1
|
Xie M, Ye L, Chen K, Xu Q, Yang C, Chen X, Chan EWC, Li F, Chen S. Clinical use of tigecycline may contribute to the widespread dissemination of carbapenem-resistant hypervirulent Klebsiella pneumoniae strains. Emerg Microbes Infect 2024; 13:2306957. [PMID: 38240375 PMCID: PMC10829843 DOI: 10.1080/22221751.2024.2306957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
The emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) poses grave threats to human health. These strains increased dramatically in clinical settings in China in the past few years but not in other parts of the world. Four isogenic K. pneumoniae strains, including classical K. pneumoniae, carbapenem-resistant K. pneumoniae (CRKP), hypervirulent K. pneumoniae (hvKP) and CR-hvKP, were created and subjected to phenotypic characterization, competition assays, mouse sepsis model and rat colonization tests to investigate the mechanisms underlying the widespread nature of CR-hvKP in China. Acquisition of virulence plasmid led to reduced fitness and abolishment of colonization in the gastrointestinal tract, which may explain why hvKP is not clinically prevalent after its emergence for a long time. However, tigecycline treatment facilitated the colonization of hvKP and CR-hvKP and reduced the population of Lactobacillus spp. in animal gut microbiome. Feeding with Lactobacillus spp. could significantly reduce the colonization of hvKP and CR-hvKP in the animal gastrointestinal tract. Our data implied that the clinical use of tigecycline to treat carbapenem-resistant K. pneumoniae infections facilitated the high spread of CR-hvKP in clinical settings in China and demonstrated that Lactobacillus spp. was a potential candidate for anticolonization strategy against CR-hvKP.
Collapse
Affiliation(s)
- Miaomiao Xie
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Lianwei Ye
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Kaichao Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qi Xu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Chen Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Xiangnan Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Fuyong Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
2
|
Fratoni AJ, Padgett AM, Duffy EM, Nicolau DP. Quantitative performance of humanized serum and epithelial lining fluid exposures of tigecycline and levofloxacin against a challenge set of Klebsiella pneumoniae and Pseudomonas aeruginosa in a standardized neutropenic murine pneumonia model. J Antimicrob Chemother 2024:dkae333. [PMID: 39423017 DOI: 10.1093/jac/dkae333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/03/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Lack of uniformity in infection models complicates preclinical development. The COMBINE protocol has standardized the murine neutropenic pneumonia model. Herein we provide benchmark efficacy data of humanized exposures of tigecycline and levofloxacin in plasma and epithelial lining fluid (ELF) against a collection of Klebsiella pneumoniae and Pseudomonas aeruginosa. METHODS Following the COMBINE protocol, plasma and ELF human-simulated regimens (HSRs) of tigecycline 100 mg followed by 50 mg q12h and levofloxacin 750 mg once daily were developed and confirmed in the murine neutropenic pneumonia model. Tigecycline HSRs were tested against seven K. pneumoniae isolates. Levofloxacin HSRs were assessed against 10 K. pneumoniae and 9 P. aeruginosa. The change in cfu/lung over 24 h for each treatment was calculated. Each isolate was tested in duplicate against both the plasma and ELF HSRs on separate experiment days. RESULTS Tigecycline 1.8 and 3 mg/kg q12h achieved humanized exposures of serum and ELF, respectively. Levofloxacin 120 and 90 mg/kg q8h led to fAUC exposures in plasma and ELF similar to in humans. Both tigecycline regimens were ineffective across the MIC range. Levofloxacin regimens achieved multilog kill against susceptible isolates, and no appreciable cfu/lung reductions in isolates with an MIC of ≥32 mg/L. Differences in cfu/lung were evident between the levofloxacin plasma and ELF HSRs against isolates with MICs of 4 and 8 mg/L. CONCLUSIONS Administering HSRs of tigecycline and levofloxacin based on both serum/plasma and ELF in the COMBINE pneumonia model resulted in cfu/lung values reasonably aligned with MIC. These data serve as translational benchmarks for future investigations with novel compounds.
Collapse
Affiliation(s)
- Andrew J Fratoni
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| | - Alissa M Padgett
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| | | | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| |
Collapse
|
3
|
Aslan AT, Akova M. Recent updates in treating carbapenem-resistant infections in patients with hematological malignancies. Expert Rev Anti Infect Ther 2024:1-17. [PMID: 39313753 DOI: 10.1080/14787210.2024.2408746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Patients with hematological malignancies (PHMs) are at increased risk for infections caused by carbapenem-resistant organisms (CROs) due to frequent exposure to broad-spectrum antibiotics and prolonged hospital stays. These infections result in high mortality and morbidity rates along with delays in chemotherapy, longer hospitalizations, and increased health care costs. AREAS COVERED Treatment alternatives for CRO infections in PHMs. EXPERT OPINION The best available treatment option for KPC and OXA-48 producers is ceftazidime/avibactam. Imipenem/cilastatin/relebactam and meropenem/vaborbactam remain as the alternative options. They can also be used as salvage therapy in KPC-positive Enterobacterales infections resistant to ceftazidime/avibactam, if in vitro susceptibility is shown. Treatment of metallo-β-lactamase producers is an unmet need. Ceftazidime/avibactam plus aztreonam or aztreonam/avibactam seems to be the most reliable option for metallo-β-lactamase producers. As a first-line option for carbapenem-resistant Pseudomonas aeruginosa infections, ceftolozane/tazobactam is preferable and ceftazidime/avibactam and imipenem/cilastatin/relebactam constitute alternative regimens. Although sulbactam/durlobactam is the most reliable option against carbapenem-resistant Acinetobacter baumannii infections, its utility as monotherapy and in PHMs is not yet known. Cefiderocol can be selected as a 'last-resort' option for CRO infections. New risk score models supported by artificial intelligence algorithms can be used to predict the exact risk of infections in previously colonized patients.
Collapse
Affiliation(s)
- Abdullah Tarık Aslan
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Murat Akova
- Faculty of Medicine, Infectious Diseases and Clinical Microbiology, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
4
|
Qiao Y, Chen Y, Wang Q, Liu J, Guo X, Gu Q, Ding P, Zhang H, Mei H. Safety profiles of doxycycline, minocycline, and tigecycline in pediatric patients: a real-world pharmacovigilance analysis based on the FAERS database. Front Pharmacol 2024; 15:1413944. [PMID: 39135789 PMCID: PMC11317777 DOI: 10.3389/fphar.2024.1413944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Recently, the rise of antibiotic resistance has prompted a reconsideration of tetracyclines. However, existing studies are inadequate in assessing the pediatric safety of this class of antibiotics. To address the gap, our study aims to comprehensively assess the safety of tetracyclines in children. Methods Adverse event (AE) reports from January 2005 to September 2023 were obtained from the U.S. Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database, and reporting odds ratio (ROR) was performed to identify potential risk signals in children under 18 years old who were administered any of the three tetracyclines: doxycycline, minocycline, and tigecycline. Results A total of 1903 AE cases were included in our study: 782 for doxycycline, 981 for minocycline, and 140 for tigecycline. Doxycycline and tigecycline were predominantly associated with "general disorders and administration site conditions" and "gastrointestinal disorders," while minocycline was more frequently linked to "skin and subcutaneous tissue disorders" and "gastrointestinal disorders." Psychiatric risks predominantly included depression, suicidal ideation, and suicide attempt. In the category of skin and subcutaneous tissues, 30.88% of the minocycline-induced drug reaction with eosinophilia and systemic symptoms (DRESS) cases resulted in death, alongside a high occurrence of co-occurring AEs such as multiple organ dysfunction syndrome, Type 1 Diabetes Mellitus (T1DM), and autoimmune thyroiditis. As for the endocrine system, both doxycycline and minocycline were found to potentially increase the risk of thyroid dysfunction. For children under the age of 8, doxycycline was associated with tooth discoloration (N = 7, ROR = 20.11%, 95% CI: 9.48-42.67), although it remained unclear whether the discoloration was permanent. Conclusion Our findings indicated that for pediatric patients, the majority of results were in line with the prescribing information and previous studies, and minocycline tended to cause more frequent and severe AEs than doxycycline. However, it is noteworthy that exceptions were found for psychiatric disorders and thyroid dysfunction associated with doxycycline, which are not mentioned in its FDA prescribing information. Additionally, further safety studies on tigecycline are still needed for children. When prescribing tetracyclines to pediatric patients, a careful risk-benefit assessment is crucial.
Collapse
Affiliation(s)
- Yanli Qiao
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yechao Chen
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qiaoyun Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jingrui Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaohui Guo
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qiaoling Gu
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Peng Ding
- Department of Pharmacy, Nanjing Drum Tower Hospital, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Haixia Zhang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Hongliang Mei
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Kounatidis D, Dalamaga M, Grivakou E, Karampela I, Koufopoulos P, Dalopoulos V, Adamidis N, Mylona E, Kaziani A, Vallianou NG. Third-Generation Tetracyclines: Current Knowledge and Therapeutic Potential. Biomolecules 2024; 14:783. [PMID: 39062497 PMCID: PMC11275049 DOI: 10.3390/biom14070783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Tetracyclines constitute a unique class of antibiotic agents, widely prescribed for both community and hospital infections due to their broad spectrum of activity. Acting by disrupting protein synthesis through tight binding to the 30S ribosomal subunit, their interference is typically reversible, rendering them bacteriostatic in action. Resistance to tetracyclines has primarily been associated with changes in pump efflux or ribosomal protection mechanisms. To address this challenge, tetracycline molecules have been chemically modified, resulting in the development of third-generation tetracyclines. These novel tetracyclines offer significant advantages in treating infections, whether used alone or in combination therapies, especially in hospital settings. Beyond their conventional antimicrobial properties, research has highlighted their potential non-antibiotic properties, including their impact on immunomodulation and malignancy. This review will focus on third-generation tetracyclines, namely tigecycline, eravacycline, and omadacycline. We will delve into their mechanisms of action and resistance, while also evaluating their pros and cons over time. Additionally, we will explore their therapeutic potential, analyzing their primary indications of prescription, potential future uses, and non-antibiotic features. This review aims to provide valuable insights into the clinical applications of third-generation tetracyclines, thereby enhancing understanding and guiding optimal clinical use.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Eugenia Grivakou
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (E.G.); (E.M.); (A.K.)
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Petros Koufopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (P.K.); (V.D.); (N.A.)
| | - Vasileios Dalopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (P.K.); (V.D.); (N.A.)
| | - Nikolaos Adamidis
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (P.K.); (V.D.); (N.A.)
| | - Eleni Mylona
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (E.G.); (E.M.); (A.K.)
| | - Aikaterini Kaziani
- Department of Internal Medicine, Evangelismos General Hospital, 10676 Athens, Greece; (E.G.); (E.M.); (A.K.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (P.K.); (V.D.); (N.A.)
| |
Collapse
|
6
|
Sartelli M, Barie P, Agnoletti V, Al-Hasan MN, Ansaloni L, Biffl W, Buonomo L, Blot S, Cheadle WG, Coimbra R, De Simone B, Duane TM, Fugazzola P, Giamarellou H, Hardcastle TC, Hecker A, Inaba K, Kirkpatrick AW, Labricciosa FM, Leone M, Martin-Loeches I, Maier RV, Marwah S, Maves RC, Mingoli A, Montravers P, Ordóñez CA, Palmieri M, Podda M, Rello J, Sawyer RG, Sganga G, Tattevin P, Thapaliya D, Tessier J, Tolonen M, Ulrych J, Vallicelli C, Watkins RR, Catena F, Coccolini F. Intra-abdominal infections survival guide: a position statement by the Global Alliance For Infections In Surgery. World J Emerg Surg 2024; 19:22. [PMID: 38851700 PMCID: PMC11161965 DOI: 10.1186/s13017-024-00552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024] Open
Abstract
Intra-abdominal infections (IAIs) are an important cause of morbidity and mortality in hospital settings worldwide. The cornerstones of IAI management include rapid, accurate diagnostics; timely, adequate source control; appropriate, short-duration antimicrobial therapy administered according to the principles of pharmacokinetics/pharmacodynamics and antimicrobial stewardship; and hemodynamic and organ functional support with intravenous fluid and adjunctive vasopressor agents for critical illness (sepsis/organ dysfunction or septic shock after correction of hypovolemia). In patients with IAIs, a personalized approach is crucial to optimize outcomes and should be based on multiple aspects that require careful clinical assessment. The anatomic extent of infection, the presumed pathogens involved and risk factors for antimicrobial resistance, the origin and extent of the infection, the patient's clinical condition, and the host's immune status should be assessed continuously to optimize the management of patients with complicated IAIs.
Collapse
Affiliation(s)
- Massimo Sartelli
- Department of Surgery, Macerata Hospital, Via Santa Lucia 2, Macerata, 62100, Italy.
| | - Philip Barie
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Vanni Agnoletti
- Anesthesia and Intensive Care Unit, Bufalini Hospital - AUSL della Romagna, Cesena, Italy
| | - Majdi N Al-Hasan
- Department of Internal Medicine, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Luca Ansaloni
- Department of General and Emergency Surgery, Fondazione IRCCS San Matteo, Pavia, Italy
| | - Walter Biffl
- Division of Trauma and Acute Care Surgery, Scripps Clinic Medical Group, La Jolla, CA, USA
| | - Luis Buonomo
- Emergency, Urgency and Trauma Surgery, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Stijn Blot
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - William G Cheadle
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Raul Coimbra
- Comparative Effectiveness and Clinical Outcomes Research Center - CECORC - Riverside University Health System, Moreno Valley, CA, USA
- Department of Surgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | - Paola Fugazzola
- Department of General and Emergency Surgery, Fondazione IRCCS San Matteo, Pavia, Italy
| | - Helen Giamarellou
- First Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Timothy C Hardcastle
- Department of Surgical Sciences, Nelson R Mandela School of Clinical Medicine, University of KwaZulu-Natal, and Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Andreas Hecker
- Department of General and Thoracic Surgery, University Hospital of Giessen, Giessen, Germany
| | - Kenji Inaba
- Department of Surgery, University of Southern California, Los Angeles, CA, USA
| | - Andrew W Kirkpatrick
- Department of Surgery and Critical Care Medicine, University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | | | - Marc Leone
- Department of Anaesthesia and Intensive Care Unit, AP-HM, Aix-Marseille University, North Hospital, Marseille, France
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organisation, St James's Hospital, Dublin, Ireland
- Trinity College Dublin, Dublin, Ireland
- Centro de Investigacion Biomedica En Red Entermedades Respiratorias, Institute of Health Carlos III, Madrid, Spain
- Pulmonary Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Ronald V Maier
- Department of Surgery, Harborview Medical Centre, University of Washington, Seattle, USA
| | - Sanjay Marwah
- Pandit Bhagwat Dayal Sharma Postgraduate Institute of Medical Sciences, Rohtak, India
| | - Ryan C Maves
- Section of Infectious Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Andrea Mingoli
- Emergency Department, Policlinico Umberto I, Sapienza University, Rome, Italy
| | - Philippe Montravers
- Anesthesiology and Critical Care Medicine Department, DMU PARABOL, Bichat Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Carlos A Ordóñez
- Division of Trauma and Acute Care Surgery, Department of Surgery, Fundación Valle del Lili, Cali, Colombia
| | - Miriam Palmieri
- Department of Surgery, Macerata Hospital, Via Santa Lucia 2, Macerata, 62100, Italy
| | - Mauro Podda
- Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Jordi Rello
- Global Health eCore, Vall d'Hebron University Hospital Campus, Barcelona, 08035, Spain
- Medicine Department, Universitat Internacional de Catalunya, Sant Cugat del Valles, Spain
| | - Robert G Sawyer
- Department of Surgery, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Gabriele Sganga
- Emergency Surgery and Trauma, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Pierre Tattevin
- Infectious Disease and Intensive Care Unit, Pontchaillou University Hospital, Rennes, France
| | | | - Jeffrey Tessier
- Division of Infectious Diseases and Geographic Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matti Tolonen
- Emergency Surgery department, Meilahti Tower Hospital, HUS Helsinki University Hospital, Haartmaninkatu 4, Helsinki, Finland
| | - Jan Ulrych
- First Department of Surgery, Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Carlo Vallicelli
- Emergency and General Surgery Department, Bufalini Hospital, Cesena, Italy
| | - Richard R Watkins
- Department of Medicine, Division of Infectious Diseases, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Fausto Catena
- Emergency and General Surgery Department, Bufalini Hospital, Cesena, Italy
| | - Federico Coccolini
- General, Emergency and Trauma Surgery Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
7
|
Sun K, Peng F, Xu K, Liu Y, Zhou X, Shang N, Li C. A novel multivariate logistic model for predicting risk factors of failed treatment with carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Front Public Health 2024; 12:1385118. [PMID: 38784576 PMCID: PMC11111873 DOI: 10.3389/fpubh.2024.1385118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Background This study aimed to explore the risk factors for failed treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia (CRAB-VAP) with tigecycline and to establish a predictive model to predict the incidence of failed treatment and the prognosis of CRAB-VAP. Methods A total of 189 CRAB-VAP patients were included in the safety analysis set from two Grade 3 A national-level hospitals between 1 January 2022 and 31 December 2022. The risk factors for failed treatment with CRAB-VAP were identified using univariate analysis, multivariate logistic analysis, and an independent nomogram to show the results. Results Of the 189 patients, 106 (56.1%) patients were in the successful treatment group, and 83 (43.9%) patients were in the failed treatment group. The multivariate logistic model analysis showed that age (OR = 1.04, 95% CI: 1.02, 1.07, p = 0.001), yes. of hypoproteinemia (OR = 2.43, 95% CI: 1.20, 4.90, p = 0.013), the daily dose of 200 mg (OR = 2.31, 95% CI: 1.07, 5.00, p = 0.034), yes. of medication within 14 days prior to surgical intervention (OR = 2.98, 95% CI: 1.19, 7.44, p = 0.019), and no. of microbial clearance (OR = 0.31, 95% CI: 0.14, 0.70, p = 0.005) were risk factors for the failure of tigecycline treatment. Receiver operating characteristic (ROC) analysis showed that the AUC area of the prediction model was 0.745 (0.675-0.815), and the decision curve analysis (DCA) showed that the model was effective in clinical practice. Conclusion Age, hypoproteinemia, daily dose, medication within 14 days prior to surgical intervention, and microbial clearance are all significant risk factors for failed treatment with CRAB-VAP, with the nomogram model indicating that high age was the most important factor. Because the failure rate of CRAB-VAP treatment with tigecycline was high, this prediction model can help doctors correct or avoid risk factors during clinical treatment.
Collapse
Affiliation(s)
- Ke Sun
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, China
| | | | - Kaiqiang Xu
- Qinhuangdao Center for Disease Control and Prevention, Qinhuangdao, Hebei, China
| | - Yong Liu
- Shandong Public Health Clinical Center, Jinan, Shangdong, China
| | - Xuanping Zhou
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Nan Shang
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chao Li
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Heinz E, Pearse O, Zuza A, Bilima S, Msefula C, Musicha P, Siyabu P, Tewesa E, Graf FE, Lester R, Lissauer S, Cornick J, Lewis JM, Kawaza K, Thomson NR, Feasey NA. Longitudinal analysis within one hospital in sub-Saharan Africa over 20 years reveals repeated replacements of dominant clones of Klebsiella pneumoniae and stresses the importance to include temporal patterns for vaccine design considerations. Genome Med 2024; 16:67. [PMID: 38711148 PMCID: PMC11073982 DOI: 10.1186/s13073-024-01342-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Infections caused by multidrug-resistant gram-negative bacteria present a severe threat to global public health. The WHO defines drug-resistant Klebsiella pneumoniae as a priority pathogen for which alternative treatments are needed given the limited treatment options and the rapid acquisition of novel resistance mechanisms by this species. Longitudinal descriptions of genomic epidemiology of Klebsiella pneumoniae can inform management strategies but data from sub-Saharan Africa are lacking. METHODS We present a longitudinal analysis of all invasive K. pneumoniae isolates from a single hospital in Blantyre, Malawi, southern Africa, from 1998 to 2020, combining clinical data with genome sequence analysis of the isolates. RESULTS We show that after a dramatic increase in the number of infections from 2016 K. pneumoniae becomes hyperendemic, driven by an increase in neonatal infections. Genomic data show repeated waves of clonal expansion of different, often ward-restricted, lineages, suggestive of hospital-associated transmission. We describe temporal trends in resistance and surface antigens, of relevance for vaccine development. CONCLUSIONS Our data highlight a clear need for new interventions to prevent rather than treat K. pneumoniae infections in our setting. Whilst one option may be a vaccine, the majority of cases could be avoided by an increased focus on and investment in infection prevention and control measures, which would reduce all healthcare-associated infections and not just one.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK.
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK.
| | - Oliver Pearse
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Allan Zuza
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sithembile Bilima
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Patrick Musicha
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Edith Tewesa
- Queen Elizabeth Central Hospital, Blantyre, Malawi
| | - Fabrice E Graf
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
| | - Rebecca Lester
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Division of Infection & Immunity, University College London, London, UK
| | - Samantha Lissauer
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Jennifer Cornick
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Joseph M Lewis
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Kondwani Kawaza
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Nicholas R Thomson
- Parasites and Microbes Program, Wellcome Sanger Institute, Hinxton, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Nicholas A Feasey
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke PlaceLiverpool, L3 5QA, UK.
- Malawi Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.
- School of Medicine, St Andrews University, St Andrews, UK.
| |
Collapse
|
9
|
Amann LF, Broeker A, Riedner M, Rohde H, Huang J, Nordmann P, Decousser JW, Wicha SG. Pharmacokinetic/pharmacodynamic evaluation of tigecycline dosing in a hollow fiber infection model against clinical bla-KPC producing Klebsiella Pneumoniae isolates. Diagn Microbiol Infect Dis 2024; 108:116153. [PMID: 38086168 DOI: 10.1016/j.diagmicrobio.2023.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
The FDA announced a boxed warning for tigecycline due to progression of infections caused by Gram-negative bacteria and increased risk of mortality during treatment. Plasma exposure of tigecycline might not prevent bacteraemia in these cases from the focuses. Hence, we evaluated intensified dosing regimens and breakpoints that might suppress bloodstream infections, caused by progression of infection by e.g., Gram-negatives. A pharmacometric model was built from tigecycline concentrations (100-600 mg daily doses) against clinical Klebsiella pneumoniae isolates (MIC 0.125-0.5 mg/L). Regrowth occurred at clinically used doses and stasis was only achieved with 100 mg q8h for the strain with the lowest studied MIC of 0.125 mg/L. Stasis at 24 h was related to fAUC/MIC of 38.5. Our study indicates that even intensified dosing regimens might prevent bloodstream infections only for MIC values ≤0.125 mg/L for tigecycline. This indicates an overly optimistic breakpoint of 1 mg/L for Enterobacterales, which are deemed to respond to the tigecycline high dose regimen (EUCAST Guidance Document on Tigecycline Dosing 2022).
Collapse
Affiliation(s)
- Lisa F Amann
- Deptartement of Clinical Pharmacy, Institute of Pharmacy, Universität Hamburg, Hamburg, Germany
| | - Astrid Broeker
- Deptartement of Clinical Pharmacy, Institute of Pharmacy, Universität Hamburg, Hamburg, Germany
| | - Maria Riedner
- Technology Platform Mass Spectrometry, Universität Hamburg, Hamburg, Germany
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Jiabin Huang
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Patrice Nordmann
- Medical and Molecular Microbiology, University of Fribourg, Fribourg, Switzerland
| | - Jean-Winoc Decousser
- Dynamic Team-EA 7380, Faculté de santé, Université Paris-Est-Créteil Val-De-Marne, France
| | - Sebastian G Wicha
- Deptartement of Clinical Pharmacy, Institute of Pharmacy, Universität Hamburg, Hamburg, Germany.
| |
Collapse
|
10
|
Su W, Song S, Liu J, Yu H, Feng B, Wu Y, Guo F, Yu Z. Population pharmacokinetics and individualized dosing of tigecycline for critically ill patients: a prospective study with intensive sampling. Front Pharmacol 2024; 15:1342947. [PMID: 38348395 PMCID: PMC10859475 DOI: 10.3389/fphar.2024.1342947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/17/2024] [Indexed: 02/15/2024] Open
Abstract
Background: Due to the heterogeneity of critically ill patients, the pharmacokinetics of tigecycline are unclear, and the optimal dosing strategy is controversial. Methods: A single-center prospective clinical study that included critically ill patients who received tigecycline was performed. Blood samples were intensively sampled (eight samples each), and plasma drug concentrations were determined. A population pharmacokinetic (PPK) model was developed and evaluated by goodness-of-fit plots, bootstrap analysis and visual predictive checks. Monte Carlo simulation was conducted to optimize the dosage regimen. Results: Overall, 751 observations from 98 patients were included. The final PPK model was a two-compartment model incorporating covariates of creatinine clearance on clearance (CL), body weight on both central and peripheral volumes of distribution (V1 and V2), γ-glutamyl transferase and total bilirubin on intercompartment clearance (Q), and albumin on V2. The typical values of CL, Q, V1 and V2 were 3.09 L/h, 39.7 L/h, 32.1 L and 113 L, respectively. A dosage regimen of 50 mg/12 h was suitable for complicated intra-abdominal infections, but 100 mg/12 h was needed for community-acquired pneumonia, skin and skin structure infections and infections caused by less-susceptive bacteria. Conclusion: The Tigecycline PPK model was successfully developed and validated. Individualized dosing of tigecycline could be beneficial for critically ill patients.
Collapse
Affiliation(s)
- Wei Su
- Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuping Song
- Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jieqiong Liu
- Department of Pharmacy, The 903rd Hospital of PLA Joint Logistic Support Force, Hangzhou, China
| | - Haitao Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Binbin Feng
- Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinshan Wu
- Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Guo
- Intensive Care Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhenwei Yu
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Ding L, Shen S, Chen J, Tian Z, Shi Q, Han R, Guo Y, Hu F. Klebsiella pneumoniae carbapenemase variants: the new threat to global public health. Clin Microbiol Rev 2023; 36:e0000823. [PMID: 37937997 PMCID: PMC10732083 DOI: 10.1128/cmr.00008-23] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/31/2023] [Indexed: 11/09/2023] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC) variants, which refer to the substitution, insertion, or deletion of amino acid sequence compared to wild blaKPC type, have reduced utility of ceftazidime-avibactam (CZA), a pioneer antimicrobial agent in treating carbapenem-resistant Enterobacterales infections. So far, more than 150 blaKPC variants have been reported worldwide, and most of the new variants were discovered in the past 3 years, which calls for public alarm. The KPC variant protein enhances the affinity to ceftazidime and weakens the affinity to avibactam by changing the KPC structure, thereby mediating bacterial resistance to CZA. At present, there are still no guidelines or expert consensus to make recommendations for the diagnosis and treatment of infections caused by KPC variants. In addition, meropenem-vaborbactam, imipenem-relebactam, and other new β-lactam-β-lactamase inhibitor combinations have little discussion on KPC variants. This review aims to discuss the clinical characteristics, risk factors, epidemiological characteristics, antimicrobial susceptibility profiles, methods for detecting blaKPC variants, treatment options, and future perspectives of blaKPC variants worldwide to alert this new great public health threat.
Collapse
Affiliation(s)
- Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Jing Chen
- Hangzhou Matridx Biotechnology Co., Ltd., Hangzhou, Zhejiang, China
| | - Zhen Tian
- Hangzhou Matridx Biotechnology Co., Ltd., Hangzhou, Zhejiang, China
| | - Qingyu Shi
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|
12
|
Kunz Coyne AJ, Herbin S, Caniff K, Rybak MJ. Steno-sphere: Navigating the enigmatic world of emerging multidrug-resistant Stenotrophomonas maltophilia. Pharmacotherapy 2023; 43:833-846. [PMID: 37199104 DOI: 10.1002/phar.2828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/19/2023]
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen and frequent cause of serious nosocomial infections. Patient populations at greatest risk for these infections include the immunocompromised and those with chronic respiratory illnesses and prior antibiotic exposure, notably to carbapenems. Its complex virulence and resistance profile drastically limit available antibiotics, and incomplete breakpoint and pharmacokinetic/pharmacodynamic (PK/PD) data to inform dose optimization further complicates therapeutic approaches. Clinical comparison data of first-line agents, including trimethoprim-sulfamethoxazole (TMP-SMX), quinolones, and minocycline, are limited to conflicting observational data with no clear benefit of a single agent or combination therapy. Newer antibiotic approaches, including cefiderocol and aztreonam- avibactam, are promising alternatives for extensively drug-resistant isolates; however, clinical outcomes data are needed. The potential clinical utility of bacteriophage for compassionate use in treating S. maltophilia infections remains to be determined since data is limited to in-vitro and sparse in-vivo work. This article provides a review of available literature for S. maltophilia infection management focused on related epidemiology, resistance mechanisms, identification, susceptibility testing, antimicrobial PK/PD, and emerging therapeutic strategies.
Collapse
Affiliation(s)
- Ashlan J Kunz Coyne
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | | | - Kaylee Caniff
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
| | - Michael J Rybak
- Anti-Infective Research Laboratory, College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Services, Detroit Receiving Hospital, Detroit, Michigan, USA
| |
Collapse
|
13
|
Kontou A, Kourti M, Iosifidis E, Sarafidis K, Roilides E. Use of Newer and Repurposed Antibiotics against Gram-Negative Bacteria in Neonates. Antibiotics (Basel) 2023; 12:1072. [PMID: 37370391 DOI: 10.3390/antibiotics12061072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Antimicrobial resistance has become a significant public health problem globally with multidrug resistant Gram negative (MDR-GN) bacteria being the main representatives. The emergence of these pathogens in neonatal settings threatens the well-being of the vulnerable neonatal population given the dearth of safe and effective therapeutic options. Evidence from studies mainly in adults is now available for several novel antimicrobial compounds, such as new β-lactam/β-lactamase inhibitors (e.g., ceftazidime-avibactam, meropenem-vaborbactam, imipenem/cilastatin-relebactam), although old antibiotics such as colistin, tigecycline, and fosfomycin are also encompassed in the fight against MDR-GN infections that remain challenging. Data in the neonatal population are scarce, with few clinical trials enrolling neonates for the evaluation of the efficacy, safety, and dosing of new antibiotics, while the majority of old antibiotics are used off-label. In this article we review data about some novel and old antibiotics that are active against MDR-GN bacteria causing sepsis and are of interest to be used in the neonatal population.
Collapse
Affiliation(s)
- Angeliki Kontou
- 1st Department of Neonatology and Neonatal Intensive Care Unit, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Maria Kourti
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Elias Iosifidis
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Kosmas Sarafidis
- 1st Department of Neonatology and Neonatal Intensive Care Unit, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
| | - Emmanuel Roilides
- Infectious Diseases Unit, 3rd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki 54642, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| |
Collapse
|
14
|
Dalfino L, Stufano M, Bavaro DF, Diella L, Belati A, Stolfa S, Romanelli F, Ronga L, Di Mussi R, Murgolo F, Loconsole D, Chironna M, Mosca A, Montagna MT, Saracino A, Grasso S. Effectiveness of First-Line Therapy with Old and Novel Antibiotics in Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii: A Real Life, Prospective, Observational, Single-Center Study. Antibiotics (Basel) 2023; 12:1048. [PMID: 37370367 DOI: 10.3390/antibiotics12061048] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Evidence-based, standard antibiotic therapy for ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Acinetobacter baumannii (CRAB) is a relevant unmet clinical need in the intensive care unit (ICU). We aimed to evaluate the effectiveness of first-line therapy with old and novel CRAB active antibiotics in monomicrobial VAP caused by CRAB. A prospective, observational study was performed in a mixed non-COVID-19 ICU. The primary outcome measure was clinical failure upon first-line targeted therapy. Features independently influencing failure occurrence were also investigated via Cox proportional multivariable analysis. To account for the imbalance in antibiotic treatment allocation, a propensity score analysis with an inverse probability treatment weighting approach was adopted. Of the 90 enrolled patients, 34 (38%) experienced clinical failure. Compared to patients who experienced a clinical resolution of VAP, those who had clinical failure were of an older age (median age 71 (IQR 64-78) vs. 62 (IQR 52-69) years), and showed greater burden of comorbidities (median Charlson comorbidity index 8 (IQR 6-8) vs. 4 (IQR 2-6)), higher frequency of immunodepression (44% vs. 21%), and greater clinical severity at VAP onset (median SOFA score 10 (IQR 9-11) vs. 9 (IQR 7-11)). Lower rates of use of fast molecular diagnostics for nosocomial pneumonia (8.8% vs. 30.3%) and of timely CRAB active therapy administration (65% vs. 89%), and higher rates of colistin-based targeted therapy (71% vs. 46%) were also observed in patients who failed first-line therapy. Overall, CRAB active iv regimens were colistin-based in 50 patients and cefiderocol-based in 40 patients, both always combined with inhaled colistin. According to the backbone agent of first-line regimens, clinical failure was lower in the cefiderocol group, compared to that in the colistin group (25% vs. 48%, respectively). In multivariable Cox regression analysis, the burden of comorbid conditions independently predicted clinical failure occurrence (Charlson index aHR = 1.21, 95% CI = 1.04-1.42, p = 0.01), while timely targeted antibiotic treatment (aHR = 0.40, 95% CI = 0.19-0.84, p = 0.01) and cefiderocol-based first-line regimens (aHR = 0.38, 95% CI = 0.17-0.85, p = 0.02) strongly reduced failure risk. In patients with VAP caused by CRAB, timely active therapy improves infection outcomes and cefiderocol holds promise as a first-line therapeutic option.
Collapse
Affiliation(s)
- Lidia Dalfino
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari "A. Moro", 70124 Bari, Italy
| | - Monica Stufano
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari "A. Moro", 70124 Bari, Italy
| | - Davide Fiore Bavaro
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", 70124 Bari, Italy
| | - Lucia Diella
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", 70124 Bari, Italy
| | - Alessandra Belati
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", 70124 Bari, Italy
| | - Stefania Stolfa
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Federica Romanelli
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Luigi Ronga
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Rosa Di Mussi
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari "A. Moro", 70124 Bari, Italy
| | - Francesco Murgolo
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari "A. Moro", 70124 Bari, Italy
| | - Daniela Loconsole
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Maria Chironna
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Adriana Mosca
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Maria Teresa Montagna
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari "A. Moro", 70124 Bari, Italy
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro", 70124 Bari, Italy
| | - Salvatore Grasso
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari "A. Moro", 70124 Bari, Italy
| |
Collapse
|
15
|
Taha R, Mowallad A, Mufti A, Althaqafi A, Jiman-Fatani AA, El-Hossary D, Ossenkopp J, AlhajHussein B, Kaaki M, Jawi N, Hassanien A, Alsaedi A. Prevalence of Carbapenem-Resistant Enterobacteriaceae in Western Saudi Arabia and Increasing Trends in the Antimicrobial Resistance of Enterobacteriaceae. Cureus 2023; 15:e35050. [PMID: 36942194 PMCID: PMC10024340 DOI: 10.7759/cureus.35050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
PURPOSE The aim of the study is to estimate the prevalence rate of carbapenem-resistant Enterobacteriaceae (CRE) and to determine the types of carbapenemase genes present in patients admitted to King Abdulaziz Medical City (KAMC-J) and King Abdulaziz University Hospital (KAUH), both in Jeddah, Saudi Arabia. METHODS A total of 180 isolates were analyzed which were included on the basis of retrospective chart review of patients from KAMC-J and KAUH between 1st April 2017 to 30th March 2019. The prevalence of carbapenemase genes ( blaIMP, blaVIM, blaKPC, blaNDM-1, and blaOXA-48) was evaluated by Xpert® Carba-R (Cepheid, Sunnyvale, CA, USA). We assessed the CRE prevalence and described their susceptibility to antimicrobial agents based on antibiogram reports. Results: Klebsiella pneumoniae showed a higher frequency of bla OXA-48 (79%) than bla NDM (11.7%) genes (p=0.007). The CRE prevalence in KAUH was 8% in 2017 and increased to 13% in 2018. In KAMC-J, the prevalence was 57% in 2018 and 61% in 2019. K. pneumoniae was found to be the most frequently isolated causative organism followed by Escherichia coli . The bla OXA-48 (76.1%) gene was predominant among overall isolates followed by bla NDM (13.9%); both genes coexisted in 6.1% of the isolates. CONCLUSION During the study period, the prevalence of CRE considerably rose in the two tertiary care institutions from western Saudi Arabia. In the CRE isolates, bla OXA-48 was discovered to be the most common gene. We recommend an antimicrobial resistance surveillance system to detect the emergence of resistant genes through use of new rapid diagnostic tests and monitor antimicrobial use in order to improve clinical outcomes of CRE infections given the severity of infection associated with the CRE isolates as well as the limited treatment options available.
Collapse
Affiliation(s)
- Rbab Taha
- Transplant Infectious Disease, King Faisal Specialist Hospital and Research Center, Jeddah, SAU
| | - Abdulfattah Mowallad
- Pathology and Laboratory Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Areej Mufti
- Pathology and Laboratory Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Abdulhakeem Althaqafi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Infectious Diseases, King Abdullah International Medical Research Center, Jeddah, SAU
| | - Asif A Jiman-Fatani
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
- Clinical and Molecular Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, SAU
| | - Dalia El-Hossary
- Medical Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, EGY
| | - John Ossenkopp
- Infection Prevention and Control, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Baraa AlhajHussein
- Pathology and Laboratory Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Mai Kaaki
- Pathology and Laboratory Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | - Noha Jawi
- Pathology and Laboratory Medicine, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| | | | - Asim Alsaedi
- Infection Prevention and Control Department, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
| |
Collapse
|
16
|
Li Z, Zeng Q, Xu S, Li Y, Tang T, Shi J, Song X, He W, Chen L, Liu G, Gao B, Zheng J, Huang L, Chen M, Jiang S. Development and Validation of a Nomogram for Predicting Tigecycline-Related Coagulopathy: A Retrospective Cohort Study. Infect Drug Resist 2023; 16:423-434. [PMID: 36718461 PMCID: PMC9884007 DOI: 10.2147/idr.s388438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Background Although tigecycline is an effective drug against drug-resistant bacteria, it demonstrated a higher all-cause mortality than comparator antibiotics and a high incidence of coagulation disorders which can be accompanied by severe bleeding. At present, a predictive model for tigecycline-related coagulopathy is not readily available, and the prognostic value of coagulopathy in tigecycline-administered patients has not been elucidated. In this paper, we investigate the association between tigecycline-related coagulopathy and in-hospital mortality to develop a nomogram for the prediction of tigecycline-related coagulopathy. Methods This retrospective cohort study includes 311 adults prescribed with tigecycline from 2018 to 2020. The primary cohort and validation cohort were constructed by dividing the participants in a ratio of 7:3. The endpoint is tigecycline-related coagulopathy, defined as a condition with no abnormality in coagulation prior to tigecycline application but developed the following symptoms upon prescription: activated partial thromboplastin time (APTT) extended by >10 s than the upper limit of normal (ULN), prothrombin time (PT) prolonged for >3 s than the ULN or reduced serum level of fibrinogen to <2.0 g/L. A predictive nomogram based on logistic regression was subsequently constructed. Results Tigecycline intake for over 7 days, combined other antibiotics, initial PT, initial fibrinogen and estimated glomerular filtration rate (eGFR), are independent prognostic factors of tigecycline-related coagulopathy. The primary and validation cohort each has an area under the receiver operating characteristic curve (AUC) of 0.792 (0.732-0.851) and 0.730 (0.629-0.832) for nomogram, respectively. Furthermore, the fitted calibration curve illustrated adequate fit of the model, while the decision curve analysis demonstrated good clinical value. Survival curves showed a high mortality rate among patients with tigecycline-related coagulopathy. Conclusion This nomogram exhibited helpful clinical value in predicting tigecycline-related coagulopathy that could reduce the high mortality rate of patients prescribed with tigecycline.
Collapse
Affiliation(s)
- Zhaolin Li
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qiaojun Zeng
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shuwan Xu
- Department of Cardiology, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Yuewei Li
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Tiantian Tang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianting Shi
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xueming Song
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenman He
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Liang Chen
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Guirong Liu
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Boying Gao
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianming Zheng
- Cardiovascular Medicine Department, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Linjie Huang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ming Chen
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shanping Jiang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China,Correspondence: Shanping Jiang; Ming Chen, Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Yan-jiang Xi Road 107, Guangzhou, 510120, People’s Republic of China, Tel +86-20-81332441, Email ;
| |
Collapse
|
17
|
Qian C, Wu Q, Ruan Z, Liu F, Li W, Shi W, Ma L, Peng D, Yin H, Yao L, Li Z, Hong M, Xia L. A Visualized Mortality Prediction Score Model in Hematological Malignancies Patients with Carbapenem-Resistant Organisms Bloodstream Infection. Infect Drug Resist 2023; 16:201-215. [PMID: 36644657 PMCID: PMC9833326 DOI: 10.2147/idr.s393932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Background Bloodstream infection (BSI) due to carbapenem-resistant organisms (CROs) has emerged as a worldwide problem associated with high mortality. This study aimed to evaluate the risk factors associated with mortality in HM patients with CROs BSI and to establish a scoring model for early mortality prediction. Methods We conducted a retrospective cohort study at our hematological department from January 2018 to December 2021, including all HM patients with CROs BSI. The outcome measured was death within 30-day of BSI onset. Survivor and non-survivor subgroups were compared to identify predictors of mortality. Univariate and multivariate Cox regression analyses were used to identify prognostic risk factors and develop a nomogram. Results In total, 150 HM patients were included in the study showing an overall 30-day mortality rate of 56%. Klebsiella pneumonia was the dominant episode. Cox regression analysis showed that pre-infection length of stay was >14 days (score 41), Pitt score >4 (score 100), mucositis (score 41), CAR (The ratio of C-reactive protein to albumin) >8.8 (score 57), early definitive therapy (score 44), and long-duration (score 78) were positive independent risk predictors associated with 30-day mortality, all of which were selected into the nomogram. Furthermore, all patients were divided into the high-risk group (≥160 points) or the low-risk group based on the prediction score model. The mortality of the high-risk group was 8 times more than the low-risk group. Kaplan-Meier analysis showed that empirical polymyxin B therapy was associated with a lower 30-day mortality rate, which was identified as a good prognostic factor in the high-risk group. In comparison, empirical carbapenems and tigecycline were poor prognostic factors in a low-risk group. Conclusion Our score model can accurately predict 30-day mortality in HM patients with CROs BSI. Early administration of CROs-targeted therapy in the high-risk group is strongly recommended to decrease mortality.
Collapse
Affiliation(s)
- Chenjing Qian
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Qiuling Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Zhixuan Ruan
- Faculty of Natural, Mathematical and Engineering Sciences, King’s College, London, UK
| | - Fang Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Weiming Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Danyue Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Hua Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Lan Yao
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Zixuan Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| | - Mei Hong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China,Correspondence: Mei Hong; Linghui Xia, Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No. 1277, Wuhan, Hubei Province, People’s Republic of China, Tel +8613037137937; +8618627733999, Email ;
| | - Linghui Xia
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People’s Republic of China
| |
Collapse
|
18
|
Isler B, Aslan AT, Akova M, Harris P, Paterson DL. Treatment strategies for OXA-48-like and NDM producing Klebsiella pneumoniae infections. Expert Rev Anti Infect Ther 2022; 20:1389-1400. [PMID: 36150216 DOI: 10.1080/14787210.2022.2128764] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION OXA-48 and NDM are amongst the most prevalent carbapenemase types associated with Klebsiella pneumoniae worldwide, with an increase in their prevalence in recent years. Knowledge on the treatment of carbapenem-resistant Klebsiella pneumoniae (CRKP) comes from KPC-producing CRKP with limited data available for OXA-48-like and NDM producers. Our aim is to review the literature on the treatment of OXA-48-like and NDM-producing CRKP with the goal of providing an update on the available antibiotic treatment strategies, particularly in light of changing carbapenemase epidemiology and increasing antimicrobial resistance. AREAS COVERED We reviewed studies looking at the antibiotic treatment and outcome of OXA-48-like and/or NDM-producing CRKP. EXPERT OPINION The best available treatment option for OXA-48 producers is ceftazidime-avibactam, where available and when the price permits its use. Colistin remains as the second-line option if in vitro susceptibility is demonstrated with an appropriate method. There is not enough evidence to support the use of meropenem-containing combination therapies for meropenem-resistant OXA-48 producers. Treatment of NDM producers is an unmet need. Ceftazidime-avibactam and aztreonam combination or cefiderocol can be used for NDM producers, where available. Higher cefiderocol MICs against NDM producers is concerning. Aztreonam-avibactam provides hope for the treatment of NDM producers.
Collapse
Affiliation(s)
- Burcu Isler
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia.,Infection Management Services, Princess Alexandra Hospital, Brisbane, Australia
| | - Abdullah Tarık Aslan
- Department of Internal Medicine, Golhisar State Hospital, 15100 Golhisar, Turkey
| | - Murat Akova
- Infectious Diseases and Clinical Microbiology, Hacettepe University School of Medicine, Ankara
| | - Patrick Harris
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia
| | - David L Paterson
- University of Queensland, Faculty of Medicine, UQ Centre for Clinical Research, Brisbane, Australia.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
19
|
A Proposal for a Classification Guiding the Selection of Appropriate Antibiotic Therapy for Intra-Abdominal Infections. Antibiotics (Basel) 2022; 11:antibiotics11101394. [PMID: 36290052 PMCID: PMC9598485 DOI: 10.3390/antibiotics11101394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Adequately controlling the source of infection and prescribing appropriately antibiotic therapy are the cornerstones of the management of patients with intra-abdominal infections (IAIs). Correctly classifying patients with IAIs is crucial to assessing the severity of their clinical condition and deciding the strategy of the treatment, including a correct empiric antibiotic therapy. Best practices in prescribing antibiotics may impact patient outcomes and the cost of treatment, as well as the risk of “opportunistic” infections such as Clostridioides difficile infection and the development and spread of antimicrobial resistance. This review aims to identify a correct classification of IAIs, guiding clinicians in the selection of the best antibiotic therapy in patients with IAIs.
Collapse
|
20
|
Meng R, Guan X, Sun L, Fei Z, Li Y, Luo M, Ma A, Li H. The efficacy and safety of eravacycline compared with current clinically common antibiotics in the treatment of adults with complicated intra-abdominal infections: A Bayesian network meta-analysis. Front Med (Lausanne) 2022; 9:935343. [PMID: 36186801 PMCID: PMC9524542 DOI: 10.3389/fmed.2022.935343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Eravacycline is a novel, fully synthetic fluorocycline antibiotic for the treatment of adults with complicated intra-abdominal infections (cIAIs). However, the efficacy and safety of eravacycline compared with current clinically common antibiotics remain unknown. Objective This study aims to compare the efficacy and safety of eravacycline and other clinically common antibiotics in China, including tigecycline, meropenem, ertapenem, ceftazidime/avibactam+metronidazole, piperacillin/tazobactam, imipenem/cilastatin, and ceftriaxone+metronidazole, for the treatment of adults with cIAIs and to provide a reference for clinical choice. Methods The PubMed, Embase, Cochrane Library, and ClinicalTrials.gov databases were electronically searched to collect clinical randomized controlled studies (RCTs) comparing different antibiotics in the treatment of patients with cIAIs from inception to June 1, 2021. Two reviewers independently screened the literature, extracted data, and evaluated the risk of bias in the included studies. Results A total of 4050 articles were initially retrieved, and 25 RCTs were included after screening, involving eight treatment therapies and 9372 patients. The results of network meta-analysis showed that in the intention-to-treat (ITT) population, the clinically evaluable (CE) population, and the microbiologically evaluable (ME) population, the clinical response rate of eravacycline was not significantly different from that of the other 7 therapies (P > 0.05). In terms of microbiological response rate, eravacycline was significantly better than tigecycline [tigecycline vs. eravacycline: RR = 0.82, 95%CI (0.65,0.99)], and there was no significant difference between the other 6 regimens and eravacycline (P > 0.05). In terms of safety, the incidence of serious adverse events, discontinuation rate, and all-cause mortality of eravacycline were not significantly different from those of the other 7 treatment therapies (P > 0.05). Conclusion Based on the evidence generated by the current noninferiority clinical trial design, the efficacy and safety of eravacycline for the treatment of adults with cIAIs are not significantly different from those of the other 7 commonly used clinical antibiotics in China. In terms of microbiological response rate, eravacycline was significantly better than tigecycline. In view of the severe multidrug-resistant situation in China, existing drugs have difficulty meeting the needs of clinical treatment, and the new antibacterial drug eravacycline may be one of the preferred options for the treatment of cIAIs in adults.
Collapse
Affiliation(s)
- Rui Meng
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
| | - Xin Guan
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
| | - Lei Sun
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
| | - Zhengyang Fei
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
| | - Yuxin Li
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
| | - Mengjie Luo
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
| | - Aixia Ma
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
- *Correspondence: Aixia Ma
| | - Hongchao Li
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Center for Pharmacoeconomics and Outcomes Research, China Pharmaceutical University, Nanjing, China
- Hongchao Li
| |
Collapse
|
21
|
Chang K, Wang H, Zhao J, Yang X, Wu B, Sun W, Huang M, Cheng Z, Chen H, Song Y, Chen P, Chen X, Gan X, Ma W, Xing L, Wang Y, Gu X, Zou X, Cao B. Polymyxin B/Tigecycline Combination vs. Polymyxin B or Tigecycline Alone for the Treatment of Hospital-Acquired Pneumonia Caused by Carbapenem-Resistant Enterobacteriaceae or Carbapenem-Resistant Acinetobacter baumannii. Front Med (Lausanne) 2022; 9:772372. [PMID: 35755062 PMCID: PMC9226555 DOI: 10.3389/fmed.2022.772372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/13/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction It is not clear whether polymyxin B/tigecycline (PMB/TGC) combination is better than PMB or TGC alone in the treatment of hospital-acquired pneumonia (HAP) caused by carbapenem-resistant organisms (CROs). Methods We conducted a multicenter, retrospective cohort study in patients with HAP caused by CROs. The primary outcome was 28-day mortality, and the secondary outcomes included clinical success and the incidence of acute kidney injury (AKI). Multivariate Cox regression analysis was performed to examine the relationship between antimicrobial treatments and 28-day mortality by adjusting other potential confounding factors. Results A total of 364 eligible patients were included in the final analysis, i.e., 99 in the PMB group, 173 in the TGC group, and 92 in the PMB/TGC combination group. The 28-day mortality rate was 28.3% (28/99) in the PMB group, 39.3% (68/173) in the TGC group, and 48.9% (45/92) in the PMB/TGC combination group (p = 0.014). The multivariate Cox regression model showed that there was a statistically significant lower risk of 28-day mortality among participants in the PMB group when compared with the PMB/TGC combination group [hazard ratio (HR) 0.50, 95% confidence interval (CI) 0.31–0.81, p = 0.004] and that participants in the TGC group had a lower risk of 28-day mortality than in the PMB/TGC combination group but without statistical significance. The incidence of AKI in the PMB group (52.5%) and the PMB/TGC combination group (53.3%) was significantly higher than that in the TGC group (33.5%, p = 0.001). Conclusion The appropriate PMB/TGC combination was not superior to appropriate PMB therapy in the treatment of HAP caused by carbapenem-resistant Enterobacteriaceae/carbapenem-resistant Acinetobacter baumannii (CRE/CRAB) in terms of 28-day mortality.
Collapse
Affiliation(s)
- Kang Chang
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Haibo Wang
- Peking University Clinical Research Institute, Peking University First Hospital, Beijing, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xianghong Yang
- Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Bo Wu
- Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wenkui Sun
- Department of Respirology and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenshun Cheng
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xin Gan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wanli Ma
- Department of Respiratory and Critical Care Medicine, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lihua Xing
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yimin Wang
- Department of Pulmonary and Critical Care Medicine, China Centre of Respiratory Medicine, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoying Gu
- Department of Pulmonary and Critical Care Medicine, China Centre of Respiratory Medicine, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | - Xiaohui Zou
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Cao
- National Clinical Research Center for Respiratory Diseases, Clinical Center for Pulmonary Infections, China-Japan Friendship Hospital, Capital Medical University, Beijing, China.,Department of Pulmonary and Critical Care Medicine, China Centre of Respiratory Medicine, National Clinical Research Centre for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Phillips EC, Warren CA, Ma JZ, Madden GR. Impact of Tigecycline on C. difficile Outcomes: Case Series and Propensity-Matched Retrospective Study. Antimicrob Agents Chemother 2022; 66:e0000122. [PMID: 35647645 PMCID: PMC9211400 DOI: 10.1128/aac.00001-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/07/2022] [Indexed: 11/20/2022] Open
Abstract
This case series and propensity-matched cohort study on the use of tigecycline in Clostridioides difficile infection (CDI) evaluated the effect of tigecycline on 30-day mortality. Adjusted for ATLAS Score, hypotension, treatment time period, and serum lactate, tigecycline did not significantly improve 30-day mortality (odds ratio: 0.89; 95% confidence interval: 0.25-3.12; P = 0.853). A randomized controlled trial is needed to determine efficacy and safety of tigecycline in severe or refractory CDI.
Collapse
Affiliation(s)
- Emma C. Phillips
- University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Cirle A. Warren
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jennie Z. Ma
- Department of Public Health Sciences, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Gregory R. Madden
- Division of Infectious Diseases & International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
23
|
Warner AJ, Hathaway-Schrader JD, Lubker R, Davies C, Novince CM. Tetracyclines and bone: Unclear actions with potentially lasting effects. Bone 2022; 159:116377. [PMID: 35248788 PMCID: PMC9035080 DOI: 10.1016/j.bone.2022.116377] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 01/11/2023]
Abstract
Tetracyclines are a broad-spectrum class of antibiotics that have unclear actions with potentially lasting effects on bone metabolism. Initially isolated from Streptomyces, tetracycline proved to be an effective treatment for Gram +/- infections. The emergence of resistant bacterial strains commanded the development of later generation agents, including minocycline, doxycycline, tigecycline, sarecycline, omadacycline, and eravacycline. In 1957, it was realized that tetracyclines act as bone fluorochrome labels due to their high affinity for the bone mineral matrix. Over the course of the next decade, researchers discerned that these compounds are retained in the bone matrix at high levels after the termination of antibiotic therapy. Studies during this period provided evidence that tetracyclines could disrupt prenatal and early postnatal skeletal development. Currently, tetracyclines are most commonly prescribed as a long-term systemic therapy for the treatment of acne in healthy adolescents and young adults. Surprisingly, the impact of tetracyclines on physiologic bone modeling/remodeling is largely unknown. This article provides an overview of the pharmacology of tetracycline drugs, summarizes current knowledge about the impact of these agents on skeletal development and homeostasis, and reviews prior work targeting tetracyclines' effects on bone cell physiology. The need for future research to elucidate unclear effects of tetracyclines on the skeleton is addressed, including drug retention/release mechanisms from the bone matrix, signaling mechanisms at bone cells, the impact of newer third generation tetracycline antibiotics, and the role of the gut-bone axis.
Collapse
Affiliation(s)
- Amy J Warner
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Rena Lubker
- Medical University of South Carolina Libraries, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Stomatology-Division of Population Oral Health, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Christopher Davies
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biochemistry & Molecular Biology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Stomatology-Division of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Pediatrics-Division of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
24
|
Falcone M, Tiseo G, Leonildi A, Della Sala L, Vecchione A, Barnini S, Farcomeni A, Menichetti F. Cefiderocol- Compared to Colistin-Based Regimens for the Treatment of Severe Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2022; 66:e0214221. [PMID: 35311522 PMCID: PMC9112922 DOI: 10.1128/aac.02142-21] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Cefiderocol may represent a therapeutic option for carbapenem-resistant Acinetobacter baumannii (CRAB) infections, but clinical data are limited. This is an observational retrospective study conducted in the University Hospital of Pisa including consecutive patients with CRAB infections (January 2020 to August 2021). Patients were divided in two study groups according to the antibiotic treatment received: cefiderocol- and colistin-containing regimens. The primary outcome was the 30-day mortality. A Cox regression analysis was performed to identify factors independently associated with 30-day mortality. A propensity score analysis using inverse probability of treatment weighting (IPTW) was also performed. A total of 124 patients were included: 47 (37.9%) received cefiderocol, while 77 (62.1%) colistin-containing regimens. Overall, 79 (63.7%) patients had a bloodstream infection (BSI), 35 (28.5%) a ventilator-associated pneumonia (VAP) and 10 (8.1%) other infections. Thirty-day mortality was higher in patients receiving colistin- compared to those who received cefiderocol-containing regimens (55.8% versus 34%, P = 0.018). This difference was confirmed in patients with BSI, but not in those with VAP. On multivariable analysis, septic shock, SOFA score, and age were independently associated with 30-day mortality, while cefiderocol therapy was protective in an IPTW analysis (Hazard ratio 0.44, 95% confidence interval 0.22-0.66, P < 0.001). Nephrotoxicity was more common in the colistin group. Microbiological failure occurred in 17.4% of patients receiving cefiderocol versus 6.8% of those receiving colistin (P = 0.079). Among 8 cases in the cefiderocol group who experienced microbiological failure, 4 (50%) developed resistance to cefiderocol. Cefiderocol represents a promising therapeutic option in patients with severe CRAB infections. Randomized clinical trial in this specific patient population should confirm our findings.
Collapse
Affiliation(s)
- Marco Falcone
- Department of Clinical and Experimental Medicine, University of Pisa, Infectious Diseases Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Giusy Tiseo
- Department of Clinical and Experimental Medicine, University of Pisa, Infectious Diseases Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | | | - Leonardo Della Sala
- Department of Clinical and Experimental Medicine, University of Pisa, Infectious Diseases Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | | | - Simona Barnini
- Microbiology Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| | - Alessio Farcomeni
- Department of Economics and Finance, University of Rome “Tor Vergata,” Rome, Italy
| | - Francesco Menichetti
- Department of Clinical and Experimental Medicine, University of Pisa, Infectious Diseases Unit, Azienda Ospedaliera Universitaria Pisana, Pisa, Italy
| |
Collapse
|
25
|
Amann LF, Alraish R, Broeker A, Kaffarnik M, Wicha SG. Tigecycline Dosing Strategies in Critically Ill Liver-Impaired Patients. Antibiotics (Basel) 2022; 11:antibiotics11040479. [PMID: 35453230 PMCID: PMC9028393 DOI: 10.3390/antibiotics11040479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/04/2022] Open
Abstract
This study investigated tigecycline exposure in critically ill patients from a population pharmacokinetic perspective to support rational dosing in intensive care unit (ICU) patients with acute and chronic liver impairment. A clinical dataset of 39 patients served as the basis for the development of a population pharmacokinetic model. The typical tigecycline clearance was strongly reduced (8.6 L/h) as compared to other populations. Different models were developed based on liver and kidney function-related covariates. Monte Carlo simulations were used to guide dose adjustments with the most predictive covariates: Child–Pugh score, total bilirubin, and MELD score. The best performing covariate, guiding a dose reduction to 25 mg q12h, was Child–Pugh score C, whereas patients with Child–Pugh score A/B received the standard dose of 50 mg q12h. Of note, the obtained 24 h steady-state area under the concentration vs. time curve (AUCss) range using this dosing strategy was predicted to be equivalent to high-dose tigecycline exposure (100 mg q12h) in non-ICU patients. In addition, 26/39 study participants died, and therapy failure was most correlated with chronic liver disease and renal failure, but no correlation between drug exposure and survival was observed. However, tigecycline in special patient populations needs further investigations to enhance clinical outcome.
Collapse
Affiliation(s)
- Lisa F. Amann
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany; (L.F.A.); (A.B.)
| | - Rawan Alraish
- Department of Surgery, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (R.A.); (M.K.)
| | - Astrid Broeker
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany; (L.F.A.); (A.B.)
| | - Magnus Kaffarnik
- Department of Surgery, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; (R.A.); (M.K.)
| | - Sebastian G. Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany; (L.F.A.); (A.B.)
- Correspondence: ; Tel.: +49-40-42838-3487
| |
Collapse
|
26
|
Bassetti M, Falletta A, Cenderello G, Giacobbe DR, Vena A. Safety evaluation of current therapies for high-risk severely ill patients with carbapenem-resistant infections. Expert Opin Drug Saf 2021; 21:487-498. [PMID: 34632905 DOI: 10.1080/14740338.2022.1990262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Infections due to carbapenem-resistant Gram-negative bacteria (CR-GNB) are increasingly frequent events, which are associated with a high mortality rate. Traditionally, combination regimens including high doses of "old antibiotics" such as polymyxins, tigecycline, and aminoglycosides have been used to treat these infections, but they were often associated with low efficacy and high excess of side effects and toxicity, especially nephrotoxicity. Along with the development of new compounds, the last decade has seen substantial improvements in the management of CR infections. AREAS COVERED In this review, we aimed to discuss the safety characteristics and tolerability of different new options for treatment of CR infections. EXPERT OPINION The availability of new drugs showing a potent in vitro activity against CR-GNB represents a unique opportunity to face the threat of resistance, while potentially reducing toxicity. A thorough understanding of the safety profile from clinical trials may guide the use of these new drugs in critically ill patients at high risk for the development of adverse events. Future data coming from real-life studies for drugs targeting CR infections are crucial to confirm the safety profile observed in pivotal trials.
Collapse
Affiliation(s)
- Matteo Bassetti
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Antonio Falletta
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | - Daniele R Giacobbe
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.,Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Antonio Vena
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| |
Collapse
|
27
|
Dimopoulos G, Almyroudi MP, Kapralos I, Apostolopoulou O, Flevari A, Nicolau DP, Dokoumetzidis A. Intrapulmonary pharmacokinetics of high doses of tigecycline in patients with ventilator-associated pneumonia. Int J Antimicrob Agents 2021; 59:106487. [PMID: 34843925 DOI: 10.1016/j.ijantimicag.2021.106487] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022]
Abstract
Tigecycline is commonly used for infections by multidrug-resistant bacteria. However, it is not approved for ventilator-associated pneumonia (VAP) as increased mortality has been reported in VAP patients treated with conventional doses. The purpose of this study was to prospectively evaluate the intrapulmonary pharmacokinetics of off-label high-dose tigecycline in patients with VAP. Nine mechanically ventilated patients received tigecycline intravenously (loading dose 200 mg followed by 100 mg every 12 h). After ≥5 doses, two bronchoscopies were performed in each patient on consecutive days and eight blood samples were collected. Tigecycline concentrations in plasma and bronchoalveolar lavage fluid were determined by liquid chromatography. The urea dilution method was used to calculate epithelial lining fluid (ELF) concentrations. A two-compartmental pharmacokinetic (PK) model with linear elimination was used to estimate PK parameters. Mean patient age was 69 ± 11.86 years and mean APACHE II score was 21. The estimated population mean PK parameters (relative standard error) were: clearance, 11.64 L/h (54%); volume of distribution in central compartment, 79.01 L (37%); volume of distribution in peripheral compartment, 92.95 L (17%); intercompartmental clearance, 62.81 L/h (34%); and ELF penetration ratio, 2.41 (40%). Cmax, Cmin, plasma AUC0-12, plasma fAUC0-12 and ELF AUC0-12 were 1.99 ± 1.82 μg/mL, 0.81 ± 1.27 μg/mL, 12.89 ± 17.25 μg•h/mL, 3.24 ± 3.09 μg•h/mL and 7.13 ± 2.61 μg•h/mL, respectively. The increased plasma and ELF AUC0-12 achieved with a 200 mg daily tigecycline dose, combined with high ELF penetration, support the effectiveness of off-label high-dose tigecycline in VAP.
Collapse
Affiliation(s)
- G Dimopoulos
- Department of Critical Care, University Hospital ATTIKON at Haidari-Athens, Medical School, National and Kapodistrian University of Athens, 1 Rimini str, 12462 Haidari, Greece
| | - M P Almyroudi
- Department of Critical Care, University Hospital ATTIKON at Haidari-Athens, Medical School, National and Kapodistrian University of Athens, 1 Rimini str, 12462 Haidari, Greece.
| | - I Kapralos
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - O Apostolopoulou
- Department of Critical Care, University Hospital ATTIKON at Haidari-Athens, Medical School, National and Kapodistrian University of Athens, 1 Rimini str, 12462 Haidari, Greece
| | - A Flevari
- Department of Critical Care, University Hospital ATTIKON at Haidari-Athens, Medical School, National and Kapodistrian University of Athens, 1 Rimini str, 12462 Haidari, Greece
| | - D P Nicolau
- Center for Anti-Infective Research & Development at Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| | - A Dokoumetzidis
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
28
|
The Impact of COVID-19 on the Profile of Hospital-Acquired Infections in Adult Intensive Care Units. Antibiotics (Basel) 2021; 10:antibiotics10101146. [PMID: 34680727 PMCID: PMC8532680 DOI: 10.3390/antibiotics10101146] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Hospital-acquired infections (HAIs) are a global public health concern. As the COVID-19 pandemic continues, its contribution to mortality and antimicrobial resistance (AMR) grows, particularly in intensive care units (ICUs). A two-year retrospective study from April 2019-April 2021 was conducted in an adult ICU at the Hospital for Infectious and Tropical Diseases, Belgrade, Serbia to assess causative agents of HAIs and AMR rates, with the COVID-19 pandemic ensuing halfway through the study. Resistance rates >80% were observed for the majority of tested antimicrobials. In COVID-19 patients, Acinetobacter spp. was the dominant cause of HAIs and more frequently isolated than in non-COVID-19 patients. (67 vs. 18, p = 0.001). Also, resistance was higher for imipenem (56.8% vs. 24.5%, p < 0.001), meropenem (61.1% vs. 24.3%, p < 0.001) and ciprofloxacin (59.5% vs. 36.9%, p = 0.04). AMR rates were aggregated with findings from our previous study to identify resistance trends and establish empiric treatment recommendations. The increased presence of Acinetobacter spp. and a positive trend in Klebsiella spp. resistance to fluoroquinolones (R2 = 0.980, p = 0.01) and carbapenems (R2 = 0.963, p = 0.02) could have contributed to alarming resistance rates across bloodstream infections (BSIs), pneumonia (PN), and urinary tract infections (UTIs). Exceptions were vancomycin (16.0%) and linezolid (2.6%) in BSIs; tigecycline (14.3%) and colistin (0%) in PNs; and colistin (12.0%) and linezolid (0%) in UTIs. COVID-19 has changed the landscape of HAIs in our ICUs. Approval of new drugs and rigorous surveillance is urgently needed.
Collapse
|
29
|
Perletti G, Trinchieri A, Stamatiou K, Magri V. Safety considerations with new antibacterial approaches for chronic bacterial prostatitis. Expert Opin Drug Saf 2021; 21:171-182. [PMID: 34260337 DOI: 10.1080/14740338.2021.1956459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Chronic bacterial prostatitis (CBP) is a difficult-to-eradicate infection. Antibacterial therapy with currently licensed agents is hindered due to the increasing emergence of pathogen resistance worldwide and to frequent infection relapse. With limited treatment options, physicians are investigating new agents, which, however, may raise safety concerns.Areas covered: Antibacterial agents currently licensed for CBP were not considered. Available reports about the safety and efficacy of antibacterial agents that have been clinically tested or tentatively used to treat CBP in single cases were evaluated. This review also focused on agents targeting Gram-positive pathogens, whose prevalence as causative agents of CBP is increasing.Expert opinion: (i) Most antibacterial agents considered in this review have been administered off-label in the interest of patients, and their use requires particular caution. (ii) Reports describing the usage of many of the drugs reviewed here are still scant, and readers should be warned of the limited published evidence supporting therapy for CBP with these agents. (iii) As treatment must extend over several weeks, medium-term adverse events may occur and therapy should be individualized, taking into account the dosage and the potential toxicity of each specific antibiotic. Regarding dangerous drug-drug interactions, particular attention should be paid to the risk of ECG-QT-interval elongation.
Collapse
Affiliation(s)
- Gianpaolo Perletti
- Department of Biotechnology and Life Sciences, Section of Medical and Surgical Sciences, University of Insubria, Varese, Italy.,Department of Human Function and Repair, Faculty of Medicine and Medical Sciences, Ghent University, Ghent, Belgium
| | - Alberto Trinchieri
- Department of Urology, IRCCS Ca' Granda Ospedale Maggiore Policlinico - University of Milan, Milan, Italy
| | | | | |
Collapse
|
30
|
Alrahmany D, Omar AF, Harb G, El Nekidy WS, Ghazi IM. Acinetobacter baumannii Infections in Hospitalized Patients, Treatment Outcomes. Antibiotics (Basel) 2021; 10:antibiotics10060630. [PMID: 34070398 PMCID: PMC8229601 DOI: 10.3390/antibiotics10060630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/04/2022] Open
Abstract
Background Acinetobacter baumannii (AB), an opportunistic pathogen, could develop into serious infections with high mortality and financial burden. The debate surrounding the selection of effective antibiotic treatment necessitates studies to define the optimal approach. This study aims to compare the clinical outcomes of commonly used treatment regimens in hospitalized patients with AB infections to guide stewardship efforts. Material and methods: Ethical approval was obtained, 320 adult patients with confirmed AB infections admitted to our tertiary care facility within two years were enrolled. The treatment outcomes were statistically analyzed to study the relation between antibiotic regimens and 14, 28, and 90-day mortality as the primary outcomes using binary logistic regression—using R software—in addition to the length of hospitalization, adverse events due to antibiotic treatment, and 90-day recurrence as secondary outcomes. Results: Among 320 patients, 142 (44%) had respiratory tract, 105 (33%) soft tissue, 42 (13%) urinary tract, 22 (7%) bacte iemia, and other infections 9 (3%). Nosocomial infections were 190 (59%) versus community-acquired. Monotherapy was significantly associated with lower 28-day (p < 0.05, OR:0.6] and 90-day (p < 0.05, OR:0.4) mortality rates, shorter length of stay LOS (p < 0.05, Median: −12 days] and limited development of adverse events (p < 0.05, OR:0.4). Subgroup analysis revealed similar results ranging from lower odds of mortality, adverse events, and shorter LOS to statistically significant correlation to monotherapy. Meropenem (MEM) and piperacillin/tazobactam (PIP/TAZ) monotherapies showed non-significant high odd ratios of mortalities, adverse events, and disparate LOS. There was a statistical correlation between most combined therapies and adverse events, and longer LOS. Colistin based and colistin/meropenem (CST/MEM) combinations were superior in terms of 14-day mortality (p = 0.05, OR:0.4) and (p < 0.05, OR:0.4) respectively. Pip/Taz and MEM-based combined therapies were associated with statistically non-significant high odd ratios of mortalities. Tigecycline (TGC)-based combinations showed a significant correlation to mortalities (p < 0.05, OR:2.5). Conclusion: Monotherapy was associated with lower mortality rates, shorter LOS, and limited development of adverse events compared to combined therapies. Colistin monotherapy, colistin/meropenem, and other colistin combinations showed almost equivalent mortality outcomes. Patients on combined therapy were more susceptible to adverse events and comparable LOS. The possible adverse outcomes of PIP/TAZ and MEM-based therapies in the treatment of MDRAB infections and the association of TGC with a higher mortality rate raise doubts about their treatment role.
Collapse
Affiliation(s)
| | - Ahmed F. Omar
- General Medicine Department, Sohar Hospital, Sohar 311, Oman;
| | - Gehan Harb
- Gehan Harb Statistics, Cairo 11511, Egypt;
| | - Wasim S. El Nekidy
- Cleveland Clinic Abu Dhabi, Abu-Dhabi P.O. Box 112412, United Arab Emirates;
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Islam M. Ghazi
- Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA 19104, USA
- Correspondence: ; Tel.: +1-215-596-7121; Fax: +1-215-596-8586
| |
Collapse
|
31
|
Leng B, Yan G, Wang C, Shen C, Zhang W, Wang W. Dose optimisation based on pharmacokinetic/pharmacodynamic target of tigecycline. J Glob Antimicrob Resist 2021; 25:315-322. [PMID: 33957288 DOI: 10.1016/j.jgar.2021.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Tigecycline, a new first-in-class glycylcycline antibiotic, has shown promising efficacy against a broad range of micro-organisms. It is widely prescribed for various infections, with most prescriptions being considered for off-label use. However, only a few years after its approval by the US Food and Drug Administration (FDA), tigecycline is suspected of increasing all-cause mortality. Some clinicians have suggested such unfavourable outcomes correlate with inadequate drug exposure at the infection site. The pharmacokinetic/pharmacodynamic (PK/PD) profile of a drug plays an important role in predicting its antibiotic effect, which for tigecycline is determined as the ratio of area under the concentration-time curve (AUC) to minimum inhibitory concentration (MIC). In this study, PK/PD targets based on infection sites, bacterial isolates and patient populations are discussed. Generally, a higher dosage of tigecycline for the treatment of serious infections has been recommended in previous reports. However, the latest finding of tigecycline's atypical protein binding property requires consideration when recommending further use. In addition, combination therapy with other antibiotics provides another option by potentially lowering the MICs of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Bing Leng
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan 250021, China
| | - Genquan Yan
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan 250021, China
| | - Cuicui Wang
- Medical Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan 250021, China
| | - Chengwu Shen
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan 250021, China
| | - Wen Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan 250021, China
| | - Wei Wang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, Huaiyin District, Jinan 250021, China; Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
32
|
Wu D, Chen C, Liu T, Jia Y, Wan Q, Peng J. Epidemiology, Susceptibility, and Risk Factors Associated with Mortality in Carbapenem-Resistant Gram-Negative Bacterial Infections Among Abdominal Solid Organ Transplant Recipients: A Retrospective Cohort Study. Infect Dis Ther 2021; 10:559-573. [PMID: 33611687 PMCID: PMC7954940 DOI: 10.1007/s40121-021-00411-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Introduction Carbapenem-resistant gram-negative bacteria (CR-GNB) can cause life-threatening infections among abdominal solid organ transplantation (ASOT) recipients. This study aimed to investigate the epidemiology and drug susceptibility of CR-GNB pathogens and identity the risk factors associated with 90-day crude mortality of CR-GNB infections among ASOT recipients. Methods We retrospectively reviewed the clinical characteristics, drug resistance rate, and risk factors associated with mortality in CR-GNB infections among ASOT recipients between August 1, 2013, and August 1, 2020. The Cox regression model was performed to identify the independent risk factors for mortality. Results During the 8-year period, CR-GNB infections occurred in 153 of 1452 (10.5%) recipients, and 23 of 153 (15.0%) patients died. The most common pathogen was Acinetobacter baumannii (n = 47). The drug resistance rate of CR-GNB pathogens was relatively low to tigecycline (33.3%) and high to other categories (> 60%). There was a significant increasing trend in drug resistance to tigecycline as time went on (from 24 to 40%, P = 0.04). The independent risk factors for mortality were mechanical ventilation (hazard ratio 7.40, 95% confidence interval 2.69–20.38, P < 0.001), septic shock (hazard ratio 7.41, 95% confidence interval 2.86–19.23, P < 0.001), and platelet count < 50,000/mm3 (hazard ratio 4.00, 95% confidence interval 1.49–10.76, P = 0.006). Conclusion CR-GNB is widespread with high prevalence and mortality rates among ASOT recipients. Mechanical ventilation, septic shock, and low platelet count represent three independent risk factors related to the mortality of ASOT recipients with CR-GNB infection. We suggest that tigecycline may be used under rigorous management because of the significant increasing risk of drug resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s40121-021-00411-z.
Collapse
Affiliation(s)
- Di Wu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Chen
- Department of Pediatrics, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Taohua Liu
- Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Jia
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiquan Wan
- Transplantation Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jie Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
33
|
Abstract
Introduction: Nosocomial pneumonia unfortunately remains a frequent event for which appropriate antibiotic treatment is central to improving outcomes. Physicians must choose an early and appropriate empirical treatment, basing their decision on the safety profile and possible side effects. Areas covered: In this review, we analyzed the safety profiles of the most common antimicrobials for treating nosocomial pneumonia. Beta-lactams are used most often for these infections, with a high percentage (6% to 25%) of patients reporting allergy or hypersensitivity reactions; however, exhaustive evaluation is key because it seems possible to de-label as many as 90% by proper assessment. Combinations including a beta-lactam are recommended in patients with risk factors for drug-resistant microorganisms and septic shock. Although aminoglycosides are safe for 3-5 days of therapy, renal function should be monitored. Fluoroquinolones must also be used with care given the risk of collagen degradation and cardiovascular events, mainly aneurysm or aortic dissection. Linezolid or vancomycin are both viable for the treatment of methicillin-resistant Staphylococcus aureus, but linezolid seems to be the superior option. Antibiotic stewardships programs must be developed for each center. Expert opinion: Choosing the most appropriate antimicrobial based on information from national and international guidelines, local microbiology data, and stewardship programs may reduce the use of broad-spectrum antibiotics. Daily assessment for the emergence of adverse events related to antimicrobial use is essential.
Collapse
|
34
|
Qu J, Yu R, Wang Q, Feng C, Lv X. Synergistic Antibacterial Activity of Combined Antimicrobials and the Clinical Outcome of Patients With Carbapenemase-Producing Acinetobacter baumannii Infection. Front Microbiol 2020; 11:541423. [PMID: 33178144 PMCID: PMC7593402 DOI: 10.3389/fmicb.2020.541423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/19/2020] [Indexed: 02/05/2023] Open
Abstract
This study aimed to explore the activity of combined antimicrobials in vitro, and the relationship among resistance mechanisms, antimicrobial regimens, and the clinical outcome of patients with carbapenem-resistant Acinetobacter baumannii (CRAB) infections in western China. A total of 89 CRAB strains were collected from patients with CRAB infection from January 2018 to June 2018. The checkerboard assay was used to study the combined effects in vitro. Carbapenemase-encoding genes were detected by polymerase chain reaction (PCR) or multiplex PCR technique. The clinical data of 86 patients were collected. CRAB showed high susceptibility to tigecycline (91.01% inhibition) and polymyxin (83.15% inhibition). Polymyxin plus sulbactam exhibited the highest synergistic effect at a rate of 82.35%. Production of carbapenemase (blaOXA–23) was the main resistance mechanism of CRAB to carbapenem (95.35%). Excessive expression of active efflux pump genes (adeB, adeJ, and abeM) and deletion of the CarO protein accounted for 13.95% (12/86) and 84.88% (73/86), respectively. The synergistic effect of the sulbactam-based combination was higher than that of the polymyxin B-tigecycline combination for carbapenemase-producing CRAB (P < 0.05). The clinical outcome was not affected by the resistance mechanisms (P > 0.05). Advanced age, multiple organ dysfunction syndromes (MODS), and admission to the intensive care unit (ICU) were associated with treatment failure (P < 0.05). Appropriate antibiotic therapy did not improve the clinical outcome of critically ill patients. Higher minimum inhibitory concentrations (MICs) of tigecycline were associated with treatment failure (P < 0.05). A multivariate analysis showed that ICU stay (OR = 15.123, 95% CI: 2.600–87.951, P = 0.002) and procalcitonin ≥2 ng/ml (OR = 2.636, 95% CI: 1.173–5.924, P = 0.019) were the risk factors for treatment failure. In conclusion, this study demonstrated that the sulbactam-based combination exhibited a synergistic effect in vitro. The clinical outcome of patients was not associated with resistance mechanisms. This indicates that the early control of the progression from infection to severe disease may be important.
Collapse
Affiliation(s)
- Junyan Qu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Rujia Yu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Qujue Wang
- Department of Infectious Diseases, Renshou County People's Hospital, Renshou, China
| | - Chunlu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoju Lv
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Ceccato A, Torres A. The War against Bad Bugs: Fighting the Resistance. J Clin Med 2020; 9:jcm9082563. [PMID: 32784665 PMCID: PMC7465838 DOI: 10.3390/jcm9082563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022] Open
Abstract
Multidrug-resistant (MDR) microorganisms have become a growing concern, especially in regions with high prevalence [...]
Collapse
Affiliation(s)
- Adrian Ceccato
- Ciber de Enfermedades Respiratorias (Ciberes, CB06/06/0028), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), 08036 Barcelona, Spain;
- Intensive Care Unit, Hospital Universitari Sagrat Cor, 08029 Barcelona, Spain
| | - Antoni Torres
- Ciber de Enfermedades Respiratorias (Ciberes, CB06/06/0028), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona (UB), 08036 Barcelona, Spain;
- Department of Pneumology, Institut Clinic de Respiratori, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Correspondence:
| |
Collapse
|
36
|
Santimaleeworagun W, Hemapanpairoa J, Changpradub D, Thunyaharn S. Optimizing the Dosing Regimens of Tigecycline against Vancomycin-Resistant Enterococci in the Treatment of Intra-abdominal and Skin and Soft Tissue Infections. Infect Chemother 2020; 52:345-351. [PMID: 32989939 PMCID: PMC7533206 DOI: 10.3947/ic.2020.52.3.345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/04/2020] [Indexed: 01/20/2023] Open
Abstract
Tigecycline was previously considered to have activity against vancomycin-resistant Enterococcus (VRE) isolates, but the optimal dose was not clarified. Thus, this study assessed the in vitro activity of tigecycline against clinical VRE isolates to determine its optimal regimens for complicated intra-abdominal (cIAIs) and complicated skin/soft tissue infections (cSSTIs). We used Monte Carlo simulation to calculate the probability of target attainment (PTA) and the cumulative fraction of response for the ratio of the free area under the curve to the minimum inhibitory concentration (MIC) (fAUIC24), which were 17.9 and 6.9 for treating cSSTIs and cIAIs, respectively. All clinical isolates were Enterococcus faecium. Only a maintenance dose of 200 mg/day tigecycline gave the target attainment of fAUIC24 >17.9, and PTA exceeded 90% for MIC ≤0.38 µg/mL. Meanwhile, this dose gave the target attainment of fAUIC24 >6.9, and PTA exceeded 90% for MIC ≤1 µg/mL. All simulated tigecycline dosing regimens met the fAUIC24 targets more than 90% of the cumulative fraction of response. Despite its apparent efficacy, a daily tigecycline dose of 200 mg is recommended for VRE isolates with MICs of ≤0.38 µg/mL and ≤1 µg/mL for treating cSSTIs and cIAIs, respectively.
Collapse
Affiliation(s)
- Wichai Santimaleeworagun
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom, Thailand.,Pharmaceutical Initiative for Resistant Bacteria and Infectious Diseases Working Group (PIRBIG), Nakorn Pathom, Thailand.
| | - Jatapat Hemapanpairoa
- Pharmaceutical Initiative for Resistant Bacteria and Infectious Diseases Working Group (PIRBIG), Nakorn Pathom, Thailand.,Department of Pharmacy Practice and Pharmaceutical Care, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| | - Dhitiwat Changpradub
- Division of Infectious Disease, Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
| | - Sudaluck Thunyaharn
- Faculty of Medical Technology, Nakhonratchasima College, Nakhon Ratchasima, Thailand
| |
Collapse
|
37
|
Wu D, Huang X, Jia C, Liu J, Wan Q. Clinical Manifestation, Distribution, and Drug Resistance of Pathogens Among Abdominal Solid Organ Transplant Recipients With Klebsiella pneumoniae Infections. Transplant Proc 2019; 52:289-294. [PMID: 31837819 DOI: 10.1016/j.transproceed.2019.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/10/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND A Klebsiella pneumoniae infection is a life-threatening disease among abdominal solid organ transplant (ASOT) recipients. The objectives of our present work are to investigate the distribution and drug resistance of pathogens, and clinical manifestation among ASOT recipients suffering from K pneumoniae infections. METHODS The medical records of 53 ASOT recipients with 63 episodes of K pneumoniae infections from October 1, 2013 to June 1, 2019 were reviewed according to the Declaration of Helsinki and the Declaration of Istanbul. There were no grafts from prisoners used in these 53 patients and the donors were not coerced or paid. The distribution and drug resistance of each pathogen and clinical manifestation among ASOT recipients with K pneumoniae infections were retrospectively reviewed and summarized. RESULTS Prevalence and mortality of K pneumoniae infections among ASOT recipients were 4.5% and 32.1%, respectively. The origins of K pneumoniae infections were the blood (n = 21), deep wound and skin (n = 10), urinary tract (n = 9), abdomen (n = 6), and lung (n = 7). The numbers of organs from donors after cardiac death and living-related donors were 52 and 1, respectively. Twenty-nine patients had a serum creatinine level >1.5 mg/dL at the onset of K pneumoniae infections. Fifty-eight percent of K pneumoniae strains were carbapenem resistant. The resistance rate of K pneumoniae to 5 of 12 antibiotics investigated was more than 60%. The strains were relatively susceptible to meropenem, tigecycline, sulfamethoxazole, and amikacin; while there were distinctly increasing trends of resistance to meropenem and amikacin as time went on. CONCLUSIONS The clinical manifestation of K pneumoniae infections included elevated serum creatinine level, high carbapenem-resistant rate, and mortality. The drug-resistance rates of K pneumoniae to the most commonly used antibiotics were high with an increasing trend of resistance in recent years. Tigecycline, meropenem, sulfamethoxazole, and amikacin are recommended to treat K pneumoniae infections among ASOT recipients.
Collapse
Affiliation(s)
- Di Wu
- Department of Transplant Surgery, the Third Xiangya Hospital of Central South University, Changsha, China
| | - XueTing Huang
- Department of Transplant Surgery, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Chao Jia
- Department of Intensive Care Unit, Qingdao Municipal Hospital Group, Qingdao University, China
| | - Jing Liu
- Department of Transplant Surgery, the Third Xiangya Hospital of Central South University, Changsha, China
| | - QiQuan Wan
- Department of Transplant Surgery, the Third Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
38
|
Abstract
Antimicrobial resistance has become one of the greatest threats to public health, with rising resistance to carbapenems being a particular concern due to the lack of effective and safe alternative treatment options. Carbapenem-resistant gram-negative bacteria of clinical relevance include the Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter baumannii, and more recently, Stenotrophomonas maltophilia. Colistin and tigecycline have been used as first-line agents for the treatment of infections caused by these pathogens; however, there are uncertainties regarding their efficacy even when used in combination with other agents. More recently, several new agents with activity against certain carbapenem-resistant pathogens have been approved for clinical use or are reaching late-stage clinical development. They include ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam, imipenem-cilastatin-relebactam, plazomicin, eravacycline, and cefiderocol. In addition, fosfomycin has been redeveloped in a new intravenous formulation. Data regarding the clinical efficacy of these new agents specific to infections caused by carbapenem-resistant pathogens are slowly emerging and appear to generally favor newer agents over previous best available therapy. As more treatment options become widely available for carbapenem-resistant gram-negative infections, the role of antimicrobial stewardship will become crucial in ensuring appropriate and rationale use of these new agents.
Collapse
Affiliation(s)
- Yohei Doi
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pennsylvania
- Departments of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
39
|
Multidrug-Resistant Bacterial Infections in Solid Organ Transplant Candidates and Recipients. Infect Dis Clin North Am 2018; 32:551-580. [DOI: 10.1016/j.idc.2018.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Sipahi OR, Mermer S, Demirdal T, Ulu AC, Fillatre P, Ozcem SB, Kaya Ş, Şener A, Bulut C, Tekin R, Kahraman H, Özgiray E, Yurtseven T, Sipahi H, Arda B, Pullukçu H, Taşbakan M, Yamazhan T, Aydemir S, Ulusoy S. Tigecycline in the treatment of multidrug-resistant Acinetobacter baumannii meningitis: Results of the Ege study. Clin Neurol Neurosurg 2018; 172:31-38. [PMID: 29960893 DOI: 10.1016/j.clineuro.2018.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 05/18/2018] [Accepted: 06/09/2018] [Indexed: 10/14/2022]
Abstract
OBJECTIVES In this study we retrospectively reviewed A. baumannii meningitis cases treated with tigecycline including regimens and evaluated the efficacy of tigecycline in the therapy. PATIENTS AND METHODS Study was performed in seven tertiary-care educational hospitals from five cities of Turkey and one center from France. We extracted data and outcomes of all adult (aged >18) patients with culture proven A. baumannii meningitis treated with tigecycline including antibiotic therapy until April 2016. RESULTS A total of 23 patients (15 male and eight female) fulfilled our inclusion criteria. All Acinetobacter strains were carbapenem-resistant and susceptible to tigecycline. Six cases received tigecycline monotherapy while 17 received tigecycline including combination therapy (10 with colistin, 4 with netilmicin, 3 with amikacin, 4 with meropenem). Seven of 23 cases (30%) died during the tigecycline including therapy (1 in monotherapy, 4 in colistin, 2 in netilmicin, 1 amikacin, one case received tigecycline + netilmicin followed by tigecycline + colistin). Hence, overall end of treatment (EOT) success was 70%. However, since further 27% died due to additional nosocomial infections, overall clinical success (relieved symptoms at the EOT and one-month post-therapy survival without any relapse or reinfection) decreased to 43%. CONCLUSION We conclude that tigecycline may be an alternative in the salvage treatment of nosocomial multidrug-resistant Acinetobacter spp. meningitis. Acinetobacter spp. Meningitis.
Collapse
Affiliation(s)
- Oguz Reşat Sipahi
- Ege University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey.
| | - Sinan Mermer
- Ege University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Tuna Demirdal
- Izmir Katip Celebi University, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Aslıhan Candevir Ulu
- Cukurova University, Department of Infectious Diseases and Clinical Microbiology, Adana, Turkey
| | - Pierre Fillatre
- Service de Maladies Infectieuses et Réanimation Médicale, Hôpital Pontchaillou, Rennes, France; CIC-Inserm-0203, Faculté de Médecine, Université Rennes 1, Rennes, France
| | - Selin Bardak Ozcem
- Dr Burhan Nalbantoglu State Hospital, Infectious Diseases Clinic, Near East University Hospital, Department of Infectious Diseases and Clinical Microbiology, Northern Cyprus, Nicosia, Cyprus
| | - Şafak Kaya
- Diyarbakir Gazi Yasargil Educational and Research Hospital, Infectious Diseases Clinic, Diyarbakir, Turkey
| | - Alper Şener
- Canakkale Onsekiz Mart University, Department of Infectious Diseases and Clinical Microbiology, Canakkale, Turkey
| | - Cemal Bulut
- Ankara Training and Research Hospital, Infectious Diseases Clinic, Ankara, Turkey
| | - Recep Tekin
- Dicle University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Diyarbakir, Turkey
| | | | - Erkin Özgiray
- Ege University Faculty of Medicine, Department of Neurosurgery, Izmir, Turkey
| | - Taşkın Yurtseven
- Ege University Faculty of Medicine, Department of Neurosurgery, Izmir, Turkey
| | - Hilal Sipahi
- Bornova Public Health Directorate, Izmir, Turkey
| | - Bilgin Arda
- Ege University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Hüsnü Pullukçu
- Ege University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Meltem Taşbakan
- Ege University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Tansu Yamazhan
- Ege University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Sohret Aydemir
- Ege University Faculty of Medicine, Department of Microbiology and Clinical Microbiology, Izmir, Turkey
| | - Sercan Ulusoy
- Ege University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| |
Collapse
|
41
|
Mercuro NJ, Davis SL, Zervos MJ, Herc ES. Combatting resistant enterococcal infections: a pharmacotherapy review. Expert Opin Pharmacother 2018; 19:979-992. [PMID: 29877755 DOI: 10.1080/14656566.2018.1479397] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION The role of enterococci in infectious diseases has evolved from a gut and urinary commensal to a major pathogen of concern. Few options exist for resistant enterococci, and appropriate use of the available agents is crucial. AREAS COVERED Herein, the authors discuss antibiotics with clinically useful activity against Enterococcus faecalis and E. faecium. The article specifically discusses: antibiotics active against enterococci and their mechanism of resistance, pharmacokinetic and pharmacodynamic principles, in vitro combinations, and clinical studies which focus on urinary tract, intra-abdominal, central nervous system, and bloodstream infections due to enterococci. EXPERT OPINION Aminopenicillins are preferred over all other agents when enterococci are susceptible and patients can tolerate them. Daptomycin and linezolid have demonstrated clinical efficacy against vancomycin-resistant enterococci (VRE). Synergistic combinations are often warranted in complex infections of high inoculum and biofilms while monotherapies are generally appropriate for uncomplicated infections. Although active against resistant enterococci, the pharmacokinetics, efficacy and safety of tigecycline and quinupristin/dalfopristin can problematical for severe infections. For cystitis, amoxicillin, nitrofurantoin, or fosfomycin are ideal. Recently, approved agents such as tedizolid and oritavancin have good in vitro activity against VRE but clinical studies against other resistant enterococci are lacking.
Collapse
Affiliation(s)
- Nicholas J Mercuro
- a Pharmacy Services, Eugene Applebaum College of Pharmacy and Health Sciences , Wayne State University , Detroit , MI , USA.,b Pharmacy Services , Henry Ford Hospital , Detroit , MI , USA
| | - Susan L Davis
- a Pharmacy Services, Eugene Applebaum College of Pharmacy and Health Sciences , Wayne State University , Detroit , MI , USA.,b Pharmacy Services , Henry Ford Hospital , Detroit , MI , USA
| | - Marcus J Zervos
- c Department of Internal Medicine, Division of Infectious Diseases , Henry Ford Hospital , Detroit , MI , USA.,d Wayne State University School of Medicine , Detroit , MI , USA
| | - Erica S Herc
- c Department of Internal Medicine, Division of Infectious Diseases , Henry Ford Hospital , Detroit , MI , USA
| |
Collapse
|
42
|
Fritzenwanker M, Imirzalioglu C, Herold S, M. Wagenlehner F, Zimmer KP, Chakraborty T. Treatment Options for Carbapenem- Resistant Gram-Negative Infections. DEUTSCHES ARZTEBLATT INTERNATIONAL 2018; 115:345-352. [PMID: 29914612 PMCID: PMC6172649 DOI: 10.3238/arztebl.2018.0345] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/03/2017] [Accepted: 03/29/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Rates of colonization and infection with carbapenem-resistant Gram-negative pathogens are on the rise, particularly in southeastern European countries, and this is increasingly true in Germany as well. The organisms in question include enterobacteriaceae such as Klebsiella pneumoniae and Escherichia coli and non-fermenting bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii. As the carbapenems have been the gold standard to date for the systemic treatment of serious infections with Gram-negative bacteria, carbapenem resistance presents new and difficult challenges in therapeutic decision-making, particularly because of the high frequency of coresistance. METHODS This review is based on pertinent publications retrieved by a selective search in PubMed and on other applicable literature. RESULTS Multiresistant Gram-negative (MRGN) pathogens are classified in Germany according to their resistance to four different classes of antibiotics; fluoroquinolones, piperacillin, third-generation cephalosporins, and carbapenems. Quadruple MRGN pathogens are resistant to all four groups, triple MRGN pathogens to three of them. There are a number of therapeutic alternatives to carbapenems that can be applied with the aid of sensitive microbiological and/or molecular genetic testing. The following antibiotics are often the only ones that can be used to treat quadruple MRGN pathogens: colistin, aminoglycosides, tigecycline, fosfomycin, ceftazidime/avibactam, and ceftolozan/tazobactam. Carbapenems, too, may still be an option in certain situations. There is also evidence that combinations of antibiotics against which the pathogen is resistant individually can some- times be a valid treatment option; these include combinations of colistin with one or two carbapenems. CONCLUSION The treatment of severe infection with carbapenem-resistant pathogens should be individualized and carried out in an interdisciplinary framework, in consideration of antibiotic pharmacokinetics and pharmacodynamics in each case. The treat- ment options are based on evidence from in vitro studies, retrospective studies, and case series, which must be interpreted with caution. Randomized clinical trials are needed to test each of the various combined approaches.
Collapse
Affiliation(s)
- Moritz Fritzenwanker
- German Center for Infection Research (DZIF)
- Institute for Medical Microbiology, University of Gießen
| | - Can Imirzalioglu
- German Center for Infection Research (DZIF)
- Institute for Medical Microbiology, University of Gießen
| | - Susanne Herold
- German Center for Infection Research (DZIF)
- Clinical Infectiology, Department of Medicine II, University of Gießen; German Center for Lung Research (DZL)
| | - Florian M. Wagenlehner
- German Center for Infection Research (DZIF)
- Department of Urology, Pediatric Urology, and Andrology, University of Gießen
| | - Klaus-Peter Zimmer
- German Center for Infection Research (DZIF)
- Department of General Pediatrics and Neonatology, Center for Pediatric and Adolescent Medicine, University of Gießen
| | - Trinad Chakraborty
- German Center for Infection Research (DZIF)
- Institute for Medical Microbiology, University of Gießen
| |
Collapse
|
43
|
Lin S, Liang L, Zhang C, Ye S. Preliminary experience of tigecycline treatment in critically ill children with ventilator-associated pneumonia. J Int Med Res 2018; 48:300060518760435. [PMID: 29614915 PMCID: PMC7113491 DOI: 10.1177/0300060518760435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objective Ventilator-associated pneumonia (VAP) is a life-threatening complication for
children who are treated in a paediatric intensive care unit. Tigecycline
treatment of children with VAP has not been well studied. This study aimed
to describe tigecycline use in children with VAP in a tertiary care
hospital. Methods We conducted a retrospective chart review in a tertiary hospital from May 1,
2012 to May 1, 2017. Results Twenty-four children (20 girls) with median age of 8 months (range, 27 days
to 6 years and 9 months) were treated with tigecycline. In-hospital
mortality was 41.7% (10/24). The primary diagnosis was congenital heart
disease (15/24). A total of 70.8% (17/24) of patients received a loading
dose (1.5 mg/kg), followed by 1 mg/kg every 12 hours. The median duration of
tigecycline therapy was 10.75 days (range, 3–21.5 days). Sulperazone was the
most frequently used concomitant antibiotic. Eighteen pathogens were
isolated in 16 cases. Tigecycline therapy failed in 41.6% (10/24) of
patients and 20.8% (5/24) died. The pathogen was eradicated in 37.5% (6/16)
of patients. No serious adverse effects were detected. Conclusion Tigecycline combined with other agents as salvage therapy in children with
VAP is well tolerated. Our preliminary results show a positive clinical
response.
Collapse
Affiliation(s)
- Shupeng Lin
- 37066 Zhejiang University School of Medicine Children's Hospital , Division of Hematology- Oncology, No. 57 Zhugan Road, Hangzhou, CN 310052
| | - Lingfang Liang
- 37066 Zhejiang University School of Medicine Children's Hospital , Pediatric Intensive Care Unit, No. 3333 Binsheng Road, Hangzhou, CN 310003
| | - Chenmei Zhang
- 37066 Zhejiang University School of Medicine Children's Hospital , Pediatric Intensive Care Unit, No. 3333 Binsheng Road, Hangzhou, CN 310003
| | - Sheng Ye
- 37066 Zhejiang University School of Medicine Children's Hospital , Pediatric Intensive Care Unit, No. 3333 Binsheng Road, Hangzhou, CN 310003
| |
Collapse
|
44
|
Extensively drug-resistant Acinetobacter baumannii bacteraemia in a multidisciplinary intensive care unit during a 6-year period: Risk factors for fulminant sepsis. J Glob Antimicrob Resist 2018; 14:51-57. [PMID: 29471109 DOI: 10.1016/j.jgar.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/20/2017] [Accepted: 02/11/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES This study aimed to determine potential host-, pathogen-, infection- and treatment-related risk factors that might predict a fulminant fatal course of bacteraemia caused by extensively drug-resistant Acinetobacter baumannii (XDR-Aba). METHODS Eighty-seven patients with monomicrobial growth of XDR-Aba in blood cultures within a 6-year period (2011-2016) were studied. Patients were divided into three groups according to ICU outcome: Group A (n=40) consisted of patients who survived; Group B (n=10) included patients with fulminant sepsis who died early (≤48h); and Group C (n=37) included patients who died later (>48h) after the onset of bacteraemia. RESULTS Regarding patient co-morbidities, patients who died from fulminant XDR-Aba bacteraemia had a significantly higher prevalence of chronic renal failure compared with patients who survived (40.0% vs. 7.5%; P=0.029). Patients with fulminant sepsis showed more severe organ dysfunction based on SOFA score compared with survivors (10.83±2.93 vs. 6.65±3.6; P=0.013). The primary to secondary bacteraemia ratio and appropriate treatment were similar among the three outcome groups. Patients with fulminant bacteraemia displayed higher rates of colistin-, tigecycline- and pandrug-resistant strains, although not statistically significant. CONCLUSIONS Patients suffering from a fulminant course of XDR-Aba bacteraemia showed significantly higher rates of chronic renal failure and multiple organ dysfunction. Resistance patterns of XDR-Aba isolates and receipt of appropriate treatment did not affect outcomes. Further studies including larger samples of patients along with investigation of specific virulence determinants of individual Aba strains are needed.
Collapse
|
45
|
Mazuski JE, Tessier JM, May AK, Sawyer RG, Nadler EP, Rosengart MR, Chang PK, O'Neill PJ, Mollen KP, Huston JM, Diaz JJ, Prince JM. The Surgical Infection Society Revised Guidelines on the Management of Intra-Abdominal Infection. Surg Infect (Larchmt) 2017; 18:1-76. [PMID: 28085573 DOI: 10.1089/sur.2016.261] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous evidence-based guidelines on the management of intra-abdominal infection (IAI) were published by the Surgical Infection Society (SIS) in 1992, 2002, and 2010. At the time the most recent guideline was released, the plan was to update the guideline every five years to ensure the timeliness and appropriateness of the recommendations. METHODS Based on the previous guidelines, the task force outlined a number of topics related to the treatment of patients with IAI and then developed key questions on these various topics. All questions were approached using general and specific literature searches, focusing on articles and other information published since 2008. These publications and additional materials published before 2008 were reviewed by the task force as a whole or by individual subgroups as to relevance to individual questions. Recommendations were developed by a process of iterative consensus, with all task force members voting to accept or reject each recommendation. Grading was based on the GRADE (Grades of Recommendation Assessment, Development, and Evaluation) system; the quality of the evidence was graded as high, moderate, or weak, and the strength of the recommendation was graded as strong or weak. Review of the document was performed by members of the SIS who were not on the task force. After responses were made to all critiques, the document was approved as an official guideline of the SIS by the Executive Council. RESULTS This guideline summarizes the current recommendations developed by the task force on the treatment of patients who have IAI. Evidence-based recommendations have been made regarding risk assessment in individual patients; source control; the timing, selection, and duration of antimicrobial therapy; and suggested approaches to patients who fail initial therapy. Additional recommendations related to the treatment of pediatric patients with IAI have been included. SUMMARY The current recommendations of the SIS regarding the treatment of patients with IAI are provided in this guideline.
Collapse
Affiliation(s)
- John E Mazuski
- 1 Department of Surgery, Washington University School of Medicine , Saint Louis, Missouri
| | | | - Addison K May
- 3 Department of Surgery, Vanderbilt University , Nashville, Tennessee
| | - Robert G Sawyer
- 4 Department of Surgery, University of Virginia , Charlottesville, Virginia
| | - Evan P Nadler
- 5 Division of Pediatric Surgery, Children's National Medical Center , Washington, DC
| | - Matthew R Rosengart
- 6 Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Phillip K Chang
- 7 Department of Surgery, University of Kentucky , Lexington, Kentucky
| | | | - Kevin P Mollen
- 9 Division of Pediatric Surgery, Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jared M Huston
- 10 Department of Surgery, Hofstra Northwell School of Medicine , Hempstead, New York
| | - Jose J Diaz
- 11 Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jose M Prince
- 12 Departments of Surgery and Pediatrics, Hofstra-Northwell School of Medicine , Hempstead, New York
| |
Collapse
|
46
|
Sartelli M, Catena F, Abu-Zidan FM, Ansaloni L, Biffl WL, Boermeester MA, Ceresoli M, Chiara O, Coccolini F, De Waele JJ, Di Saverio S, Eckmann C, Fraga GP, Giannella M, Girardis M, Griffiths EA, Kashuk J, Kirkpatrick AW, Khokha V, Kluger Y, Labricciosa FM, Leppaniemi A, Maier RV, May AK, Malangoni M, Martin-Loeches I, Mazuski J, Montravers P, Peitzman A, Pereira BM, Reis T, Sakakushev B, Sganga G, Soreide K, Sugrue M, Ulrych J, Vincent JL, Viale P, Moore EE. Management of intra-abdominal infections: recommendations by the WSES 2016 consensus conference. World J Emerg Surg 2017; 12:22. [PMID: 28484510 PMCID: PMC5418731 DOI: 10.1186/s13017-017-0132-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022] Open
Abstract
This paper reports on the consensus conference on the management of intra-abdominal infections (IAIs) which was held on July 23, 2016, in Dublin, Ireland, as a part of the annual World Society of Emergency Surgery (WSES) meeting. This document covers all aspects of the management of IAIs. The Grading of Recommendations Assessment, Development and Evaluation recommendation is used, and this document represents the executive summary of the consensus conference findings.
Collapse
Affiliation(s)
| | - Fausto Catena
- Department of Emergency Surgery, Maggiore Hospital, Parma, Italy
| | - Fikri M Abu-Zidan
- Department of Surgery, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | - Luca Ansaloni
- General Surgery Department, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Walter L Biffl
- Acute Care Surgery, The Queen's Medical Center, Honolulu, HI USA
| | | | - Marco Ceresoli
- Department of Surgery, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | - Osvaldo Chiara
- Emergency Department, Trauma Center, Niguarda Hospital, Milan, Italy
| | - Federico Coccolini
- Department of Surgery, College of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates
| | - Jan J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - Christian Eckmann
- Department of General, Visceral, and Thoracic Surgery, Klinikum Peine, Academic Hospital of Medical University Hannover, Hannover, Germany
| | - Gustavo P Fraga
- Division of Trauma Surgery, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Maddalena Giannella
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | | | - Ewen A Griffiths
- General and Upper GI Surgery, Queen Elizabeth Hospital, Birmingham, UK
| | - Jeffry Kashuk
- Department of Surgery, Assia Medical Group, Tel Aviv University Sackler School of Medicine, Tel Aviv, Israel
| | - Andrew W Kirkpatrick
- Departments of Surgery, Critical Care Medicine, and the Regional Trauma Service, Foothills Medical Centre, Calgary, AB Canada
| | - Vladimir Khokha
- Department of Emergency Surgery, Mozyr City Hospital, Mozyr, Belarus
| | - Yoram Kluger
- Department of General Surgery, Division of Surgery, Rambam Health Care Campus, Haifa, Israel
| | - Francesco M Labricciosa
- Department of Biomedical Sciences and Public Health, Unit of Hygiene, Preventive Medicine and Public Health, UNIVPM, Ancona, Italy
| | - Ari Leppaniemi
- Abdominal Center, University Hospital Meilahti, Helsinki, Finland
| | - Ronald V Maier
- Department of Surgery, University of Washington, Seattle, WA USA
| | - Addison K May
- Departments of Surgery and Anesthesiology, Division of Trauma and Surgical Critical Care, Vanderbilt University Medical Center, Nashville, TN USA
| | | | - Ignacio Martin-Loeches
- Multidisciplinary Intensive Care Research Organization (MICRO), Wellcome Trust-HRB Clinical Research, Department of Clinical Medicine, Trinity Centre for Health Sciences, St James's University Hospital, Dublin, Ireland
| | - John Mazuski
- Department of Surgery, School of Medicine, Washington University in Saint Louis, St. Louis, MO USA
| | - Philippe Montravers
- Département d'Anesthésie-Réanimation, CHU Bichat Claude-Bernard-HUPNVS, Assistance Publique-Hôpitaux de Paris, University Denis Diderot, Paris, France
| | - Andrew Peitzman
- Department of Surgery, UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Bruno M Pereira
- Division of Trauma Surgery, Department of Surgery, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | - Tarcisio Reis
- Emergency post-operative Department, Otavio De Freitas Hospital and Osvaldo Cruz Hospital Recife, Recife, Brazil
| | - Boris Sakakushev
- General Surgery Department, Medical University, University Hospital St George, Plovdiv, Bulgaria
| | - Gabriele Sganga
- Department of Surgery, Catholic University of Sacred Heart, Rome, Italy
| | - Kjetil Soreide
- Department of Gastrointestinal Surgery, Stavanger University Hospital, Stavanger, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Michael Sugrue
- Letterkenny University Hospital and Donegal Clinical Research Academy, Letterkenny, Ireland
| | - Jan Ulrych
- 1st Department of Surgery, Department of Abdominal, Thoracic Surgery and Traumatology, General University Hospital, Praha, Czech Republic
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Pierluigi Viale
- Infectious Diseases Unit, Department of Medical and Surgical Sciences, Sant'Orsola Hospital, University of Bologna, Bologna, Italy
| | - Ernest E Moore
- Department of Surgery, University of Colorado, Denver, CO USA
| |
Collapse
|
47
|
Quelle place pour la tigécycline aujourd’hui ? MEDECINE INTENSIVE REANIMATION 2017. [DOI: 10.1007/s13546-017-1281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Wang J, Pan Y, Shen J, Xu Y. The efficacy and safety of tigecycline for the treatment of bloodstream infections: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 2017; 16:24. [PMID: 28381268 PMCID: PMC5382384 DOI: 10.1186/s12941-017-0199-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/29/2017] [Indexed: 11/26/2022] Open
Abstract
Patients with bloodstream infections (BSI) are associated with high mortality rates. Due to tigecycline has shown excellent in vitro activity against most pathogens, tigecycline is selected as one of the candidate drugs for the treatment of multidrug-resistant organisms infections. The purpose of this study was to evaluate the effectiveness and safety of the use of tigecycline for the treatment of patients with BSI. The PubMed and Embase databases were systematically searched, to identify published studies, and we searched clinical trial registries to identify completed unpublished studies, the results of which were obtained through the manufacturer. The primary outcome was mortality, and the secondary outcomes were the rate of clinical cure and microbiological success. 24 controlled studies were included in this systematic review. All-cause mortality was lower with tigecycline than with control antibiotic agents, but the difference was not significant (OR 0.85, [95% confidence interval (CI) 0.31-2.33; P = 0.745]). Clinical cure was significantly higher with tigecycline groups (OR 1.76, [95% CI 1.26-2.45; P = 0.001]). Eradication efficiency did not differ between tigecycline and control regimens, but the sample size for these comparisons was small. Subgroup analyses showed good clinical cure result in bacteremia patients with CAP. Tigecycline monotherapy was associated with a OR of 2.73 (95% CI 1.53-4.87) for mortality compared with tigecycline combination therapy (6 studies; 250 patients), without heterogeneity. Five studies reporting on 398 patients with Klebsiella pneumoniae carbapenemase-producing K. pneumoniae BSI showed significantly lower mortality in the tigecycline arm than in the control arm. The combined treatment with tigecycline may be considered the optimal option for severely ill patients with BSI.
Collapse
Affiliation(s)
- Jian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022 Anhui China
| | - Yaping Pan
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022 Anhui China
| | - Jilu Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022 Anhui China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022 Anhui China
| |
Collapse
|
49
|
Singh RSP, Mukker JK, Drescher SK, Deitchman AN, Derendorf H. A need to revisit clinical breakpoints of tigecycline: effect of atypical non-linear plasma protein binding. Int J Antimicrob Agents 2017; 49:449-455. [DOI: 10.1016/j.ijantimicag.2016.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 12/04/2016] [Accepted: 12/17/2016] [Indexed: 11/29/2022]
|
50
|
An Evaluation of the Effectiveness of Risk Minimization Measures for Tigecycline in the European Union. Pharmaceut Med 2017. [DOI: 10.1007/s40290-017-0180-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|