1
|
Sulaiman M, Ebehairy L, Nissapatorn V, Rahmatullah M, Villegas J, Dupa HJ, Verzosa RC, Dolma KG, Shabaz M, Lanting S, Rusdi NA, Abdullah NH, Bin Break MK, Khoo T, Wang W, Wiart C. Antibacterial phenolic compounds from the flowering plants of Asia and the Pacific: coming to the light. PHARMACEUTICAL BIOLOGY 2024; 62:713-766. [PMID: 39392281 PMCID: PMC11486068 DOI: 10.1080/13880209.2024.2407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT The emergence of pan-resistant bacteria requires the development of new antibiotics and antibiotic potentiators. OBJECTIVE This review identifies antibacterial phenolic compounds that have been identified in Asian and Pacific Angiosperms from 1945 to 2023 and analyzes their strengths and spectra of activity, distributions, molecular masses, solubilities, modes of action, structures-activities, as well as their synergistic effects with antibiotics, toxicities, and clinical potential. METHODS All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, and library search; other sources were excluded. We used the following combination of keywords: 'Phenolic compound', 'Plants', and 'Antibacterial'. This produced 736 results. Each result was examined and articles that did not contain information relevant to the topic or coming from non-peer-reviewed journals were excluded. Each of the remaining 467 selected articles was read critically for the information that it contained. RESULTS Out of ∼350 antibacterial phenolic compounds identified, 44 were very strongly active, mainly targeting the cytoplasmic membrane of Gram-positive bacteria, and with a molecular mass between 200 and 400 g/mol. 2-Methoxy-7-methyljuglone, [6]-gingerol, anacardic acid, baicalin, vitexin, and malabaricone A and B have the potential to be developed as antibacterial leads. CONCLUSIONS Angiosperms from Asia and the Pacific provide a rich source of natural products with the potential to be developed as leads for treating bacterial infections.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Layane Ebehairy
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology, University of Development Alternative, Dhaka, Bangladesh
| | - Jhonnel Villegas
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Helina Jean Dupa
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Ricksterlie C. Verzosa
- Faculty of Agriculture and Life Science, Davao Oriental State University, Mati, Philippines
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal University, Gangtok, India
| | - Muhamad Shabaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Azizun Rusdi
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Hayati Abdullah
- Natural Product Division, Forest Research Institute of Malaysia, Kepong, Malaysia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Teng Jin Khoo
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
2
|
Kim B, Lee Y, Lee C, Jung ES, Kang H, Holzapfel WH. Comprehensive Amelioration of Metabolic Dysfunction through Administration of Lactiplantibacillus plantarum APsulloc 331261 (GTB1™) in High-Fat-Diet-Fed Mice. Foods 2024; 13:2227. [PMID: 39063311 PMCID: PMC11276112 DOI: 10.3390/foods13142227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The beneficial effects of probiotics for the improvement of metabolic disorders have been studied intensively; however, these effects are evident in a probiotic strain-specific and disease-specific manner. Thus, it is still essential to evaluate the efficacy of each strain against a target disease. Here, we present an anti-obese and anti-diabetic probiotic strain, Lactiplantibacillus plantarum APsulloc331261 (GTB1™), which was isolated from green tea and tested for safety previously. In high-fat-diet-induced obese mice, GTB1™ exerted multiple beneficial effects, including significant reductions in adiposity, glucose intolerance, and dyslipidemia, which were further supported by improvements in levels of circulating hormones and adipokines. Lipid metabolism in adipose tissues was restored through the activation of PPAR/PGC1α signaling by GTB1™ treatment, which was facilitated by intestinal microbiota composition changes and short-chain fatty acid production. Our findings provide evidence to suggest that GTB1™ is a potential candidate for probiotic supplementation for comprehensive improvement in metabolic disorders.
Collapse
Affiliation(s)
- Bobae Kim
- Basic Research Center, HEM Pharma Inc., Pohang 37554, Republic of Korea; (B.K.); (Y.L.); (C.L.)
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Republic of Korea
| | - Yuri Lee
- Basic Research Center, HEM Pharma Inc., Pohang 37554, Republic of Korea; (B.K.); (Y.L.); (C.L.)
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Republic of Korea
| | - Chungho Lee
- Basic Research Center, HEM Pharma Inc., Pohang 37554, Republic of Korea; (B.K.); (Y.L.); (C.L.)
| | - Eun Sung Jung
- Multi-Omics Center, HEM Pharma Inc., Suwon 16229, Republic of Korea;
| | - Hyeji Kang
- Basic Research Center, HEM Pharma Inc., Pohang 37554, Republic of Korea; (B.K.); (Y.L.); (C.L.)
- Global Green Research Institute, Handong Global University, Pohang 37554, Republic of Korea
| | - Wilhelm H. Holzapfel
- Basic Research Center, HEM Pharma Inc., Pohang 37554, Republic of Korea; (B.K.); (Y.L.); (C.L.)
- Department of Advanced Convergence, Handong Global University, Pohang 37554, Republic of Korea
| |
Collapse
|
3
|
Hu Y, Hu L, Zhang L, Chen J, Xiao H, Yu B, Pi Y. Novel electro-spun fabrication of blended polymeric nanofibrous wound closure materials loaded with catechin to improve wound healing potential and microbial inhibition for the care of diabetic wound. Heliyon 2024; 10:e26940. [PMID: 38509943 PMCID: PMC10950831 DOI: 10.1016/j.heliyon.2024.e26940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Diabetic wound infections caused by the multiplication of infectious pathogens and their antibiotic resistance. Wound infection evident by bacterial colonization and other factors, such as the virulence and host immune factors. In this context, we need discover appropriate treatment and effective antibiotics for wound infection control. Considering this, we synthesized catechin-loaded polyvinyl alcohol/Chitosan (PVA/CS) based nanofiber for multifunctional wound healing. The physicochemical and biological properties of fabricated nanofiber, were systematically evaluated by various spectroscopy and microscopy techniques. The CA@PVA/CS nanofiber exhibited a high level of antibacterial and antioxidant effects. The nanofibers showed effective control in gram-positive and negative wound infectious bacterial multiplication at the lowest concentration. Based on the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability study CA@PVA/CS nanofiber shows excellent biocompatibility against L929 cells. In wound, scratch assay results revealed that the CA@PVA/CS treated group shows enhanced cell migration and cell proliferation within 48 h. The synthesis of antioxidant, antibacterial, and biocompatible nanofiber exposes their potential for effective wound healing. Current research hypothesized catechin loaded PVA/CS nanofiber could be a multifunctional and low-cost material for diabetic wound care application. Fabricated nanofiber would be improved skin tissue regeneration and public health hygiene.
Collapse
Affiliation(s)
- Yunting Hu
- Department of Endocrinology and Metabolism, Changsha First Hospital, Changsha 410000, China
| | - Li Hu
- Department of Endocrinology and Metabolism, Changsha First Hospital, Changsha 410000, China
| | - Li Zhang
- Department of Endocrinology and Metabolism, Changsha First Hospital, Changsha 410000, China
| | - Juan Chen
- Department of Endocrinology and Metabolism, Changsha First Hospital, Changsha 410000, China
| | - Huiyu Xiao
- Department of Endocrinology and Metabolism, Changsha First Hospital, Changsha 410000, China
| | - Bin Yu
- Department of Endocrinology and Metabolism, Changsha First Hospital, Changsha 410000, China
| | - Yinzhen Pi
- Department of Endocrinology and Metabolism, Changsha First Hospital, Changsha 410000, China
| |
Collapse
|
4
|
Cao X, Cheng XW, Liu YY, Dai HW, Gan RY. Inhibition of pathogenic microbes in oral infectious diseases by natural products: Sources, mechanisms, and challenges. Microbiol Res 2024; 279:127548. [PMID: 38016378 DOI: 10.1016/j.micres.2023.127548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
The maintenance of oral health is of utmost importance for an individual's holistic well-being and standard of living. Within the oral cavity, symbiotic microorganisms actively safeguard themselves against potential foreign diseases by upholding a multifaceted equilibrium. Nevertheless, the occurrence of an imbalance can give rise to a range of oral infectious ailments, such as dental caries, periodontitis, and oral candidiasis. Presently, clinical interventions encompass the physical elimination of pathogens and the administration of antibiotics to regulate bacterial and fungal infections. Given the limitations of various antimicrobial drugs frequently employed in dental practice, the rising incidence of oral inflammation, and the escalating bacterial resistance to antibiotics, it is imperative to explore alternative remedies that are dependable, efficacious, and affordable for the prevention and management of oral infectious ailments. There is an increasing interest in the creation of novel antimicrobial agents derived from natural sources, which possess attributes such as safety, cost-effectiveness, and minimal adverse effects. This review provides a comprehensive overview of the impact of natural products on the development and progression of oral infectious diseases. Specifically, these products exert their influences by mitigating dental biofilm formation, impeding the proliferation of oral pathogens, and hindering bacterial adhesion to tooth surfaces. The review also encompasses an examination of the various classes of natural products, their antimicrobial mechanisms, and their potential therapeutic applications and limitations in the context of oral infections. The insights garnered from this review can support the promising application of natural products as viable therapeutic options for managing oral infectious diseases.
Collapse
Affiliation(s)
- Xin Cao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xing-Wang Cheng
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yin-Ying Liu
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore
| | - Hong-Wei Dai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A⁎STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore.
| |
Collapse
|
5
|
Kuchaiyaphum P, Chotichayapong C, Kajsanthia K, Saengsuwan N. Carboxymethyl cellulose/poly (vinyl alcohol) based active film incorporated with tamarind seed coat waste extract for food packaging application. Int J Biol Macromol 2024; 255:128203. [PMID: 37979741 DOI: 10.1016/j.ijbiomac.2023.128203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/29/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Incorporating a bioactive food waste extract into biodegradable polymers is a promising green approach to producing active films with antioxidant and antibacterial activity for food packaging. Active packaging films from carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA) incorporated with tamarind seed coat waste extract (TS) were prepared by solvent casting method using citric acid as a crosslinking agent. The effect of TS content on the film properties was determined by measuring the optical, morphology, mechanical, water vapor transmission rate (WVTR), antioxidant, and antimicrobial attributes. The CMC/PVA-TS films were also tested on fresh pork. The addition of TS did not significantly affect the film structure and WVTR but it improved the mechanical and UV barrier properties. The films possessed antioxidant and antimicrobial ability against bacteria (S. aureus and E. coli). Thus, CMC/PVA packaging was successfully prepared, and the incorporation of TS enhanced the antioxidant and antimicrobial properties of the film, which extended the shelf-life of fresh pork.
Collapse
Affiliation(s)
- Pusita Kuchaiyaphum
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand.
| | - Chatrachatchaya Chotichayapong
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Kanlayanee Kajsanthia
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| | - Nikorn Saengsuwan
- Department of Applied Chemistry, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
6
|
Zhou Y, He Y, Zhu Z. Understanding of formation and change of chiral aroma compounds from tea leaf to tea cup provides essential information for tea quality improvement. Food Res Int 2023; 167:112703. [PMID: 37087269 DOI: 10.1016/j.foodres.2023.112703] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Abundant secondary metabolites endow tea with unique quality characteristics, among which aroma is the core component of tea quality. The ratio of chiral isomers of aroma compounds greatly affects the flavor of tea leaves. In this paper, we review the progress of research on chiral aroma compounds in tea. With the well-established GC-MS methods, the formation of, and changes in, the chiral configuration of tea aroma compounds during the whole cycle of tea leaves from the plant to the tea cup has been studied in detail. The ratio of aroma chiral isomers varies among different tea varieties and finished teas. Enzymatic reactions involving tea aroma synthases and glycoside hydrolases participate the formation of aroma compound chiral isomers during tea tree growth and tea processing. Non-enzymatic reactions including environmental factors such as high temperature and microbial fermentation involve in the change of aroma compound chiral isomers during tea processing and storage. In the future, it will be interesting to determine how changes in the proportions of chiral isomers of aroma compounds affect the environmental adaptability of tea trees; and to determine how to improve tea flavor by modifying processing methods or targeting specific genes to alter the ratio of chiral isomers of aroma compounds.
Collapse
Affiliation(s)
- Ying Zhou
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China.
| | - Yunchuan He
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China; College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| | - Zengrong Zhu
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China; College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| |
Collapse
|
7
|
Azaryan E, Emadian Razavi F, Hanafi-Bojd MY, Alemzadeh E, Naseri M. Dentin regeneration based on tooth tissue engineering: A review. Biotechnol Prog 2022; 39:e3319. [PMID: 36522133 DOI: 10.1002/btpr.3319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Missing or damaged teeth due to caries, genetic disorders, oral cancer, or infection may contribute to physical and mental impairment that reduces the quality of life. Despite major progress in dental tissue repair and those replacing missing teeth with prostheses, clinical treatments are not yet entirely satisfactory, as they do not regenerate tissues with natural teeth features. Therefore, much of the focus has centered on tissue engineering (TE) based on dental stem/progenitor cells to create bioengineered dental tissues. Many in vitro and in vivo studies have shown the use of cells in regenerating sections of a tooth or a whole tooth. Tooth tissue engineering (TTE), as a promising method for dental tissue regeneration, can form durable biological substitutes for soft and mineralized dental tissues. The cell-based TE approach, which directly seeds cells and bioactive components onto the biodegradable scaffolds, is currently the most potential method. Three essential components of this strategy are cells, scaffolds, and growth factors (GFs). This study investigates dentin regeneration after an injury such as caries using TE and stem/progenitor cell-based strategies. We begin by discussing about the biological structure of a dentin and dentinogenesis. The engineering of teeth requires knowledge of the processes that underlie the growth of an organ or tissue. Then, the three fundamental requirements for dentin regeneration, namely cell sources, GFs, and scaffolds are covered in the current study, which may ultimately lead to new insights in this field.
Collapse
Affiliation(s)
- Ehsaneh Azaryan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran.,Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Emadian Razavi
- Dental Research Center, Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical sciences, Birjand, Iran.,Department of Pharmaceutics and Pharmaceutical nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Esmat Alemzadeh
- Department of Medical Biotechnology, Faculty of medicine, Birjand University of Medical Sciences, Birjand, Iran.,Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
8
|
Panda SK, Buroni S, Swain SS, Bonacorsi A, da Fonseca Amorim EA, Kulshrestha M, da Silva LCN, Tiwari V. Recent advances to combat ESKAPE pathogens with special reference to essential oils. Front Microbiol 2022; 13:1029098. [PMID: 36560948 PMCID: PMC9763703 DOI: 10.3389/fmicb.2022.1029098] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 12/12/2022] Open
Abstract
Biofilm-associated bacteria, especially ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), are a serious challenge worldwide. Due to the lack of discovery of novel antibiotics, in the past two decades, it has become necessary to search for new antibiotics or to study synergy with the existing antibiotics so as to counter life-threatening infections. Nature-derived compounds/based products are more efficient than the chemically synthesized ones with less resistance and lower side effects. In this descriptive review, we discuss the most promising therapeutics for the treatment of ESKAPE-related biofilms. The first aspect includes different types of natural agents [botanical drugs, essential oils (EOs), antimicrobial peptides, bacteriophages, and endolysins] effective against ESKAPE pathogens. The second part of the review deals with special references to EOs/essential oil components (EOCs) (with some exclusive examples), mode of action (via interfering in the quorum-sensing pathways, disruption of biofilm and their inhibitory concentrations, expression of genes that are involved, other virulence factors), existing in literature so far. Moreover, different essential oils and their major constituents were critically discussed using in vivo models to target ESKAPE pathogens along with the studies involving existing antibiotics.
Collapse
Affiliation(s)
- Sujogya Kumar Panda
- Centre of Environment Studies, Climate Change and Public Health, RUSA 2.0, Utkal University, Vani Vihar, Bhubaneswar, Odisha, India
| | - Silvia Buroni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Shasank Sekhar Swain
- Division of Microbiology and Noncommunicable Diseases (NCDs), Indian Council of Medical Research (ICMR)–Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Andrea Bonacorsi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Mukta Kulshrestha
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | | | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India,*Correspondence: Vishvanath Tiwari,
| |
Collapse
|
9
|
Pei J, Yu H, Qiu W, Mei J, Xie J. Antimicrobial Effect of Epigallocatechin Gallate Against Shewanella putrefaciens ATCC 8071: A Study Based on Cell Membrane and Biofilm. Curr Microbiol 2022; 79:297. [PMID: 35996024 DOI: 10.1007/s00284-022-02978-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/15/2022] [Indexed: 01/28/2023]
Abstract
The study was to evaluate the antimicrobial impacts and biofilm influences on epigallocatechin gallate (EGCG) against Shewanella putrefaciens ATCC 8071. The minimum inhibitory concentration (MIC) of EGCG on S. putrefaciens was 160 μg mL-1. The growth curve exhibited that EGCG had a good antimicrobial activity. EGCG caused damages to the bacterial cell wall and membrane based the intracellular component leakage and cell viability analysis. The damage to the membrane integrity by EGCG has been confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM shows deformation of shape, TEM shows cell membrane and wall damage, and the leakage of cytoplasmic material. The treatment with EGCG at 0.25× and 0.5× MIC resulted in decreased motility and elevated levels of oxidative stress, leading to an increase in biofilm formation. These results demonstrated that EGCG may be used as a natural preservative to reduce S. putrefaciens in fish during cold storage.
Collapse
Affiliation(s)
- Juxin Pei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Huijie Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China. .,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China. .,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China. .,National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai, China. .,Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China. .,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China.
| |
Collapse
|
10
|
Majumdar R, Hariharan K, Vaishnavi S, Sugumar S. Review on Stenotrophomonas maltophilia: an emerging multidrug-resistant opportunistic pathogen. Recent Pat Biotechnol 2022; 16:329-354. [PMID: 35549857 DOI: 10.2174/1872208316666220512121205] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022]
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen that results in nosocomial infections in immunocompromised individuals. These bacteria colonize on the surface of medical devices and therapeutic equipment like urinary catheters, endoscopes, and ventilators, causing respiratory and urinary tract infections. The low outer membrane permeability of multidrug-resistance efflux systems and the two chromosomally encoded β-lactamases present in S.maltophilia are challenging for arsenal control. The cell-associated and extracellular virulence factors in S.maltophilia are involved in colonization and biofilm formation on the host surfaces. The spread of antibiotic-resistant genes in the pathogenic S.maltophilia attributes to bacterial resistance against a wide range of antibiotics, including penicillin, quinolones, and carbapenems. So far, tetracycline derivatives, fluoroquinolones, and trimethoprim-sulfamethoxazole (TMP-SMX) are considered promising antibiotics against S.maltophilia. Due to the adaptive nature of the intrinsically resistant mechanism towards the number of antibiotics and its ability to acquire new resistance via mutation and horizontal gene transfer, it is quite tricky for medicinal contribution against S.maltophilia. The current review summarizes the literary data of pathogenicity, quorum sensing, biofilm formation, virulence factors, and antibiotic resistance of S.maltophilia.
Collapse
Affiliation(s)
- Rikhia Majumdar
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - K Hariharan
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - S Vaishnavi
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| | - Shobana Sugumar
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur-603203, Tamilnadu, India
| |
Collapse
|
11
|
Molecular Insight into Gene Response of Diorcinol- and Rubrolide-Treated Biofilms of the Emerging Pathogen Stenotrophomonas maltophilia. Microbiol Spectr 2022; 10:e0258221. [PMID: 35471093 PMCID: PMC9241881 DOI: 10.1128/spectrum.02582-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is a multidrug-resistant human opportunistic pathogen. S. maltophilia contributes to disease progression in cystic fibrosis patients and is found in wounds and infected tissues and on catheter surfaces. Due to its well-known multidrug resistance, it is difficult to treat S. maltophilia infections. Strain-specific susceptibility to antimicrobials has also been reported in several studies. Recently, three fungal diorcinols and 14 rubrolides were shown to reduce S. maltophilia K279a biofilm formation. Based on these initial findings, we were interested to extend this approach by testing a larger number of diorcinols and rubrolides and to understand the molecular mechanisms behind the observed antibiofilm effects. Of 52 tested compounds, 30 were able to significantly reduce the biofilm thickness by up to 85% ± 15% and had strong effects on mature biofilms. All compounds with antibiofilm activity also significantly affected the biofilm architecture. Additional RNA-sequencing data of diorcinol- and rubrolide-treated biofilm cells of two clinical isolates (454 and K279) identified a small set of shared genes that were affected by these potent antibiofilm compounds. Among these, genes for iron transport, general metabolism, and membrane biosynthesis were most strongly and differentially regulated. A further hierarchical clustering and detailed structural inspection of the diorcinols and rubrolides implied that a prenyl group as side chain of one of the phenyl groups of the diorcinols and an increasing degree of bromination of chlorinated rubrolides were possibly the cause of the strong antibiofilm effects. This study gives a deep insight into the effects of rubrolides and diorcinols on biofilms formed by the important global pathogen S. maltophilia. IMPORTANCE Combating Stenotrophomonasmaltophilia biofilms in clinical and industrial settings has proven to be challenging. S. maltophilia is multidrug resistant, and occurrence of resistance to commonly used drugs as well as to antibiotic combinations, such as trimethoprim-sulfamethoxazole, is now frequently reported. It is therefore now necessary to look beyond conventional and already existing antimicrobial drugs when battling S. maltophilia biofilms. Our study contains comprehensive and detailed data sets for diorcinol and rubrolide-treated S. maltophilia biofilms. The study defines genes and pathways affected by treatment with these different compounds. These results, together with the identified structural elements that may be crucial for their antibiofilm activity, build a strong backbone for further research on diorcinols and rubrolides as novel and potent antibiofilm compounds.
Collapse
|
12
|
Wang H, Zou H, Wang Y, Jin J, Wang H, Zhou M. Inhibition effect of epigallocatechin gallate on the growth and biofilm formation of Vibrio parahaemolyticus. Lett Appl Microbiol 2022; 75:81-88. [PMID: 35353911 DOI: 10.1111/lam.13712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a common marine foodborne pathogen that causes gastroenteritis. With the long-term use of antibiotics, many bacteria become resistant strains, therefore, developing antibiotic-free antimicrobial strategies is urgent. Epigallocatechin gallate (EGCG) as the abundant constituent of polyphenols in tea extract has broad-spectrum antibacterial activity and non-toxicity. Here, we took advantage of EGCG to evaluate its inhibition effect on the growth of V. parahaemolyticus 17802 and the biofilm formation, and explore its antibacterial mechanism. It was found that EGCG showed antibacterial activity to V. parahaemolyticus 17802, and the minimum inhibitory concentration (MIC) is 128 μg mL-1 , crystal violet staining and confocal laser scanning microscope (CLSM) evidenced EGCG hindered its biofilm formation. Moreover, the swimming motility and extracellular polysaccharides were also notably inhibited. The antibacterial mechanism was further confirmed by several assays, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), live/dead staining assay, together with membrane permeability assay, which all suggested that EGCG caused damage to cell membrane and made it lose integrity, eventually resulting in the death of V. parahaemolyticus 17802. The bactericidal activity of EGCG verified its potential as a promising candidate to combat foodborne pathogen.
Collapse
Affiliation(s)
- Huajuan Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Han Zou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Yudong Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Jiaqi Jin
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Hongxun Wang
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| | - Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, P.R. China
| |
Collapse
|
13
|
Dai C, Lin J, Li H, Shen Z, Wang Y, Velkov T, Shen J. The Natural Product Curcumin as an Antibacterial Agent: Current Achievements and Problems. Antioxidants (Basel) 2022; 11:459. [PMID: 35326110 PMCID: PMC8944601 DOI: 10.3390/antiox11030459] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
The rapid spread of antibiotic resistance and lack of effective drugs for treating infections caused by multi-drug resistant bacteria in animal and human medicine have forced us to find new antibacterial strategies. Natural products have served as powerful therapeutics against bacterial infection and are still an important source for the discovery of novel antibacterial drugs. Curcumin, an important constituent of turmeric, is considered safe for oral consumption to treat bacterial infections. Many studies showed that curcumin exhibited antibacterial activities against Gram-negative and Gram-positive bacteria. The antibacterial action of curcumin involves the disruption of the bacterial membrane, inhibition of the production of bacterial virulence factors and biofilm formation, and the induction of oxidative stress. These characteristics also contribute to explain how curcumin acts a broad-spectrum antibacterial adjuvant, which was evidenced by the markedly additive or synergistical effects with various types of conventional antibiotics or non-antibiotic compounds. In this review, we summarize the antibacterial properties, underlying molecular mechanism of curcumin, and discuss its combination use, nano-formulations, safety, and current challenges towards development as an antibacterial agent. We hope that this review provides valuable insight, stimulates broader discussions, and spurs further developments around this promising natural product.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiahao Lin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
| | - Hui Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100193, China;
| | - Zhangqi Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China; (J.L.); (Z.S.); (Y.W.)
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Xiang Y, Sun C, Zhao Y, Li L, Yang X, Wu Y, Chen S, Wei Y, Li C, Wang Y. Label-free proteomic analysis reveals freshness-related proteins in sea bass (Lateolabrax japonicus) fillets stored on ice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112885] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Pei J, Mei J, Yu H, Qiu W, Xie J. Effect of Gum Tragacanth-Sodium Alginate Active Coatings Incorporated With Epigallocatechin Gallate and Lysozyme on the Quality of Large Yellow Croaker at Superchilling Condition. Front Nutr 2022; 8:812741. [PMID: 35118111 PMCID: PMC8804529 DOI: 10.3389/fnut.2021.812741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 01/05/2023] Open
Abstract
This research was done to investigate the synergistic interactions of the gum tragacanth (GT)–sodium alginate (SA) active coatings, incorporated with epigallocatechin gallate and lysozyme, on the quality of large yellow croaker (Larimichthys crocea) during superchilling storage at −3°C. Results showed that the GT-SA active coatings, containing epigallocatechin gallate [EGCG (E), 0.32% w/v], and lysozyme [LYS (L), 0.32% w/v] have reduced the total viable count, psychrophilic bacteria, and Pseudomonas spp. by about 1.55 log CFU/g, 0.49 log CFU/g, and 1.64 log CFU/g compared to the control at day 35. The GT-SA active coatings containing EGCG and LYS were effective in lowering the formations of off-odor compounds such as total volatile basic nitrogen (TVB-N), malondialdehyde (MDA), and off-favor amino acid (histidine). The solid phase microextraction gas chromatography-mass spectrometer (SPME-GC/MS) was applied to characterize and to quantify the volatile compounds of large yellow croaker samples during superchilling storage, while the relative content of the fishy flavor compounds (including 1-octen-3-ol and acetoin) was significantly reduced in the active coatings treated samples. Furthermore, the GT-SA active coatings containing EGCG and LYS treatments was found to be more effective in retarding the migration of water based on magnetic resonance imaging (MRI) results and in maintaining the organoleptic quality of large yellow croaker in superchilling storage at −3°C according to the sensory evaluation results. The results showed that the GT-SA active coating containing EGCG and LYS was effective to be used as a fish preservative to improve the quality and to prolong the shelf life of large yellow croaker in a superchilling storage for at least 7 days.
Collapse
Affiliation(s)
- Juxin Pei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- *Correspondence: Jun Mei
| | - Huijie Yu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Weiqiang Qiu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai, China
- Jing Xie
| |
Collapse
|
16
|
Li A, Li L, Zhao B, Li X, Liang W, Lang M, Cheng B, Li J. Antibacterial, antioxidant and anti-inflammatory PLCL/gelatin nanofiber membranes to promote wound healing. Int J Biol Macromol 2022; 194:914-923. [PMID: 34838860 DOI: 10.1016/j.ijbiomac.2021.11.146] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022]
Abstract
Epigallocatechin-3-O-gallate (EGCG) is a green biomedical agent for promoting wound healing, which possess excellent antibacterial, antioxidant and anti-inflammatory activities. For improving the low bioavailability challenges of EGCG in vivo, we had successful created a low-cost and simple wound dressing Poly (L-Lactic-co-caprolactone) (PLCL)/Gelatin/EGCG/Core-shell nanofiber membrane (PGEC) with drug sustained release capacity through coaxial electrospinning technology. In vitro experimental indicated that the core-shell structure wound dressing had excellent biocompatibility, antibacterial and antioxidant ability, which could support cell viability and proliferation, encourage re-epithelialization during the healing process, inhibit subsequent wound infection and thus promote wound regeneration. In vivo experimental demonstrated that PGEC wound dressing could promote wound healing, the histological results further demonstrated that PGEC not only facilitated early wound closure but also influenced cellular differentiation and tissue organization. Meanwhile, PGEC had excellent hemostatic ability. Taken all together, we believed that the PGEC wound dressing, which could localize delivery of EGCG, had high potential clinical application for promoting wound healing, hemostasis or other related clinical applications in the future.
Collapse
Affiliation(s)
- Ang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, China; Department of General Surgery, The Affiliated Shanghai Shuguang Hospital of Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai 201203, China
| | - Linhui Li
- Department of Burns, The First Affiliated Hospital of Naval Medical University, No. 168 ChanghaiRoad, Yangpu District, Shanghai 200433, China
| | - Bin'an Zhao
- Department of Orthopedics, Shanghai Tenth People's Hospital affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, China
| | - Xiaotong Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wencheng Liang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Biao Cheng
- Department of Orthopedics, Shanghai Tenth People's Hospital affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, China.
| | - Jun Li
- Department of Orthopedics, Shanghai Tenth People's Hospital affiliated to Tongji University, 301 Yanchang Road, Shanghai 200072, China.
| |
Collapse
|
17
|
Manso T, Lores M, de Miguel T. Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics (Basel) 2021; 11:antibiotics11010046. [PMID: 35052923 PMCID: PMC8773215 DOI: 10.3390/antibiotics11010046] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance is a growing global problem that affects people, animals, the environment, and the economy. Many clinically relevant bacteria have become resistant to antibiotics, and this fact is emerging as one of the major threats to public health. The lack of new antibiotics, which is due to their time-consuming and costly development, exacerbates the problem. Therefore, it is necessary to identify new antimicrobial agents to treat bacterial and fungal infections. Plant extracts, which are valuable sources of bioactive compounds, mainly polyphenols, play an important role as a new strategy to combat pathogenic microorganisms. There is an extensive body of supporting evidence for the potent antibacterial and antifungal activities of polyphenols. Furthermore, some polyphenols show a synergistic effect when combined with antibiotics and antifungals, suggesting a promising alternative for therapeutic strategies against antibiotic resistance. However, only a few articles are found when searching the antibacterial or antifungal activities of polyphenols employing clinical isolates. Hence, this review focuses on the antimicrobial activity of polyphenols and extracts rich in polyphenols on clinical isolates, organized according to the World Health Organization priority pathogens classification.
Collapse
Affiliation(s)
- Tamara Manso
- Hospital Público da Mariña, E-27880 Burela, Spain;
- Department of Microbiology and Parasitology, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Marta Lores
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
| | - Trinidad de Miguel
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain;
- Correspondence:
| |
Collapse
|
18
|
Wang R, Fang M, Hu X, Yu Y, Xiao X. Kojic acid and tea polyphenols inactivate
Escherichia coli
O157:H7
in vitro
and on salmon fillets by inflicting damage on cell membrane and binding to genomic DNA. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ruifei Wang
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Meimei Fang
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Xinyi Hu
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Yigang Yu
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| | - Xinglong Xiao
- Research Center of Food Safety and Detection College of Food Science and Engineering South China University of Technology Guangzhou 510006 China
| |
Collapse
|
19
|
Xu FW, Lv YL, Zhong YF, Xue YN, Wang Y, Zhang LY, Hu X, Tan WQ. Beneficial Effects of Green Tea EGCG on Skin Wound Healing: A Comprehensive Review. Molecules 2021; 26:6123. [PMID: 34684703 PMCID: PMC8540743 DOI: 10.3390/molecules26206123] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
Epigallocatechin gallate (EGCG) is associated with various health benefits. In this review, we searched current work about the effects of EGCG and its wound dressings on skin for wound healing. Hydrogels, nanoparticles, micro/nanofiber networks and microneedles are the major types of EGCG-containing wound dressings. The beneficial effects of EGCG and its wound dressings at different stages of skin wound healing (hemostasis, inflammation, proliferation and tissue remodeling) were summarized based on the underlying mechanisms of antioxidant, anti-inflammatory, antimicrobial, angiogenesis and antifibrotic properties. This review expatiates on the rationale of using EGCG to promote skin wound healing and prevent scar formation, which provides a future clinical application direction of EGCG.
Collapse
Affiliation(s)
- Fa-Wei Xu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; (F.-W.X.); (Y.-F.Z.); (Y.-N.X.); (Y.W.); (L.-Y.Z.); (X.H.)
| | - Ying-Li Lv
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310013, China;
| | - Yu-Fan Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; (F.-W.X.); (Y.-F.Z.); (Y.-N.X.); (Y.W.); (L.-Y.Z.); (X.H.)
| | - Ya-Nan Xue
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; (F.-W.X.); (Y.-F.Z.); (Y.-N.X.); (Y.W.); (L.-Y.Z.); (X.H.)
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; (F.-W.X.); (Y.-F.Z.); (Y.-N.X.); (Y.W.); (L.-Y.Z.); (X.H.)
| | - Li-Yun Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; (F.-W.X.); (Y.-F.Z.); (Y.-N.X.); (Y.W.); (L.-Y.Z.); (X.H.)
| | - Xian Hu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; (F.-W.X.); (Y.-F.Z.); (Y.-N.X.); (Y.W.); (L.-Y.Z.); (X.H.)
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou 310016, China; (F.-W.X.); (Y.-F.Z.); (Y.-N.X.); (Y.W.); (L.-Y.Z.); (X.H.)
| |
Collapse
|
20
|
Banwo K, Olojede AO, Adesulu-Dahunsi AT, Verma DK, Thakur M, Tripathy S, Singh S, Patel AR, Gupta AK, Aguilar CN, Utama GL. Functional importance of bioactive compounds of foods with Potential Health Benefits: A review on recent trends. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101320] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Shah NA, Ren Y, Lan R, Lv J, Gul RM, Tan P, Huang S, Tan L, Xu J, Li Z. Ultrahigh molecular weight polyethylene with improved crosslink density, oxidation stability, and microbial inhibition by chemical crosslinking and tea polyphenols for total joint replacements. J Appl Polym Sci 2021. [DOI: 10.1002/app.51261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Nouman Ali Shah
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Yue Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Ri‐Tong Lan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Jia‐Cheng Lv
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Rizwan M. Gul
- Department of Mechanical Engineering University of Engineering and Technology Peshawar Pakistan
| | - Peng‐Fei Tan
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital and West China School of Medicine Sichuan University Chengdu China
| | - Lin Tan
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Jia‐Zhuang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| | - Zhong‐Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu China
| |
Collapse
|
22
|
Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties. Processes (Basel) 2020. [DOI: 10.3390/pr8121566] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The fruit, vegetable, legume, and cereal industries generate many wastes, representing an environmental pollution problem. However, these wastes are a rich source of antioxidant molecules such as terpenes, phenolic compounds, phytosterols, and bioactive peptides with potential applications mainly in the food and pharmaceutical industries, and they exhibit multiple biological properties including antidiabetic, anti-obesity, antihypertensive, anticancer, and antibacterial properties. The aforementioned has increased studies on the recovery of antioxidant compounds using green technologies to value plant waste, since they represent more efficient and sustainable processes. In this review, the main antioxidant molecules from plants are briefly described and the advantages and disadvantages of the use of conventional and green extraction technologies used for the recovery and optimization of the yield of antioxidant naturals are detailed; finally, recent studies on biological properties of antioxidant molecules extracted from plant waste are presented here.
Collapse
|
23
|
Qin L, Guo L, Xu B, Hsueh CC, Jiang M, Chen BY. Exploring community evolutionary characteristics of microbial populations with supplementation of Camellia green tea extracts in microbial fuel cells. J Taiwan Inst Chem Eng 2020; 113:214-222. [PMID: 32904523 PMCID: PMC7455116 DOI: 10.1016/j.jtice.2020.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023]
Abstract
This first-attempt study deciphered combined characteristics of species evolution and bioelectricity generation of microbial community in microbial fuel cells (MFCs) supplemented with Camellia green tea (GT) extracts for biomass energy extraction. Prior studies indicated that polyphenols-rich extracts as effective redox mediators (RMs) could exhibit significant electrochemical activities to enhance power generation in MFCs. However, the supplementation of Camellia GT extract obtained at room temperature with significant redox capabilities into MFCs unexpectedly exhibited obvious inhibitory effect towards power generation. This systematic study indicated that the presence of antimicrobial components (especially catechins) in GT extract might significantly alter the distribution of microbial community, in particular a decrease of microbial diversity and evenness. For practical applications to different microbial systems, pre-screening criteria of selecting biocompatible RMs should not only consider their promising redox capabilities (abiotic), but also possible inhibitory potency (biotic) to receptor microbes. Although Camellia tea extract was well-characterized as GRAS energy drink, some contents (e.g., catechins) may still express inhibition towards organisms and further assessment upon biotoxicity may be inevitably required for practice.
Collapse
Affiliation(s)
- Lianjie Qin
- School of Environmental and Materials Engineering, Yan-Tai University, Yantai 264005, China
| | - Lili Guo
- School of Environmental and Materials Engineering, Yan-Tai University, Yantai 264005, China
| | - Bin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Chung-Chuan Hsueh
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 26047, Taiwan
| |
Collapse
|
24
|
Li C, Han Y, Fan S, Ma L, Zhang Y, Simpson BK. Effect of three kinds of natural preservative cocktails on vacuum-packed chilled pork. Food Sci Nutr 2020; 8:3110-3118. [PMID: 32724575 PMCID: PMC7382183 DOI: 10.1002/fsn3.1535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the effects of three different natural preservatives on the microbial profile, the total volatile base nitrogen (TVB-N), and biogenic amine contents of vacuum-packed chilled pork during storage at 4°C. Solution A comprised of tea polyphenols, chitosan, spice extract, propolis, and nisin. Solution B comprised of clove extract, cassia bark extract, ginger juice, garlic juice, and lactobacillus fermentation solution. Solution C consisted of only lactobacillus fermentation solution. The results indicated that solution A was a good natural preservative with higher bacteria inhibitory effect and higher sensory score than B and C. Besides the effect on appealing color, solution B could inhibit microbial activity although its inhibition effect was not as good as solution A. Thus, solution A could be used as a good preservative in industry. Solution C could inhibit the initial growth of Pseudomonas and partially inhibited the growth of Enterobacteriaceae; however, the content of putrescine in the pork treated with solution C was as high as 30.14 ± 2.89 mg/kg after 21 days of storage at 4°C. Hence, solution C is not an ideal preservative for vacuum-packed chilled pork.
Collapse
Affiliation(s)
- Chen Li
- School of Life ScienceShanxi UniversityTaiyuanChina
| | - Yuhang Han
- School of Life ScienceShanxi UniversityTaiyuanChina
| | - Sanhong Fan
- School of Life ScienceShanxi UniversityTaiyuanChina
| | - Lizhen Ma
- Department of Food ScienceTianjin Agricultural UniversityTianjinChina
| | - Yi Zhang
- Department of Food Science and Agricultural ChemistryMcGill University (Macdonald Campus)Ste‐Anne‐de‐BellevueQCCanada
| | - Benjamin Kofi Simpson
- Department of Food Science and Agricultural ChemistryMcGill University (Macdonald Campus)Ste‐Anne‐de‐BellevueQCCanada
| |
Collapse
|
25
|
Vilela MM, Salvador SL, Teixeira IGL, Del Arco MCG, De Rossi A. Efficacy of green tea and its extract, epigallocatechin-3-gallate, in the reduction of cariogenic microbiota in children: a randomized clinical trial. Arch Oral Biol 2020; 114:104727. [DOI: 10.1016/j.archoralbio.2020.104727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 11/25/2022]
|
26
|
Antimicrobial Activity and the Effect of Green Tea Experimental Gels on Teeth Surfaces. COATINGS 2020. [DOI: 10.3390/coatings10060537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Among esthetic procedures, teeth whitening is a common and often used treatment for patients who seek good teeth appearance. We developed an experimental green tea extract and an experimental green tea gel for enamel restoring treatment after bleaching. We also tested the antibacterial and antifungal effect of the experimental extract against specific endodontic and cariogenic microorganisms. The green tea extract antibacterial action was determined by the disk-diffusion method using Peptostreptococcus anaerobius (ATCC27337), Corynebacterium xerosis (ATCC 373), Streptococcus mutans (ATCC 25175) and Candida albicans (ATCC 10231) strains. Enamel microstructure was investigated by SEM analysis, and surface details were revealed by AFM. The inhibition zones around the wells showed evident antimicrobial activity of the experimental extract. In the presence of Candida albicans (ATCC 10231), the extract showed no antifungal activity. The enamel’s surface roughness and hydroxyapatite prism aspects were the parameters followed throughout the study. The experimental green tea extract is efficient against some microorganisms commonly found in the oral cavity. However, the studied extract had no antifungal effect. The results show that after bleaching with the experimental gel, we obtained the best surface parameters, similar to healthy enamel.
Collapse
|
27
|
Lin Y, Shi D, Su B, Wei J, Găman MA, Sedanur Macit M, Borges do Nascimento IJ, Guimaraes NS. The effect of green tea supplementation on obesity: A systematic review and dose-response meta-analysis of randomized controlled trials. Phytother Res 2020; 34:2459-2470. [PMID: 32372444 DOI: 10.1002/ptr.6697] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/03/2020] [Accepted: 03/22/2020] [Indexed: 12/17/2022]
Abstract
The effects of green tea (GT) in obese subjects have been evaluated in different studies, but no consensus has been obtained due to the heterogeneity of the results. The dosage, the type of extract, and the duration of the intervention are the main contributors to the heterogeneity of the results. Therefore, the present systematic review and meta-analysis aimed to evaluate the efficacy and dose-response relationship of GT. Several databases were searched from inception to September 2019 to identify clinical trials that examined the influence of GT supplements on obesity indices in humans. Combined results using the random-effects model indicated that body weight (WMD: -1.78 kg, 95% CI: -2.80, -0.75, p = .001) and body mass index (BMI) (WMD: -0.65 kg/m2 , 95% CI: -1.04, -0.25, p = .001) did change significantly following GT administration. The reduction in waist circumference (WC) after GT consumption was significant in subjects in trials employing GT ≥800 mg/day (WMD: -2.06 cm) and with a treatment duration <12 weeks (WMD: -2.39 cm). Following the dose-response evaluation, GT intake did alter body weight, with a more important reduction when the GT dosage was <500 mg/day and the treatment duration was of 12 weeks. The results of present meta-analysis study support the use of GT for the improvement of obesity indices. Thus, we suggest that the use of GT can be combined with a balanced and healthy diet and regular physical exercise in the management of obese patients.
Collapse
Affiliation(s)
- Ying Lin
- Department of Endocrinology, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Dianfeng Shi
- Department of Internal Medicine, Jinan Central Hospital, Jinan, Shandong Province, China
| | - Bo Su
- Department of General Internal Medicine, Xiyuan Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Wei
- Department of Endocrinology, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Mihnea-Alexandru Găman
- "CarolDavila" University of Medicine and Pharmacy, Bucharest, Romania.,Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Melahat Sedanur Macit
- Department of Nutrition and Dietetics, Ondokuz Mayis University, Faculty of Health Sciences, Samsun, Turkey
| | | | - Nathalia Sernizon Guimaraes
- University Hospital and School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
28
|
Singh A, Benjakul S, Huda N, Xu C, Wu P. Preparation and characterization of squid pen chitooligosaccharide–epigallocatechin gallate conjugates and their antioxidant and antimicrobial activities. RSC Adv 2020; 10:33196-33204. [PMID: 35515026 PMCID: PMC9056682 DOI: 10.1039/d0ra05548d] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/28/2020] [Indexed: 01/27/2023] Open
Abstract
Chitooligosaccharide (COS) and epigallocatechin-3-gallate (EGCG) at various concentrations were used for the preparation of COS–EGCG conjugates. The highest total phenolic content (TPC), representing the amount of EGCG conjugated, was obtained for 1 wt% COS together with EGCG at 0.5 wt% (C1-E0.5-conjugate) or 1.0 wt% (C1-E1.0-conjugate) (66.83 and 69.22 mg EGCG per g sample, respectively) (p < 0.05). The 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activities (DRSA and ARSA, respectively) and ferric reducing antioxidant power (FRAP) of all the samples showed similar trends with TPC. The C1-E0.5-conjugate had higher DRSA, ARSA, FRAP and oxygen radical absorbance capacity (ORAC) values than COS (p < 0.05). Similarly, the antimicrobial activity of COS increased when conjugated with EGCG (p < 0.05). FTIR, 1H-NMR and 13C-NMR analyses confirmed the successful grafting of EGCG with COS. Therefore, 1 wt% COS and 0.5 wt% EGCG were used for the production of a conjugate with augmented antioxidant activity, which could be used to retard lipid oxidation of fatty foods. Chitooligosaccharide from squid pen showed increases in both antioxidant and antimicrobial activities via conjugation with epigallocatechin-gallate (EGCG).![]()
Collapse
Affiliation(s)
- Avtar Singh
- The International Center of Excellence in Seafood Science and Innovation
- Faculty of Agro-Industry
- Prince of Songkla University
- Hat Yai
- Thailand
| | - Soottawat Benjakul
- The International Center of Excellence in Seafood Science and Innovation
- Faculty of Agro-Industry
- Prince of Songkla University
- Hat Yai
- Thailand
| | - Nurul Huda
- Faculty of Food Science and Nutrition
- Universiti Malaysia Sabah
- Kota Kinabalu
- 88400 Malaysia
| | - Changan Xu
- Technical Innovation Centre for Utilization Marine Biological Resources
- Third Institute of Oceanography
- Ministry of Natural Resources
- Xiamen
- China
| | - Peng Wu
- Technical Innovation Centre for Utilization Marine Biological Resources
- Third Institute of Oceanography
- Ministry of Natural Resources
- Xiamen
- China
| |
Collapse
|
29
|
Zhang Y, Wei J, Qiu Y, Niu C, Song Z, Yuan Y, Yue T. Structure-Dependent Inhibition of Stenotrophomonas maltophilia by Polyphenol and Its Impact on Cell Membrane. Front Microbiol 2019; 10:2646. [PMID: 31798564 PMCID: PMC6863799 DOI: 10.3389/fmicb.2019.02646] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
As natural occurring antimicrobial substances, phenolic compounds have been used to inhibit various bacteria. Stenotrophomonas maltophilia 4–1, a strain isolated from food, exhibited spoilage potential in vitro with proteolysis and lipolysis at 25°C. The present study evaluated the antibacterial properties of 13 polyphenols on S. maltophilia 4–1, and selected 6 compounds (ferulic acid, p-coumaric acid, caffeic acid, chlorogenic acid, (−)-epigallocatechin, and phloretin) for binary combination treatments. The results revealed that antibacterial activities of polyphenols were structure-dependent, and cinnamic acid showed strong inhibitory effects, with a minimum inhibitory concentration (MIC) of 0.125 mg/mL. Importantly, we did not observe any obvious synergistic effects across all binary combinations. The antibacterial mechanism of cinnamic acid was related to membrane damage, caused by the loss of cell membrane integrity and alteration of cell morphology. These findings suggest that cinnamic acid is a promising candidate for the control of spoilage bacteria in food.
Collapse
Affiliation(s)
- Yuxiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Jianping Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Yue Qiu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Chen Niu
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Zihan Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality & Safety Risk Assessment for Agro-products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China.,College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
30
|
Lovato A, Pignatti A, Vitulo N, Vandelle E, Polverari A. Inhibition of Virulence-Related Traits in Pseudomonas syringae pv. actinidiae by Gunpowder Green Tea Extracts. Front Microbiol 2019; 10:2362. [PMID: 31681224 PMCID: PMC6797950 DOI: 10.3389/fmicb.2019.02362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
Green tea is a widely-consumed healthy drink produced from the leaves of Camellia sinensis. It is renowned for its antioxidant and anticarcinogenic properties, but also displays significant antimicrobial activity against numerous human pathogens. Here we analyzed the antimicrobial activity of Gunpowder green tea against Pseudomonas syringae pv. actinidiae (Psa), the agent that causes kiwifruit bacterial canker. At the phenotypic level, tea extracts strongly inhibited Psa growth and swimming motility, suggesting it could reduce Psa epiphytic survival during plant colonization. The loss of bacterial virulence-related traits following treatment with tea extracts was also investigated by large-scale transcriptome analysis, which confirmed the in vitro phenotypes and revealed the induction of adaptive responses in the treated bacteria allowing them to cope with iron deficiency and oxidative stress. Such molecular changes may account for the ability of Gunpowder green tea to protect kiwifruit against Psa infection.
Collapse
Affiliation(s)
| | | | | | - Elodie Vandelle
- Biotechnology Department, University of Verona, Verona, Italy
| | | |
Collapse
|
31
|
Francesko A, Petkova P, Tzanov T. Hydrogel Dressings for Advanced Wound Management. Curr Med Chem 2019; 25:5782-5797. [PMID: 28933299 DOI: 10.2174/0929867324666170920161246] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/08/2017] [Accepted: 08/25/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Composed in a large extent of water and due to their nonadhesiveness, hydrogels found their way to the wound dressing market as materials that provide a moisture environment for healing while being comfortable to the patient. Hydrogels' exploitation is constantly increasing after evidences of their even broader therapeutic potential due to resemblance to dermal tissue and ability to induce partial skin regeneration. The innovation in advanced wound care is further directed to the development of so-called active dressings, where hydrogels are combined with components that enhance the primary purpose of providing a beneficial environment for wound healing. OBJECTIVE The objective of this review is to concisely describe the relevance of hydrogel dressings as platforms for delivery of active molecules for improved management of difficult- to-treat wounds. The emphasis is on the most recent advances in development of stimuli- responsive hydrogels, which allow for control over wound healing efficiency in response to different external modalities. Novel strategies for monitoring of the wound status and healing progress based on incorporation of sensor molecules into the hydrogel platforms are also discussed.
Collapse
Affiliation(s)
| | - Petya Petkova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa, Spain
| |
Collapse
|
32
|
Betts JW, Hornsey M, Higgins PG, Lucassen K, Wille J, Salguero FJ, Seifert H, La Ragione RM. Restoring the activity of the antibiotic aztreonam using the polyphenol epigallocatechin gallate (EGCG) against multidrug-resistant clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 2019; 68:1552-1559. [DOI: 10.1099/jmm.0.001060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jonathan W. Betts
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Michael Hornsey
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Paul G. Higgins
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, 38124 Braunschweig, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Kai Lucassen
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Julia Wille
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | | | - Harald Seifert
- German Centre for Infection Research (DZIF), partner site Bonn-Cologne, 38124 Braunschweig, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Roberto M. La Ragione
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
33
|
Zheng X, Xie X, Yu C, Zhang Q, Wang Y, Cong J, Liu N, He Z, Yang B, Liu J. Unveiling the activating mechanism of tea residue for boosting the biological decolorization performance of refractory dye. CHEMOSPHERE 2019; 233:110-119. [PMID: 31173951 DOI: 10.1016/j.chemosphere.2019.05.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/06/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Conventional microbial treatments are challenged by new synthetic refractory dyes. In this work, tea residue was found serving as an effective activator to boost the decolorization performance of anthraquinone dye (reactive blue 19, RB19) by a new bacterial flora DDMY2. The unfermented West Lake Longjing tea residue showed the best enhancement performance. Seventeen main kinds of components in tea residue had been selected to take separate and orthogonal experiments on decolorization of RB19 by DDMY2. Results suggested epigallocatechin gallate (EGCG) in tea residue played important roles in boosting the treatment performance. Illumina MiSeq sequencing results confirmed that EGCG and tea residue pose similar impact on the change of DDMY2 community structure. Some functional bacterial genera unclassified_o_Pseudomonadales, Stenotrophomonas and Bordetella were enriched during the treatment of RB19 by EGCG and tea residue. These evidences suggested EGCG might be the key active component in tea residue that responsible for the enhancement effect on decolorization performance. These results revealed the activating mechanism of tea residue from the perspective of composition.
Collapse
Affiliation(s)
- Xiulin Zheng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xuehui Xie
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Chengzhi Yu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Qingyun Zhang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Yiqin Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Junhao Cong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui, 234000, China.
| | - Zhenjiang He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| | - Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
34
|
Li H, Krstin S, Wink M. Modulation of multidrug resistant in cancer cells by EGCG, tannic acid and curcumin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:213-222. [PMID: 30466981 DOI: 10.1016/j.phymed.2018.09.169] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 08/10/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer is one of the most common life-threatening diseases worldwide; many patients develop multidrug resistance after treatment with anticancer drugs. The main mechanism leading to multidrug resistance is the overexpression of ABC transporters in cancer cells. Chemosensitizers are needed to inhibit the activity of ABC transporters, resulting in higer intracellular concentration of anticancer drugs. Some secondary metabolites have been reported to be chemosensitizers by inhibiting ABC transporters. Epigallocatechin gallate (EGCG), tannic acid, and curcumin were employed in this study. Different assays were used to detect whether they have the ability to inhibit P-gp activity and overcome multidrug resistance in cancer cells overexpressing P-gp. Hypothesis/Purpose: CEM/ADR 5000 and Caco-2 cell lines, which overexpress P-gp, are multidrug resistant cell lines. We first detected whether the combination of polyphenols (EGCG, tannic acid, curcumin) and doxorubicin, an anticancer drug, is synergistic or not. To further understand the potential mechanism, EGCG, tannic acid, and curcumin were tested to check whether they have the ability to inhibit P-gp activity. When P-gp activity is inhibited, the intracellular concentration of doxorubicin is higher, resulting in enhanced cytotoxicity of doxorubicin. STUDY DESIGN The P-gp overexpressing human colon cancer cell line Caco-2 and human T-lymphoblastic leukemia cell line CEM/ADR 5000 were used in this study. Two-drug combinations (doxorubicin + polyphenol) and three-drug combinations (doxorubicin + polyphenol + digitonin) were tested to examine potential synergism. The potential mechanism leading to synergism would be the inhibition of P-gp activity. A Rhodamine 123 assay and Calcein-AM assay in Caco-2 and CEM/ADR 5000, respectively, were used to detect P-gp inhibition by EGCG, curcumin, and tannic acid. METHODS MTT assay was used to determine the cytotoxicity of doxorubicin, polyphenols and digitonin alone, and then their combinations. Furthermore, Rhodamine 123 and Calcein-AM were used to detect the effects of polyphenols on the activity of P-gp. RESULTS The results demonstrated that a combination of non-toxic concentrations of each polyphenol with doxorubicin synergistically sensitized Caco-2 and CEM/ADR 5000 cells. Furthermore, three-drug combinations (doxorubicin + polyphenol + digitonin) were much more effective. In addition, the activity of P-gp in Caco-2 and CEM/ADR 5000 cells was measured. Consistent with the combination results, tannic acid and curcumin decreased the activity of P-gp both in Caco-2 and CEM/ADR 5000. EGCG, which weakly affected the activity of P-gp in CEM/ADR 5000, only had an effect on P-gp under higher concentration in Caco-2 cells. CONCLUSION Our results show that EGCG, curcumin, and tannic acid, when combined with doxorubicin, can exert synergism, mediated by a reduced activity of P-gp. This study suggests that polyphenols, by modulating the activity of P-gp, may be used as chemosensitisers.
Collapse
Affiliation(s)
- Hanmei Li
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Sonja Krstin
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany.
| |
Collapse
|
35
|
Melok AL, Lee LH, Mohamed Yussof SA, Chu T. Green Tea Polyphenol Epigallocatechin-3-Gallate-Stearate Inhibits the Growth of Streptococcus mutans: A Promising New Approach in Caries Prevention. Dent J (Basel) 2018; 6:dj6030038. [PMID: 30082585 PMCID: PMC6162448 DOI: 10.3390/dj6030038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 01/08/2023] Open
Abstract
Streptococcus mutans (S. mutans) is the main etiological bacteria present in the oral cavity that leads to dental caries. All of the S. mutans in the oral cavity form biofilms that adhere to the surfaces of teeth. Dental caries are infections facilitated by the development of biofilm. An esterified derivative of epigallocatechin-3-gallate (EGCG), epigallocatechin-3-gallate-stearate (EGCG-S), was used in this study to assess its ability to inhibit the growth and biofilm formation of S. mutans. The effect of EGCG-S on bacterial growth was evaluated with colony forming units (CFU) and log reduction; biofilm formation was qualitatively determined by Congo red assay, and quantitatively determined by crystal violet assay, fluorescence-based LIVE/DEAD assays to study the cell viability, and scanning electron microscopy (SEM) was used to evaluate the morphological changes. The results indicated that EGCG-S was able to completely inhibit growth and biofilm formation at concentrations of 250 µg/mL. Its effectiveness was also compared with a commonly prescribed mouthwash in the United States, chlorhexidine gluconate. EGCG-S was shown to be equally effective in reducing S. mutans growth as chlorhexidine gluconate. In conclusion, EGCG-S is potentially an anticariogenic agent by reducing bacterial presence in the oral cavity.
Collapse
Affiliation(s)
- Amy Lynn Melok
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA.
| | - Lee H Lee
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA.
| | - Siti Ayuni Mohamed Yussof
- Department of Biology, Montclair State University, Montclair, NJ 07043, USA.
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA.
| | - Tinchun Chu
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA.
| |
Collapse
|
36
|
Abstract
With the advent of the global antimicrobial resistance (AMR) crisis, our arsenal of effective antibiotics is diminishing. The widespread use and misuse of antibiotics in human and veterinary medicine, compounded by the lack of novel classes of antibiotic in the pharmaceutical pipeline, has left a hole in our antibiotic armamentarium. Thus, alternatives to traditional antibiotics are being investigated, including two major groups of antibacterial agents, which have been extensively studied, phytochemicals and metals. Within these groups, there are several subclasses of compound/elements, including polyphenols and metal nanoparticles, which could be used to complement traditional antibiotics, either to increase their potency or extend their spectrum of activity. Alone or in combination, these antibacterial agents have been shown to be effective against a vast array of human and animal bacterial pathogens, including those resistant to licensed antibacterials. These alternative antibacterial agents could be a key element in our fight against AMR and provide desperately needed options, to veterinary and medical clinicians alike.
Collapse
|
37
|
Peter B, Ungai-Salanki R, Szabó B, Nagy AG, Szekacs I, Bősze S, Horvath R. High-Resolution Adhesion Kinetics of EGCG-Exposed Tumor Cells on Biomimetic Interfaces: Comparative Monitoring of Cell Viability Using Label-Free Biosensor and Classic End-Point Assays. ACS OMEGA 2018; 3:3882-3891. [PMID: 29732447 PMCID: PMC5928488 DOI: 10.1021/acsomega.7b01902] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/05/2018] [Indexed: 05/25/2023]
Abstract
A high-throughput label-free resonant waveguide grating biosensor, the Epic BenchTop, was utilized to in situ monitor the adhesion process of cancer cells on Arg-Gly-Asp tripeptide displaying biomimetic polymer surfaces. Using highly adherent human cervical adenocarcinoma (HeLa) cells as a model system, cell adhesion kinetic data with outstanding temporal resolution were obtained. We found that pre-exposing the cells to various concentrations of the main extract of green tea, the (-)-epigallocatechin gallate (EGCG), largely affected the temporal evolution of the adhesion process. For unexposed and low dosed cells, sigmoid shaped spreading kinetics was recorded. Higher dose of EGCG resulted in a complete absence of the sigmoidal character, and displayed adsorption-like kinetics. By using the first derivatives of the kinetic curves, a simple model was developed to quantify the sigmoidal character and the transition from sigmoidal to adsorption-like kinetics. The calculations showed that the transition happened at EGCG concentration of around 60 μg/mL. Using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide end-point assay, we concluded that EGCG is cytostatic but not cytotoxic. The effect of EGCG was also characterized by flow cytometry. We concluded that, using the introduced label-free methodology, the shape of the cell adhesion kinetic curves can be used to quantify in vitro cell viability in a fast, cost-effective, and highly sensitive manner.
Collapse
Affiliation(s)
- Beatrix Peter
- Doctoral
School of Molecular and Nanotechnologies, Faculty of Information Technology, University of Pannonia, Egyetem utca 10, H-8200 Veszprém, Hungary
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
| | - Rita Ungai-Salanki
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
- Department
of Biological Physics, Eötvös
Loránd University, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary
- CellSorter
Company for Innovations, Erdőalja út 174, H-1037 Budapest, Hungary
| | - Bálint Szabó
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
- Department
of Biological Physics, Eötvös
Loránd University, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary
- CellSorter
Company for Innovations, Erdőalja út 174, H-1037 Budapest, Hungary
| | - Agoston G. Nagy
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
| | - Inna Szekacs
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE
Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, 112, P.O. Box 32, H-1518 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics
Group, Hungarian Academy of Sciences, Research Centre for Natural
Sciences, Institute for Technical Physics
and Materials Science, Konkoly-Thege M. út 29-33, H-1120 Budapest, Hungary
| |
Collapse
|
38
|
Nikoo M, Regenstein JM, Ahmadi Gavlighi H. Antioxidant and Antimicrobial Activities of (-)-Epigallocatechin-3-gallate (EGCG) and its Potential to Preserve the Quality and Safety of Foods. Compr Rev Food Sci Food Saf 2018; 17:732-753. [PMID: 33350134 DOI: 10.1111/1541-4337.12346] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/19/2022]
Abstract
Quality deterioration of fresh or processed foods is a major challenge for the food industry not only due to economic losses but also due to the risks associated with spoiled foods resulting, for example, from toxic compounds. On the other hand, there are increasing limitations on the application of synthetic preservatives such as antioxidants in foods because of their potential links to human health risks. With the new concept of functional ingredients and the development of the functional foods market, and the desire for a "clean" label, recent research has focused on finding safe additives with multifunctional effects to ensure food safety and quality. (-)-Epigallocatechin-3-gallate (EGCG), a biologically active compound in green tea, has received considerable attention in recent years and is considered a potential alternative to synthetic food additives. EGCG has been shown to prevent the growth of different Gram-positive and Gram-negative bacteria responsible for food spoilage while showing antioxidant activity in food systems. This review focuses on recent findings related to EGCG separation techniques, modification of its structure, mechanisms of antioxidant and antimicrobial activities, and applications in preserving the quality and safety of foods.
Collapse
Affiliation(s)
- Mehdi Nikoo
- the Dept. of Pathobiology and Quality Control, Artemia and Aquaculture Research Inst., Urmia Univ., Urmia, West Azerbaijan, 57561-51818, Iran
| | - Joe M Regenstein
- Dept. of Food Science, Cornell Univ., Ithaca, N.Y., 14853-7201, U.S.A
| | - Hassan Ahmadi Gavlighi
- Dept. of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares Univ., Tehran, 14115-336, Iran
| |
Collapse
|
39
|
Matsuzaki T, Ito H, Chevyreva V, Makky A, Kaufmann S, Okano K, Kobayashi N, Suganuma M, Nakabayashi S, Yoshikawa HY, Tanaka M. Adsorption of galloyl catechin aggregates significantly modulates membrane mechanics in the absence of biochemical cues. Phys Chem Chem Phys 2018; 19:19937-19947. [PMID: 28721420 DOI: 10.1039/c7cp02771k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Physical interactions of four major green tea catechin derivatives with cell membrane models were systemically investigated. Catechins with the galloyl moiety caused the aggregation of small unilamellar vesicles and an increase in the surface pressure of lipid monolayers, while those without did not. Differential scanning calorimetry revealed that, in a low concentration regime (≤10 μM), catechin molecules are not significantly incorporated into the hydrophobic core of lipid membranes as substitutional impurities. Partition coefficient measurements revealed that the galloyl moiety of catechin and the cationic quaternary amine of lipids dominate the catechin-membrane interaction, which can be attributed to the combination of electrostatic and cation-π interactions. Finally, we shed light on the mechanical consequence of catechin-membrane interactions using the Fourier-transformation of the membrane fluctuation. Surprisingly, the incubation of cell-sized vesicles with 1 μM galloyl catechins, which is comparable to the level in human blood plasma after green tea consumption, significantly increased the bending stiffness of the membranes by a factor of more than 60, while those without the galloyl moiety had no detectable influence. Atomic force microscopy and circular dichroism spectroscopy suggest that the membrane stiffening is mainly attributed to the adsorption of galloyl catechin aggregates to the membrane surfaces. These results contribute to our understanding of the physical and thus the generic functions of green tea catechins in therapeutics, such as cancer prevention.
Collapse
Affiliation(s)
- Takahisa Matsuzaki
- Department of Chemistry, Saitama University, Sakura-ku, Saitama, 338-8570, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Das AJ, Khawas P, Seth D, Miyaji T, Deka SC. Optimization of the extraction of phenolic compounds from Cyclosorus extensa with solvents of varying polarities. Prep Biochem Biotechnol 2018; 46:755-763. [PMID: 26795405 DOI: 10.1080/10826068.2015.1135457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The leaves of Cyclosorus extensa are used in the preparation of rice beer in Assam, India. The optimal conditions of time and temperature of fermentation for extraction of bioactive compounds from the dried leaves were obtained using response surface methodology. The central composite rotatable design was used and 13 experimental runs based on two-factor-five-level design were generated and performed for each of the solvents. The independent variables were extraction time (12 and 48 h) and temperature (25 and 55°C). The responses studied were total polyphenol content, radical scavenging activity, antibacterial activity, and antifungal activity. The analysis of variance of the test data was performed and the sequential sum of squares, F-value, R2, and adjusted R2 were deduced. The predicted models for all the response variables were adequately fitted to the observed experimental data (p ≤ 0.001). The maximum extraction of bioactive compounds under the optimum conditions of extraction temperature and time for hexane, ethyl acetate, methanol, and distilled water were found to be 25°C for 29.43 h, 28.28°C for 41.27 h, 43.95°C for 29.61 h, and 55.00°C for 48.00 h, respectively. It was also observed that the solubility of the polyphenols was higher in methanol, followed by ethyl acetate, and the highest antibacterial activity against Escherichia coli was shown by the ethyl acetate extracts.
Collapse
Affiliation(s)
- Arup Jyoti Das
- a Department of Food Engineering and Technology , Tezpur University , Tezpur , Assam , India
| | - Prerna Khawas
- a Department of Food Engineering and Technology , Tezpur University , Tezpur , Assam , India
| | - Dibyakanta Seth
- a Department of Food Engineering and Technology , Tezpur University , Tezpur , Assam , India
| | - Tatsuro Miyaji
- b Department of Materials and Life Science , Faculty of Science and Technology, Shizuoka Institute of Science and Technology , Shizuoka , Japan
| | - Sankar Chandra Deka
- a Department of Food Engineering and Technology , Tezpur University , Tezpur , Assam , India
| |
Collapse
|
41
|
Kwon YS, Kim HJ, Hwang YC, Rosa V, Yu MK, Min KS. Effects of Epigallocatechin Gallate, an Antibacterial Cross-linking Agent, on Proliferation and Differentiation of Human Dental Pulp Cells Cultured in Collagen Scaffolds. J Endod 2018; 43:289-296. [PMID: 28132713 DOI: 10.1016/j.joen.2016.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/13/2016] [Accepted: 10/10/2016] [Indexed: 01/15/2023]
Abstract
INTRODUCTION This study aimed to evaluate the efficacy of epigallocatechin gallate (EGCG), an antibacterial cross-linking agent, on the proliferation and differentiation of human dental pulp cells (hDPCs) cultured in hydrogel collagen scaffolds. METHODS The odontogenic differentiation induced by EGCG was evaluated by alkaline phosphatase (ALP) activity and odontogenic-related gene expression using real-time polymerase chain reaction. The antibacterial effect of EGCG was investigated by a disc diffusion assay in comparison with glutaraldehyde. Proliferation was analyzed by cell number counting under both optical and confocal laser scanning microscopes. To assess the mechanical properties of collagen treated with EGCG, the setting time, surface roughness, and compressive strength were measured. RESULTS EGCG itself did not up-regulate the odontogenic-related markers (P > .05) although ALP activity was slightly increased. The proliferation and differentiation of hDPCs cultured in collagen increased significantly in the presence of EGCG (P < .05). The antibacterial activity of EGCG was similar to that of glutaraldehyde. The setting time of collagen was significantly shortened when it was treated with EGCG (P < .05). The surface roughness and compressive strength of the cross-linked collagen were higher than those of collagen without EGCG (P < .05). CONCLUSIONS Our results showed that EGCG, the antibacterial cross-linking agent, promoted the proliferation and differentiation of hDPCs cultured in collagen scaffolds. Furthermore, the enhanced mechanical properties of collagen scaffolds induced by EGCG may play important roles in cell behavior. Consequently, the application of EGCG to collagen scaffolds might be beneficial for regenerative endodontic therapy.
Collapse
Affiliation(s)
- Young-Sun Kwon
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Hee-Jin Kim
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea
| | - Yun-Chan Hwang
- Department of Conservative Dentistry, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Vinicius Rosa
- Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore
| | - Mi-Kyung Yu
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea; Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Kyung-San Min
- Department of Conservative Dentistry, School of Dentistry, Chonbuk National University, Jeonju, Korea; Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea.
| |
Collapse
|
42
|
Adegoke AA, Stenström TA, Okoh AI. Stenotrophomonas maltophilia as an Emerging Ubiquitous Pathogen: Looking Beyond Contemporary Antibiotic Therapy. Front Microbiol 2017; 8:2276. [PMID: 29250041 PMCID: PMC5714879 DOI: 10.3389/fmicb.2017.02276] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022] Open
Abstract
Stenotrophomonas maltophilia is a commensal and an emerging pathogen earlier noted in broad-spectrum life threatening infections among the vulnerable, but more recently as a pathogen in immunocompetent individuals. The bacteria are consistently being implicated in necrotizing otitis, cutaneous infections including soft tissue infection and keratitis, endocarditis, meningitis, acute respiratory tract infection (RTI), bacteraemia (with/without hematological malignancies), tropical pyomyositis, cystic fibrosis, septic arthritis, among others. S. maltophilia is also an environmental bacteria occurring in water, rhizospheres, as part of the animals' microflora, in foods, and several other microbiota. This review highlights clinical reports on S. maltophilia both as an opportunistic and as true pathogen. Also, biofilm formation as well as quorum sensing, extracellular enzymes, flagella, pili/fimbriae, small colony variant, other virulence or virulence-associated factors, the antibiotic resistance factors, and their implications are considered. Low outer membrane permeability, natural MDR efflux systems, and/or resistance genes, resistance mechanisms like the production of two inducible chromosomally encoded β-lactamases, and lack of carefully compiled patient history are factors that pose great challenges to the S. maltophilia control arsenals. The fluoroquinolone, some tetracycline derivatives and trimethoprim-sulphamethaxole (TMP-SMX) were reported as effective antibiotics with good therapeutic outcome. However, TMP-SMX resistance and allergies to sulfa together with high toxicity of fluoroquinolone are notable setbacks. S. maltophilia's production and sustenance of biofilm by quorum sensing enhance their virulence, resistance to antibiotics and gene transfer, making quorum quenching an imperative step in Stenotrophomonas control. Incorporating several other proven approaches like bioengineered bacteriophage therapy, Epigallocatechin-3-gallate (EGCG), essential oil, nanoemulsions, and use of cationic compounds are promising alternatives which can be incorporated in Stenotrophomonas control arsenal.
Collapse
Affiliation(s)
- Anthony A Adegoke
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa.,Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Thor A Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Anthony I Okoh
- Applied and Environmental Microbiology Research Group, University of Fort Hare, Alice, South Africa.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
43
|
Saeed M, Naveed M, Arif M, Kakar MU, Manzoor R, Abd El-Hack ME, Alagawany M, Tiwari R, Khandia R, Munjal A, Karthik K, Dhama K, Iqbal HMN, Dadar M, Sun C. Green tea (Camellia sinensis) and l-theanine: Medicinal values and beneficial applications in humans-A comprehensive review. Biomed Pharmacother 2017; 95:1260-1275. [PMID: 28938517 DOI: 10.1016/j.biopha.2017.09.024] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/03/2017] [Accepted: 09/06/2017] [Indexed: 02/05/2023] Open
Abstract
Green tea (Camellia sinensis) is a famous herb, and its extract has been extensively used in traditional Chinese medicinal system. In this context, several studies have revealed its health benefits and medicinal potentialities for several ailments. With ever increasing scientific knowledge, search for safer, potential and novel type of health-related supplements quest, scientists are re-directing their research interests to explore natural resources i.e. medicinal herbs/plant derived compounds. Green tea consumption has gained a special attention and popularity in the modern era of changing lifestyle. The present review is aimed to extend the current knowledge by highlighting the importance and beneficial applications of green tea in humans for safeguarding various health issues. Herein, we have extensively reviewed, analyzed, and compiled salient information on green tea from the authentic published literature available in PubMed and other scientific databases. Scientific literature evidenced that owing to the bioactive constituents including caffeine, l-theanine, polyphenols/flavonoids and other potent molecules, green tea has many pharmacological and physiological functions. It possesses multi-beneficial applications in treating various disorders of humans. This review also provides in-depth insights on the medicinal values of green tea which will be useful for researchers, medical professionals, veterinarians, nutritionists, pharmacists and pharmaceutical industry. Future research emphasis and promotional avenues are needed to explore its potential therapeutic applications for designing appropriate pharmaceuticals, complementary medicines, and effective drugs as well as popularize and propagate its multidimensional health benefits.
Collapse
Affiliation(s)
- Muhammad Saeed
- College of Animal Science and Technology, NW A&F University, Yangling, Shaanxi, 712100, China; Institute of Animal Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine, and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, China; Department of Urology Surgery, Aviation General Hospital, Beijing, 100012, China
| | - Muhammad Arif
- Department of Animal Sciences, University College of Agriculture, University of Sargodha, 40100, Pakistan
| | - Mohib Ullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, 3800, Pakistan
| | - Robina Manzoor
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, 3800, Pakistan
| | | | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281 001, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462 026 M.P., India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462 026 M.P., India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai, Tamil Nadu, 600051, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243 122, Uttar Pradesh, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Chao Sun
- College of Animal Science and Technology, NW A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
44
|
Pan L, Shang QH, Wu Y, Ma XK, Long SF, Liu L, Li DF, Piao XS. Concentration of digestible and metabolizable energy, standardized ileal digestibility, and growth performance of pigs fed diets containing sorghum produced in the United States or corn produced in China. J Anim Sci 2017; 95:4880-4892. [PMID: 29293716 PMCID: PMC6292270 DOI: 10.2527/jas2017.1859] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 09/13/2017] [Indexed: 11/13/2022] Open
Abstract
The DE and ME content (Exp. 1) as well as the apparent ileal digestibility (AID) and standardized ileal digestibility (SID) of essential AA (EAA; Exp. 2) were compared between Chinese corn and U.S. sorghum. The effects of U.S. sorghum as a potential substitute for Chinese corn on growth performance of 114 weaned pigs (8.8 ± 1.0 kg BW; Exp. 3) and 60 growing pigs (23.4 ± 1.6 kg BW; Exp. 4) were evaluated, and the effect of protease supplementation on N utilization was determined in sorghum-based diets fed to growing pigs (Exp. 4). In Exp. 1, there was no difference in DE and ME content between corn and sorghum. In Exp. 2, the AID and SID of most EAA and the concentrations of standardized ileal digestible Lys, Met, Thr, and His were less in sorghum than in corn ( < 0.05). In Exp. 3, there was no difference in ADG and ADFI among treatments during the experimental period. The G:F and apparent total tract digestibility (ATTD) of CP was decreased for pigs fed diets with sorghum in the first 2 wk ( < 0.05) and for pigs fed diets containing 60% sorghum in the following 2 wk ( < 0.05). The fecal score for pigs fed diets with sorghum, regardless of the substitute level, was less ( < 0.05) or tended to be less ( = 0.086) than that for pigs fed diets containing 60% corn. In Exp. 4, no differences were observed in ADG and ADFI overall among pigs fed diets based on corn and soybean meal (CSBM) or sorghum and soybean meal (SSBM). Pigs fed CSBM or SSBM with protease supplementation had greater ( < 0.05) or tended to have greater ( = 0.062) G:F than pigs fed SSBM. Compared with CSBM, SSBM increased fecal N excretion by more than 25% and decreased the ATTD of CP by more than 7% during the whole experiment ( < 0.05). Protease supplementation reduced fecal N excretion by more than 12% and increased ATTD of CP by more than 6% ( < 0.05). In conclusion, based on optimal G:F and CP digestibility, diets for weaned pigs should contain less than 20% sorghum during the first 2 wk and no more than 40% during the subsequent 2 wk after weaning. Sorghum used as an alternative energy source for corn in diets fed to growing pigs decreases CP utilization by increasing manure N output, which might be partially offset by protease supplementation.
Collapse
Affiliation(s)
- L. Pan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, P.R. China
| | - Q. H. Shang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, P.R. China
| | - Y. Wu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, P.R. China
| | - X. K. Ma
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, P.R. China
| | - S. F. Long
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, P.R. China
| | - L. Liu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, P.R. China
| | - D. F. Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, P.R. China
| | - X. S. Piao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
45
|
Hacioglu M, Dosler S, Birteksoz Tan AS, Otuk G. Antimicrobial activities of widely consumed herbal teas, alone or in combination with antibiotics: an in vitro study. PeerJ 2017; 5:e3467. [PMID: 28761777 PMCID: PMC5533155 DOI: 10.7717/peerj.3467] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/25/2017] [Indexed: 02/02/2023] Open
Abstract
Background Because of increasing antibiotic resistance, herbal teas are the most popular natural alternatives for the treatment of infectious diseases, and are currently gaining more importance. We examined the antimicrobial activities of 31 herbal teas both alone and in combination with antibiotics or antifungals against some standard and clinical isolates of Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, methicillin susceptible/resistant Staphylococcus aureus and Candida albicans. Methods The antimicrobial activities of the teas were determined by using the disk diffusion and microbroth dilution methods, and the combination studies were examined by using the microbroth checkerboard and the time killing curve methods. Results Rosehip, rosehip bag, pomegranate blossom, thyme, wormwood, mint, echinacea bag, cinnamon, black, and green teas were active against most of the studied microorganisms. In the combination studies, we characterized all the expected effects (synergistic, additive, and antagonistic) between the teas and the antimicrobials. While synergy was observed more frequently between ampicillin, ampicillin-sulbactam, or nystatine, and the various tea combinations, most of the effects between the ciprofloxacin, erythromycin, cefuroxime, or amikacin and various tea combinations, particularly rosehip, rosehip bag, and pomegranate blossom teas, were antagonistic. The results of the time kill curve analyses showed that none of the herbal teas were bactericidal in their usage concentrations; however, in combination with antibiotics they showed some bactericidal effect. Discussion Some herbal teas, particularly rosehip and pomegranate blossom should be avoided because of their antagonistic interactions with some antibiotics during the course of antibiotic treatment or they should be consumed alone for their antimicrobial activities.
Collapse
Affiliation(s)
- Mayram Hacioglu
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| | - Sibel Dosler
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| | - Ayse Seher Birteksoz Tan
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| | - Gulten Otuk
- Department of Pharmaceutical Microbiology, Istanbul University, Faculty of Pharmacy, Istanbul, Turkey
| |
Collapse
|
46
|
Therapeutic Potential of Epigallocatechin Gallate Nanodelivery Systems. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5813793. [PMID: 28791306 PMCID: PMC5534279 DOI: 10.1155/2017/5813793] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 01/04/2023]
Abstract
Nowadays, the society is facing a large health problem with the rising of new diseases, including cancer, heart diseases, diabetes, neurodegenerative diseases, and obesity. Thus, it is important to invest in substances that enhance the health of the population. In this context, epigallocatechin gallate (EGCG) is a flavonoid found in many plants, especially in tea. Several studies support the notion that EGCG has several benefits in fighting cancer, heart diseases, diabetes, and obesity, among others. Nevertheless, the poor intestinal absorbance and instability of EGCG constitute the main drawback to use this molecule in prevention and therapy. The encapsulation of EGCG in nanocarriers leads to its enhanced stability and higher therapeutic effects. A comprehensive review of studies currently available on the encapsulation of EGCG by means of nanocarriers will be addressed.
Collapse
|
47
|
Elisha IL, Jambalang AR, Botha FS, Buys EM, McGaw LJ, Eloff JN. Potency and selectivity indices of acetone leaf extracts of nine selected South African trees against six opportunistic Enterobacteriaceae isolates from commercial chicken eggs. Altern Ther Health Med 2017; 17:90. [PMID: 28148263 PMCID: PMC5289020 DOI: 10.1186/s12906-017-1597-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/21/2017] [Indexed: 01/11/2023]
Abstract
Background The rise in antimicrobial resistance in a plethora of nosocomial and opportunistic bacterial pathogens often isolated from commercial eggs, poses a serious public health concern. The existence of these contaminants may also serve as a drawback in the current efforts of improving the well-being of immunocompromised patients. The aim of this study was to determine the efficacy of plant extracts that had good activity on Escherichia coli in previous word on pathogens isolated from eggs for possible use in combating pathogens from eggs. Methods Acetone leaf extracts of nine trees with good activities against Escherichia coli were tested for their in vitro antibacterial activity against six opportunistic bacterial isolates from commercial eggs (Stenotrophomonas maltophilia, Klebsiella pneumoniae, Salmonella serotype Typhimurium, Proteus mirabilis, Enterobacter cloacae and Escherichia coli) using a serial microdilution method with tetrazolium violet as indicator of growth. Cytotoxicity was determined using a tetrazolium-based colorimetric assay against Vero kidney cells, and selectivity index calculated. Results The MIC values range of the different extracts against Stenotrophomonas maltophilia was 0.08-0.31 mg/ml, Klebsiella pneumonia 0.08-0.63 mg/ml, Salmonella ser. Typhimurium 0.08-0.63 mg/ml, Proteus mirabilis 0.02-1.25 mg/ml, Enterobacter cloacae 0.08-0.31 mg/ml and Escherichia coli 0.08-0.16 mg/ml respectively. Escherichia coli was the most sensitive while Proteus mirabilis was most resistant pathogen to the different test extracts, with mean MIC values of 0.08 mg/ml and 0.46 mg/ml respectively. Cremaspora triflora extracts had good activity against all the pathogenic egg isolates, with the exception of Proteus mirabilis. Maesa lanceolata and Elaeodendron croceum had the best total antibacterial activity (TAA), while generally the selectivity index of the extract was low (SI < 1). Conclusion The exceptional activity of C. triflora extracts suggests that the plant has potential as a therapeutic agent against some members of the Enterobacteriaceae. Further pharmacological investigations may be interesting in the search for new antimicrobial leads.
Collapse
|
48
|
Lee BS, Lee CC, Lin HP, Shih WA, Hsieh WL, Lai CH, Takeuchi Y, Chen YW. A functional chitosan membrane with grafted epigallocatechin-3-gallate and lovastatin enhances periodontal tissue regeneration in dogs. Carbohydr Polym 2016; 151:790-802. [DOI: 10.1016/j.carbpol.2016.06.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/01/2016] [Accepted: 06/05/2016] [Indexed: 01/08/2023]
|
49
|
Li W, Wu AH, Zhu S, Li J, Wu R, D'Angelo J, Wang H. EGCG induces G-CSF expression and neutrophilia in experimental sepsis. Immunol Res 2016; 63:144-52. [PMID: 26293782 DOI: 10.1007/s12026-015-8681-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A major green tea component, epigallocatechin-3-gallate (EGCG), has been proven protective against lethal sepsis in experimental setting, but its protective mechanisms remain incompletely understood. Here, we provide evidence to support EGCG's capacities in stimulating G-CSF production and neutrophilia in vivo. In an animal model of sepsis, EGCG significantly elevated peritoneal levels of G-CSF and several chemokines (e.g., MCP-1/CCL2 and MIP-1γ/CCL9), and consequently increased peritoneal neutrophil numbers (neutrophilia) at a late stage. In vitro, EGCG divergently affected HMGB1-mediated production of several chemokines: reducing CXCL15 and RANTES/CCL5, but elevating G-CSF and MIP-1α/CCL3 production by peritoneal macrophages. Similarly, it significantly induced the expression and secretion of G-CSF and MIP-1α/CCL3 in human peripheral blood mononuclear cells. Based on our preliminary data, it may be important to search for anti-inflammatory and G-CSF-stimulating agents for the clinical management of inflammatory diseases.
Collapse
Affiliation(s)
- Wei Li
- Department of Emergency Medicine, North Shore University Hospital, 350 Community Drive, Manhasset, NY, 11030, USA
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Andrew H Wu
- Department of Emergency Medicine, North Shore University Hospital, 350 Community Drive, Manhasset, NY, 11030, USA
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Shu Zhu
- Department of Emergency Medicine, North Shore University Hospital, 350 Community Drive, Manhasset, NY, 11030, USA
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Jianhua Li
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Rong Wu
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA
| | - John D'Angelo
- Department of Emergency Medicine, North Shore University Hospital, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Haichao Wang
- Department of Emergency Medicine, North Shore University Hospital, 350 Community Drive, Manhasset, NY, 11030, USA.
- The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
50
|
Moreno-Vásquez MJ, Valenzuela-Buitimea EL, Plascencia-Jatomea M, Encinas-Encinas JC, Rodríguez-Félix F, Sánchez-Valdes S, Rosas-Burgos EC, Ocaño-Higuera VM, Graciano-Verdugo AZ. Functionalization of chitosan by a free radical reaction: Characterization, antioxidant and antibacterial potential. Carbohydr Polym 2016; 155:117-127. [PMID: 27702495 DOI: 10.1016/j.carbpol.2016.08.056] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 01/22/2023]
Abstract
Chitosan was functionalized with epigallocatechin gallate (EGCG) by a free radical-induced grafting procedure, which was carried out by a redox pair (ascorbic acid/hydrogen peroxide) as the radical initiator. The successful preparation of EGCG grafted-chitosan was verified by spectroscopic (UV, FTIR and XPS) and thermal (DSC and TGA) analyses. The degree of grafting of phenolic compounds onto the chitosan was determined by the Folin-Ciocalteu procedure. Additionally, the biological activities (antioxidant and antibacterial) of pure EGCG, blank chitosan and EGCG grafted-chitosan were evaluated. The spectroscopic and thermal results indicate chitosan functionalization with EGCG; the EGCG content was 25.8mg/g of EGCG grafted-chitosan. The antibacterial activity of the EGCG grafted-chitosan was increased compared to pure EGCG or blank chitosan against S. aureus and Pseudomonas sp. (p<0.05). Additionally, EGCG grafted-chitosan showed higher antioxidant activity than blank chitosan. These results indicate that EGCG grafted-chitosan might be useful in active food packaging.
Collapse
Affiliation(s)
- María Jesús Moreno-Vásquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México; Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | - Emma Lucía Valenzuela-Buitimea
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo, Sonora, México; Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, Sonora, México
| | - Maribel Plascencia-Jatomea
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | | | - Francisco Rodríguez-Félix
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | | | - Ema Carina Rosas-Burgos
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo, Sonora, México
| | | | | |
Collapse
|