1
|
Zhang MY, Li S, Wang CY, Zhang ZX, Han YL, Liu XQ, Cheng J, Zhou XY, Zhang YX. A novel antimicrobial peptide S24 combats serious wound infections caused by Pseudomonas aeruginosa and Acinetobacter baumannii. J Antimicrob Chemother 2024; 79:1951-1961. [PMID: 38863365 DOI: 10.1093/jac/dkae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa and Acinetobacter baumannii are ranked as top-priority organisms by WHO. Antimicrobial peptides (AMPs) are promising antimicrobial agents that are highly effective against serious bacterial infections. METHODS In our previous study, a series of α-helical AMPs were screened using a novel multiple-descriptor strategy. The current research suggested that S24 exhibited strong antimicrobial activity against major pathogenic bacteria, and displayed minimal haemolysis, good serum stability and maintained salt resistance. RESULTS We found that S24 exerted an antimicrobial effect by destroying outer membrane permeability and producing a strong binding effect on bacterial genomic DNA that inhibits genomic DNA migration. Furthermore, S24 exerted a strong ability to promote healing in wound infected by P. aeruginosa, A. baumannii and mixed strains in a mouse model. CONCLUSIONS Overall, S24 showed good stability under physiological conditions and excellent antimicrobial activity, suggesting it may be a potential candidate for the development of serious bacterial infection treatment.
Collapse
Affiliation(s)
- Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuang Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cai-Yun Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu-Ling Han
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin-Qi Liu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Juan Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xun-Yong Zhou
- Weihuakang (Shenzhen) Biotech. Co., Ltd., Shenzhen 518001, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
3
|
Dai JS, Xu J, Shen HJ, Chen NP, Zhu BQ, Xue ZJ, Chen HH, Ding ZS, Ding R, Qian CD. The induced and intrinsic resistance of Escherichia coli to sanguinarine is mediated by AcrB efflux pump. Microbiol Spectr 2024; 12:e0323723. [PMID: 38038452 PMCID: PMC10783092 DOI: 10.1128/spectrum.03237-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE The use of plant extracts is increasing as an alternative to synthetic compounds, especially antibiotics. However, there is no sufficient knowledge on the mechanisms and potential risks of antibiotic resistance induced by these phytochemicals. In the present study, we found that stable drug resistant mutants of E. coli emerged after repetitive exposure to sanguinarine and demonstrated that the AcrB efflux pump contributed to the emerging of induced and intrinsic resistance of E. coli to this phytochemical. Our results offered some insights into comprehending and preventing the onset of drug-resistant strains when utilizing products containing sanguinarine.
Collapse
Affiliation(s)
- Jian-Sheng Dai
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jian Xu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao-Jie Shen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ni-Pi Chen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing-Qi Zhu
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng-Jie Xue
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hao-Han Chen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Shan Ding
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rui Ding
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Chao-Dong Qian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Allgood SC, Su CC, Crooks AL, Meyer CT, Zhou B, Betterton MD, Barbachyn MR, Yu EW, Detweiler CS. Bacterial efflux pump modulators prevent bacterial growth in macrophages and under broth conditions that mimic the host environment. mBio 2023; 14:e0249223. [PMID: 37921493 PMCID: PMC10746280 DOI: 10.1128/mbio.02492-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Bacterial efflux pumps are critical for resistance to antibiotics and for virulence. We previously identified small molecules that inhibit efflux pumps (efflux pump modulators, EPMs) and prevent pathogen replication in host cells. Here, we used medicinal chemistry to increase the activity of the EPMs against pathogens in cells into the nanomolar range. We show by cryo-electron microscopy that these EPMs bind an efflux pump subunit. In broth culture, the EPMs increase the potency (activity), but not the efficacy (maximum effect), of antibiotics. We also found that bacterial exposure to the EPMs appear to enable the accumulation of a toxic metabolite that would otherwise be exported by efflux pumps. Thus, inhibitors of bacterial efflux pumps could interfere with infection not only by potentiating antibiotics, but also by allowing toxic waste products to accumulate within bacteria, providing an explanation for why efflux pumps are needed for virulence in the absence of antibiotics.
Collapse
Affiliation(s)
- Samual C. Allgood
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Amy L. Crooks
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Christian T. Meyer
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA
- Duet Biosystems, Nashville, Tennessee, USA
- Antimicrobial Research Consortium (ARC) Labs, Boulder, Colorado, USA
| | - Bojun Zhou
- Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Meredith D. Betterton
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Physics, University of Colorado, Boulder, Colorado, USA
- Center for Computational Biology, Flatiron Institute, New York, New York, USA
| | | | - Edward W. Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Corrella S. Detweiler
- Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
5
|
Allgood SC, Su CC, Crooks AL, Meyer CT, Zhou B, Betterton MD, Barbachyn MR, Yu EW, Detweiler CS. Bacterial Efflux Pump Modulators Prevent Bacterial Growth in Macrophages and Under Broth Conditions that Mimic the Host Environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558466. [PMID: 37786697 PMCID: PMC10541609 DOI: 10.1101/2023.09.20.558466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
New approaches for combatting microbial infections are needed. One strategy for disrupting pathogenesis involves developing compounds that interfere with bacterial virulence. A critical molecular determinant of virulence for Gram-negative bacteria are efflux pumps of the resistance-nodulation-division (RND) family, which includes AcrAB-TolC. We previously identified small molecules that bind AcrB, inhibit AcrAB-TolC, and do not appear to damage membranes. These efflux pump modulators (EPMs) were discovered in an in-cell screening platform called SAFIRE (Screen for Anti-infectives using Fluorescence microscopy of IntracellulaR Enterobacteriaceae). SAFIRE identifies compounds that disrupt the growth of a Gram-negative human pathogen, Salmonella enterica serotype Typhimurium (S. Typhimurium) in macrophages. We used medicinal chemistry to iteratively design ~200 EPM35 analogs and test them for activity in SAFIRE, generating compounds with nanomolar potency. Analogs were demonstrated to bind AcrB in a substrate binding pocket by cryo-electron microscopy (cryo-EM). Despite having amphipathic structures, the EPM analogs do not disrupt membrane voltage, as monitored by FtsZ localization to the cell septum. The EPM analogs had little effect on bacterial growth in standard Mueller Hinton Broth. However, under broth conditions that mimic the micro-environment of the macrophage phagosome, acrAB is required for growth, the EPM analogs are bacteriostatic, and increase the potency of antibiotics. These data suggest that under macrophage-like conditions the EPM analogs prevent the export of a toxic bacterial metabolite(s) through AcrAB-TolC. Thus, compounds that bind AcrB could disrupt infection by specifically interfering with the export of bacterial toxic metabolites, host defense factors, and/or antibiotics.
Collapse
Affiliation(s)
- Samual C Allgood
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Chih-Chia Su
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Amy L Crooks
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Christian T Meyer
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
- Duet Biosystems, Nashville, TN, USA
- Antimicrobial Research Consortium (ARC) Labs, Boulder, CO, USA
| | - Bojun Zhou
- Department of Physics, University of Colorado, Boulder, CO, USA
| | - Meredith D Betterton
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Physics, University of Colorado, Boulder, CO, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | | | - Edward W Yu
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Corrella S Detweiler
- Molecular, Cellular Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
6
|
Neidig A, Strempel N, Waeber NB, Nizer WSDC, Overhage J. Knock-out of multidrug efflux pump MexXY-OprM results in increased susceptibility to antimicrobial peptides in Pseudomonas aeruginosa. Microbiol Immunol 2023; 67:422-427. [PMID: 37424105 DOI: 10.1111/1348-0421.13089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
Multidrug efflux systems of the resistance-nodulation-cell division family play a crucial role in resistance of Pseudomonas aeruginosa to a large variety of antibiotics. Here, we investigated the role of clinically relevant efflux pumps MexAB- OprM, MexCD- OprJ, and MexXY- OprM in resistance against different cationic antimicrobial peptides (AMPs). Our results indicate that a knock-out in efflux pump MexXY-OprM increased susceptibility to some AMPs by two- to eightfold. Our data suggest a contribution of MexXY-OprM in resistance to certain AMPs in P. aeruginosa, which should be considered in the future development of new and highly active antimicrobial peptides to fight multidrug resistant infections.
Collapse
Affiliation(s)
- Anke Neidig
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Nikola Strempel
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Nadine Bianca Waeber
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Giessen, Germany
| | | | - Joerg Overhage
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
7
|
Namulinda T, Bao LL, Kwetegyeka J, Gumula I, Yan YJ, Chen ZL. Antibacterial and anticancer activities of green-synthesized silver nanoparticles using Photinia glabra fruit extract. Nanomedicine (Lond) 2023; 18:987-1002. [PMID: 37584549 DOI: 10.2217/nnm-2023-0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Aims: We prepared Photinia glabra (PG) aqueous fruit extract, utilized it to synthesize silver nanoparticles (PG-Ag NPs) and evaluated the antibacterial and anticancer activities of the nanoparticles (NPs). Materials & methods: Silver nitrate aqueous solution was reduced to PG-Ag NPs using aqueous PG fruit extract. NP shape, size, composition and functionalization were determined using transmission electron microscopy, x-ray photoelectron spectroscopy, Fourier transform infrared and x-ray diffraction. Results & conclusions: PG-Ag NPs were spherical, approximately 39-77 nm-sized, functionalized surfaces with notable antibacterial activity against both Escherichia coli and Staphylococcus aureus, with an MIC <30 ug/ml and cytotoxicity toward esophageal cancer cells, with IC50 values less than 20 ug/ml. PG-Ag@rt NPs have been shown to be a potent antibacterial and anticancer agent, and their enriched particle surfaces can be conjugated with other compounds for multibiomedical applications.
Collapse
Affiliation(s)
- Tabbisa Namulinda
- Department of Pharmaceutical Science & Technology, College of Biology & Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Lei-Lei Bao
- Dongfang Hepatobiliary Surgery Hospital, Shanghai, 200433, China
| | - Justus Kwetegyeka
- Department of Chemistry, Faculty of Science, Kyambogo University, Kampala, Uganda
| | - Ivan Gumula
- Department of Chemistry, Faculty of Science, Kyambogo University, Kampala, Uganda
| | - Yi-Jia Yan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, 201620, China
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Biology & Medical Engineering, Donghua University, Shanghai, 201620, China
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
8
|
Li T, Wang Z, Guo J, de la Fuente-Nunez C, Wang J, Han B, Tao H, Liu J, Wang X. Bacterial resistance to antibacterial agents: Mechanisms, control strategies, and implications for global health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160461. [PMID: 36435256 PMCID: PMC11537282 DOI: 10.1016/j.scitotenv.2022.160461] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
The spread of bacterial drug resistance has posed a severe threat to public health globally. Here, we cover bacterial resistance to current antibacterial drugs, including traditional herbal medicines, conventional antibiotics, and antimicrobial peptides. We summarize the influence of bacterial drug resistance on global health and its economic burden while highlighting the resistance mechanisms developed by bacteria. Based on the One Health concept, we propose 4A strategies to combat bacterial resistance, including prudent Application of antibacterial agents, Administration, Assays, and Alternatives to antibiotics. Finally, we identify several opportunities and unsolved questions warranting future exploration for combating bacterial resistance, such as predicting genetic bacterial resistance through the use of more effective techniques, surveying both genetic determinants of bacterial resistance and the transmission dynamics of antibiotic resistance genes (ARGs).
Collapse
Affiliation(s)
- Ting Li
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China; State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, No. 20, Dongda Street, Fengtai District, Beijing 100071, PR China
| | - Zhenlong Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States of America; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States of America.
| | - Jinquan Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Bing Han
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Hui Tao
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Jie Liu
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Xiumin Wang
- Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| |
Collapse
|
9
|
Blair JMA, Zeth K, Bavro VN, Sancho-Vaello E. The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Rev 2022; 46:6617596. [PMID: 35749576 PMCID: PMC9629497 DOI: 10.1093/femsre/fuac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance is a global issue that threatens our progress in healthcare and life expectancy. In recent years, antimicrobial peptides (AMPs) have been considered as promising alternatives to the classic antibiotics. AMPs are potentially superior due to their lower rate of resistance development, since they primarily target the bacterial membrane ('Achilles' heel' of the bacteria). However, bacteria have developed mechanisms of AMP resistance, including the removal of AMPs to the extracellular space by efflux pumps such as the MtrCDE or AcrAB-TolC systems, and the internalization of AMPs to the cytoplasm by the Sap transporter, followed by proteolytic digestion. In this review, we focus on AMP transport as a resistance mechanism compiling all the experimental evidence for the involvement of efflux in AMP resistance in Gram-negative bacteria and combine this information with the analysis of the structures of the efflux systems involved. Finally, we expose some open questions with the aim of arousing the interest of the scientific community towards the AMPs-efflux pumps interactions. All the collected information broadens our understanding of AMP removal by efflux pumps and gives some clues to assist the rational design of AMP-derivatives as inhibitors of the efflux pumps.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Enea Sancho-Vaello
- Corresponding author. College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. E-mail:
| |
Collapse
|
10
|
Escobar‐Salom M, Torrens G, Jordana‐Lluch E, Oliver A, Juan C. Mammals' humoral immune proteins and peptides targeting the bacterial envelope: from natural protection to therapeutic applications against multidrug‐resistant
Gram
‐negatives. Biol Rev Camb Philos Soc 2022; 97:1005-1037. [PMID: 35043558 PMCID: PMC9304279 DOI: 10.1111/brv.12830] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Mammalian innate immunity employs several humoral ‘weapons’ that target the bacterial envelope. The threats posed by the multidrug‐resistant ‘ESKAPE’ Gram‐negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are forcing researchers to explore new therapeutic options, including the use of these immune elements. Here we review bacterial envelope‐targeting (peptidoglycan and/or membrane‐targeting) proteins/peptides of the mammalian immune system that are most likely to have therapeutic applications. Firstly we discuss their general features and protective activity against ESKAPE Gram‐negatives in the host. We then gather, integrate, and discuss recent research on experimental therapeutics harnessing their bactericidal power, based on their exogenous administration and also on the discovery of bacterial and/or host targets that improve the performance of this endogenous immunity, as a novel therapeutic concept. We identify weak points and knowledge gaps in current research in this field and suggest areas for future work to obtain successful envelope‐targeting therapeutic options to tackle the challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- María Escobar‐Salom
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Gabriel Torrens
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Elena Jordana‐Lluch
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Antonio Oliver
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Carlos Juan
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| |
Collapse
|
11
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
12
|
A small molecule that mitigates bacterial infection disrupts Gram-negative cell membranes and is inhibited by cholesterol and neutral lipids. PLoS Pathog 2020; 16:e1009119. [PMID: 33290418 PMCID: PMC7748285 DOI: 10.1371/journal.ppat.1009119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/18/2020] [Accepted: 11/01/2020] [Indexed: 01/01/2023] Open
Abstract
Infections caused by Gram-negative bacteria are difficult to fight because these pathogens exclude or expel many clinical antibiotics and host defense molecules. However, mammals have evolved a substantial immune arsenal that weakens pathogen defenses, suggesting the feasibility of developing therapies that work in concert with innate immunity to kill Gram-negative bacteria. Using chemical genetics, we recently identified a small molecule, JD1, that kills Salmonella enterica serovar Typhimurium (S. Typhimurium) residing within macrophages. JD1 is not antibacterial in standard microbiological media, but rapidly inhibits growth and curtails bacterial survival under broth conditions that compromise the outer membrane or reduce efflux pump activity. Using a combination of cellular indicators and super resolution microscopy, we found that JD1 damaged bacterial cytoplasmic membranes by increasing fluidity, disrupting barrier function, and causing the formation of membrane distortions. We quantified macrophage cell membrane integrity and mitochondrial membrane potential and found that disruption of eukaryotic cell membranes required approximately 30-fold more JD1 than was needed to kill bacteria in macrophages. Moreover, JD1 preferentially damaged liposomes with compositions similar to E. coli inner membranes versus mammalian cell membranes. Cholesterol, a component of mammalian cell membranes, was protective in the presence of neutral lipids. In mice, intraperitoneal administration of JD1 reduced tissue colonization by S. Typhimurium. These observations indicate that during infection, JD1 gains access to and disrupts the cytoplasmic membrane of Gram-negative bacteria, and that neutral lipids and cholesterol protect mammalian membranes from JD1-mediated damage. Thus, it may be possible to develop therapeutics that exploit host innate immunity to gain access to Gram-negative bacteria and then preferentially damage the bacterial cell membrane over host membranes.
Collapse
|
13
|
Li J, Fernández-Millán P, Boix E. Synergism between Host Defence Peptides and Antibiotics Against Bacterial Infections. Curr Top Med Chem 2020; 20:1238-1263. [DOI: 10.2174/1568026620666200303122626] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 02/07/2020] [Indexed: 01/10/2023]
Abstract
Background:Antimicrobial resistance (AMR) to conventional antibiotics is becoming one of the main global health threats and novel alternative strategies are urging. Antimicrobial peptides (AMPs), once forgotten, are coming back into the scene as promising tools to overcome bacterial resistance. Recent findings have attracted attention to the potentiality of AMPs to work as antibiotic adjuvants.Methods:In this review, we have tried to collect the currently available information on the mechanism of action of AMPs in synergy with other antimicrobial agents. In particular, we have focused on the mechanisms of action that mediate the inhibition of the emergence of bacterial resistance by AMPs.Results and Conclusion:We find in the literature many examples where AMPs can significantly reduce the antibiotic effective concentration. Mainly, the peptides work at the bacterial cell wall and thereby facilitate the drug access to its intracellular target. Complementarily, AMPs can also contribute to permeate the exopolysaccharide layer of biofilm communities, or even prevent bacterial adhesion and biofilm growth. Secondly, we find other peptides that can directly block the emergence of bacterial resistance mechanisms or interfere with the community quorum-sensing systems. Interestingly, the effective peptide concentrations for adjuvant activity and inhibition of bacterial resistance are much lower than the required for direct antimicrobial action. Finally, many AMPs expressed by innate immune cells are endowed with immunomodulatory properties and can participate in the host response against infection. Recent studies in animal models confirm that AMPs work as adjuvants at non-toxic concentrations and can be safely administrated for novel combined chemotherapies.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Pablo Fernández-Millán
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| |
Collapse
|
14
|
Abdi M, Mirkalantari S, Amirmozafari N. Bacterial resistance to antimicrobial peptides. J Pept Sci 2019; 25:e3210. [DOI: 10.1002/psc.3210] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Milad Abdi
- Student Research Committee, Faculty of MedicineIran University of Medical Sciences Tehran Iran
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Shiva Mirkalantari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| | - Nour Amirmozafari
- Department of Microbiology, Faculty of MedicineIran University of Medical Sciences Tehran Iran
| |
Collapse
|
15
|
In silico design of polycationic antimicrobial peptides active against Pseudomonas aeruginosa and Staphylococcus aureus. Antonie van Leeuwenhoek 2018; 111:1871-1882. [DOI: 10.1007/s10482-018-1080-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/31/2018] [Indexed: 12/31/2022]
|
16
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150292. [PMID: 27160595 PMCID: PMC4874390 DOI: 10.1098/rstb.2015.0292] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2016] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
17
|
Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2016. [PMID: 27160595 DOI: 10.1098/rstb.2015.0292.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Chih-Iung Fu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases (NIAID), US National Institutes of Health (NIH), 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
18
|
Steinbuch KB, Fridman M. Mechanisms of resistance to membrane-disrupting antibiotics in Gram-positive and Gram-negative bacteria. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00389j] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A diverse repertoire of mechanisms has evolved to confer resistance to bacterial membrane disrupting antimicrobial cationic amphiphiles.
Collapse
Affiliation(s)
- Kfir B. Steinbuch
- School of Chemistry
- Beverly Raymond Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| | - Micha Fridman
- School of Chemistry
- Beverly Raymond Sackler Faculty of Exact Sciences
- Tel Aviv University
- Tel Aviv
- Israel
| |
Collapse
|
19
|
Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2015; 59:5288-96. [PMID: 26077259 DOI: 10.1128/aac.00682-15] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/09/2015] [Indexed: 12/13/2022] Open
Abstract
Multidrug-resistant Pseudomonas aeruginosa is a major cause of severe hospital-acquired infections. Currently, polymyxin B (PMB) is a last-resort antibiotic for the treatment of infections caused by Gram-negative bacteria, despite its undesirable side effects. The delivery of drug combinations has been shown to reduce the required therapeutic doses of antibacterial agents and thereby their toxicity if a synergistic effect is present. In this study, we investigated the synergy between two cyclic antimicrobial peptides, PMB and gramicidin S (GS), against different P. aeruginosa isolates, using a quantitative checkerboard assay with resazurin as a growth indicator. Among the 28 strains that we studied, 20 strains showed a distinct synergistic effect, represented by a fractional inhibitory concentration index (FICI) of ≤0.5. Remarkably, several clinical P. aeruginosa isolates that grew as small-colony variants revealed a nonsynergistic effect, as indicated by FICIs between >0.5 and ≤0.70. In addition to inhibiting the growth of planktonic bacteria, the peptide combinations significantly decreased static biofilm growth compared with treatment with the individual peptides. There was also a faster and more prolonged effect when the combination of PMB and GS was used compared with single-peptide treatments on the metabolic activity of pregrown biofilms. The results of the present study define a synergistic interaction between two cyclic membrane-active peptides toward 17 multidrug-resistant P. aeruginosa and biofilms of P. aeruginosa strain PAO1. Thus, the application of PMB and GS in combination is a promising option for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant or biofilm-forming P. aeruginosa.
Collapse
|
20
|
Mucosal physical and chemical innate barriers: Lessons from microbial evasion strategies. Semin Immunol 2015; 27:111-8. [PMID: 25936225 DOI: 10.1016/j.smim.2015.03.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/13/2015] [Indexed: 12/24/2022]
Abstract
The innate immune system has evolved since millions of years under a selective pressure. Among the different host mechanisms selected and conserved as a first line of defense, the gastrointestinal mucus layer constitutes an efficient physical and chemical barrier against invading microbes. Mucin glycoproteins and antimicrobial peptides are the major components of the mucus barrier, and evidences prove that they form an effective protection against most microbes. However, successful pathogens have evolved evasion strategies to circumvent this defense barrier. Here, we discuss the interactions between pathogens, mucins, and antimicrobial peptides, and the mechanisms that pathogens have developed to evade the innate defense systems of the intestinal mucosal barrier.
Collapse
|
21
|
Joo HS, Otto M. Mechanisms of resistance to antimicrobial peptides in staphylococci. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3055-61. [PMID: 25701233 DOI: 10.1016/j.bbamem.2015.02.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
Abstract
Staphylococci are commensal bacteria living on the epithelial surfaces of humans and other mammals. Many staphylococci, including the dangerous pathogen Staphylococcus aureus, can cause severe disease when they breach the epithelial barrier. Both during their commensal life and during infection, staphylococci need to evade mechanisms of innate host defense, of which antimicrobial peptides (AMPs) play a key role in particular on the skin. Mechanisms that staphylococci have developed to evade the bactericidal activity of AMPs are manifold, comprising repulsion of AMPs via alteration of cell wall and membrane surface charges, proteolytic inactivation, sequestration, and secretion. Furthermore, many staphylococci form biofilms, which represents an additional way of protection from antimicrobial agents, including AMPs. Finally, staphylococci can sense the presence of AMPs by sensor/regulator systems that control many of those resistance mechanisms. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Hwang-Soo Joo
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, MD, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Human Bacterial Pathogenesis, National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
22
|
Heimlich DR, Harrison A, Mason KM. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease. Antibiotics (Basel) 2014; 3:645-76. [PMID: 26029470 PMCID: PMC4448142 DOI: 10.3390/antibiotics3040645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/10/2023] Open
Abstract
Innate immune responses function as a first line of host defense against the development of bacterial infection, and in some cases to preserve the sterility of privileged sites in the human host. Bacteria that enter these sites must counter host responses for colonization. From the host's perspective, the innate immune system works expeditiously to minimize the bacterial threat before colonization and subsequent dysbiosis. The multifactorial nature of disease further challenges predictions of how each independent variable influences bacterial pathogenesis. From bacterial colonization to infection and through disease, the microenvironments of the host are in constant flux as bacterial and host factors contribute to changes at the host-pathogen interface, with the host attempting to eradicate bacteria and the bacteria fighting to maintain residency. A key component of this innate host response towards bacterial infection is the production of antimicrobial peptides (AMPs). As an early component of the host response, AMPs modulate bacterial load and prevent establishment of infection. Under quiescent conditions, some AMPs are constitutively expressed by the epithelium. Bacterial infection can subsequently induce production of other AMPs in an effort to maintain sterility, or to restrict colonization. As demonstrated in various studies, the absence of a single AMP can influence pathogenesis, highlighting the importance of AMP concentration in maintaining homeostasis. Yet, AMPs can increase bacterial virulence through the co-opting of the peptides or alteration of bacterial virulence gene expression. Further, bacterial factors used to subvert AMPs can modify host microenvironments and alter colonization of the residential flora that principally maintain homeostasis. Thus, the dynamic interplay between host defense peptides and bacterial factors produced to quell peptide activity play a critical role in the progression and outcome of disease.
Collapse
Affiliation(s)
- Derek R. Heimlich
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Alistair Harrison
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Kevin M. Mason
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
- The Ohio State University College of Medicine, Department of Pediatrics, Columbus, OH 43205, USA
| |
Collapse
|
23
|
Guilhelmelli F, Vilela N, Albuquerque P, Derengowski LDS, Silva-Pereira I, Kyaw CM. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol 2013; 4:353. [PMID: 24367355 PMCID: PMC3856679 DOI: 10.3389/fmicb.2013.00353] [Citation(s) in RCA: 334] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/06/2013] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs) are natural antibiotics produced by various organisms such as mammals, arthropods, plants, and bacteria. In addition to antimicrobial activity, AMPs can induce chemokine production, accelerate angiogenesis, and wound healing and modulate apoptosis in multicellular organisms. Originally, their antimicrobial mechanism of action was thought to consist solely of an increase in pathogen cell membrane permeability, but it has already been shown that several AMPs do not modulate membrane permeability in the minimal lethal concentration. Instead, they exert their effects by inhibiting processes such as protein and cell wall synthesis, as well as enzyme activity, among others. Although resistance to these molecules is uncommon several pathogens developed different strategies to overcome AMPs killing such as surface modification, expression of efflux pumps, and secretion of proteases among others. This review describes the various mechanisms of action of AMPs and how pathogens evolve resistance to them.
Collapse
Affiliation(s)
- Fernanda Guilhelmelli
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Nathália Vilela
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Patrícia Albuquerque
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Lorena da S Derengowski
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Ildinete Silva-Pereira
- Laboratório de Biologia Molecular, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| | - Cynthia M Kyaw
- Laboratório de Microbiologia, Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília Brasília, Brazil
| |
Collapse
|
24
|
Goldberg K, Sarig H, Zaknoon F, Epand RF, Epand RM, Mor A. Sensitization of gram-negative bacteria by targeting the membrane potential. FASEB J 2013; 27:3818-26. [PMID: 23733749 DOI: 10.1096/fj.13-227942] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Toward generating new tools for fighting multidrug-resistant (MDR) bacteria, we assessed the ability of a membrane-active peptide to sensitize gram-negative bacteria to various antibiotics. The mechanism for affecting inner and/or outer membrane functions was assessed by complementary biophysical methods (SPR, DSC, ITC). The implication of efflux pumps was examined using Acr-AB mutants, as tested with representative antibiotics, host defense peptides, and synthetic mimics. The ability to affect disease course systemically was compared for a single therapy and combination therapy, using the mouse thigh-infection model. The data show that potent antibiotic action can be provoked in vitro and in vivo, by a treatment combining two antibacterial compounds whose individual inefficiency against gram-negative bacteria stems from their efflux. Thus, at subminimal inhibitory concentrations, the lipopeptide-like sequence, N(α)(ω7)dodecenoyl-lysyl-[lysyl-aminododecanoyl-lysyl]-amide (designated C12(ω7)K-β12), has, nonetheless, rapidly achieved a transient membrane depolarization, which deprived bacteria of the proton-motive force required for active efflux. Consequently, bacteria became significantly sensitive to intracellular targeting antibiotics. Collectively, these findings suggest a potentially useful approach for expanding the antibiotics sensitivity spectrum of MDR gram-negative bacteria to include efflux substrates.
Collapse
Affiliation(s)
- Keren Goldberg
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
25
|
Sánchez-Vásquez L, Silva-Sanchez J, Jiménez-Vargas JM, Rodríguez-Romero A, Muñoz-Garay C, Rodríguez MC, Gurrola GB, Possani LD. Enhanced antimicrobial activity of novel synthetic peptides derived from vejovine and hadrurin. Biochim Biophys Acta Gen Subj 2013; 1830:3427-36. [DOI: 10.1016/j.bbagen.2013.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 01/15/2013] [Accepted: 01/28/2013] [Indexed: 01/06/2023]
|
26
|
Anaya-López JL, López-Meza JE, Ochoa-Zarzosa A. Bacterial resistance to cationic antimicrobial peptides. Crit Rev Microbiol 2012; 39:180-95. [PMID: 22799636 DOI: 10.3109/1040841x.2012.699025] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Naturally occurring cationic antimicrobial peptides (CAMPs) have been considered as promising candidates to treat infections caused by pathogenic bacteria to animals and humans. This assumption is based on their mechanism of action, which is mainly performed through electrostatic membrane interactions. Unfortunately, the rise in the reports that describe bacterial resistance to CAMPs has redefined their role as therapeutic agents. In this review, we describe the state of the art of the most common resistance mechanisms developed by bacteria to CAMPs, making special emphasis on resistance selection. Considering most of the resistance mechanisms here reviewed, the emergence of resistance is unlikely in the short term, however we also described evidences that show the evolution of resistance to CAMPs, reevaluating their use as good antibacterial agents. Finally, the knowledge related to the description of CAMP resistance mechanisms may provide useful information for improving strategies to control infections.
Collapse
Affiliation(s)
- José Luis Anaya-López
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Unidad de Biotecnología, Celaya, México
| | | | | |
Collapse
|
27
|
Antibacterial properties of an oligo-acyl-lysyl hexamer targeting Gram-negative species. Antimicrob Agents Chemother 2012; 56:4827-32. [PMID: 22751534 DOI: 10.1128/aac.00511-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toward developing new tools for fighting resistance to antibiotics, we investigated the antibacterial properties of a new decanoyl-based oligo-acyl-lysyl (OAK) hexamer, aminododecanoyl-lysyl-[aminodecanoyl-lysyl](5) (α(12)-5α(10)). The OAK exhibited preferential activity against Gram-negative bacteria (GNB), as determined using 36 strains, including diverse species, with an MIC(90) of 6.2 μM. The OAK's bactericidal mode of action was associated with rapid membrane depolarization and cell permeabilization, suggesting that the inner membrane was the primary target, whereas the observed binding affinity to lipoteichoic acid suggested that inefficacy against Gram-positive species resulted from a cell wall interaction preventing α(12)-5α(10) from reaching internal targets. Interestingly, perturbation of the inner membrane structure and function was preserved at sub-MIC values. This prompted us to assess the OAK's effect on the proton motive force-dependent efflux pump AcrAB-TolC, implicated in the low sensitivity of GNB to various antibiotics, including erythromycin. We found that under sub-MIC conditions, wild-type Escherichia coli was significantly more sensitive to erythromycin (the MIC dropped by >10-fold), unlike its acr-deletion mutant. Collectively, the data suggest a useful approach for treating GNB infections through overcoming antibiotic efflux.
Collapse
|
28
|
Gruenheid S, Le Moual H. Resistance to antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Lett 2012; 330:81-9. [PMID: 22339775 DOI: 10.1111/j.1574-6968.2012.02528.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/30/2012] [Accepted: 02/11/2012] [Indexed: 01/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are present in virtually all organisms and are an ancient and critical component of innate immunity. In mammals, AMPs are present in phagocytic cells, on body surfaces such as skin and mucosa, and in secretions and body fluids such as sweat, saliva, urine, and breast milk, consistent with their role as part of the first line of defense against a wide range of pathogenic microorganisms including bacteria, viruses, and fungi. AMPs are microbicidal and have also been shown to act as immunomodulators with chemoattractant and signaling activities. During the co-evolution of hosts and bacterial pathogens, bacteria have developed the ability to sense and initiate an adaptive response to AMPs to resist their bactericidal activity. Here, we review the various mechanisms used by Gram-negative bacteria to sense and resist AMP-mediated killing. These mechanisms play an important role in bacterial resistance to host-derived AMPs that are encountered during the course of infection. Bacterial resistance to AMPs should also be taken into consideration in the development and use of AMPs as anti-infective agents, for which there is currently a great deal of academic and commercial interest.
Collapse
Affiliation(s)
- Samantha Gruenheid
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
29
|
Koprivnjak T, Peschel A. Bacterial resistance mechanisms against host defense peptides. Cell Mol Life Sci 2011; 68:2243-54. [PMID: 21560069 PMCID: PMC11115334 DOI: 10.1007/s00018-011-0716-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/30/2022]
Abstract
Host defense peptides and proteins are important components of the innate host defense against pathogenic microorganisms. They target negatively charged bacterial surfaces and disrupt microbial cytoplasmic membranes, which ultimately leads to bacterial destruction. Throughout evolution, pathogens devised several mechanisms to protect themselves from deleterious damage of host defense peptides. These strategies include (a) inactivation and cleavage of host defense peptides by production of host defense binding proteins and proteases, (b) repulsion of the peptides by alteration of pathogen's surface charge employing modifications by amino acids or amino sugars of anionic molecules (e.g., teichoic acids, lipid A and phospholipids), (c) alteration of bacterial membrane fluidity, and (d) expulsion of the peptides using multi drug pumps. Together with bacterial regulatory network(s) that regulate expression and activity of these mechanisms, they represent attractive targets for development of novel antibacterials.
Collapse
Affiliation(s)
- Tomaz Koprivnjak
- Department of Biotechnology, National Institute of Chemistry Slovenia, Hajdrihova 19, 1000, Ljubljana, Slovenia,
| | | |
Collapse
|
30
|
Askoura M, Mottawea W, Abujamel T, Taher I. Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa. Libyan J Med 2011; 6:LJM-6-5870. [PMID: 21594004 PMCID: PMC3096568 DOI: 10.3402/ljm.v6i0.5870] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 04/20/2011] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen and one of the leading causes of nosocomial infections worldwide. The difficulty in treatment of pseudomonas infections arises from being multidrug resistant (MDR) and exhibits resistance to most antimicrobial agents due to the expression of different mechanisms overcoming their effects. Of these resistance mechanisms, the active efflux pumps in Pseudomonas aeruginosa that belong to the resistance nodulation division (RND) plays a very important role in extruding the antibiotics outside the bacterial cells providing a protective means against their antibacterial activity. Beside its role against the antimicrobial agents, these pumps can extrude biocides, detergents, and other metabolic inhibitors. It is clear that efflux pumps can be targets for new antimicrobial agents. Peptidomimetic compounds such as phenylalanine arginyl β-naphthylamide (PAβN) have been introduced as efflux pump inhibitors (EPIs); their mechanism of action is through competitive inhibition with antibiotics on the efflux pump resulting in increased intracellular concentration of antibiotic, hence, restoring its antibacterial activity. The advantage of EPIs is the difficulty to develop bacterial resistance against them, but the disadvantage is their toxic property hindering their clinical application. The structure activity relationship of these compounds showed other derivatives from PAβN that are higher in their activity with higher solubility in biological fluids and decreased toxicity level. This raises further questions on how can we compact Pseudomonas infections. Of particular importance, the recent resurgence in the use of older antibiotics such as polymyxins and probably applying stricter control measures in order to prevent their spread in clinical sittings.
Collapse
Affiliation(s)
- Momen Askoura
- Biochemistry, Immunology and Microbiology (BMI) Department, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
31
|
Reichel M, Heisig A, Heisig P, Kampf G. Skin bacteria after chlorhexidine exposure-is there a difference in response to human beta-Defensin-3? Eur J Clin Microbiol Infect Dis 2010; 29:623-32. [PMID: 20339890 DOI: 10.1007/s10096-010-0904-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Accepted: 02/27/2010] [Indexed: 11/25/2022]
Abstract
We investigated whether exposure to sub-lethal concentrations of chlorhexidine digluconate (CHG) changed the response of five Staphylococcus spp. to human beta-Defensin-3 (hBD-3). The change in response for each strain was determined in vitro with time-kill experiments in suspension by comparing the mean log(10) reduction caused by hBD-3 at 1.5 and 3 h in exposed and non-exposed bacteria. The identity of staphylococcal species was verified by DNA sequence homology in the gyrA genes in comparison with reference strains. Baseline sub-lethal concentrations allowing visible bacterial growth were between 0.0625 and 0.25 microg/ml. Sub-lethal CHG concentrations increased within 3 days in two isolates. For S. capitis 19/2, CHG-exposed cells were less susceptible to 0.5 microg/ml hBD-3 (log(10) reduction 0.78 versus 2.06 at 1.5 h; p < 0.001; t-test). For S. aureus, however, CHG-exposed cells were more susceptible to 1 microg/ml hBD-3. The observed changes between CHG-exposed and non-exposed cells did not indicate a general trend in response to hBD-3. Overall, we found no consistent evidence that 3 days of exposure to CHG changed the response of five Staphylococcus spp. to hBD-3. The use of CHG for skin antisepsis is, based on our data, unlikely to change the natural defence activity of hBD-3.
Collapse
Affiliation(s)
- M Reichel
- BODE Chemie GmbH, Scientific Affairs, Melanchthonstr. 27, 22525, Hamburg, Germany.
| | | | | | | |
Collapse
|
32
|
Warner DM, Levy SB. Different effects of transcriptional regulators MarA, SoxS and Rob on susceptibility of Escherichia coli to cationic antimicrobial peptides (CAMPs): Rob-dependent CAMP induction of the marRAB operon. MICROBIOLOGY (READING, ENGLAND) 2010; 156:570-578. [PMID: 19926649 PMCID: PMC2890090 DOI: 10.1099/mic.0.033415-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/05/2009] [Accepted: 11/18/2009] [Indexed: 11/18/2022]
Abstract
Cationic antimicrobial peptides (CAMPs), a component of the mammalian immune system, protect the host from bacterial infections. The roles of the Escherichia coli transcriptional regulators MarA, SoxS and Rob in susceptibility to these peptides were examined. Overexpression of marA, either in an antibiotic-resistant marR mutant or from a plasmid, decreased bacterial susceptibility to CAMPs. Overexpression of the soxS gene from a plasmid, which decreased susceptibility to antibiotics, unexpectedly caused no decrease in CAMP susceptibility; instead it produced increased susceptibility to different CAMPs. Deletion or overexpression of rob had little effect on CAMP susceptibility. The marRAB operon was upregulated when E. coli was incubated in sublethal amounts of CAMPs polymyxin B, LL-37 or human beta-defensin-1; however, this upregulation required Rob. Deletion of acrAB increased bacterial susceptibility to polymyxin B, LL-37 and human beta-defensin-1 peptides. Deletion of tolC yielded an even greater increase in susceptibility to these peptides and also led to increased susceptibility to human alpha-defensin-2. Inhibition of cellular proton-motive force increased peptide susceptibility for wild-type and acrAB deletion strains; however, it decreased susceptibility of tolC mutants. These findings demonstrate that CAMPs are both inducers of marA-mediated drug resistance through interaction with Rob and also substrates for efflux in E. coli. The three related transcriptional regulators show different effects on bacterial cell susceptibility to CAMPs.
Collapse
Affiliation(s)
- Douglas M. Warner
- Center for Adaptation Genetics and Drug Resistance, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stuart B. Levy
- Center for Adaptation Genetics and Drug Resistance, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Medicine, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
33
|
Blair JMA, Piddock LJV. Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update. Curr Opin Microbiol 2009; 12:512-9. [DOI: 10.1016/j.mib.2009.07.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 07/02/2009] [Accepted: 07/08/2009] [Indexed: 01/07/2023]
|
34
|
Abstract
Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome, although they can also be plasmid-encoded. A previous article in this journal provided a comprehensive review regarding efflux-mediated drug resistance in bacteria. In the past 5 years, significant progress has been achieved in further understanding of drug resistance-related efflux transporters and this review focuses on the latest studies in this field since 2003. This has been demonstrated in multiple aspects that include but are not limited to: further molecular and biochemical characterization of the known drug efflux pumps and identification of novel drug efflux pumps; structural elucidation of the transport mechanisms of drug transporters; regulatory mechanisms of drug efflux pumps; determining the role of the drug efflux pumps in other functions such as stress responses, virulence and cell communication; and development of efflux pump inhibitors. Overall, the multifaceted implications of drug efflux transporters warrant novel strategies to combat multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario K1A OK9, Canada
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| |
Collapse
|