1
|
Lee JH, Kim YG, Park I, Lee J. Antifungal and antibiofilm activities of flavonoids against Candida albicans: Focus on 3,2'-dihydroxyflavone as a potential therapeutic agent. Biofilm 2024; 8:100218. [PMID: 39175909 PMCID: PMC11340609 DOI: 10.1016/j.bioflm.2024.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Effective management of microbial biofilms holds significance within food and medical environments. Candida albicans, an opportunistic fungus, forms mucosal biofilms closely linked to candidiasis and drug-resistant infections due to their drug tolerance. Morphologic change from yeast to filamentous cells is a key virulence factor and a prerequisite for biofilm development. This study investigated the anti-fungal and antibiofilm activities of 20 flavonoids against C. albicans. With their known antioxidant capabilities, flavonoids hold promise in combating infections associated with biofilms. Among them, flavone and its derivatives exhibited moderate antifungal activity, 3,2'-dihydroxyflavone (3,2'-DHF) at 1 μg/mL exhibited strong antibiofilm activity (MIC 50 μg/mL). In addition, 3,2'-DHF dramatically inhibited cell aggregation and germ tube/hyphae formation. Transcriptomic analyses revealed that flavone and 3,2'-DHF behaved differently, as 3,2'-DHF downregulated the expressions of germ tube/hyphae-forming and biofilm-related genes (ECE1, HWP1, TEC1, and UME6) but upregulated the biofilm/hyphal regulators (CHK1, IFD6, UCF1, and YWP1). Tests evaluating toxicity with plant and nematode models revealed that flavone and 3,2'-DHF exhibited mild toxicity. Current results indicate that hydroxylated flavone derivatives can enhance anti-fungal and antibiofilm activities and provide a source of potential anti-fungal agents against drug-resistant C. albicans.
Collapse
Affiliation(s)
| | | | - Inji Park
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
2
|
Liu F, Chen Y, Huang Y, Li Y, Lu Z, Han H, Song X, Jin Q, Ji J. Synergistic wall digestion and cuproptosis against fungal infections using lywallzyme-induced self-assembly of metal-phenolic nanoflowers. Nat Commun 2024; 15:9004. [PMID: 39424837 PMCID: PMC11489657 DOI: 10.1038/s41467-024-53410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Fungi are very common infectious pathogens, which may cause invasive and potentially life-threatening infections. However, the efficacy of antifungal medications remains limited. Herein, a Cu2+-phenolic nanoflower is designed to combat fungal infections by combining cuproptosis and cell wall digestion. Firstly, protocatechuic acid (PA)-Cu2+ (PC) nanopetals are prepared by coordination interaction. Lywallzyme (Lyw) is then added to induce the self-assembly of PC to form Lyw loaded PC (PCW) nanoflowers. PCW nanoflowers can effectively adhere to fungal surface and Lyw can digest fungal cell walls to facilitate Cu2+ to penetrate into fungal interior, thereby exerting a synergistic fungicidal effect. PCW nanoflowers exhibit excellent fungicidal activity even in protein-rich and high-salt conditions, where dissociative Cu2+ completely loses fungicidal activity. Transcriptome sequencing analysis reveals that PCW can lead to fungal cuproptosis. The in vivo fungicidal effect of PCW nanoflowers is confirmed on a murine skin fungal infection model and a murine fungal keratitis model.
Collapse
Affiliation(s)
- Fang Liu
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Yongcheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Yue Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Yutong Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Zhouyu Lu
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Haijie Han
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Xiaohui Song
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.
| | - Qiao Jin
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China.
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| |
Collapse
|
3
|
Pishchik VN, Chizhevskaya EP, Kichko AA, Aksenova TS, Andronov EE, Chebotar VK, Filippova PS, Shelenga TV, Belousova MH, Chikida NN. Metabolome and Mycobiome of Aegilops tauschii Subspecies Differing in Susceptibility to Brown Rust and Powdery Mildew Are Diverse. PLANTS (BASEL, SWITZERLAND) 2024; 13:2343. [PMID: 39273827 PMCID: PMC11397189 DOI: 10.3390/plants13172343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The present study demonstrated the differences in the seed metabolome and mycobiome of two Aegilops tauschii Coss accessions with different resistance to brown rust and powdery mildew. We hypothesized that the seeds of resistant accession k-1958 Ae. tauschii ssp. strangulata can contain a larger number of metabolites with antifungal activity compared with the seeds of susceptible Ae. tauschii ssp meyeri k-340, which will determine differences in the seed fungal community. Our study emphasizes the differences in the seed metabolome of the studied Ae. tauschii accessions. The resistant accession k-1958 had a higher content of glucose and organic acids, including pyruvic, salicylic and azelaic acid, as well as pipecolic acids, galactinol, glycerol and sitosterol. The seeds of Ae. tauschii-resistant accession k-1958 were found to contain more active substances with antifungal activity. The genera Cladosporium and Alternaria were dominant in the seed mycobiome of the resistant accession. The genera Alternaria, Blumeria and Cladosporium dominated in seed mycobiome of susceptible accession k-340. In the seed mycobiome of the resistant k-1958, a higher occurrence of saprotrophic micromycetes was found, and many of the micromycetes were biocontrol agents. It was concluded that differences in the seed metabolome of Ae. tauschii contributed to the determination of the differences in mycobiomes.
Collapse
Affiliation(s)
- Veronika N Pishchik
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Elena P Chizhevskaya
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Arina A Kichko
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Tatiana S Aksenova
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Evgeny E Andronov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Vladimir K Chebotar
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy 3, Pushkin, 196608 St. Petersburg, Russia
| | - Polina S Filippova
- St. Petersburg North-West Centre of Interdisciplinary Researches of Problems of Food Maintenance, Podbelskogo hwy, 7, Pushkin, 196608 St. Petersburg, Russia
| | - Tatiana V Shelenga
- Federal Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Street, 44, 190121 St. Petersburg, Russia
| | - Maria H Belousova
- Federal Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Street, 44, 190121 St. Petersburg, Russia
| | - Nadezhda N Chikida
- Federal Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Street, 44, 190121 St. Petersburg, Russia
| |
Collapse
|
4
|
Jawhara S. How Do Polyphenol-Rich Foods Prevent Oxidative Stress and Maintain Gut Health? Microorganisms 2024; 12:1570. [PMID: 39203412 PMCID: PMC11356206 DOI: 10.3390/microorganisms12081570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, involves chronic inflammatory disorders of the digestive tract. Oxidative stress, associated with increased reactive oxygen species generation, is a major risk factor for IBD pathogenesis. Industrialized lifestyles expose us to a variety of factors that contribute to deteriorating gut health, especially for IBD patients. Many alternative therapeutic strategies have been developed against oxidative stress along with conventional therapy to alleviate IBD pathogenesis. Polyphenol-rich foods have attracted growing interest from scientists due to their antioxidant properties. Polyphenols are natural compounds found in plants, fruits, vegetables, and nuts that exhibit antioxidant properties and protect the body from oxidative damage. This review presents an overview of polyphenol benefits and describes the different types of polyphenols. It also discusses polyphenols' role in inhibiting oxidative stress and fungal growth prevention. Overall, this review highlights how a healthy and balanced diet and avoiding the industrialized lifestyles of our modern society can minimize oxidative stress damage and protect against pathogen infections. It also highlights how polyphenol-rich foods play an important role in protecting against oxidative stress and fungal growth.
Collapse
Affiliation(s)
- Samir Jawhara
- Centre National de la Recherche Scientifique, UMR 8576—UGSF—Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; ; Tel.: +33-(0)3-20-62-35-46
- Institut National de la Santé et de la Recherche Médicale U1285, University of Lille, F-59000 Lille, France
- Medicine Faculty, University of Lille, F-59000 Lille, France
| |
Collapse
|
5
|
Pattini VC, Polaquini CR, Lemes TH, Brizzotti-Mazuchi NS, Sardi JDCO, Paziani MH, Kress MRVZ, de Almeida MTG, Regasini LO. Antifungal activity of 3,3'-dimethoxycurcumin (DMC) against dermatophytes and Candida species. Lett Appl Microbiol 2024; 77:ovae019. [PMID: 38499446 DOI: 10.1093/lambio/ovae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/24/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Dermatomycosis is an infection with global impacts caused especially by dermatophytes and Candida species. Current antifungal therapies involve drugs that face fungal resistance barriers. This clinical context emphasizes the need to discover new antifungal agents. Herein, the antifungal potential of 10 curcumin analogs was evaluated against four Candida and four dermatophyte species. The most active compound, 3,3'-dimethoxycurcumin, exhibited minimum inhibitory concentration values ranging from 1.9‒62.5 to 15.6‒62.5 µg ml-1 against dermatophytes and Candida species, respectively. According to the checkerboard method, the association between DMC and terbinafine demonstrated a synergistic effect against Trichophyton mentagrophytes and Epidermophyton floccosum. Ergosterol binding test indicated DMC forms a complex with ergosterol of Candida albicans, C. krusei, and C. tropicalis. However, results from the sorbitol protection assay indicated that DMC had no effect on the cell walls of Candida species. The in vivo toxicity, using Galleria mellonella larvae, indicated no toxic effect of DMC. Altogether, curcumin analog DMC was a promising antifungal agent with a promising ability to act against Candida and dermatophyte species.
Collapse
Affiliation(s)
- Veridianna Camilo Pattini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Carlos Roberto Polaquini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Thiago Henrique Lemes
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| | | | | | - Mário Henrique Paziani
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 05508-000, Brazil
| | - Marcia Regina von Zeska Kress
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 05508-000, Brazil
| | | | - Luis Octávio Regasini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
6
|
Dhanasekaran S, Pushparaj Selvadoss P, Sundar Manoharan S, Jeyabalan S, Devi Rajeswari V. Revealing anti-fungal potential of plant-derived bioactive therapeutics in targeting secreted aspartyl proteinase (SAP) of Candida albicans: a molecular dynamics approach. J Biomol Struct Dyn 2024; 42:710-724. [PMID: 37021476 DOI: 10.1080/07391102.2023.2196703] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/17/2023] [Indexed: 04/07/2023]
Abstract
Candida species have established themselves as a major source of nosocomial infections. Increased expression of secreted aspartyl proteinases (SAP5) plays a crucial role in the pathogenesis of Candida species. Phytotherapeutics continue to serve as a viable resource for discovering novel antifungal agents. Hence the main aim of the present investigation is to explore the possible inhibitory role of the selected bioactive molecules against the SAP5 enzyme of C. albicans using in silico approach. Molecular docking and dynamic simulations were utilized to predict the binding affinity of the lead molecules using the AutoDock and Gromacs in-silico screening tools. Results of preliminary docking simulations show that the compounds hesperidin, vitexin, berberine, adhatodine, piperine, and chlorogenic acid exhibit significant interactions with the core catalytic residues of the target protein. The best binding ligands (hesperidin, vitexin, fluconazole) were subjected to molecular dynamics (MD) and essential dynamics of the trajectories. Results of the MD simulation confirm that the ligand-protein complexes became more stable from 20 ns until 100 ns. The calculated residue-level contributions to the interaction energy along a steady simulation trajectory of all three hits (hesperidin (-132.720 kJ/mol), vitexin (-83.963 kJ/mol) and fluconazole (-98.864 kJ/mol)) ensure greater stability of the leads near the catalytic region. Essential dynamics of PCA and DCCM analysis signifies that the binding of hesperidin and vitexin created a more structurally stable environment in the protein target. The overall outcomes of this study clearly emphasize that the bioactive therapeutics found in medicinal herbs may have remarkable scope in managing Candida infection.
Collapse
Affiliation(s)
| | | | | | - Srikanth Jeyabalan
- Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | |
Collapse
|
7
|
Roese KHC, Torlone C, Cooper LA, Esposito L, Deveau AM, Röse USR, Burkholder KM. Pyrogallol impairs staphylococcal biofilm formation via induction of bacterial oxidative stress. J Appl Microbiol 2023; 134:lxad270. [PMID: 37974055 DOI: 10.1093/jambio/lxad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/13/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
AIMS To examine the effect of the phenolic compound pyrogallol on staphylococcal biofilm formation. METHODS AND RESULTS In crystal violet biofilm assays, pyrogallol-reduced biofilm formation in Staphylococcus epidermidis ATCC 35984, Staph. epidermidis NRRL-B41021, Staphylococcus aureus USA300, and Staph. aureus Newman, without significantly impairing bacterial viability. Pyrogallol-mediated impairment of biofilm formation was likely due to induction of bacterial oxidative stress, as its effect was greater in catalase-deficient versus WT Staph. aureus, and biofilm production was rescued by exogenous catalase. The effect of pyrogallol on staphylococcal biofilm formation mirrored that of the known oxidant hydrogen peroxide, which also reduced biofilm formation in a dose-dependent manner. CONCLUSIONS Pyrogallol reduces biofilm formation in S. aureus and Staph. epidermidis in a mechanism involving induction of bacterial oxidative stress.
Collapse
Affiliation(s)
- Katharina H C Roese
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| | - Christina Torlone
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| | - Lauren A Cooper
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| | - Lee Esposito
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| | - Amy M Deveau
- School of Mathematical and Physical Sciences, University of New England, Biddeford, ME 04005, USA
| | - Ursula S R Röse
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| | - Kristin M Burkholder
- School of Biological Sciences, University of New England, Biddeford, ME 04005, USA
| |
Collapse
|
8
|
Vergara D, López O, Sanhueza C, Chávez-Aravena C, Villagra J, Bustamante M, Acevedo F. Co-Encapsulation of Curcumin and α-Tocopherol in Bicosome Systems: Physicochemical Properties and Biological Activity. Pharmaceutics 2023; 15:1912. [PMID: 37514098 PMCID: PMC10383532 DOI: 10.3390/pharmaceutics15071912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
A novel co-encapsulation system called bicosomes (bicelles within liposomes) has been developed to overcome the limitations associated with the topical application of curcumin (cur) and α-tocopherol (α-toc). The physicochemical properties and biological activity in vitro of bicosome systems were evaluated. Bicelles were prepared with DPPC, DHPC, cur, and α-toc (cur/α-toc-bicelles). Liposomal vesicles loading cur/α-toc-bicelles were prepared with Lipoid P-100 and cholesterol-forming cur/α-toc-bicosomes. Three cur/α-toc-bicosomes were evaluated using different total lipid percentages (12, 16, and 20% w/v). The results indicated that formulations manage to solubilize cur and α-toc in homogeneous bicelles < 20 nm, while the bicosomes reaches 303-420 nm depending on the total lipid percentage in the systems. Bicosomes demonstrated high-encapsulation efficiency (EE) for cur (56-77%) and α-toc (51-65%). The loading capacity (LC) for both antioxidant compounds was 52-67%. In addition, cur/α-toc-bicosomes decreased the lipid oxidation by 52% and increased the antioxidant activity by 60% compared to unloaded bicosomes. The cell viability of these cur/α-toc-bicosomes was >85% in fibroblasts (3T3L1/CL-173™) and ≥65% in keratinocytes (Ha-CaT) and proved to be hematologically compatible. The cur/α-toc-bicelles and cur/α-toc-bicosomes inhibited the growth of C. albicans in a range between 33 and 76%. Our results propose bicosome systems as a novel carrier able to co-encapsulate, solubilize, protect, and improve the delivery performance of antioxidant molecules. The relevance of these findings is based on the synergistic antioxidant effect of its components, its biocompatibility, and its efficacy for dermal tissue treatment damaged by oxidative stress or by the presence of C. albicans. However, further studies are needed to assess the efficacy and safety of cur/α-toc bicosomes in vitro and in vivo.
Collapse
Affiliation(s)
- Daniela Vergara
- Center of Excellence in Translational Medicine-Scientific Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - Olga López
- Department of Chemical and Surfactant Technology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Claudia Sanhueza
- Center of Excellence in Translational Medicine-Scientific Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - Catalina Chávez-Aravena
- Laboratory of Pharmaceutical and Cosmetic Bioproducts, Center of Excellence in Translational Medicine (CEMT), Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - José Villagra
- Laboratory of Pharmaceutical and Cosmetic Bioproducts, Center of Excellence in Translational Medicine (CEMT), Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - Mariela Bustamante
- Center of Food Biotechnology and Bioseparations, Scientific and Technological Bioresource Nucleus BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| | - Francisca Acevedo
- Center of Excellence in Translational Medicine-Scientific Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco 4780000, Chile
| |
Collapse
|
9
|
Chow EWL, Mei Pang L, Wang Y. Impact of the host microbiota on fungal infections: new possibilities for intervention? Adv Drug Deliv Rev 2023; 198:114896. [PMID: 37211280 DOI: 10.1016/j.addr.2023.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Many human fungal pathogens are opportunistic. They are primarily benign residents of the human body and only become infectious when the host's immunity and microbiome are compromised. Bacteria dominate the human microbiome, playing an essential role in keeping fungi harmless and acting as the first line of defense against fungal infection. The Human Microbiome Project, launched by NIH in 2007, has stimulated extensive investigation and significantly advanced our understanding of the molecular mechanisms governing the interaction between bacteria and fungi, providing valuable insights for developing future antifungal strategies by exploiting the interaction. This review summarizes recent progress in this field and discusses new possibilities and challenges. We must seize the opportunities presented by researching bacterial-fungal interplay in the human microbiome to address the global spread of drug-resistant fungal pathogens and the drying pipelines of effective antifungal drugs.
Collapse
Affiliation(s)
- Eve W L Chow
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648
| | - Li Mei Pang
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648
| | - Yue Wang
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore.
| |
Collapse
|
10
|
Brito LL, Borges KRA, Silva GX, da Silva MACN, de Nazaré Silva Alves R, Teles AM, do Carmo Lacerda Barbosa M, Muniz Filho WE, de Barros Bezerra GF, do Desterro Soares Brandão Nascimento M. Effects of Euterpe oleracea Mart. extract on Candida spp. biofilms. Braz J Microbiol 2023; 54:29-36. [PMID: 36746872 PMCID: PMC9944593 DOI: 10.1007/s42770-023-00919-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
PROBLEM OF RESEARCH Candida spp. biofilms are complex microbial communities that have been associated with increasing resistance to clinically available antifungal drugs. Hence, novel pharmacological approaches with ability to inhibit biofilm formation have been investigated. AIM OF STUDY The aim was to analyze in vitro antifungal activity of Euterpe oleracea Mart. (açaí berry) extract on biofilm strains of Candida albicans, C. parapsilosis, and C. tropicalis that were formed on abiotic surfaces. REMARKABLE METHODOLOGY Biofilms of C. albicans, C. parapsilosis, and C. tropicalis were grown in vitro. They were then treated with E. oleracea Mart. extract at different concentrations (7.8, 15.6, 31.2, 62.5, 125, 250, 500, and 1000 μg/mL) for evaluation of both biofilm removal and anti-biofilm activity. REMARKABLE RESULTS All Candida species analyzed formed biofilms on abiotic surfaces. Yet, increased biofilm formation was displayed for C. tropicalis in comparison with the other two species. E. oleracea Mart. extract was shown to inhibit biofilm formation at all concentrations used when compared to no treatment (p < 0.05). SIGNIFICANCE OF THE STUDY In the current study, the extract of E. oleracea Mart. demonstrated antifungal activity against Candida albicans, C. parapsilosis, and C. tropicalis biofilms, regardless of the dose utilized. These results are important to evaluate a natural product as antifungal for Candida species.
Collapse
Affiliation(s)
- Larissa Lira Brito
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
| | - Kátia Regina Assunção Borges
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
| | - Gabriel Xavier Silva
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Marcos Antonio Custódio Neto da Silva
- Postgraduate Program in Internal Medicine, University of Campinas, Campinas, São Paulo, Brazil
- Federal University of Maranhão, Imperatriz, Maranhão, Brazil
| | - Rita de Nazaré Silva Alves
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
| | - Amanda Mara Teles
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | | | | | - Geusa Felipa de Barros Bezerra
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil
| | - Maria do Desterro Soares Brandão Nascimento
- Postgraduate Program in Adult Health, Federal University of Maranhão, Av. Dos Portugueses, 1966, Bacanga, São Luís, MA, 65080-805, Brazil.
- Nucleum of Basic and Applied Immunology, Federal University of Maranhão, São Luís, Maranhão, Brazil.
| |
Collapse
|
11
|
do Rosário Esteves Guimarães C, de Freitas HF, Barros TF. Candida albicans antibiofilm molecules: analysis based on inhibition and eradication studies. Braz J Microbiol 2023; 54:37-52. [PMID: 36576671 PMCID: PMC9944165 DOI: 10.1007/s42770-022-00876-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Biofilms are communities of microbial cells surrounded by an extracellular polysaccharide matrix, recognized as a fungal source for local and systemic infections and less susceptible to antifungal drugs. Thus, treatment of biofilm-related Candida spp. infections with popular antifungals such as fluconazole is limited and species-dependent and alternatively demands the use of expensive and high toxic drugs. In this sense, molecules with antibiofilm activity have been studied but without care regarding the use of important criteria such as antibiofilm concentration lower than antifungal concentration when considering the process of inhibition of formation and concentrations equal to or lower than 300 µM. Therefore, this review tries to gather the most promising molecules regarding the activity against the C. albicans biofilm described in the last 10 years, considering the activity of inhibition and eradication. From January 2011 to July 2021, articles were searched on Scopus, PubMed, and Science Direct, combining the keywords "antibiofilm," "candida albicans," "compound," and "molecule" with AND and OR operators. After 3 phases of selection, 21 articles describing 42 molecules were discussed in the review. Most of them were more promising for the inhibition of biofilm formation, with SM21 (24) being an interesting molecule for presenting inhibitory and eradication activity in biofilms with 24 and 48 h, as well as alizarin (26) and chrysazine (27), with concentrations well below the antifungal concentration. Despite the detection of these molecules and the attempts to determine the mechanisms of action by microscopic analysis and gene expression, no specific target has been determined. Thus, a gap is signaled, requiring further studies such as proteomic analyses to clarify it.
Collapse
Affiliation(s)
- Carolina do Rosário Esteves Guimarães
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Barão de Geremoabo Street, 147, Ondina, Salvador, Bahia CEP, 40170115, Brazil
| | - Humberto Fonseca de Freitas
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Barão de Geremoabo Street, 147, Ondina, Salvador, Bahia CEP, 40170115, Brazil
| | - Tânia Fraga Barros
- Post-Graduation Program in Pharmacy, Pharmacy College, Federal University of Bahia, Barão de Geremoabo Street, 147, Ondina, Salvador, Bahia CEP, 40170115, Brazil.
| |
Collapse
|
12
|
Gómez-Gaviria M, Ramírez-Sotelo U, Mora-Montes HM. Non- albicans Candida Species: Immune Response, Evasion Mechanisms, and New Plant-Derived Alternative Therapies. J Fungi (Basel) 2022; 9:jof9010011. [PMID: 36675832 PMCID: PMC9862154 DOI: 10.3390/jof9010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Fungal infections caused by Candida species have become a constant threat to public health, especially for immunocompromised patients, who are considered susceptible to this type of opportunistic infections. Candida albicans is known as the most common etiological agent of candidiasis; however, other species, such as Candida tropicalis, Candida parapsilosis, Nakaseomyces glabrata (previously known as Candida glabrata), Candida auris, Candida guilliermondii, and Pichia kudriavzevii (previously named as Candida krusei), have also gained great importance in recent years. The increasing frequency of the isolation of this non-albicans Candida species is associated with different factors, such as constant exposure to antifungal drugs, the use of catheters in hospitalized patients, cancer, age, and geographic distribution. The main concerns for the control of these pathogens include their ability to evade the mechanisms of action of different drugs, thus developing resistance to antifungal drugs, and it has also been shown that some of these species also manage to evade the host's immunity. These biological traits make candidiasis treatment a challenging task. In this review manuscript, a detailed update of the recent literature on the six most relevant non-albicans Candida species is provided, focusing on the immune response, evasion mechanisms, and new plant-derived compounds with antifungal properties.
Collapse
|
13
|
Molecular Docking Analysis of Cinnamomum zeylanicum Phytochemicals against Secreted Aspartyl proteinase 4-6 of Candida albicans as Anti-Candidiasis Oral. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
14
|
Haslene‐Hox H, Nærdal GK, Mørch Y, Hageskal G, Tøndervik A, Turøy AV, Johnsen H, Klinkenberg G, Sletta H. High-throughput assay for effect screening of amphotericin B and bioactive components on filamentous Candida albicans. J Appl Microbiol 2022; 133:3113-3125. [PMID: 35947058 PMCID: PMC9804330 DOI: 10.1111/jam.15770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 08/06/2022] [Indexed: 01/05/2023]
Abstract
AIMS The aim of this study was to develop a high-throughput robotic microtiter plate-based screening assay for Candida albicans, optimizing growth conditions to replicate the filamentous biofilm growth found in vivo, and subsequently, to demonstrate the assay by evaluating the effect of nutritional drinks alone and in combination with the antifungal amphotericin B (AmB). METHODS AND RESULTS Candida albicans cultured in a defined growth medium showed filamentous growth in microcolonies, mimicking the morphology of oral mucosal disease (oral candidiasis). Addition of nutrient drinks containing fruit juices, fish oil and whey protein to the medium resulted in changed morphology and promoted growth as free yeast cells and with weak biofilm structures. Minimum inhibitory concentration of AmB on the biofilms was 0.25 μg ml-1 , and this was eightfold reduced (0.0038 μg ml-1 ) in the presence of the nutritional drinks. CONCLUSIONS The established assay demonstrated applicability for screening of antifungal and anti-biofilm effects of bioactive substances on C. albicans biofilm with clinically relevant morphology. SIGNIFICANCE AND IMPACT OF THE STUDY Candida albicans is the causative agent of the majority of fungal infections globally. The filamentous morphology of C. albicans and the ability to form biofilm are traits known to increase virulence and resistance towards antifungals. This study describes the development of a plate-based in vitro screening method mimicking the filamentous morphology of C. albicans found in vivo. The assay established can thus facilitate efficient antifungal drug discovery and development.
Collapse
Affiliation(s)
- Hanne Haslene‐Hox
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Guro Kruge Nærdal
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Yrr Mørch
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Gunhild Hageskal
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Anne Tøndervik
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | | | - Heidi Johnsen
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Geir Klinkenberg
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Håvard Sletta
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| |
Collapse
|
15
|
Weber F, Dornelas-Figueira LM, Hafiane N, Zaytseva-Zotova D, Barrantes A, Petersen FC, Tiainen H. Can polyphenolic surface modifications prevent fungal colonization of titanium dental implants? Colloids Surf B Biointerfaces 2022; 219:112813. [PMID: 36084512 DOI: 10.1016/j.colsurfb.2022.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Oral biofilms can be a major health problem causing infections and chronic inflammation of mucosal tissue. While much effort is put in the investigation of bacteria in biofilms, the role of fungi is often neglected, despite Candida albicans playing a key role in the formation of multispecies oral biofilms. With the rise of antibiotic resistance, new strategies to reduce microbial growth need to be found. Therefore, plant derived polyphenolic molecules have been suggested to reduce both adhesion and growth of pathogenic bacteria and fungi. In this study, we investigated the use of polyphenolic coatings to reduce adhesion and biofilm formation of C. albicans BWP17 on titanium implants. Tannic acid and pyrogallol coatings altered the hydrophobic and charge properties of titanium surfaces, and both compounds were gradually released as active molecules over time. Despite such effects, we found no significant inhibition on growth and biofilm formation of C. Albicans, indicating that the release of active molecules from the coatings did not reach relevant inhibitory concentrations. However, a potential antibiofilm effect was observed by the pH-dependent disassembly of the polyphenolic layer, which caused the biofilm to detach. Hence, further efforts are required to create tailored implant surfaces, which sustainably reduce microbial growth and adhesion.
Collapse
Affiliation(s)
- Florian Weber
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | | | - Nora Hafiane
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway; Department of Materials Science, ENSIL-ENSCI, Université de Limoges, France
| | - Daria Zaytseva-Zotova
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway
| | - Alejandro Barrantes
- Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Norway
| | | | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Norway.
| |
Collapse
|
16
|
Lee YS, Chen X, Widiyanto TW, Orihara K, Shibata H, Kajiwara S. Curcumin affects function of Hsp90 and drug efflux pump of Candida albicans. Front Cell Infect Microbiol 2022; 12:944611. [PMID: 36237434 PMCID: PMC9551236 DOI: 10.3389/fcimb.2022.944611] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is a pathogenic yeast that causes candidiasis in immunocompromised patients. The overuse of antifungal drugs has led to the development of resistance to such drugs by this fungus, which is a major challenge in antifungal chemotherapy. One approach to this problem involves the utilization of new natural products as an alternative source of antifungals. Curcumin, one such natural product, has been widely studied as a drug candidate and is reported to exhibit antifungal activity against C. albicans. Although studies of the mechanism of curcumin against human cancer cells have shown that it inhibits heat shock protein 90 (Hsp90), little is known about its function against C. albicans. In this paper, using a doxycycline-mediated HSP90 strain and an HSP90-overexpressing strain of C. albicans, we demonstrated that the curcumin triggered a decrease in Hsp90 by affecting it at the post-transcriptional level. This also led to the downregulation of HOG1 and CDR1, resulting in a reduction of the stress response and efflux pump activity of C. albicans. However, the inhibition of HSP90 by curcumin was not due to the inhibition of transcription factors HSF1 or AHR1. We also found that curcumin can not only decrease the transcriptional expression of CDR1, but also inhibit the efflux pump activity of Cdr1. Hence, we conclude that disruption of HSP90 by curcumin could impair cell growth, stress responses and efflux pump activity of C. albicans.
Collapse
Affiliation(s)
- Yean Sheng Lee
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Xinyue Chen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Kanami Orihara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
17
|
Shariati A, Didehdar M, Razavi S, Heidary M, Soroush F, Chegini Z. Natural Compounds: A Hopeful Promise as an Antibiofilm Agent Against Candida Species. Front Pharmacol 2022; 13:917787. [PMID: 35899117 PMCID: PMC9309813 DOI: 10.3389/fphar.2022.917787] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The biofilm communities of Candida are resistant to various antifungal treatments. The ability of Candida to form biofilms on abiotic and biotic surfaces is considered one of the most important virulence factors of these fungi. Extracellular DNA and exopolysaccharides can lower the antifungal penetration to the deeper layers of the biofilms, which is a serious concern supported by the emergence of azole-resistant isolates and Candida strains with decreased antifungal susceptibility. Since the biofilms' resistance to common antifungal drugs has become more widespread in recent years, more investigations should be performed to develop novel, inexpensive, non-toxic, and effective treatment approaches for controlling biofilm-associated infections. Scientists have used various natural compounds for inhibiting and degrading Candida biofilms. Curcumin, cinnamaldehyde, eugenol, carvacrol, thymol, terpinen-4-ol, linalool, geraniol, cineole, saponin, camphor, borneol, camphene, carnosol, citronellol, coumarin, epigallocatechin gallate, eucalyptol, limonene, menthol, piperine, saponin, α-terpineol, β-pinene, and citral are the major natural compounds that have been used widely for the inhibition and destruction of Candida biofilms. These compounds suppress not only fungal adhesion and biofilm formation but also destroy mature biofilm communities of Candida. Additionally, these natural compounds interact with various cellular processes of Candida, such as ABC-transported mediated drug transport, cell cycle progression, mitochondrial activity, and ergosterol, chitin, and glucan biosynthesis. The use of various drug delivery platforms can enhance the antibiofilm efficacy of natural compounds. Therefore, these drug delivery platforms should be considered as potential candidates for coating catheters and other medical material surfaces. A future goal will be to develop natural compounds as antibiofilm agents that can be used to treat infections by multi-drug-resistant Candida biofilms. Since exact interactions of natural compounds and biofilm structures have not been elucidated, further in vitro toxicology and animal experiments are required. In this article, we have discussed various aspects of natural compound usage for inhibition and destruction of Candida biofilms, along with the methods and procedures that have been used for improving the efficacy of these compounds.
Collapse
Affiliation(s)
- Aref Shariati
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Mojtaba Didehdar
- Department of Medical Parasitology and Mycology, Arak University of Medical Sciences, Arak, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar, Iran
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Soroush
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
- Student Research Committee, Khomein University of Medical Sciences, Khomein, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
18
|
Tartor YH, Elmowalid GA, Hassan MN, Shaker A, Ashour DF, Saber T. Promising Anti-Biofilm Agents and Phagocytes Enhancers for the Treatment of Candida albicans Biofilm–Associated Infections. Front Cell Infect Microbiol 2022; 12:807218. [PMID: 35846767 PMCID: PMC9283759 DOI: 10.3389/fcimb.2022.807218] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/30/2022] [Indexed: 01/09/2023] Open
Abstract
Little is known about the interactions among phagocytes and antifungal agents and the antifungal immunomodulatory activities on Candida species biofilms. Here, inhibition of C. albicans biofilms and the interactions among biofilms and phagocytes alone or in combination with essential oils, biological, and chemical agents, or fluconazole were investigated. Biofilm formation by a panel of 28 C. albicans clinical isolates from hospitalized patients, birds, and cattle was tested. The anti-biofilm activities of cinnamon and clove oils, sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (CTAB), and Enterococcus faecalis cell-free supernatant (CFS) in comparison with fluconazole were investigated using crystal violet and XTT reduction assays, expression of hypha-specific and hyphal regulator genes, and scanning electron microscopy (SEM) analysis. Of the tested C. albicans isolates, 15 of 28 (53.6%) were biofilm producers. Cinnamon followed by E. faecalis–CFS, SDS, and CTAB was the most effective inhibitors of planktonic C. albicans and biofilms. Fluconazole was an ineffective inhibitor of C. albicans biofilms. Sessile minimal inhibitory concentration (SMIC50) of cinnamon, SDS, CTAB, and E. faecalis–CFS downregulated the hypha-specific and regulator genes, albeit to various extents, when compared with untreated biofilms (P < 0.001). SEM analysis revealed disruption and deformity of three-dimensional structures in cinnamon oil–treated biofilms. C. albicans sessile cells within biofilm were less susceptible to phagocytosis than planktonic cells. The additive effects of phagocytes and the tested antifungals enabled phagocytes to engulf C. albicans cells rapidly in cinnamon, E. faecalis–CFS, or SDS-treated biofilms. No differences in anti-Candida or anti-biofilm eradication activities were detected among the tested isolates. Our findings reinforce the substantial anti-biofilm activity of cinnamon oil, SDS, and E. faecalis–CFS and provide new avenues for the development of novel anti-biofilm immunotherapies or antifungals that could be used prior to or during the management of cases with biofilm-associated infections.
Collapse
Affiliation(s)
- Yasmine H. Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- *Correspondence: Yasmine H. Tartor, ; ; orcid.org/0000-0003-1246-6548
| | - Gamal A. Elmowalid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed N. Hassan
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa Shaker
- Department of Microbiology, Veterinary Hospital, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Dalia F. Ashour
- Department of Public Health, Dakahlia Veterinary Medicine Directorate, Mansoura, Egypt
| | - Taisir Saber
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| |
Collapse
|
19
|
Kalimuthu S, Alshanta OA, Krishnamoorthy AL, Pudipeddi A, Solomon AP, McLean W, Leung YY, Ramage G, Neelakantan P. Small molecule based anti-virulence approaches against Candida albicans infections. Crit Rev Microbiol 2022; 48:743-769. [PMID: 35232325 DOI: 10.1080/1040841x.2021.2025337] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fungi are considered "silent killers" due to the difficulty of, and delays in diagnosis of infections and lack of effective antifungals. This challenge is compounded by the fact that being eukaryotes, fungi share several similarities with human cellular targets, creating obstacles to drug discovery. Candida albicans, a ubiquitous microbe in the human body is well-known for its role as an opportunistic pathogen in immunosuppressed people. Significantly, C. albicans is resistant to all the three classes of antifungals that are currently clinically available. Over the past few years, a paradigm shift has been recommended in the management of C. albicans infections, wherein anti-virulence strategies are considered an alternative to the discovery of new antimycotics. Small molecules, with a molecular weight <900 Daltons, can easily permeate the cell membrane and modulate the signal transduction pathways to elicit desired virulence inhibitory actions against pathogens. This review dissects in-depth, the discoveries that have been made with small-molecule anti-virulence approaches to tackle C. albicans infections.
Collapse
Affiliation(s)
| | - Om Alkhir Alshanta
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Akshaya Lakshmi Krishnamoorthy
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Akhila Pudipeddi
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - William McLean
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | - Yiu Yan Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Gordon Ramage
- Glasgow Endodontology Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK
| | | |
Collapse
|
20
|
Badr AN, El-Attar MM, Ali HS, Elkhadragy MF, Yehia HM, Farouk A. Spent Coffee Grounds Valorization as Bioactive Phenolic Source Acquired Antifungal, Anti-Mycotoxigenic, and Anti-Cytotoxic Activities. Toxins (Basel) 2022; 14:toxins14020109. [PMID: 35202136 PMCID: PMC8876227 DOI: 10.3390/toxins14020109] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Spent coffee grounds (SCGs), which constitute 75% of original coffee beans, represent an integral part of sustainability. Contamination by toxigenic fungi and their mycotoxins is a hazard that threatens food production. This investigation aimed to examine SCGs extract as antimycotic and anti-ochratoxigenic material. The SCGs were extracted in an eco-friendly way using isopropanol. Bioactive molecules of the extract were determined using the UPLC apparatus. The cytotoxicity on liver cancer cells (Hep-G2) showed moderate activity with selectivity compared with human healthy oral epithelial (OEC) cell lines but still lower than the positive control (Cisplatin). The antibacterial properties were examined against pathogenic strains, and the antifungal was examined against toxigenic fungi using two diffusion assays. Extract potency was investigated by two simulated models, a liquid medium and a food model. The results of the extract showed 15 phenolic acids and 8 flavonoids. Rosmarinic and syringic acids were the most abundant phenolic acids, while apigenin-7-glucoside, naringin, epicatechin, and catechin were the predominant flavonoids in the SCGs extract. The results reflected the degradation efficiency of the extract against the growth of Aspergillus strains. The SCGs recorded detoxification in liquid media for aflatoxins (AFs) and ochratoxin A (OCA). The incubation time of the extract within dough spiked with OCA was affected up to 2 h, where cooking was not affected. Therefore, SCGs in food products could be applied to reduce the mycotoxin contamination of raw materials to the acceptable regulated limits.
Collapse
Affiliation(s)
- Ahmed Noah Badr
- Food Toxicology and Contaminants Department, National Research Centre, Cairo 12622, Egypt
- Correspondence: (A.N.B.); (H.S.A.); Tel.: +20-1000327640 (H.S.A.)
| | - Marwa M. El-Attar
- Radioisotopes Department, Nuclear Research Center, Atomic Energy Authority, Cairo 11787, Egypt;
| | - Hatem S. Ali
- Food Technology Department, National Research Center, Cairo 12622, Egypt
- Correspondence: (A.N.B.); (H.S.A.); Tel.: +20-1000327640 (H.S.A.)
| | - Manal F. Elkhadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Hany M. Yehia
- Food Science and Nutrition Department, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Food Science and Nutrition Department, Faculty of Home Economics, Helwan University, Cairo 11221, Egypt
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Cairo 12622, Egypt;
| |
Collapse
|
21
|
Azari B, Zahmatkesh Moghadam S, Zarrinfar H, Tasbandi A, Jamialahmadi T, Sahebkar A. Antifungal Activity of Curcuminoids and Difluorinated Curcumin Against Clinical Isolates of Candida Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:123-129. [PMID: 34981474 DOI: 10.1007/978-3-030-73234-9_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Acquired resistance to antifungals is rising particularly among Candida species. Herbal ingredients have biological and pharmacological activities, which make them potential fungicidal agents. The present study investigated the effects of curcumin (CUR) and difluorinated curcumin (CDF) on Candida species. MATERIAL AND METHOD CUR and CDF were examined against Candida isolates obtained from patients candidemia due to C. albicans (n = 13), C. dubliniensis (n = 2), C. parapsilosis (n = 2), and C. tropicalis (n = 1); and laboratory strains of C. albicans (TIMML 1292 and TIMML 183), C. krusei (TIMML 1321), C. parapsilosis (TIMML 2201), and C. tropicalis (TIMML 731) based on the M27-A3 guideline. RESULTS At the concentrations of 1-512μg/mL, none of the CDF and CUR showed a significant minimum inhibitory concentration (MIC) range against Candida isolates. There was no significant difference between the effects of CUR and CDF against Candida species. CONCLUSION The CUR and CDF did not exert any inhibitory effect on the growth of Candida strains. Any possible effect on other yeast and filamentous fungi needs to be further investigated.
Collapse
Affiliation(s)
- Behnam Azari
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | | | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Aida Tasbandi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Fortification of coconut water with microencapsulated grape pomace extract towards a novel electrolyte beverage: Biological, sensorial and quality aspects. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Saeed BQ, Hussain K, Akbar N, Khan H, Siddiqui R, Shah RM, Khan NA. Nanovesicles containing curcumin hold promise in the development of new formulations of anti-Acanthamoebic agents. Mol Biochem Parasitol 2021; 247:111430. [PMID: 34813865 DOI: 10.1016/j.molbiopara.2021.111430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
In this study, curcumin-nanoformulations were tested for anti-Acanthamoebic properties. Curcumin-loaded nanovesicles were synthesized, followed by characterization with Fourier transform infrared spectroscopy, ultraviolet-visible spectrophotometry, and atomic force microscopy. Using amoebicidal assay, the effects of curcumin-nanoformulations were investigated against A. castellanii belonging to the T4 genotype. To determine the effects of curcumin-nanoformulations on host cells, cytotoxicity assays were performed using human keratinocyte cells (HaCat). The results revealed that nanovesicles formulation of curcumin enhanced the anti-Acanthamoebic effects of curcumin as compared with curcumin alone. The viability decreased with increasing concentration of curcumin and/or lipid-based carrier (Noisome) (FCBR18) in a dose-dependent manner. Curcumin and curcumin-loaded nanovesicles exhibited minimal cytotoxic effects against human cells in all tested concentrations. Both concentrations of FCBR18 proved effective in inhibiting amoebae excystation. In contrast, curcumin alone showed insignificant effects against amoebae excystation. Taken together, these findings clearly showed that curcumin-loaded nanovesicles show enhanced anti-Acanthamoebic efficacy without harming human cells, and these nanotherapeutics may hold promise in the development of new formulations of anti-Acanthamoebic agents.
Collapse
Affiliation(s)
- Balsam Qubais Saeed
- Department of Clinical Sciences, College of Medicine, University of Sharjah, United Arab Emirates.
| | - Kashif Hussain
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Noor Akbar
- College of Arts and Sciences, American University of Sharjah, United Arab Emirates
| | - Hamza Khan
- College of Arts and Sciences, American University of Sharjah, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, United Arab Emirates
| | - Raza Muhammad Shah
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, United Arab Emirates.
| |
Collapse
|
24
|
Querido MM, Paulo I, Hariharakrishnan S, Rocha D, Barbosa N, Galhano dos Santos R, Bordado JM, Teixeira JP, Pereira CC. Self-Disinfecting Paints with the Natural Antimicrobial Substances: Colophony and Curcumin. Antibiotics (Basel) 2021; 10:antibiotics10111351. [PMID: 34827290 PMCID: PMC8615116 DOI: 10.3390/antibiotics10111351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
The risk of infection arising from indirect sources-namely, contaminated surfaces-has been proved, particularly in healthcare facilities. In the attempt to minimize this problem, innumerable research projects involving the development of surfaces with self-disinfecting properties are being conducted. In this work, wall-paints with self-disinfecting properties were developed with the scope of being applied in environments prone to contamination, such as those at healthcare settings. Our approach was to develop new paint formulations containing two natural plant-based products with known antimicrobial activity-colophony (CLF) and curcumin (CUR). The natural substances were separately incorporated on a commercial paint and their antibacterial activity was evaluated with several bacterial species following ISO 22196. To assess the paints' safety, cytotoxicity tests were performed on HaCaT and A549 cell lines, using tests on extracts and direct contact tests, as suggested by the standardized protocol ISO 10993. In general, both paints containing CLF and CUR were able to reduce the bacterial growth after 24 h, compared with the control, the commercial unmodified paint. Colophony was even able to reduce the number of culturable bacteria by over 2 log for Staphylococcus aureus, Escherichia coli, and Bacillus cereus. Regarding the cytotoxicity tests performed (WST-1, NRU, and LDH), both formulations revealed promising results regardless of the methodology used.
Collapse
Affiliation(s)
- Micaela Machado Querido
- Environmental Health Department, National Institute of Health, 4000-055 Porto, Portugal; (M.M.Q.); (C.C.P.)
- EPIUnit, Institute of Public Health, University of Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Ivo Paulo
- CERENA—Centre for Natural Resources and the Environment, Instituto Superior Técnico, 1049-001 Lisboa, Portugal; (I.P.); (S.H.); (R.G.d.S.); (J.M.B.)
| | - Sriram Hariharakrishnan
- CERENA—Centre for Natural Resources and the Environment, Instituto Superior Técnico, 1049-001 Lisboa, Portugal; (I.P.); (S.H.); (R.G.d.S.); (J.M.B.)
| | - Daniel Rocha
- Barbot—Indústria de Tintas, S.A., 4410-295 Vila Nova de Gaia, Portugal; (D.R.); (N.B.)
| | - Nuno Barbosa
- Barbot—Indústria de Tintas, S.A., 4410-295 Vila Nova de Gaia, Portugal; (D.R.); (N.B.)
| | - Rui Galhano dos Santos
- CERENA—Centre for Natural Resources and the Environment, Instituto Superior Técnico, 1049-001 Lisboa, Portugal; (I.P.); (S.H.); (R.G.d.S.); (J.M.B.)
| | - João Moura Bordado
- CERENA—Centre for Natural Resources and the Environment, Instituto Superior Técnico, 1049-001 Lisboa, Portugal; (I.P.); (S.H.); (R.G.d.S.); (J.M.B.)
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health, 4000-055 Porto, Portugal; (M.M.Q.); (C.C.P.)
- EPIUnit, Institute of Public Health, University of Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Correspondence:
| | - Cristiana Costa Pereira
- Environmental Health Department, National Institute of Health, 4000-055 Porto, Portugal; (M.M.Q.); (C.C.P.)
- EPIUnit, Institute of Public Health, University of Porto, 4050-600 Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
| |
Collapse
|
25
|
Morais LVFD, Luz JRDD, Nascimento TESD, Azevedo MADS, Rocha WPDS, Araujo-Silva G, Ururahy MAG, Chaves GM, Brandão-Neto J, López JA, Santos ECG, Almeida MDG. Phenolic Composition, Toxicity Potential, and Antimicrobial Activity of Licania rigida Benth (Chrysobalanaceae) Leaf Extracts. J Med Food 2021; 25:97-109. [PMID: 34714151 DOI: 10.1089/jmf.2021.0059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study was conducted to evaluate the phenolic composition, toxicity, and antimicrobial activity of Licania rigida Benth, an underexploited wild Licania species. L. rigida leaf fractions (ethyl alcohol and ethyl acetate) were analyzed for their phenolic compound and flavonoid total, and high-performance liquid chromatography/ultraviolet spectra chromatographic profiles. Regarding the extract biological effects, toxicity was measured by acute oral toxicity in Wistar rats, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] method, and apoptosis indicators with DAPI in VERO cells, whereas well-agar diffusion and broth microdilution assays were applied to evaluate the antimicrobial ability. The phytochemical analysis resulted in significant amounts of phenolic compounds and total flavonoids in the extract and fraction, with flavonol-3-O-glycosylates as the main constituent. Regarding the extract and fraction antimicrobial activity, the results showed a significant effect against gram-positive bacteria and fungi, among which Staphylococcus epidermidis and Candida krusei displayed more susceptibility. No toxicity effects were observed in animals. Concerning the cytotoxicity assay, only the highest dose tested exhibited a minimal toxic effect on the analyzed cell lines. These results are relevant considering the increase of multiresistant microorganisms to conventional treatments applied. Therefore, investigating the pharmacological properties of the genus Licania is promising in the search for new sources of antimicrobial compounds.
Collapse
Affiliation(s)
| | - Jefferson Romáryo Duarte da Luz
- Post-Graduation Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.,Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | - Gabriel Araujo-Silva
- Organic Chemistry and Biochemistry Laboratory, Amapá State University (UEAP), Macapá, Brazil
| | - Marcela Abbott Galvão Ururahy
- Post-graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Guilherme Maranhão Chaves
- Post-graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.,Post-Graduation Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - José Brandão-Neto
- Department of Clinical Medicine, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jorge A López
- Industrial Biotechnology Graduation Program, Tiradentes University, Aracaju, Brazil.,Molecular Biology Laboratory, Research and Technology Institute, Aracaju, Brazil
| | - Elizabeth Cristina Gomes Santos
- Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maria das Graças Almeida
- Post-graduation Program in Pharmaceutical Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.,Post-Graduation Program in Health Sciences, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil.,Multidisciplinary Research Laboratory, DACT, Health Sciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
26
|
Girardot M, Millot M, Hamion G, Billard JL, Juin C, Ntoutoume GMAN, Sol V, Mambu L, Imbert C. Lichen Polyphenolic Compounds for the Eradication of Candida albicans Biofilms. Front Cell Infect Microbiol 2021; 11:698883. [PMID: 34604104 PMCID: PMC8481799 DOI: 10.3389/fcimb.2021.698883] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
Lichens, due to their symbiotic nature (association between fungi and algae), constitute a chemical factory of original compounds. Polyphenolic compounds (depsides and depsidones) are the main constituents of lichens and are exclusively biosynthesized by these organisms. A panel of 11 polyphenols was evaluated for their anti-biofilm activity against Candida albicans biofilms on the maturation phase (anti-maturation) (MMIC50) as well as on preformed 24-h-old biofilm (anti-biofilm) (MBIC50) using the XTT assay. Minimum inhibitory concentrations of compounds (MICs) against C. albicans planktonic yeast were also determined using a broth microdilution method. While none of the tested compounds were active against planktonic cells (IC50 > 100 µg/ml), three depsides slowed the biofilm maturation (MMIC50 ≤12.5 µg/ml after 48 h of contact with Candida cells). Evernic acid was able to both slow the maturation and reduce the already formed biofilms with MBIC50 ≤12.5 µg/ml after 48 h of contact with the biofilm. This compound shows a weak toxicity against HeLa cells (22%) at the minimal active concentration and no hemolytic activity at 100 µg/ml. Microscopic observations of evernic acid and optimization of its solubility were performed to further study this compound. This work confirmed the anti-biofilm potential of depsides, especially evernic acid, and allows to establish the structure-activity relationships to better explain the anti-biofilm potential of these compounds.
Collapse
Affiliation(s)
- Marion Girardot
- UMR CNRS 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Marion Millot
- EA 7500, Laboratoire PEIRENE, Université de Limoges, Limoges, France
| | - Guillaume Hamion
- UMR CNRS 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Jeanne-Louise Billard
- UMR CNRS 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | - Camille Juin
- UMR CNRS 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| | | | - Vincent Sol
- EA 7500, Laboratoire PEIRENE, Université de Limoges, Limoges, France
| | - Lengo Mambu
- EA 7500, Laboratoire PEIRENE, Université de Limoges, Limoges, France
| | - Christine Imbert
- UMR CNRS 7267, Laboratoire Ecologie et Biologie des Interactions, Université de Poitiers, Poitiers, France
| |
Collapse
|
27
|
Méndez D, Escalona-Arranz JC, Pérez EM, Foubert K, Matheeussen A, Tuenter E, Cuypers A, Cos P, Pieters L. Antifungal Activity of Extracts, Fractions, and Constituents from Coccoloba cowellii Leaves. Pharmaceuticals (Basel) 2021; 14:ph14090917. [PMID: 34577616 PMCID: PMC8469486 DOI: 10.3390/ph14090917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/01/2022] Open
Abstract
Coccoloba cowellii Britton (Polygonaceae, order Caryophyllales) is an endemic and critically endangered plant species that only grows in the municipality of Camagüey, a province of Cuba. A preliminary investigation of its total methanolic extract led to the discovery of promising antifungal activity. In this study, a bioassay-guided fractionation allowed the isolation of quercetin and four methoxyflavonoids: 3-O-methylquercetin, myricetin 3,3′,4′-trimethyl ether, 6-methoxymyricetin 3,4′-dimethyl ether, and 6-methoxymyricetin 3,3′,4′-trimethyl ether. The leaf extract, fractions, and compounds were tested against various fungi and showed strong in vitro antifungal activity against Cryptococcus neoformans and various Candida spp. with no cytotoxicity (CC50 > 64.0 µg/mL) on MRC-5 SV2 cells, determined by a resazurin assay. A Candida albicans SC5314 antibiofilm assay indicated that the antifungal activity of C. cowellii extracts and constituents is mainly targeted to planktonic cells. The total methanolic extract showed higher and broader activity compared with the fractions and mixture of compounds.
Collapse
Affiliation(s)
- Daniel Méndez
- Chemistry Department, Faculty of Applied Sciences, University of Camagüey, Carretera de Circunvalación Km 5½, Camagüey 74650, Cuba; (D.M.); (E.M.P.)
| | - Julio C. Escalona-Arranz
- Pharmacy Department, Faculty of Natural and Exact Sciences, Universidad de Oriente, Avenida Patricio Lumumba s/n, Santiago de Cuba 90500, Cuba
- Correspondence: (J.C.E.-A.); (L.P.)
| | - Enrique Molina Pérez
- Chemistry Department, Faculty of Applied Sciences, University of Camagüey, Carretera de Circunvalación Km 5½, Camagüey 74650, Cuba; (D.M.); (E.M.P.)
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium; (K.F.); (E.T.)
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium; (A.M.); (P.C.)
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium; (K.F.); (E.T.)
| | - Ann Cuypers
- Centre for Environmental Sciences, Campus Diepenbeek, Hasselt University, Agoralaan Building D, BE-3590 Diepenbeek, Belgium;
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium; (A.M.); (P.C.)
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerp, Belgium; (K.F.); (E.T.)
- Correspondence: (J.C.E.-A.); (L.P.)
| |
Collapse
|
28
|
Kimani BG, Kerekes EB, Szebenyi C, Krisch J, Vágvölgyi C, Papp T, Takó M. In Vitro Activity of Selected Phenolic Compounds against Planktonic and Biofilm Cells of Food-Contaminating Yeasts. Foods 2021; 10:1652. [PMID: 34359522 PMCID: PMC8307438 DOI: 10.3390/foods10071652] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022] Open
Abstract
Phenolic compounds are natural substances that can be obtained from plants. Many of them are potent growth inhibitors of foodborne pathogenic microorganisms, however, phenolic activities against spoilage yeasts are rarely studied. In this study, planktonic and biofilm growth, and the adhesion capacity of Pichia anomala, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Debaryomyces hansenii spoilage yeasts were investigated in the presence of hydroxybenzoic acid, hydroxycinnamic acid, stilbene, flavonoid and phenolic aldehyde compounds. The results showed significant anti-yeast properties for many phenolics. Among the tested molecules, cinnamic acid and vanillin exhibited the highest antimicrobial activity with minimum inhibitory concentration (MIC) values from 500 µg/mL to 2 mg/mL. Quercetin, (-)-epicatechin, resveratrol, 4-hydroxybenzaldehyde, p-coumaric acid and ferulic acid were also efficient growth inhibitors for certain yeasts with a MIC of 2 mg/mL. The D. hansenii, P. anomala and S. pombe biofilms were the most sensitive to the phenolics, while the S. cerevisiae biofilm was quite resistant against the activity of the compounds. Fluorescence microscopy revealed disrupted biofilm matrix on glass surfaces in the presence of certain phenolics. Highest antiadhesion activity was registered for cinnamic acid with inhibition effects between 48% and 91%. The active phenolics can be natural interventions against food-contaminating yeasts in future preservative developments.
Collapse
Affiliation(s)
- Bernard Gitura Kimani
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
| | - Erika Beáta Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
| | - Csilla Szebenyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
- MTA-SZTE “Lendület” Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Judit Krisch
- Institute of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, H-6724 Szeged, Hungary;
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
| | - Tamás Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
- MTA-SZTE “Lendület” Fungal Pathogenicity Mechanisms Research Group, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary
| | - Miklós Takó
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, H-6726 Szeged, Hungary; (B.G.K.); (E.B.K.); (C.S.); (C.V.); (T.P.)
| |
Collapse
|
29
|
Yi F, Wu K, Yu G, Su C. Preparation of Pickering emulsion based on soy protein isolate-gallic acid with outstanding antioxidation and antimicrobial. Colloids Surf B Biointerfaces 2021; 206:111954. [PMID: 34229175 DOI: 10.1016/j.colsurfb.2021.111954] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023]
Abstract
This study investigated a novel antioxidant and antimicrobial Pickering emulsion stabilized by soy protein isolate (SPI) and gallic acid (GA) as an excellent protective delivery medium for lipophilic functional food. SPI-GA complex nanoparticles were fabricated by a covalent cross-linking mechanism under alkaline conditions with a small particle size (42.93-24.91 nm) and high zeta potential (26.92-38.58 -mV), which led to improved stability at high GA concentrations. Without the addition of preservatives, it was found that SPI-GA complex nanoparticles have a certain antimicrobial ability. Using these nanoparticles as the only stabilizers, outstanding antioxidant and antimicrobial Pickering emulsions could be easily prepared, and they had a small droplet size (948.09-457.82 nm), great stability and inhibited lipid peroxidation and antibacterial ability. Oxidation and microbial protection proceeded in a GA concentration-dependent manner. This study provides a novel way to prepare functionalized Pickering emulsions as delivery media for functional lipophilic raw materials.
Collapse
Affiliation(s)
- Fengping Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Kaiwen Wu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Genfa Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China.
| | - Chang Su
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China.
| |
Collapse
|
30
|
Rajasekar V, Darne P, Prabhune A, Kao RYT, Solomon AP, Ramage G, Samaranayake L, Neelakantan P. A curcumin-sophorolipid nanocomplex inhibits Candida albicans filamentation and biofilm development. Colloids Surf B Biointerfaces 2021; 200:111617. [PMID: 33592455 DOI: 10.1016/j.colsurfb.2021.111617] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022]
Abstract
Candida albicans is an opportunistic fungal pathogen that is highly resistant to contemporary antifungals, due to their biofilm lifestyle. The ability of C. albicans to invade human tissues is due to its filamentation. Therefore, inhibition of biofilms and filamentation of the yeast are high value targets to develop the next-generation antifungals. Curcumin (CU) is a natural polyphenol with excellent pharmacological attributes, but limitations such as poor solubility, acid, and enzyme tolerance have impeded its practical utility. Sophorolipids (SL) are biologically-derived surfactants that serve as efficient carriers of hydrophobic molecules such as curcumin into biofilms. Here, we synthesised a curcumin-sophorolipid nanocomplex (CUSL), and comprehensively evaluated its effects on C. albicans biofilms and filamentation. Our results demonstrated that sub-inhibitory concentration of CUSL (9.37 μg/mL) significantly inhibited fungal adhesion to substrates, and subsequent biofilm development, maturation, and filamentation. This effect was associated with significant downregulation of a select group of biofilm, adhesins, and hyphal regulatory genes. In conclusion, the curcumin-sophorolipid nanocomplex is a potent inhibitor of the two major virulence attributes of C. albicans, biofilm formation and filamentation, thus highlighting its promise as a putative anti-fungal agent with biofilm penetrative potential.
Collapse
Affiliation(s)
- Vidhyashree Rajasekar
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region; Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, India
| | - Priti Darne
- Green Pyramid Biotech Private Limited, Pune, India
| | | | - Richard Y T Kao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre of Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, India
| | - Gordon Ramage
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry & Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Lakshman Samaranayake
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Prasanna Neelakantan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
31
|
Cheraghipour K, Ezatpour B, Masoori L, Marzban A, Sepahvand A, Rouzbahani AK, Moridnia A, Khanizadeh S, Mahmoudvand H. Anti-Candida Activity of Curcumin: A Systematic Review. Curr Drug Discov Technol 2021; 18:379-390. [PMID: 32418527 DOI: 10.2174/1570163817666200518074629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Curcumin is one of the important natural compounds that is extracted from turmeric. This compound and its derivatives have numerous biological properties, including antioxidant, anticancer, anti-inflammatory, antimicrobial, and healing effects. Extensive research in various fields has been conducted on turmeric as it is widely used as a food additive. The significant antifungal activity is one of the major effects of curcumin. In this paper, recent studies on the effects of different forms of curcumin drug on the candidiasis were systematically examined and discussed. The data in this study were extracted from the articles and reports published in the Web of Science, Google Scholar, PubMed, and Scopus databases. After the preliminary investigation, relevant reports were selected and classified based on the incorporated formulation and purpose of the study. After a systematic discussion of the data, it was found that the use of medicinal forms based on nanoparticles can increase the absorption and target the controlled release of curcumin with a more effective role compared to other formulations. Consequently, it can be concluded that new methods of modern medicine can be employed to increase the efficacy of natural pharmaceutical compounds used in the past. In this regard, the present study analyzed the effect of curcumin against various Candida infections, using the recent data. It was found that applying a combination of drug formulation or the formulation of curcumin and its derivatives can be an effective strategy to overcome the medicine resistance in fungal infections, especially candidiasis.
Collapse
Affiliation(s)
- Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Behrouz Ezatpour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Leila Masoori
- Department of Laboratory Sciences, School of Allied Medical Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Asghar Sepahvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Abbas Moridnia
- Department of Genetics and Molecular Biology, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hossein Mahmoudvand
- Nutritional Health Research Center, Lorestan University of Medical Sciencs, Khorramabad, Iran
| |
Collapse
|
32
|
Ivanov M, Kannan A, Stojković DS, Glamočlija J, Calhelha RC, Ferreira ICFR, Sanglard D, Soković M. Flavones, Flavonols, and Glycosylated Derivatives-Impact on Candida albicans Growth and Virulence, Expression of CDR1 and ERG11, Cytotoxicity. Pharmaceuticals (Basel) 2020; 14:ph14010027. [PMID: 33396973 PMCID: PMC7824033 DOI: 10.3390/ph14010027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Due to the high incidence of fungal infections worldwide, there is an increasing demand for the development of novel therapeutic approaches. A wide range of natural products has been extensively studied, with considerable focus on flavonoids. The antifungal capacity of selected flavones (luteolin, apigenin), flavonols (quercetin), and their glycosylated derivatives (quercitrin, isoquercitrin, rutin, and apigetrin) along with their impact on genes encoding efflux pumps (CDR1) and ergosterol biosynthesis enzyme (ERG11) has been the subject of this study. Cytotoxicity of flavonoids towards primary liver cells has also been addressed. Luteolin, quercitrin, isoquercitrin, and rutin inhibited growth of Candida albicans with the minimal inhibitory concentration of 37.5 µg/mL. The application of isoquercitrin has reduced C. albicans biofilm establishing capacities for 76%, and hyphal formation by yeast. In vitro treatment with apigenin, apigetrin, and quercitrin has downregulated CDR1. Contrary to rutin and apigenin, isoquercitrin has upregulated ERG11. Except apigetrin and quercitrin (90 µg/mL and 73 µg/mL, respectively inhibited 50% of the net cell growth), the examined flavonoids did not exhibit cytotoxicity. The reduction of both fungal virulence and expression of antifungal resistance-linked genes was the most pronounced for apigenin and apigetrin; these results indicate flavonoids’ indispensable capacity for further development as part of an anticandidal therapy or prevention strategy.
Collapse
Affiliation(s)
- Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (D.S.S.); (J.G.)
| | - Abhilash Kannan
- Institute of Microbiology, University Hospital Lausanne and University Hospital Center, Rue du Bugnon 48, 1011 Lausanne, Switzerland; (A.K.); (D.S.)
| | - Dejan S. Stojković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (D.S.S.); (J.G.)
| | - Jasmina Glamočlija
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (D.S.S.); (J.G.)
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (R.C.C.); (I.C.F.R.F.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (R.C.C.); (I.C.F.R.F.)
| | - Dominique Sanglard
- Institute of Microbiology, University Hospital Lausanne and University Hospital Center, Rue du Bugnon 48, 1011 Lausanne, Switzerland; (A.K.); (D.S.)
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (M.I.); (D.S.S.); (J.G.)
- Correspondence:
| |
Collapse
|
33
|
Zara G, Budroni M, Mannazzu I, Fancello F, Zara S. Yeast biofilm in food realms: occurrence and control. World J Microbiol Biotechnol 2020; 36:134. [PMID: 32776210 PMCID: PMC7415760 DOI: 10.1007/s11274-020-02911-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
In natural environments, microorganisms form microbial aggregates called biofilms able to adhere to a multitude of different surfaces. Yeasts make no exception to this rule, being able to form biofilms in a plethora of environmental niches. In food realms, yeast biofilms may cause major problems due to their alterative activities. In addition, yeast biofilms are tenacious structures difficult to eradicate or treat with the current arsenal of antifungal agents. Thus, much effort is being made to develop novel approaches to prevent and disrupt yeast biofilms, for example through the use of natural antimicrobials or small molecules with both inhibiting and dispersing properties. The aim of this review is to provide a synopsis of the most recent literature on yeast biofilms regarding: (i) biofilm formation mechanisms; (ii) occurrence in food and in food-related environments; and (iii) inhibition and dispersal using natural compounds, in particular.
Collapse
Affiliation(s)
- Giacomo Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| | - Marilena Budroni
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Francesco Fancello
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Severino Zara
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
34
|
Su S, Li X, Yang X, Li Y, Chen X, Sun S, Jia S. Histone acetylation/deacetylation in Candida albicans and their potential as antifungal targets. Future Microbiol 2020; 15:1075-1090. [PMID: 32854542 DOI: 10.2217/fmb-2019-0343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recently, the incidence of invasive fungal infections has significantly increased. Candida albicans (C. albicans) is the most common opportunistic fungal pathogen that infects humans. The limited number of available antifungal agents and the emergence of drug resistance pose difficulties to treatment, thus new antifungals are urgently needed. Through their functions in DNA replication, DNA repair and transcription, histone acetyltransferases (HATs) and histone deacetylases (HDACs) perform essential functions relating to growth, virulence, drug resistance and stress responses of C. albicans. Here, we summarize the physiological and pathological functions of HATs/HDACs, potential antifungal targets and underlying antifungal compounds that impact histone acetylation and deacetylation. We anticipate this review will stimulate the identification of new HAT/HDAC-related antifungal targets and antifungal agents.
Collapse
Affiliation(s)
- Shan Su
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Xiuyun Li
- Department of Pharmacy, Qilu Children’s Hospital, Shandong University, Jinan 250022, China
| | - Xinmei Yang
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, People’s Republic of China
| | - Yiman Li
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Xueqi Chen
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, People’s Republic of China
| | - Shujuan Sun
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, Shandong Province, People’s Republic of China
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, People’s Republic of China
| | - Shuang Jia
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, Shandong Province, People’s Republic of China
| |
Collapse
|
35
|
Abstract
Fungal infections with increasing resistance to conventional therapies are a growing concern. Candida albicans is a major opportunistic yeast responsible for mucosal and invasive infections. Targeting the initial step of the infection process (i.e., C. albicans adhesion to the host cell) is a promising strategy. A wide variety of molecules can interfere with adhesion processes via an assortment of mechanisms. Herein, we focus on how small molecules disrupt biosynthesis of fungal cell wall components and membrane structure, prevent the localization of GPI-anchor proteins, inhibit production of enzymes involved in adhesion, downregulate genes encoding adhesins and competitively inhibit receptor interactions. As a result, adhesion of C. albicans to host cells is reduced, paving the way to new classes of antifungal agents.
Collapse
|
36
|
Hrichi S, Chaabane-Banaoues R, Giuffrida D, Mangraviti D, Oulad El Majdoub Y, Rigano F, Mondello L, Babba H, Mighri Z, Cacciola F. Effect of seasonal variation on the chemical composition and antioxidant and antifungal activities of Convolvulus althaeoides L. leaf extracts. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
37
|
Al Aboody MS, Mickymaray S. Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics (Basel) 2020; 9:E45. [PMID: 31991883 PMCID: PMC7168129 DOI: 10.3390/antibiotics9020045] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of fungal infections is growing at an alarming pace and the pathogenesis is still not clearly understood. Recurrence of these fungal diseases is often due to their evolutionary avoidance of antifungal resistance. The development of suitable novel antimicrobial agents for fungal diseases continues to be a major problem in the current clinical field. Hence, it is urgently necessary to develop surrogate agents that are more effective than conventional available drugs. Among the remarkable innovations from earlier investigations on natural-drugs, flavonoids are a group of plant-derived substances capable of promoting many valuable effects on humans. The identification of flavonoids with possible antifungal effects at small concentrations or in synergistic combinations could help to overcome this problem. A combination of flavonoids with available drugs is an excellent approach to reduce the side effects and toxicity. This review focuses on various naturally occurring flavonoids and their antifungal activities, modes of action, and synergetic use in combination with conventional drugs.
Collapse
Affiliation(s)
| | - Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Riyadh Region, Majmaah 11952, Saudi Arabia;
| |
Collapse
|
38
|
Cieslik W, Szczepaniak J, Krasowska A, Musiol R. Antifungal Styryloquinolines as Candida albicans Efflux Pump Inhibitors: Styryloquinolines are ABC Transporter Inhibitors. Molecules 2020; 25:molecules25020345. [PMID: 31952124 PMCID: PMC7024281 DOI: 10.3390/molecules25020345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/21/2022] Open
Abstract
Styrylquinolines are heterocyclic compounds that are known for their antifungal and antimicrobial activity. Metal complexation through hydroxyl groups has been claimed to be a plausible mechanism of action for these types of compounds. A series of novel structures with protected hydroxyl groups have been designed and synthesized to verify the literature data. Their antifungal activity against wild-type Candida albicans strain and mutants with silenced efflux pumps activity has been determined. Combinations with fluconazole revealed synergistic interactions that were dependent on the substitution pattern. These results open a new route for designing active antifungal agents on a styrylquinoline scaffold.
Collapse
Affiliation(s)
- Wioleta Cieslik
- Institute of Chemistry, University of Silesia, 75. Pułku Piechoty 1, 41-500 Chorzów, Poland;
| | - Joanna Szczepaniak
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (J.S.); (A.K.)
| | - Anna Krasowska
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland; (J.S.); (A.K.)
| | - Robert Musiol
- Institute of Chemistry, University of Silesia, 75. Pułku Piechoty 1, 41-500 Chorzów, Poland;
- Correspondence: ; Tel.: +48‐32‐3497726; Fax: +48‐32‐259‐99‐78
| |
Collapse
|
39
|
Ferreira MRA, Santiago RR, Silva-Rocha WP, Souza LBFCD, Faria MGI, Mello JCPD, Langassner SMZ, Chaves GM, Milan EP, Svidzinski TIE, Soares LAL. In vitro antifungal activity and phytochemical characterization of Eugenia uniflora, Libidibia ferrea and Psidium guajava. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902020000118456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
40
|
de Freitas MA, Silva Alves AI, Andrade JC, Leite-Andrade MC, Lucas dos Santos AT, Felix de Oliveira T, dos Santos FDAG, Silva Buonafina MD, Melo Coutinho HD, Alencar de Menezes IR, Bezerra Morais-Braga MF, Pereira Neves R. Evaluation of the Antifungal Activity of the Licania Rigida Leaf Ethanolic Extract against Biofilms Formed by Candida Sp. Isolates in Acrylic Resin Discs. Antibiotics (Basel) 2019; 8:antibiotics8040250. [PMID: 31817228 PMCID: PMC6963540 DOI: 10.3390/antibiotics8040250] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/17/2022] Open
Abstract
Candida sp. treatment has become a challenge due to the formation of biofilms which favor resistance to conventional antifungals, making the search for new compounds necessary. The objective of this study was to identify the composition of the Licania rigida Benth. leaf ethanolic extract and to verify its antifungal activity against Candida sp. and its biofilms. The composition identification was performed using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) technique. The antifungal activity of extract and fluconazole against planktonic cells and biofilms was verified through the minimum inhibitory concentration (MIC) following biofilm induction and quantification in acrylic resin discs by reducing tetrazolic salt, with all isolates forming biofilms within 48 h. Six constituents were identified in the extract, and the compounds identified are derivatives from phenolic compounds such as flavonoids (epi) gallocatechin Dimer, epigallocatechin and gallocatechin, Myricetin-O-hexoside, Myricitrin, and Quercetin-O-rhamnoside. The extract reduced biofilm formation in some of the strains analyzed, namely C. tropicalis URM5732, C. krusei INCQS40042, and C. krusei URM6352. This reduction was also observed in the treatment with fluconazole with some of the analyzed strains. The extract showed significant antifungal and anti-biofilm activities with some of the strains tested.
Collapse
Affiliation(s)
- Maria Audilene de Freitas
- Laboratory of Medical Mycology Sylvio Campos, Department of Mycology, Federal University of Pernambuco-UFPE, Recife, PE 50670-901, Brazil; (M.A.d.F.); (A.I.S.A.); (M.C.L.-A.); (T.F.d.O.); (F.d.A.G.d.S.); (M.D.S.B.); (R.P.N.)
| | - Adryelle Idalina Silva Alves
- Laboratory of Medical Mycology Sylvio Campos, Department of Mycology, Federal University of Pernambuco-UFPE, Recife, PE 50670-901, Brazil; (M.A.d.F.); (A.I.S.A.); (M.C.L.-A.); (T.F.d.O.); (F.d.A.G.d.S.); (M.D.S.B.); (R.P.N.)
| | - Jacqueline Cosmo Andrade
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri—URCA, Crato, CE 63105-000, Brazil; (J.C.A.); (H.D.M.C.)
| | - Melyna Chaves Leite-Andrade
- Laboratory of Medical Mycology Sylvio Campos, Department of Mycology, Federal University of Pernambuco-UFPE, Recife, PE 50670-901, Brazil; (M.A.d.F.); (A.I.S.A.); (M.C.L.-A.); (T.F.d.O.); (F.d.A.G.d.S.); (M.D.S.B.); (R.P.N.)
| | - Antonia Thassya Lucas dos Santos
- Laboratory of Mycology applied of Cariri, Department of biological Sciences, Regional University of Cariri—URCA, Crato, CE 63105-000, Brazil; (A.T.L.d.S.); (M.F.B.M.-B.)
| | - Tatiana Felix de Oliveira
- Laboratory of Medical Mycology Sylvio Campos, Department of Mycology, Federal University of Pernambuco-UFPE, Recife, PE 50670-901, Brazil; (M.A.d.F.); (A.I.S.A.); (M.C.L.-A.); (T.F.d.O.); (F.d.A.G.d.S.); (M.D.S.B.); (R.P.N.)
| | - Franz de Assis G. dos Santos
- Laboratory of Medical Mycology Sylvio Campos, Department of Mycology, Federal University of Pernambuco-UFPE, Recife, PE 50670-901, Brazil; (M.A.d.F.); (A.I.S.A.); (M.C.L.-A.); (T.F.d.O.); (F.d.A.G.d.S.); (M.D.S.B.); (R.P.N.)
| | - Maria Daniela Silva Buonafina
- Laboratory of Medical Mycology Sylvio Campos, Department of Mycology, Federal University of Pernambuco-UFPE, Recife, PE 50670-901, Brazil; (M.A.d.F.); (A.I.S.A.); (M.C.L.-A.); (T.F.d.O.); (F.d.A.G.d.S.); (M.D.S.B.); (R.P.N.)
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri—URCA, Crato, CE 63105-000, Brazil; (J.C.A.); (H.D.M.C.)
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry, Department of chemical biology, Regional University of Cariri—URCA, Crato, CE 63105-000, Brazil
- Correspondence:
| | - Maria Flaviana Bezerra Morais-Braga
- Laboratory of Mycology applied of Cariri, Department of biological Sciences, Regional University of Cariri—URCA, Crato, CE 63105-000, Brazil; (A.T.L.d.S.); (M.F.B.M.-B.)
| | - Rejane Pereira Neves
- Laboratory of Medical Mycology Sylvio Campos, Department of Mycology, Federal University of Pernambuco-UFPE, Recife, PE 50670-901, Brazil; (M.A.d.F.); (A.I.S.A.); (M.C.L.-A.); (T.F.d.O.); (F.d.A.G.d.S.); (M.D.S.B.); (R.P.N.)
| |
Collapse
|
41
|
In Vitro Antifungal and Antivirulence Activities of Biologically Synthesized Ethanolic Extract of Propolis-Loaded PLGA Nanoparticles against Candida albicans. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3715481. [PMID: 31871479 PMCID: PMC6907039 DOI: 10.1155/2019/3715481] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
Propolis is a natural substance and consists of bioactive compounds, which gives it antioxidant and antimicrobial properties. However, the use of propolis is limited by the low solubility in aqueous solutions. Thus, nanoparticles may be likely to accomplish enhanced delivery of poorly water-soluble phytomedicine. The aim of the present study was to fabricate and evaluate the biological activity of ethanolic extract of propolis-loaded poly(lactic-co-glycolic acid) nanoparticles (EEP-NPs). The EEP-NPs were prepared using the oil-in-water (o/w) single-emulsion solvent evaporation technique. The physicochemical properties of EEP-NPs were characterized and tested on their cytotoxicity, antifungal activity, and impact on key virulence factors that contribute to pathogenesis of C. albicans. EEP-NPs were successfully synthesized and demonstrated higher antifungal activity than EEP in free form. Moreover, EEP-NPs exhibited less cytotoxicity on Vero cells and suppressed the virulence factors of C. albicans, including adhesion, hyphal germination, biofilm formation, and invasion. Importantly, EEP-NPs exhibited a statistical decrease in the expression of hyphal adhesion-related genes, ALS3 and HWP1, of C. albicans. The results of this study revealed that EEP-NPs mediates a potent anticandidal activity and key virulence factors by reducing the gene-encoding virulence-associated hyphal- adhesion proteins of C. albicans and, thereby, disrupting the morphologic presence and attenuating their virulence.
Collapse
|
42
|
Felice MR, Giuffrè L, El Aamri L, Hafidi M, Criseo G, Romeo O, Scordino F. Looking for New Antifungal Drugs from Flavonoids: Impact of the Genetic Diversity of Candida albicans on the in-vitro Response. Curr Med Chem 2019; 26:5108-5123. [PMID: 29278204 DOI: 10.2174/0929867325666171226102700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND In an era in which antimicrobial resistance is increasing at an alarming pace, it is very important to find new antimicrobial agents effective against pathogenic microrganisms resistant to traditional treatments. Among the notable breakthroughs in the past years of research in natural-drug discovery, there is the identification and testing of flavonoids, a group of plant-derived substances capable of promoting many beneficial effects on humans. These compounds show different biological activities such as inhibition of neuroinflammation and tumor growth as well as antimicrobial activity against many microbial pathogens. METHODS We undertook a review of protocols and standard strains used in studies reporting the inhibitory effects of flavonoids against Candida albicans by focusing our attention on genetic characterization of the strains examined. Moreover, using the C. albicans MLST-database, we performed a phylogenetic analysis showing the genetic variation occurring in this species. RESULTS Today, we have enough information to estimate genetic diversity within microbial species and recent data revealed that most of fungal pathogens show complex population structures in which not a single isolate can be designated as representative of the entire taxon. This is especially true for the highly divergent fungal pathogen C. albicans, in which the assumption that one or few "standard strains" can represent the whole species is overly unrealistic and should be laid to rest. CONCLUSION The goal of this article is to shed light on the extent of genetic variation in C. albicans and how this phenomenon can largely influence the activity of flavonoids against this species.
Collapse
Affiliation(s)
- Maria Rosa Felice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Letterio Giuffrè
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina, Italy
| | - Lamya El Aamri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Majida Hafidi
- Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Fabio Scordino
- Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| |
Collapse
|
43
|
Kumar A, Khan F, Saikia D. Exploration of Medicinal Plants as Sources of Novel Anticandidal Drugs. Curr Top Med Chem 2019; 19:2579-2592. [PMID: 31654513 DOI: 10.2174/1568026619666191025155856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/25/2019] [Accepted: 04/25/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human infections associated with skin and mucosal surfaces, mainly in tropical and sub-tropical parts of the world. During the last decade, there have been an increasing numbers of cases of fungal infections in immunocompromised patients, coupled with an increase in the number of incidences of drug resistance and toxicity to anti fungal agents. Hence, there is a dire need for safe, potent and affordable new antifungal drugs for the efficient management of candidal infections with minimum or no side effects. INTRODUCTION Candidiasis represents a critical problem to human health and a serious concern worldwide. Due to the development of drug resistance, there is a need for new antifungal agents. Therefore, we reviewed the different medicinal plants as sources of novel anticandidal drugs. METHODS The comprehensive and detailed literature on medicinal plants was carried out using different databases, such as Google Scholar, PubMed, and Science Direct and all the relevant information from the articles were analyzed and included. RESULTS Relevant Publications up to the end of November 2018, reporting anticandidal activity of medicinal plants has been included in the present review. In the present study, we have reviewed in the light of SAR and mechanisms of action of those plants whose extracts or phytomolecules are active against candida strains. CONCLUSION This article reviewed natural anticandidal drugs of plant origin and also summarized the potent antifungal bioactivity against fungal strains. Besides, mechanism of action of these potent active plant molecules was also explored for a comparative study. We concluded that the studied active plant molecules exhibit potential antifungal activity against resistant fungal strains.
Collapse
Affiliation(s)
- Ajay Kumar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal & Aromatic Plants, P.O.- CIMAP, Kukrail Picnic Spot Road, Lucknow -226015 (U.P.), India
| | - Feroz Khan
- Metabolic & Structural Biology Department, CSIR-Central Institute of Medicinal & Aromatic Plants, P.O.- CIMAP, Kukrail Picnic Spot Road, Lucknow -226015 (U.P.), India
| | - Dharmendra Saikia
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal & Aromatic Plants, P.O.- CIMAP, Kukrail Picnic Spot Road, Lucknow -226015 (U.P.), India
| |
Collapse
|
44
|
Sotomil JM, Münchow EA, Pankajakshan D, Spolnik KJ, Ferreira JA, Gregory RL, Bottino MC. Curcumin-A Natural Medicament for Root Canal Disinfection: Effects of Irrigation, Drug Release, and Photoactivation. J Endod 2019; 45:1371-1377. [PMID: 31542283 DOI: 10.1016/j.joen.2019.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/25/2019] [Accepted: 08/04/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Curcumin incorporation into polymeric fibers was tested for its antimicrobial properties and potential use in root canal disinfection. METHODS Curcumin-modified fibers were processed via electrospinning and tested against a 7-day old established Actinomyces naeslundii biofilm. The medicaments tested were as follows: curcumin-modified fibers at 2.5 and 5.0 mg/mL, curcumin-based irrigant at 2.5 and 5.0 mg/mL, saline solution (negative control), and the following positive controls: 2% chlorhexidine, 1% sodium hypochlorite, and triple antibiotic paste (TAP, 1 mg/mL). All medicaments, except for the positive controls, were allocated according to the light exposure protocol (ie, photoactivation with a light-emitting diode every 30 seconds for 4 minutes or without photoactivation). After treatment, the medicaments were removed, and 1 mL saline solution was added; the biofilm was scraped from the well and used to prepare a 1:2000 dilution. Spiral plating was performed using anaerobic blood agar plates. After 24 hours, colony-forming units (colony-forming units/mL, n = 11/group) were counted to determine the antimicrobial effects. RESULTS Data exhibited significant antimicrobial effects on the positive control groups followed by the curcumin irrigants and, lastly, the photoactivated curcumin-modified fibers. There was a significant reduction of viable bacteria in curcumin-based irrigants, which was greater than the TAP-treated group. Curcumin-free fibers, saline, and the nonphotoactivated curcumin-modified fibers did not display antimicrobial activity. CONCLUSIONS Curcumin seems to be a potential alternative to TAP when controlling infection, but it requires a minimal concentration (2.5 mg/mL) to be effective. Photoactivation of curcumin-based medicaments seems to be essential to obtain greater antibiofilm activity.
Collapse
Affiliation(s)
- Julian M Sotomil
- Department of Prosthodontics, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Eliseu A Münchow
- Department of Dentistry, Health Science Institute, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, Brazil
| | - Divya Pankajakshan
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Kenneth J Spolnik
- Department of Endodontics, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Jessica A Ferreira
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Richard L Gregory
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, Indiana
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan.
| |
Collapse
|
45
|
Smiljković M, Kostić M, Stojković D, Glamočlija J, Soković M. Could Flavonoids Compete with Synthetic Azoles in Diminishing Candida albicans Infections? A Comparative Review Based on In Vitro Studies. Curr Med Chem 2019; 26:2536-2554. [PMID: 29956609 DOI: 10.2174/0929867325666180629133218] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
Flavonoids are polyphenolic compounds with already confirmed various health benefits. This review will shed light on flavonoids as potential antifungals in Candida albicans infections. C. albicans is an opportunistic pathogen able to cause serious health issues due to numerous virulence factors amplifying its pathogenicity. One of the most important virulence factors is Candida ability to form biofilms which are highly resistant to the treatment of antifungal drugs; making diminishing of this pathogen even more challenging. This review will focus on current knowledge on individual flavonoid compounds having the potential to deal with C. albicans in vitro, with special turn on antibiofilm potential and insight into the mode of action, where available. Majority of the commercial drugs for the treatment of candidiasis belong to azole class, so the activity of flavonoids will be compared with the activity of newly synthetized azole compounds, as well as with azole drugs that are already on the market as official therapeutics. This literature review will provide pros and cons for pushing future research towards exploring novel synthetic azoles or further examination of a wide pallet of natural flavonoids.
Collapse
Affiliation(s)
- Marija Smiljković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Kostić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Jasmina Glamočlija
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
46
|
Prasath KG, Sethupathy S, Pandian SK. Proteomic analysis uncovers the modulation of ergosterol, sphingolipid and oxidative stress pathway by myristic acid impeding biofilm and virulence in Candida albicans. J Proteomics 2019; 208:103503. [DOI: 10.1016/j.jprot.2019.103503] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/10/2019] [Accepted: 08/22/2019] [Indexed: 01/16/2023]
|
47
|
Abdel‐Aty A, Bassuiny R, Barakat A, Mohamed S. Upgrading the phenolic content, antioxidant and antimicrobial activities of garden cress seeds using solid‐state fermentation by
Trichoderma reesei. J Appl Microbiol 2019; 127:1454-1467. [DOI: 10.1111/jam.14394] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/24/2019] [Accepted: 07/16/2019] [Indexed: 01/02/2023]
Affiliation(s)
- A.M. Abdel‐Aty
- Molecular Biology Department National Research Centre Dokki, Cairo Egypt
| | - R.I. Bassuiny
- Molecular Biology Department National Research Centre Dokki, Cairo Egypt
| | - A.Z. Barakat
- Molecular Biology Department National Research Centre Dokki, Cairo Egypt
| | - S.A. Mohamed
- Molecular Biology Department National Research Centre Dokki, Cairo Egypt
| |
Collapse
|
48
|
Praditya D, Kirchhoff L, Brüning J, Rachmawati H, Steinmann J, Steinmann E. Anti-infective Properties of the Golden Spice Curcumin. Front Microbiol 2019; 10:912. [PMID: 31130924 PMCID: PMC6509173 DOI: 10.3389/fmicb.2019.00912] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/10/2019] [Indexed: 01/02/2023] Open
Abstract
The search for novel anti-infectives is one of the most important challenges in natural product research, as diseases caused by bacteria, viruses, and fungi are influencing the human society all over the world. Natural compounds are a continuing source of novel anti-infectives. Accordingly, curcumin, has been used for centuries in Asian traditional medicine to treat various disorders. Numerous studies have shown that curcumin possesses a wide spectrum of biological and pharmacological properties, acting, for example, as anti-inflammatory, anti-angiogenic and anti-neoplastic, while no toxicity is associated with the compound. Recently, curcumin’s antiviral and antibacterial activity was investigated, and it was shown to act against various important human pathogens like the influenza virus, hepatitis C virus, HIV and strains of Staphylococcus, Streptococcus, and Pseudomonas. Despite the potency, curcumin has not yet been approved as a therapeutic antiviral agent. This review summarizes the current knowledge and future perspectives of the antiviral, antibacterial, and antifungal effects of curcumin.
Collapse
Affiliation(s)
- Dimas Praditya
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.,Institute of Experimental Virology, Twincore - Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Medical School Hannover and The Helmholtz Centre for Infection Research, Hanover, Germany.,Research Center for Biotechnology, Indonesian Institute of Science, Cibinong, Indonesia
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Janina Brüning
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Heni Rachmawati
- School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.,Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Bandung, Indonesia
| | - Joerg Steinmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Clinical Hygiene, Medical Microbiology and Infectiology, Klinikum Nürnberg, Paracelsus Medical University, Nuremberg, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
49
|
Kim H, Kang SS. Antifungal activities against Candida albicans, of cell-free supernatants obtained from probiotic Pediococcus acidilactici HW01. Arch Oral Biol 2019; 99:113-119. [PMID: 30658319 DOI: 10.1016/j.archoralbio.2019.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/24/2018] [Accepted: 01/09/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the antifungal activities of cell-free supernatants of a probiotic strain, Pediococcus acidilactici HW01, against Candida albicans. DESIGN C. albicans was cultured in the presence of different concentration of cell-free supernatants obtained from P. acidilactici HW01 (HW01 CFS) and the growth of C. albicans was determined. C. albicans was incubated with HW01 CFS for 24 h and the biofilm formation of C. albicans was determined by staining crystal violet and by using a scanning electron microscope. Biofilm quantification was determined by 2, 3-Bis (2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay. RESULTS HW01 CFS inhibitedC. albicans growth, whereas bacteriocin, which is a well-known antimicrobial peptide of lactic acid bacteria, failed to inhibit C. albicans growth. Pre-treatment and simultaneous treatment with HW01 CFS exhibited a significant inhibition of C. albicans biofilm. Although post-treatment with HW01 CFS did not disrupt the established biofilm of C. albicans at 3 h-incubation, significant reduced C. albicans biofilm was observed after 6 h-incubation in the presence of HW01 CFS. CONCLUSION These results suggested that the CFS fromP. acidilactici HW01 was revealed as an effective antifungal agent against C. albicans by reducing the growth and biofilm formation.
Collapse
Affiliation(s)
- Hyunjin Kim
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang 10326, Republic of Korea.
| |
Collapse
|
50
|
Wang T, Shao J, Da W, Li Q, Shi G, Wu D, Wang C. Strong Synergism of Palmatine and Fluconazole/Itraconazole Against Planktonic and Biofilm Cells of Candida Species and Efflux-Associated Antifungal Mechanism. Front Microbiol 2018; 9:2892. [PMID: 30559726 PMCID: PMC6287112 DOI: 10.3389/fmicb.2018.02892] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/12/2018] [Indexed: 01/13/2023] Open
Abstract
Fungal infections caused by Candida albicans and non-albicans Candida [NAC] species are becoming a growing threat in immunodeficient population, people with long-term antibiotic treatment and patients enduring kinds of catheter intervention. The resistance to one or more than one conventional antifungal agents contributes greatly to the widespread propagation of Candida infections. The severity of fungal infection requires the discovery of novel antimycotics and the extensive application of combination strategy. In this study, a group of Candida standard and clinical strains including C. albicans as well as several NAC species were employed to evaluate the antifungal potentials of palmatine (PAL) alone and in combination with fluconazole (FLC)/itraconazole (ITR) by microdilution method, checkerboard assay, gram staining, spot assay, and rhodamine 6G efflux test. Subsequently, the expressions of transporter-related genes, namely CDR1, CDR2, MDR1, and FLU1 for C. albicans, CDR1 and MDR1 for Candida tropicalis and Candida parapsilosis, ABC1 and ABC2 for Candida krusei, CDR1, CDR2, and SNQ2 for Candida glabrata were analyzed by qRT-PCR. The susceptibility test showed that PAL presented strong synergism with FLC and ITR with fractional inhibitory concentration index (FICI) in a range of 0.0049-0.75 for PAL+FLC and 0.0059-0.3125 for PAL+ITR in planktonic cells, 0.125-0.375 for PAL+FLC and 0.0938-0.3125 for PAL+ITR in biofilms. The susceptibility results were also confirmed by gram staining and spot assay. After combinations, a vast quantity of rhodamine 6G could not be pumped out as considerably intracellular red fluorescence was accumulated. Meanwhile, the expressions of efflux-associated genes were evaluated and presented varying degrees of inhibition. These results indicated that PAL was a decent antifungal synergist to promote the antifungal efficacy of azoles (such as FLC and ITR), and the underlying antifungal mechanism might be linked with the inhibition of efflux pumps and the elevation of intracellular drug content.
Collapse
Affiliation(s)
- Tianming Wang
- Laboratory of Biochemistry and Molecular Biology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Wenyue Da
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Qianqian Li
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Gaoxiang Shi
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Laboratory of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|