicine has been in existence for several thousands of years, and several drugs have been discovered and developed from it. MAIN TEXT The deadly coronavirus disease 2019 (COVID-19) caused by a novel coronavirus known as SARS-CoV-2 has widely spread globally with high mortality and morbidity. Its prevention, treatment and management still pose a serious challenge. A drug for the cure of this disease is yet to be developed. The clinical management at present is based on symptomatic treatment as presented by individuals infected and this is by combination of more than two drugs such as antioxidants, anti-inflammatory, anti-pyretic, and anti-microbials. Literature search was performed through electronic searches of PubMed, Google Scholar, and several research reports including WHO technical documents and monographs. CONCLUSION Drug discovery from herbs is essential and should be exploited for the discovery of drugs for the management of COVID-19. This review is aimed at identifying ethnomedicinal herbs available in Africa that could be used for the discovery and development of a drug for the prevention, treatment, and management of the novel coronavirus disease 2019.
Collapse
Affiliation(s)
- Olutayo Ademola Adeleye
- Department of Pharmaceutics and Pharmaceutical Technology, Federal University Oye Ekiti, Oye-Ekiti, Ekiti State Nigeria
| | - Mbang Nyong Femi-Oyewo
- Department of Pharmaceutics and Pharmaceutical Technology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Oluyemisi Adebowale Bamiro
- Department of Pharmaceutics and Pharmaceutical Technology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Lateef Gbenga Bakre
- Department of Pharmaceutics and Pharmaceutical Technology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Akinyinka Alabi
- Department of Pharmacology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Joseph Senu Ashidi
- Department of Plant Science, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | | | - Oluwakemi Mary Hassan
- Department of Pharmaceutical Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Gbemisola Fakoya
- Department of Pharmacology, University of Lagos, Lagos, Lagos State Nigeria
| |
Collapse
|
19
|
Zhang K, Zheng H, Wei S, Wang X, Fei C, Wang C, Liu Y, Zhang L, Xue F, Tang S. Beagle dog 90-day oral toxicity study of a novel coccidiostat - ethanamizuril. BMC Vet Res 2020; 16:444. [PMID: 33203451 PMCID: PMC7673092 DOI: 10.1186/s12917-020-02655-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 10/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Triazine coccidiostats are widely used in chickens and turkeys for coccidiosis control. Ethanamizuril is a novel triazine compound that exhibits anticoccidial activity in poultry. This study was designed to evaluate the subchronic toxicity of ethanamizuril in beagle dogs at doses of 12, 60 or 300 mg/kg/day in diet for 90 days. RESULTS Ethanamizuril was well tolerated at low and middle dosages in beagle dogs, and no drug-related toxical effects were observaed in terms of survival, clinical observations, organs weight and damage in these dose groups. However, in high dose administration group, food consumption and histologic changes in kidneys were noticed in both sexes of beagle dog, although the renal lesions were finally resolved at the end of 4 weeks exposure of ethanamizuril. CONCLUSIONS No-observed-adverse-effect level (NOAEL) was considered for ethanamizuril at dose of 60 mg/kg/day in Beagle dog. This result added toxicity effects of ethanamizuril to the safety database, which might guide safely using of ethanamizuril as a novel coccidiostat.
Collapse
Affiliation(s)
- Keyu Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| | - Haihong Zheng
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Shuya Wei
- School of Biological Engineering, Wuhan Polytechnic, Wuhan, 430074, People's Republic of China
| | - Xiaoyang Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Chenzhong Fei
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Chunmei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Yingchun Liu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Lifang Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Feiqun Xue
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
20
|
Jia MM, Zhang QW, Qin ZF, Lu RQ, Tian XK, Yang J, Zhang XJ. Deciphering the Relationship Between the Trough Concentration of Posaconazole and Its Efficacy and Safety in Chinese Patients With Hematological Disorders. Front Pharmacol 2020; 11:575463. [PMID: 33154724 PMCID: PMC7586309 DOI: 10.3389/fphar.2020.575463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/15/2020] [Indexed: 01/24/2023] Open
Abstract
Posaconazole (PCZ) is effective in preventing and salvage treatment invasive fungal infections in patients with hematologic disorders. However, PCZ displays highly variable individual pharmacokinetics affecting its efficacy and safety. To investigate the correlation between PCZ concentration and efficacy and safety, the following key influencing factors were explored. A total of 285 trough plasma concentrations (Cmin) of 81 Chinese patients receiving PCZ oral suspension for prophylaxis or treatment of invasive fungal infections were collected in this study. The relationships between Cmin values and clinical response and hepatotoxicity were investigated as well as the incidence of clinical response under different Cmin values of PCZ with a logistic regression model. The concentration of PCZ showed remarkable differences among patients with haematologic disorders. PCZ Cmin values of 0.76 and 1.0 µg/mL were both associated with an over 80% probability of successful response to prophylaxis and treatment of fungal infections, respectively. No association between Cmin values and hepatotoxicity was noted (P > 0.05). Gender, albumin, and co-administration of proton pump inhibitor (PPI) were identified as independent factors influencing PCZ Cmin by multiple linear regression analysis. Furthermore, patients’ C-reactive protein (CRP), albumin, and co-administration of PPI exhibited significant effects on the therapeutic window of patients receiving PCZ for prophylaxis. The plasma concentration is closely associated with therapeutic efficacy of PCZ. It is necessary to adjust the dosing regimens based on PCZ Cmin to obtain an optimal therapeutic response.
Collapse
Affiliation(s)
- Meng-Meng Jia
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Qi-Wen Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Zi-Fei Qin
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Run-Qing Lu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xue-Ke Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiao-Jian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
21
|
Shao C, Hao Y, Wang Y, Jiang M, Jin Y. Genotypic and Phenotypic Characterization of bla NDM-7-Harboring IncX3 Plasmid in a ST11 Klebsiella pneumoniae Isolated From a Pediatric Patient in China. Front Microbiol 2020; 11:576823. [PMID: 33123108 PMCID: PMC7566911 DOI: 10.3389/fmicb.2020.576823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
NDM-7, a variant of New Delhi metallo-beta-lactamases (NDM), has the highest carbapenem-hydrolyzing activity. NDM-7-producing enterobacteria have been reported in many countries. In this study, we reported NDM-7 production in ST11 Klebsiella pneumoniae isolated from a boy hospitalized in the pediatric intensive care unit of a teaching hospital in China. The isolate exhibited resistance to β-lactam antimicrobials, quinolones, and trimethoprim/sulfamethoxazole, and it harbored bla NDM- 7, bla CTX-M- 15, qnrA, qnrB, and qnrS. The serotype of the isolated K. pneumoniae was assigned as K1, and it contained three virulence genes, including kfuBC, uge, and fim. The bla NDM- 7 gene was located on a conjugative IncX3 plasmid designated as pB14NDM-7. This plasmid was fully sequenced and compared with the available bla NDM- 7-harboring IncX3 plasmids. pB14NDM-7 contained a conserved genetic context of ISkox3-umuD-IS26-ΔTn125-IS5-ΔTn125-IS3000-ΔTn2. pB14NDM-7 showed 99% nucleotide identity and the same genetic context with three bla NDM- 7-harboring IncX3 plasmids obtained from Escherichia coli in China. Our results indicate that IncX3 plasmid may contribute to the prevalence of bla NDM- 7 in China. The high prevalence of NDM variants worldwide highlights the critical need for careful monitoring and control of the rapid dissemination of bla NDM.
Collapse
Affiliation(s)
- Chunhong Shao
- Clinical Laboratory of Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Hao
- Clinical Laboratory of Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yong Wang
- Clinical Laboratory of Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meijie Jiang
- Clinical Laboratory of Taian City Central Hospital, Tai'an, China
| | - Yan Jin
- Clinical Laboratory of Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
22
|
A multimodal deep learning-based drug repurposing approach for treatment of COVID-19. Mol Divers 2020; 25:1717-1730. [PMID: 32997257 PMCID: PMC7525234 DOI: 10.1007/s11030-020-10144-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022]
Abstract
Abstract Recently, various computational methods have been proposed to find new therapeutic applications of the existing drugs. The Multimodal Restricted Boltzmann Machine approach (MM-RBM), which has the capability to connect the information about the multiple modalities, can be applied to the problem of drug repurposing. The present study utilized MM-RBM to combine two types of data, including the chemical structures data of small molecules and differentially expressed genes as well as small molecules perturbations. In the proposed method, two separate RBMs were applied to find out the features and the specific probability distribution of each datum (modality). Besides, RBM was used to integrate the discovered features, resulting in the identification of the probability distribution of the combined data. The results demonstrated the significance of the clusters acquired by our model. These clusters were used to discover the medicines which were remarkably similar to the proposed medications to treat COVID-19. Moreover, the chemical structures of some small molecules as well as dysregulated genes’ effect led us to suggest using these molecules to treat COVID-19. The results also showed that the proposed method might prove useful in detecting the highly promising remedies for COVID-19 with minimum side effects. All the source codes are accessible using https://github.com/LBBSoft/Multimodal-Drug-Repurposing.git Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s11030-020-10144-9) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Li X, Wang Y, Agostinis P, Rabson A, Melino G, Carafoli E, Shi Y, Sun E. Is hydroxychloroquine beneficial for COVID-19 patients? Cell Death Dis 2020; 11:512. [PMID: 32641681 PMCID: PMC7341710 DOI: 10.1038/s41419-020-2721-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in December 2019. As similar cases rapidly emerged around the world1-3, the World Health Organization (WHO) declared a public health emergency of international concern on January 30, 2020 and pronounced the rapidly spreading coronavirus outbreak as a pandemic on March 11, 20204. The virus has reached almost all countries of the globe. As of June 3, 2020, the accumulated confirmed cases reached 6,479,405 with more than 383,013 deaths worldwide. The urgent and emergency care of COVID-19 patients calls for effective drugs, in addition to the beneficial effects of remdesivir5, to control the disease and halt the pandemic.
Collapse
Affiliation(s)
- Xing Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, No. 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China
| | | | - Arnold Rabson
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Gerry Melino
- TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Ernesto Carafoli
- Venetian Institute of Molecular Medicine, University of Padova, Rome, Italy
| | - Yufang Shi
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, 200031, Shanghai, China.
- The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, China.
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, No. 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, Guangdong, China.
- Department of Rheumatology and Immunology, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde, Foshan), 528000, Guangdong, China.
| |
Collapse
|
24
|
Gao L, Xu H, Ye Q, Li S, Wang J, Mei Y, Niu C, Kang T, Chen C, Wang Y. Population Pharmacokinetics and Dosage Optimization of Teicoplanin in Children With Different Renal Functions. Front Pharmacol 2020; 11:552. [PMID: 32431611 PMCID: PMC7214819 DOI: 10.3389/fphar.2020.00552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The purposes of our study were to investigate the population pharmacokinetics of teicoplanin in Chinese children with different renal functions and to propose the appropriate dosing regimen for these pediatric patients. Methods We performed a prospective pharmacokinetic research on children aged 0-10 years, with different renal functions. The population pharmacokinetics model of teicoplanin was developed using NLME program. The individualized optimal dosage regimen was proposed on the basis of the obtained population pharmacokinetics parameters. Results To achieve the target trough level of 10-30 mg/L, optimal dosing regimen for children with different renal functions are predicted as follows based on the population PK simulations: children with moderate renal insufficiency need three loading doses of 6 mg/kg q12h followed by a maintenance dose of 5 mg/kg qd; children with mild renal insufficiency require three loading doses of 12 mg/kg q12h followed by a maintenance dose of 8 mg/kg qd; children with normal or augmented renal function should be given three loading doses of 12 mg/kg q12h followed by a maintenance doses of 10 mg/kg qd. Conclusion The first study on the population pharmacokinetics of teicoplanin in Chinese children with different renal functions was performed. Individualized dosing regimen was recommended for different renal function groups based on population PK model prediction.
Collapse
Affiliation(s)
- Liuliu Gao
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Xu
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Ye
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sichan Li
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wang
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Mei
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changhe Niu
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Kang
- Department of Neonatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Wang
- Department of Clinical Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
El-Kholy AA, Girgis SA, Shetta MAF, Abdel-Hamid DH, Elmanakhly AR. Molecular characterization of multidrug-resistant Gram-negative pathogens in three tertiary hospitals in Cairo, Egypt. Eur J Clin Microbiol Infect Dis 2020; 39:987-992. [PMID: 31953591 PMCID: PMC7182536 DOI: 10.1007/s10096-020-03812-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/12/2019] [Indexed: 12/31/2022]
Abstract
High rates of antimicrobial resistance (AMR) among Gram-negative pathogens (GNP) have been reported in Egypt. Antimicrobial surveillance and identifying the genetic basis of AMR provide important information to optimize patient care. In this study, we aimed to identify the beta-lactam resistance phenotypes and genotypes of multidrug-resistant (MDR) non-repetitive GNP from 3 tertiary hospitals in Egypt. WZe studied 495 non-repetitive MDR Gram-negative isolates from patients with complicated intra-abdominal infections (cIAI), complicated urinary tract infection (cUTI), and lower respiratory tract infection (LRTI), collected as part of the “Study for Monitoring Antimicrobial Resistance Trends” (SMART) conducted in 3 tertiary hospitals in Cairo, Egypt, from 2015 to 2016. Identification and susceptibility testing of GNP to antimicrobials were tested in each hospital laboratory and confirmed in a reference laboratory (International Health Management Associates (IHMA), Inc., Schaumburg, IL, USA). Molecular identification of extended-spectrum beta-lactamases (ESΒLs), AmpC, and carbapenem resistance genes was conducted in IHMA. Among the 495 MDR isolates, Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) were the most common (52.7% and 44.2%). K. pneumoniae was most susceptible to colistin, amikacin, ertapenem, and imipenem (92.7%, 72.7%, 69.3%, and 64%, respectively). E. coli was most susceptible to colistin (100%), amikacin (94.1%), imipenem (90.4%), and ertapenem (83.6%). ESBL was detected in 96.2% and ESBL genotypes included blaCTX-M-15 (70.1%), blaTEM-OSBL (48.5%), blaSHV-OSBL (27.9%), and blaCTX-M-14 (10.7%). AmpC resistance genes were identified in 9.7% of the isolates, dominated by blaCMY-2 (5.7%). Carbapenem resistance genes were detected in 45.3% of the isolates. In K. pneumoniae, blaOXA-48 dominated (40.6%), followed by blaNDM-1 (23.7%) and blaOXA-232 (4.5%). In E. coli, the most frequent genes were blaNDM-5 (9.6%), blaOXA-181 (5.5%), blaOXA-244 (3.7%), and blaNDM-1 (3.7%). blaKPC-2 was identified in 0.4% of isolates. Notably, 32.3% of isolates carried more than one resistance gene. Our findings emphasize the continued need for molecular surveillance of MDR pathogens, implementation of strict infection control measures, and antimicrobial stewardship policies in our hospitals.
Collapse
Affiliation(s)
- Amani A El-Kholy
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Giza, Egypt.
| | - Samia A Girgis
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mervat A F Shetta
- Department of Clinical Pathology, Ain Shams Specialized Hospital, Cairo, Egypt
| | - Dalia H Abdel-Hamid
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Arwa R Elmanakhly
- Department of Microbiology and Infection Control, Dar-Al-Fouad Hospital, Cairo, Egypt
| |
Collapse
|
26
|
He N, Su S, Yan Y, Liu W, Zhai S. The Benefit of Individualized Vancomycin Dosing Via Pharmacokinetic Tools: A Systematic Review and Meta-analysis. Ann Pharmacother 2019; 54:331-343. [PMID: 31694384 DOI: 10.1177/1060028019887363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background: Various pharmacokinetic (PK) equations and software have been developed to individualize vancomycin dosing. However, the benefit of using any PK information to guide vancomycin dosing has not been fully elucidated. Objective: To appraise available evidence on the effectiveness and safety of individualized vancomycin dosing via PK tools. Methods: PubMed, EMBASE, the Cochrane Library, and 2 Chinese literature databases were searched through August 1, 2019. Randomized controlled trials (RCTs) and cohort studies that reported the PK and clinical outcomes of individualized vancomycin dosing versus empirical dosing were included. Pooled risk ratios (RRs) and mean differences were calculated for dichotomous and continuous outcomes, respectively. Results: A total of 21 studies involving 4346 patients were finally included, of which 3 were RCTs and 18 were cohort studies. Meta-analysis revealed that PK-guided vancomycin dosing significantly increased the attainment of target trough concentration (RR = 1.59; 95% CI = 1.49-1.70) and decreased the incidence of nephrotoxicity (RR = 0.57; 95% CI = 0.46-0.71). Additionally, the available evidence showed that target area under the curve/minimum inhibitory concentration attainment rate and time to target concentration could improve. However, the evidence on clinical outcomes was scarce, and no significant differences were detected in clinical response rate, microbiological eradication rate, mortality, and length of hospital stay between PK-guided vancomycin dosing and empirical dosing strategies. Conclusion and Relevance: Individualized vancomycin dosing via PK tools significantly increases the attainment of target trough concentration and decreases the incidence of nephrotoxicity. Evidence on clinical effectiveness was limited and showed no significant benefit. Further well-designed studies are warranted to assess its clinical effectiveness and inform routine care.
Collapse
Affiliation(s)
- Na He
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
| | - Shan Su
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Science, Peking University, Beijing, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
| | - Yingying Yan
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
| | - Wenxi Liu
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
| | - Suodi Zhai
- Department of Pharmacy, Peking University Third Hospital, Beijing, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
| |
Collapse
|
27
|
Rodríguez-Gascón A, Canut-Blasco A. Deciphering pharmacokinetics and pharmacodynamics of fosfomycin. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2019; 32 Suppl 1:19-24. [PMID: 31131588 PMCID: PMC6555163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fosfomycin, a low molecular weight and hydrophilic drug with negligible protein binding, is eliminated almost exclusively by glomerular filtration, whose clearance is subject to patient renal function. The volume of distribution approximates to the extracellular body water (about 0.3 L/Kg) in healthy volunteers, but it is increased in critically ill patients with bacterial infections. Fosfomycin presents a high ability to distribute into many tissues, including inflamed tissues and abscess fluids. Based on PK/PD analysis and Monte Carlo simulations, we have evaluated different fosfomycin dosing regimen to optimize the treatment of septic patients due to Enterobacterales and Pseudomonas aeruginosa. As PK/PD targets, we selected %T>MIC > 70% for all pathogens, and AUC24/MIC > 24 and AUC24/MIC > 15 for net stasis of Enterobacterales and P. aeruginosa, respectively. Pharmacokinetic parameters in critically ill patients were obtained from the literature. Several dosing regimens were studied in patients with normal renal function: fosfomycin 2-8 g given every 6-12 hours, infused over 30 minutes- 24 hours. At the susceptibility EUCAST breakpoint for Enterobacterales and Staphylococcus spp. (MIC ≤ 32 mg/L), fosfomycin 4 g/8h or higher infused over 30 minutes achieved a probability of target attainment (PTA) > 90%, based in both %T>MIC and AUC24/MIC. For MIC of 64 mg/L, fosfomycin 6 g/6h in 30-minute infusion and 8 g/ 8h in 30-minute and 6 hours infusions also achieved PTA values higher than 90%. No fosfomycin monotherapy regimen was able to achieve PK/PD targets related to antimicrobial efficacy for P. aeruginosa with MICs of 256-512 mg/L.
Collapse
Affiliation(s)
- Alicia Rodríguez-Gascón
- Pharmacokinetics, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, España,Centro de Investigación Lascaray ikergunea, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, España
| | - Andrés Canut-Blasco
- Microbiology Service, Hospital Universitario de Álava, Servicio Vasco de Salud Osakidetza, Vitoria-Gasteiz, España,Instituto de Investigación Biosanitaria (BIOARABA), Servicio Vasco de Salud Osakidetza, Vitoria-Gasteiz, España
| |
Collapse
|
28
|
Quecan BXV, Santos JTC, Rivera MLC, Hassimotto NMA, Almeida FA, Pinto UM. Effect of Quercetin Rich Onion Extracts on Bacterial Quorum Sensing. Front Microbiol 2019; 10:867. [PMID: 31105665 PMCID: PMC6492534 DOI: 10.3389/fmicb.2019.00867] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/04/2019] [Indexed: 01/08/2023] Open
Abstract
Quorum sensing (QS) regulates bacterial gene expression and studies suggest quercetin, a flavonol found in onion, as a QS inhibitor. There are no studies showing the anti-QS activity of plants containing quercetin in its native glycosylated forms. This study aimed to evaluate the antimicrobial and anti-QS potential of organic extracts of onion varieties and its representative phenolic compounds quercetin aglycone and quercetin 3-β-D-glucoside in the QS model bacteria Chromobacterium violaceum ATCC 12472, Pseudomonas aeruginosa PAO1, and Serratia marcescens MG1. Three phenolic extracts were obtained: red onion extract in methanol acidified with 2.5% acetic acid (RO-1), white onion extract in methanol (WO-1) and white onion extract in methanol ammonium (WO-2). Quercetin 4-O-glucoside and quercetin 3,4-O-diglucoside were identified as the predominant compounds in both onion varieties using HPLC-DAD and LC-ESI-MS/MS. However, quercetin aglycone, cyanidin 3-O-glucoside and quercetin glycoside were identified only in RO-1. The three extracts showed minimum inhibitory concentration (MIC) values equal to or above 125 μg/ml of dried extract. Violacein production was significantly reduced by RO-1 and quercetin aglycone, but not by quercetin 3-β-D-glucoside. Motility in P. aeruginosa PAO1 was inhibited by RO-1, while WO-2 inhibited S. marcescens MG1 motility only in high concentration. Quercetin aglycone and quercetin 3-β-D-glucoside were effective at inhibiting motility in P. aeruginosa PAO1 and S. marcescens MG1. Surprisingly, biofilm formation was not affected by any extracts or the quercetins tested at sub-MIC concentrations. In silico studies suggested a better interaction and placement of quercetin aglycone in the structures of the CviR protein of C. violaceum ATCC 12472 than the glycosylated compound which corroborates the better inhibitory effect of the former over violacein production. On the other hand, the two quercetins were well placed in the AHLs binding pockets of the LasR protein of P. aeruginosa PAO1. Overall onion extracts and quercetin presented antimicrobial activity, and interference on QS regulated production of violacein and swarming motility.
Collapse
Affiliation(s)
- B. X. V. Quecan
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - J. T. C. Santos
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. L. C. Rivera
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - N. M. A. Hassimotto
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - F. A. Almeida
- Department of Nutrition, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | - U. M. Pinto
- Food Research Center (FoRC), Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Domokos J, Damjanova I, Kristof K, Ligeti B, Kocsis B, Szabo D. Multiple Benefits of Plasmid-Mediated Quinolone Resistance Determinants in Klebsiella pneumoniae ST11 High-Risk Clone and Recently Emerging ST307 Clone. Front Microbiol 2019; 10:157. [PMID: 30809206 PMCID: PMC6379276 DOI: 10.3389/fmicb.2019.00157] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/22/2019] [Indexed: 01/20/2023] Open
Abstract
International high-risk clones of Klebsiella pneumoniae are among the most common nosocomial pathogens. Increased diversity of plasmid-encoded antimicrobial resistance genes facilitates spread of these clones causing significant therapeutic difficulties. The purpose of our study was to investigate fluoroquinolone resistance in extended-spectrum beta-lactamase (ESBL)-producing strains, including four K. pneumoniae and a single K. oxytoca, isolated from blood cultures in Hungary. Whole-genome sequencing and molecular typing including multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were performed in selected strains. Gene expression of plasmid-mediated quinolone resistance determinants (PMQR) was investigated by quantitative-PCR. MLST revealed that three K. pneumoniae strains belonged to ST11 and one to ST307 whereas K. oxytoca belonged to ST52. The isolates harbored different β-lactamase genes, however, all K. pneumoniae uniformly carried blaCTX-M-15. The K. pneumoniae isolates exhibited resistance to fluoroquinolones and carried various PMQR genes namely, two ST11 strains harbored qnrB4, the ST307 strain harbored qnrB1 and all K. pneumoniae harbored oqxAB efflux pump. Levofloxacin and moxifloxacin MIC values of K. pneumoniae ST11 and ST307 clones correlated with qnr and oqxAB expression levels. The qnrA1 carrying K. oxytoca ST52 exhibited reduced susceptibility to fluoroquinolones. The maintained expression of qnr genes in parallel with chromosomal mutations indicate an additional protective role of Qnr proteins that can support dissemination of high-risk clones. During development of high-level fluoroquinolone resistance, high-risk clones retain fitness thus, enabling them for dissemination in hospital environment. Based on our knowledge this is the first report of ST307 clone in Hungary, that is emerging as a potential high-risk clone worldwide. High-level fluoroquinolone resistance in parallel with upregulated PMQR gene expression are linked to high-risk K. pneumoniae clones.
Collapse
Affiliation(s)
- Judit Domokos
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | | | - Katalin Kristof
- Institute of Laboratory Medicine, Clinical Microbiology Laboratory, Semmelweis University, Budapest, Hungary
| | - Balazs Ligeti
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Bela Kocsis
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Dora Szabo
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
30
|
Huang WY, Wu G, Chen F, Li MM, Li JJ. Multi-systemic melioidosis: a clinical, neurological, and radiological case study from Hainan Province, China. BMC Infect Dis 2018; 18:649. [PMID: 30541464 PMCID: PMC6291948 DOI: 10.1186/s12879-018-3569-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/29/2018] [Indexed: 12/05/2022] Open
Abstract
Background Melioidosis is a tropical disease caused by Burkholderia pseudomallei (B. pseudomallei). It can infect any organ system and lead to multiple abscesses. A few studies reported that central nervous system (CNS) is also involved. We present a diabetic patient with multi-systemic melioidosis that affected the CNS, thorax, and spleen. The aim was to study the clinical and radiological features of melioidosis and enhance understanding of the disease. Case presentation A 38-year-old male presented with cough and expectoration mixed with blood for several days. Chest computed tomography (CT) showed a patchy opacity in his left lung, and multiple low-density lesions in his spleen. After 10 days of antibiotics treatment, his clinical symptoms improved and he was discharged from the hospital. But 8 months later, the patient experienced sudden onset of left limb weakness and seizure and was re-admitted to the hospital. Brain CT indicated a low-density lesion over the right frontal lobe, and magnetic resonance imaging (MRI) indicated a well-enhanced lobulated lesion with multiple diffusion restriction areas in the lesion. He had a neuronavigation-guided open surgery but no malignancy was found. B. pseudomallei was cultured from the operative samples. After 4 months of systemic and intraventricular antibiotic administration treatment, he recovered complete consciousness with left hemiparesis. Conclusions Multi-systemic melioidosis may present atypical clinical, neurological, and radiological manifestations. It is extremely important to accurately diagnose before treatment is selected. CNS melioidosis in early stage manifests similar symptoms to malignancy or stroke. It might mislead to a false diagnose. Diffusion weighted imaging (DWI) can help in differentiate abscesses from cystic tumours.
Collapse
Affiliation(s)
- Wei-Yuan Huang
- Department of Radiology, Hainan General Hospital, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
| | - Gang Wu
- Department of Radiotherapy, Hainan General Hospital, Hainan, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China
| | - Meng-Meng Li
- Research and Education Department, Hainan General Hospital, Hainan, China
| | - Jian-Jun Li
- Department of Radiology, Hainan General Hospital, No. 19 Xiuhua Road, Xiuying District, Haikou, 570311, Hainan, People's Republic of China.
| |
Collapse
|
31
|
Farshadzadeh Z, Taheri B, Rahimi S, Shoja S, Pourhajibagher M, Haghighi MA, Bahador A. Growth Rate and Biofilm Formation Ability of Clinical and Laboratory-Evolved Colistin-Resistant Strains of Acinetobacter baumannii. Front Microbiol 2018; 9:153. [PMID: 29483899 PMCID: PMC5816052 DOI: 10.3389/fmicb.2018.00153] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/23/2018] [Indexed: 12/29/2022] Open
Abstract
Two different mechanisms of resistance to colistin in Acinetobacter baumannii have been described. The first involves the total loss of lipopolysaccharide (LPS) due to mutations in the lpxACD operon, which is involved in the lipid A biosynthesis pathway. The second entails the addition of ethanolamine to the lipid A of the LPS resulting from mutations in the PmrAB two-component system. To evaluate the impact of colistin resistance-associated mutations on antimicrobial resistance and virulence properties, four pairs of clinical and laboratory-evolved colistin-susceptible/colistin-resistant (ColS/ColR) A. baumannii isolates were used. Antimicrobial susceptibility, surface motility, in vitro and in vivo biofilm-forming capacity, in vitro and in vivo expression levels of biofilm-associated genes, and in vitro growth rate were analyzed in these strains. Growth rate, in vitro and in vivo biofilm formation ability, as well as expression levels of biofilm-associated gene were reduced in ColR LPS-deficient isolate (the lpxD mutant) when compared with its ColS partner, whereas there were not such differences between LPS-modified isolates (the pmrB mutants) and their parental isolates. Mutation in lpxD was accompanied by a greater reduction in minimum inhibitory concentrations of azithromycin, vancomycin, and rifampin than mutation in pmrB. Besides, loss of LPS was associated with a significant reduction in surface motility without any change in expression of type IV pili. Collectively, colistin resistance through loss of LPS causes a more considerable cost in biological features such as growth rate, motility, and biofilm formation capacity relative to LPS modification. Therefore, ColR LPS-modified strains are more likely to spread and transmit from one patient to another in hospital settings, which results in more complex treatment and control.
Collapse
Affiliation(s)
- Zahra Farshadzadeh
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behrouz Taheri
- Department of Medical Laboratory Sciences, School of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Rahimi
- Department of Microbiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Saeed Shoja
- Infectious and Tropical Disease Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad A Haghighi
- Department of Microbiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Xu Y, Zhuang L, Kang H, Ma P, Xu T, Pan S, Gu B. Prevalence, resistance patterns, and characterization of integrons of Shigella flexneri isolated from Jiangsu Province in China, 2001-2011. Eur J Clin Microbiol Infect Dis 2016; 35:1347-53. [PMID: 27220330 DOI: 10.1007/s10096-016-2671-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/04/2016] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To provide the epidemiology, resistance pattern, and characterization of integrons in Shigella flexneri isolated between 2001 and 2011 in Jiangsu Province. METHOD A total of 624 strains of S. flexneri were collected from both outpatients and inpatients in hospitals in Jiangsu Province from January 2001 to December 2011. The Kirby-Bauer disk diffusion method was used to perform the antimicrobial susceptibility test. Polymerase chain reaction (PCR) was used in the detection of integrons. Pulsed-field gel electrophoresis (PFGE) was applied in the homology studies. RESULT Serotype 2a accounted for the largest proportion in S. flexneri, namely 26.4 %. Notably, an increasing trend was detected in the resistance to common antimicrobial agents during the period 2001-2011. In recent years, more than 80.0 % isolates of S. flexneri have proved to be resistant to ampicillin, nalidixic acid, and tetracycline. The positive rates of class 1, class 2, and the atypical class 1 integrons in S. flexneri are 69.3 %, 87.8 %, and 89.2 % respectively. Most integrons detected in our research carry genes encoding resistance to trimethoprim and streptomycin. CONCLUSION Antimicrobial resistance in S. flexneri has demonstrated a continuous rising trend in Jiangsu Province. A high prevalence of integrons and gene cassettes play an important role in the transmission of drug resistance in S. flexneri. Effective measures are urgently needed to control the spread of multi-drug-resistant S. flexneri, and more continuing active surveillance of antimicrobial resistance should be established worldwide, especially in developing countries.
Collapse
Affiliation(s)
- Y Xu
- Department of General Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - L Zhuang
- Department of Acute Infectious Disease Prevention and Control, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, 210029, China
| | - H Kang
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - P Ma
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.,Medical Technology Institute of Xuzhou Medical University, Xuzhou, 221004, China
| | - T Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - S Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - B Gu
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China. .,Medical Technology Institute of Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
33
|
Farshadzadeh Z, Hashemi FB, Rahimi S, Pourakbari B, Esmaeili D, Haghighi MA, Majidpour A, Shojaa S, Rahmani M, Gharesi S, Aziemzadeh M, Bahador A. Wide distribution of carbapenem resistant Acinetobacter baumannii in burns patients in Iran. Front Microbiol 2015; 6:1146. [PMID: 26539176 PMCID: PMC4611150 DOI: 10.3389/fmicb.2015.01146] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/05/2015] [Indexed: 11/14/2022] Open
Abstract
Antimicrobial resistance in carbapenem non-susceptible Acinetobacter baumannii (CNSAb) is a major public health concern globally. This study determined the antibiotic resistance and molecular epidemiology of CNSAb isolates from a referral burn center in Tehran, Iran. Sixty-nine CNSAb isolates were tested for susceptibility to antimicrobial agents using the E test methodology. Multiple locus variable number tandem repeat analysis (MLVA), Multilocus sequence typing (MLST) and multiplex PCR were performed. PCR assays tested for ambler classes A, B, and D β-lactamases. Detection of ISAba1, characterization of integrons, and biofilm formation were investigated. Fifty-three (77%) isolates revealed XDR phenotypes. High prevalence of bla OXA-23-like (88%) and bla PER-1 (54%) were detected. ISAba1 was detected upstream of bla ADC, bla OXA-23-like and bla OXA51-like genes in, 97, 42, and 26% of isolates, respectively. Thirty-one (45%) isolates were assigned to international clone (IC) variants. MLVA identified 56 distinct types with six clusters and 53 singleton genotypes. Forty previously known MLST sequence types forming 5 clonal complexes were identified. The Class 1 integron (class 1 integrons) gene was identified in 84% of the isolates. The most prevalent (33%) cassette combination was aacA4-catB8-aadA1. The IC variants were predominant in the A. baumannii lineage with the ability to form strong biofilms. The XDR-CNSAb from burned patients in Iran is resistant to various antimicrobials, including tigecycline. This study shows wide genetic diversity in CNSAb. Integrating the new Iranian A. baumannii IC variants into the epidemiologic clonal and susceptibility profile databases can help effective global control measures against the XDR-CNSAb pandemic.
Collapse
Affiliation(s)
- Zahra Farshadzadeh
- Department of Microbiology, School of Medicine, Tehran University of Medical SciencesTehran, Iran
| | - Farhad B. Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical SciencesTehran, Iran
| | - Sara Rahimi
- Department of Microbiology, School of Medicine, Bushehr University of Medical SciencesBushehr, Iran
| | - Babak Pourakbari
- Pediatrics Infectious Diseases Research Center, School of Medicine, Tehran University of Medical SciencesTehran, Iran
| | - Davoud Esmaeili
- Molecular Biology Research Center, Baqiyatallah University of Medical SciencesTehran, Iran
| | - Mohammad A. Haghighi
- Department of Microbiology, School of Medicine, Bushehr University of Medical SciencesBushehr, Iran
| | - Ali Majidpour
- Anti-microbial Resistance Research Center, Iran University of Medical SciencesTehran, Iran
| | - Saeed Shojaa
- Department of Microbiology, Faculty of Medicine, Hormozgan University of Medical SciencesBandar Abbas, Iran
| | - Maryam Rahmani
- Department of Microbiology, School of Medicine, Tehran University of Medical SciencesTehran, Iran
| | - Samira Gharesi
- Department of Microbiology, School of Medicine, Tehran University of Medical SciencesTehran, Iran
| | - Masoud Aziemzadeh
- Department of Microbiology, School of Medicine, Bushehr University of Medical SciencesBushehr, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical SciencesTehran, Iran
| |
Collapse
|