1
|
Pedersen EC, Lerche CJ, Schwartz FA, Ciofu O, Azeredo J, Thomsen K, Moser C. Bacteriophage therapy and infective endocarditis - is it realistic? APMIS 2024; 132:675-687. [PMID: 39007242 DOI: 10.1111/apm.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Infective endocarditis (IE) is a severe infection of the inner heart. Even with current standard treatment, the mean in-hospital mortality is as high as 15-20%, and 1-year mortality is up to 40% for left-sided IE. Importantly, IE mortality rates have not changed substantially over the past 30 years, and the incidence of IE is rising. The treatment is challenging due to the bacterial biofilm mode of growth inside the heart valve vegetations, resulting in antibiotic tolerance. Achieving sufficient antibiotic anti-biofilm concentrations in the biofilms of the heart valve vegetations is problematic, even with high-dose and long-term antibiotic therapy. The increasing prevalence of IE caused by antibiotic-resistant bacteria adds to the challenge. Therefore, adjunctive antibiotic-potentiating drug candidates and strategies are increasingly being investigated. Bacteriophage therapy is a reemerging antibacterial treatment strategy for difficult-to-treat infections, mainly biofilm-associated and caused by multidrug-resistant bacteria. However, significant knowledge gaps regarding the safety and efficacy of phage therapy impede more widespread implementation in clinical practice. Hopefully, future preclinical and clinical testing will reveal whether it is a viable treatment. The objective of the present review is to assess whether bacteriophage therapy is a realistic treatment for IE.
Collapse
Affiliation(s)
- Emilie C Pedersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Johann Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
- Department for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | - Oana Ciofu
- Department for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- European Society for Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Biofilms (ESGB), Basel, Switzerland
| | - Joana Azeredo
- European Society for Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Biofilms (ESGB), Basel, Switzerland
- Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Kim Thomsen
- Department of Clinical Microbiology, Zealand University Hospital, Slagelse, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
- Department for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- European Society for Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Biofilms (ESGB), Basel, Switzerland
| |
Collapse
|
2
|
Alfei S, Schito GC, Schito AM, Zuccari G. Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. Int J Mol Sci 2024; 25:7182. [PMID: 39000290 PMCID: PMC11241369 DOI: 10.3390/ijms25137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
3
|
Abri S, Durr H, Barton HA, Adkins-Travis K, Shriver LP, Pukale DD, Fulton JA, Leipzig ND. Chitosan-based multifunctional oxygenating antibiotic hydrogel dressings for managing chronic infection in diabetic wounds. Biomater Sci 2024; 12:3458-3470. [PMID: 38836321 PMCID: PMC11197983 DOI: 10.1039/d4bm00355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Current treatment strategies for infection of chronic wounds often result in compromised healing and necrosis due to antibiotic toxicity, and underlying biomarkers affected by treatments are not fully known. Here, a multifunctional dressing was developed leveraging the unique wound-healing properties of chitosan, a natural polysaccharide known for its numerous benefits in wound care. The dressing consists of an oxygenating perfluorocarbon functionalized methacrylic chitosan (MACF) hydrogel incorporated with antibacterial polyhexamethylene biguanide (PHMB). A non-healing diabetic infected wound model with emerging metabolomics tools was used to explore the anti-infective and wound healing properties of the resultant multifunctional dressing. Direct bacterial bioburden assessment demonstrated superior antibacterial properties of hydrogels over a commercial dressing. However, wound tissue quality analyses confirmed that sustained PHMB for 21 days resulted in tissue necrosis and disturbed healing. Therefore, a follow-up comparative study investigated the best treatment course for antiseptic application ranging from 7 to 21 days, followed by the oxygenating chitosan-based MACF treatment for the remainder of the 21 days. Bacterial counts, tissue assessments, and lipidomics studies showed that 14 days of application of MACF-PHMB dressings followed by 7 days of MACF dressings provides a promising treatment for managing infected non-healing diabetic skin ulcers.
Collapse
Affiliation(s)
- Shahrzad Abri
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Hannah Durr
- Integrated Biosciences Program, Department of Biology, The University of Akron, Akron, Ohio 44325, USA
| | - Hazel A Barton
- Department of Geological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Kayla Adkins-Travis
- Department of Chemistry, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- Center for Proteomics, Metabolomics, and Isotope Tracing, Washington University in Saint Louis, Saint Louis, MO 63130, USA
- Department of Medicine, Washington University in Saint Louis, Saint Louis, MO 63130, USA
| | - Dipak D Pukale
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Judith A Fulton
- Summa Health System-Translational Research Center Akron, Akron, Ohio 44304, USA
- Northeast Ohio Medical University-REDIzone, Rootstown, Ohio 44272, USA
| | - Nic D Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, USA.
- Integrated Biosciences Program, Department of Biology, The University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
4
|
Liang H, Wang Y, Liu F, Duan G, Long J, Jin Y, Chen S, Yang H. The Application of Rat Models in Staphylococcus aureus Infections. Pathogens 2024; 13:434. [PMID: 38921732 PMCID: PMC11206676 DOI: 10.3390/pathogens13060434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a major human pathogen and can cause a wide range of diseases, including pneumonia, osteomyelitis, skin and soft tissue infections (SSTIs), endocarditis, mastitis, bacteremia, and so forth. Rats have been widely used in the field of infectious diseases due to their unique advantages, and the models of S. aureus infections have played a pivotal role in elucidating their pathogenic mechanisms and the effectiveness of therapeutic agents. This review outlined the current application of rat models in S. aureus infections and future prospects for rat models in infectious diseases caused by S. aureus.
Collapse
Affiliation(s)
- Hongyue Liang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Yadong Wang
- Department of Toxicology, Henan Center for Disease Control and Prevention, Zhengzhou 450016, China;
| | - Fang Liu
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Guangcai Duan
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Jinzhao Long
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Yuefei Jin
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Shuaiyin Chen
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China; (H.L.); (F.L.); (G.D.); (J.L.); (Y.J.); (S.C.)
| |
Collapse
|
5
|
Fernández-Billón M, Llambías-Cabot AE, Jordana-Lluch E, Oliver A, Macià MD. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm 2023; 5:100129. [PMID: 37205903 PMCID: PMC10189392 DOI: 10.1016/j.bioflm.2023.100129] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Pseudomonas aeruginosa is a major cause of life-threatening acute infections and life-long lasting chronic infections. The characteristic biofilm mode of life in P. aeruginosa chronic infections severely limits the efficacy of antimicrobial therapies, as it leads to intrinsic tolerance, involving physical and physiological factors in addition to biofilm-specific genes that can confer a transient protection against antibiotics promoting the development of resistance. Indeed, a striking feature of this pathogen is the extraordinary capacity to develop resistance to nearly all available antibiotics through the selection of chromosomal mutations, evidenced by its outstanding and versatile mutational resistome. This threat is dramatically amplified in chronic infections, driven by the frequent emergence of mutator variants with enhanced spontaneous mutation rates. Thus, this mini review is focused on describing the complex interplay of antibiotic resistance mechanisms in P. aeruginosa biofilms, to provide potentially useful information for the design of effective therapeutic strategies.
Collapse
Affiliation(s)
- María Fernández-Billón
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Aina E. Llambías-Cabot
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Antonio Oliver
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - María D. Macià
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
- Corresponding author. Department of Microbiology, Hospital Universitario Son Espases, Crta. Vallemossa 79, 07120, Palma de Mallorca, Spain.
| |
Collapse
|
6
|
Vinkel J, Rib L, Buil A, Hedetoft M, Hyldegaard O. Key pathways and genes that are altered during treatment with hyperbaric oxygen in patients with sepsis due to necrotizing soft tissue infection (HBOmic study). Eur J Med Res 2023; 28:507. [PMID: 37946314 PMCID: PMC10636866 DOI: 10.1186/s40001-023-01466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND For decades, the basic treatment strategies of necrotizing soft tissue infections (NSTI) have remained unchanged, primarily relying on aggressive surgical removal of infected tissue, broad-spectrum antibiotics, and supportive intensive care. One treatment strategy that has been proposed as an adjunctive measure to improve patient outcomes is hyperbaric oxygen (HBO2) treatment. HBO2 treatment has been linked to several immune modulatory effects; however, investigating these effects is complicated due to the disease's acute life-threatening nature, metabolic and cell homeostasis dependent variability in treatment effects, and heterogeneity with respect to both patient characteristics and involved pathogens. To embrace this complexity, we aimed to explore the underlying biological mechanisms of HBO2 treatment in patients with NSTI on the gene expression level. METHODS We conducted an observational cohort study on prospective collected data, including 85 patients admitted to the intensive care unit (ICU) for NSTI. All patients were treated with one or two HBO2 treatments and had one blood sample taken before and after the intervention. Total RNAs from blood samples were extracted and mRNA purified with rRNA depletion, followed by whole-transcriptome RNA sequencing with a targeted sequencing depth of 20 million reads. A model for differentially expressed genes (DEGs) was fitted, and the functional aspects of the obtained set of genes was predicted with GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of genes and Genomes) enrichment analyses. All analyses were corrected for multiple testing with FDR. RESULTS After sequential steps of quality control, a final of 160 biological replicates were included in the present study. We found 394 protein coding genes that were significantly DEGs between the two conditions with FDR < 0.01, of which 205 were upregulated and 189 were downregulated. The enrichment analysis of these DEGs revealed 20 GO terms in biological processes and 12 KEGG pathways that were significantly overrepresented in the upregulated DEGs, of which the term; "adaptive immune response" (GO:0002250) (FDR = 9.88E-13) and "T cell receptor signaling pathway" (hsa04660) (FDR = 1.20E-07) were the most significant. Among the downregulated DEGs two biological processes were significantly enriched, of which the GO term "apoptotic process" (GO:0006915) was the most significant (FDR = 0.001), followed by "Positive regulation of T helper 1 cell cytokine production" (GO:2000556), and "NF-kappa B signaling pathway" (hsa04064) was the only KEGG pathway that was significantly overrepresented (FDR = 0.001). CONCLUSIONS When one or two sessions of HBO2 treatment were administered to patients with a dysregulated immune response and systemic inflammation due to NSTI, the important genes that were regulated during the intervention were involved in activation of T helper cells and downregulation of the disease-induced highly inflammatory pathway NF-κB, which was associated with a decrease in the mRNA level of pro-inflammatory factors. TRIAL REGISTRATION Biological material was collected during the INFECT study, registered at ClinicalTrials.gov (NCT01790698).
Collapse
Affiliation(s)
- Julie Vinkel
- Department of Anesthesiology, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Leonor Rib
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Alfonso Buil
- Institute for Biological Psychiatry, Mental Health Centre Sct. Hans, Roskilde, Denmark
| | - Morten Hedetoft
- Department of Anesthesiology, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark
- Department of Anesthesiology, Zealand University Hospital, Køge, Denmark
| | - Ole Hyldegaard
- Department of Anesthesiology, Copenhagen University Hospital, Rigshospitalet, Inge Lehmanns Vej 6, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Chen X, Xiao J, Wang X, Lu X, An J, Zhao J, Wei J, Wei J, He S, Tian W. Lack of surgical resection is associated with increased early mortality in hematological patients complicated with rhino-orbital-cerebral mucormycosis. Ann Hematol 2023; 102:2933-2942. [PMID: 37421505 DOI: 10.1007/s00277-023-05349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Rhino-orbital-cerebral mucormycosis (ROCM), which is an acute fatal infectious disease with a high mortality rate, is increasingly being diagnosed in patients with hematological diseases worldwide. We aimed to investigate the clinical characteristics, treatment, and prognosis of hematological diseases complicated by ROCM. Our sample comprised a total of 60 ROCM patients with hematological diseases. The most common primary disease was acute lymphoblastic leukemia (ALL) (n=27, 45.0%), while 36 patients (60.0%) were diagnosed with a clear type of pathogen, all belonging to the Mucorales, most commonly Rhizopus (41.7%). Of the 32 patients (53.3%) who died, 19 (59.3%) died of mucormycosis, and 84.2% (n=16) of those died within 1 month. Forty-eight cases (80.0%) received antifungal treatment combined with surgical therapy, 12 of whom (25.0%) died of mucormycosis, amounting to a mortality rate that was significantly lower than in patients who received antifungal therapy alone (n=7, 58.3%) (P=0.012). The median neutrophil value of patients who underwent surgery was 0.58 (0.11-2.80) 103/μL, the median platelet value was 58.00 (17.00-93.00) 103/μL, and no surgery-related deaths were reported. Multivariate analysis showed that patient's advanced age (P=0.012, OR=1.035 (1.008-1.064)) and lack of surgical treatment (P=0.030, OR=4.971 (1.173-21.074)) were independent prognostic factors.In this study, hematological diseases associated with ROCM have a high mortality rate. Lack of surgical treatment is an independent prognostic factor for death from mucormycosis. Surgery may therefore be considered in patients with hematological disease even if their neutrophil and platelet values are lower than normal.
Collapse
Affiliation(s)
- Xinyue Chen
- Department of Hematology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030000, Shanxi, China
- School of Public Health, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Juan Xiao
- Department of Hematology, Beijing Jingdu Children's Hospital, Beijing, 102208, China
| | - Xinwei Wang
- School of Public Health, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Xinyi Lu
- Department of Hematology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030000, Shanxi, China
| | - Jing An
- School of Public Health, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Jie Zhao
- Department of Hematology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030000, Shanxi, China
| | - Junni Wei
- School of Public Health, Shanxi Medical University, Taiyuan, 030000, Shanxi, China
| | - Jia Wei
- Department of Hematology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030000, Shanxi, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030000, Shanxi, China
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shaolong He
- Department of Hematology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030000, Shanxi, China.
| | - Weiwei Tian
- Department of Hematology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030000, Shanxi, China.
- School of Public Health, Shanxi Medical University, Taiyuan, 030000, Shanxi, China.
| |
Collapse
|
8
|
Lichtenberg M, Coenye T, Parsek MR, Bjarnsholt T, Jakobsen TH. What's in a name? Characteristics of clinical biofilms. FEMS Microbiol Rev 2023; 47:fuad050. [PMID: 37656883 PMCID: PMC10503651 DOI: 10.1093/femsre/fuad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/06/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023] Open
Abstract
In vitro biofilms are communities of microbes with unique features compared to individual cells. Biofilms are commonly characterized by physical traits like size, adhesion, and a matrix made of extracellular substances. They display distinct phenotypic features, such as metabolic activity and antibiotic tolerance. However, the relative importance of these traits depends on the environment and bacterial species. Various mechanisms enable biofilm-associated bacteria to withstand antibiotics, including physical barriers, physiological adaptations, and changes in gene expression. Gene expression profiles in biofilms differ from individual cells but, there is little consensus among studies and so far, a 'biofilm signature transcriptome' has not been recognized. Additionally, the spatial and temporal variability within biofilms varies greatly depending on the system or environment. Despite all these variable conditions, which produce very diverse structures, they are all noted as biofilms. We discuss that clinical biofilms may differ from those grown in laboratories and found in the environment and discuss whether the characteristics that are commonly used to define and characterize biofilms have been shown in infectious biofilms. We emphasize that there is a need for a comprehensive understanding of the specific traits that are used to define bacteria in infections as clinical biofilms.
Collapse
Affiliation(s)
- Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Matthew R Parsek
- Department of Microbiology, University of Washington School of Medicine, 1705 NE Pacific St., WA 98195 Seattle, United States
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Ole Maaløes vej 26, 2100 Copenhagen, Denmark
| | - Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Zhou D, Fu D, Yan L, Xie L. The Role of Hyperbaric Oxygen Therapy in the Treatment of Surgical Site Infections: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:762. [PMID: 37109720 PMCID: PMC10145168 DOI: 10.3390/medicina59040762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Surgical site infections (SSIs) are among the most prevalent postoperative complications, with significant morbidity and mortality worldwide. In the past half century, hyperbaric oxygen therapy (HBOT), the administration of 100% oxygen intermittently under a certain pressure, has been used as either a primary or alternative therapy for the management or treatment of chronic wounds and infections. This narrative review aims to gather information and evidence supporting the role of HBOT in the treatment of SSIs. We followed the Scale for the Quality Assessment of Narrative Review Articles (SANRA) guidelines and scrutinized the most relevant studies identified in Medline (via PubMed), Scopus, and Web of Science. Our review indicated that HBOT can result in rapid healing and epithelialization of various wounds and has potential beneficial effects in the treatment of SSIs or other similar infections following cardiac, neuromuscular scoliosis, coronary artery bypass, and urogenital surgeries. Moreover, it was a safe therapeutic procedure in most cases. The mechanisms related to the antimicrobial activity of HBOT include direct bactericidal effects through the formation of reactive oxygen species (ROS), the immunomodulatory effect of HBOT that increase the antimicrobial effects of the immune system, and the synergistic effects of HBOT with antibiotics. We emphasized the essential need for further studies, especially randomized clinical trials and longitudinal studies, to better standardize HBOT procedures as well as to determine its full benefits and possible side effects.
Collapse
Affiliation(s)
| | | | | | - Linshen Xie
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Kolpen M, Jensen PØ, Faurholt-Jepsen D, Bjarnsholt T. Prevalence of biofilms in acute infections challenges a longstanding paradigm. Biofilm 2022; 4:100080. [PMID: 35721391 PMCID: PMC9198313 DOI: 10.1016/j.bioflm.2022.100080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/16/2022] [Accepted: 06/06/2022] [Indexed: 10/29/2022] Open
Abstract
The significance of bacterial biofilm formation in chronic bacterial lung infections has long been recognized [1]. Likewise, chronic biofilm formation on medical devices is well accepted as a nidus for recurrent bacteremia [2,3]. Even though the prevailing paradigm relies on the dominance of planktonic bacteria in acute endobronchial infections, our understanding of the bacterial organization during acute infection is, so far, limited - virtually absent. However, by comparing similar clinical samples, we have recently demonstrated massive bacterial biofilm formation during acute lung infections resembling the immense bacterial biofilm formation during chronic lung infections. These findings pose major challenges to the basic paradigm of chronic infections being dominated by biofilm forming bacteria while acute infections are dominated by planktonic bacteria. As opposed to the similar high amount of bacterial biofilm found in chronic and acute lung infections, we found that the fast bacterial growth in acute lung infections differed from the slow bacterial growth in chronic lung infections. By highlighting these new findings, we review modes of improved treatment of biofilm infections and the relevance of bacterial growth rates for other bacterial biofilm infections than human lung infections.
Collapse
Affiliation(s)
- Mette Kolpen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Thomas Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Vinkel J, Rib L, Buil A, Hedetoft M, Hyldegaard O. Investigating the Effects of Hyperbaric Oxygen Treatment in Necrotizing Soft Tissue Infection With Transcriptomics and Machine Learning (the HBOmic Study): Protocol for a Prospective Cohort Study With Data Validation. JMIR Res Protoc 2022; 11:e39252. [PMID: 36427229 PMCID: PMC9736759 DOI: 10.2196/39252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/20/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Necrotizing soft tissue infections (NSTIs) are complex multifactorial diseases characterized by rapid bacterial proliferation and progressive tissue death. Treatment is multidisciplinary, including surgery, broad-spectrum antibiotics, and intensive care; adjunctive treatment with hyperbaric oxygen (HBO2) may also be applied. Recent advances in molecular technology and biological computation have given rise to new approaches to infectious diseases based on identifying target groups defined by activated pathophysiological mechanisms. OBJECTIVE We aim to capture NSTI disease signatures and mechanisms and responses to treatment in patients that receive the highest standard of care; therefore, we set out to investigate genome-wide transcriptional responses to HBO2 treatment during NSTI in the host and bacteria. METHODS The Effects of Hyperbaric Oxygen Treatment Studied with Omics (HBOmic) study is a prospective cohort study including 95 patients admitted for NSTI at the intensive care unit of Copenhagen University Hospital (Rigshospitalet), Denmark, between January 2013 and June 2017. All participants were treated according to a local protocol for management of NSTI, and biological samples were obtained and stored according to a standard operational procedure. In the proposed study, we will generate genome-wide expression profiles of whole-blood samples and samples of infected tissue taken before and after HBO2 treatment administered during the initial acute phase of infection, and we will analyze the profiles with unsupervised hierarchical clustering and machine learning. Differential gene expression will be compared in samples taken before and after HBO2 treatment (N=85), and integration of profiles from blood and tissue samples will be performed. Furthermore, findings will be compared to NSTI patients who did not receive HBO2 treatment (N=10). Transcriptomic data will be integrated with clinical data to investigate associations and predictors. RESULTS The first participant was enrolled on July 27, 2021, and data analysis is expected to begin during autumn 2022, with publication of results immediately thereafter. CONCLUSIONS The HBOmic study will provide new insights into personalized patient management in NSTIs. TRIAL REGISTRATION ClinicalTrials.gov NCT01790698; https://clinicaltrials.gov/ct2/show/NCT01790698. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/39252.
Collapse
Affiliation(s)
- Julie Vinkel
- Department of Anaesthesiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Leonor Rib
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Alfonso Buil
- Institute for Biological Psychiatry, Center of Psychiatry Sankt Hans, Roskilde, Denmark
| | - Morten Hedetoft
- Department of Anaesthesiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Anaesthesiology, Zealand University Hospital, Køge, Denmark
| | - Ole Hyldegaard
- Department of Anaesthesiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Liu S, Le Mauff F, Sheppard DC, Zhang S. Filamentous fungal biofilms: Conserved and unique aspects of extracellular matrix composition, mechanisms of drug resistance and regulatory networks in Aspergillus fumigatus. NPJ Biofilms Microbiomes 2022; 8:83. [PMID: 36261442 PMCID: PMC9581972 DOI: 10.1038/s41522-022-00347-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022] Open
Abstract
The filamentous fungus Aspergillus fumigatus is an ubiquitous mold that can cause invasive pulmonary infections in immunocompromised patients. Within the lung, A. fumigatus forms biofilms that can enhance resistance to antifungals and immune defenses, highlighting the importance of defining the mechanisms underlying biofilm development and associated emergent properties. A. fumigatus biofilms display a morphology and architecture that is distinct from bacterial and yeast biofilms. Moreover, A. fumigatus biofilms display unique characteristics in the composition of their extracellular matrix (ECM) and the regulatory networks governing biofilm formation. This review will discuss our current understanding of the form and function of A. fumigatus biofilms, including the unique components of ECM matrix, potential drug resistance mechanisms, the regulatory networks governing A. fumigatus biofilm formation, and potential therapeutics targeting these structures.
Collapse
Affiliation(s)
- Shuai Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Francois Le Mauff
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, QC, Canada.,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada
| | - Donald C Sheppard
- Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, QC, Canada. .,Infectious Disease and Immunity in Global Health, Research Institute of McGill University Health Center, Montreal, QC, Canada. .,McGill Interdisciplinary Initiative in Infection and Immunity, Montreal, QC, Canada.
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
13
|
Kouijzer JJP, Noordermeer DJ, van Leeuwen WJ, Verkaik NJ, Lattwein KR. Native valve, prosthetic valve, and cardiac device-related infective endocarditis: A review and update on current innovative diagnostic and therapeutic strategies. Front Cell Dev Biol 2022; 10:995508. [PMID: 36263017 PMCID: PMC9574252 DOI: 10.3389/fcell.2022.995508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Infective endocarditis (IE) is a life-threatening microbial infection of native and prosthetic heart valves, endocardial surface, and/or indwelling cardiac device. Prevalence of IE is increasing and mortality has not significantly improved despite technological advances. This review provides an updated overview using recent literature on the clinical presentation, diagnosis, imaging, causative pathogens, treatment, and outcomes in native valve, prosthetic valve, and cardiac device-related IE. In addition, the experimental approaches used in IE research to improve the understanding of disease mechanisms and the current diagnostic pipelines are discussed, as well as potential innovative diagnostic and therapeutic strategies. This will ultimately help towards deriving better diagnostic tools and treatments to improve IE patient outcomes.
Collapse
Affiliation(s)
- Joop J. P. Kouijzer
- Thoraxcenter, Department of Biomedical Engineering, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Daniëlle J. Noordermeer
- Thoraxcenter, Department of Biomedical Engineering, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Wouter J. van Leeuwen
- Department of Cardiothoracic Surgery, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Nelianne J. Verkaik
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Kirby R. Lattwein
- Thoraxcenter, Department of Biomedical Engineering, Erasmus MC University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
14
|
Sethuraman KN, Smolin R, Henry S. Is There a Place for Hyperbaric Oxygen Therapy? Adv Surg 2022; 56:169-204. [PMID: 36096567 DOI: 10.1016/j.yasu.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Hyperbaric oxygen therapy (HBOT) involves treating patients by providing 100% oxygen through inhalation while inside a treatment pressurized chamber. The oxygen acts as a drug and the hyperbaric chamber as the dosing device. The effect of hyperbaric hyperoxia is dose dependent and, therefore, treatment depth and duration are important when considering its use. HBOT can either be the primary method of treatment or used adjunctively to medications or surgical techniques. The underpinning physiology is to bring oxygen-rich plasma to hypoxic tissue, preventing reperfusion injury, strengthening immune responsiveness, and encouraging new collagen deposition as well as endothelial cell formation.
Collapse
Affiliation(s)
- Kinjal N Sethuraman
- University of Maryland Medical Center, Hyperbaric and Dive Medicine, 22 South Greene Street, Baltimore, MD 2120, USA
| | - Ryan Smolin
- University of Maryland School of Medicine, 685 West Baltimore Street, Suite 150, Baltimore, MD 21201, USA
| | - Sharon Henry
- University of Maryland Medical Center, R A Cowley Shock Trauma Center, Room T1R59, 22 South Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
15
|
Schwartz FA, Nielsen L, Struve Andersen J, Bock M, Christophersen L, Sunnerhagen T, Lerche CJ, Bay L, Bundgaard H, Høiby N, Moser C. Dynamics of a Staphylococcus aureus infective endocarditis simulation model. APMIS 2022; 130:515-523. [PMID: 35460117 PMCID: PMC9545761 DOI: 10.1111/apm.13231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
Infective endocarditis (IE) is a serious infection of the inner surface of heart, resulting from minor lesions in the endocardium. The damage induces a healing reaction, which leads to recruitment of fibrin and immune cells. This sterile healing vegetation can be colonized during temporary bacteremia, inducing IE. We have previously established a novel in vitro IE model using a simulated IE vegetation (IEV) model produced from whole venous blood, on which we achieved stable bacterial colonization after 24 h. The bacteria were organized in biofilm aggregates and displayed increased tolerance toward antibiotics. In this current study, we aimed at further characterizing the time course of biofilm formation and the impact on antibiotic tolerance development. We found that a Staphylococcus aureus reference strain, as well as three clinical IE isolates formed biofilms on the IEV after 6 h. When treatment was initiated immediately after infection, the antibiotic effect was significantly higher than when treatment was started after the biofilm was allowed to mature. We could follow the biofilm development microscopically by visualizing growing bacterial aggregates on the IEV. The findings indicate that mature, antibiotic-tolerant biofilms can be formed in our model already after 6 h, accelerating the screening for optimal treatment strategies for IE.
Collapse
Affiliation(s)
| | - Luna Nielsen
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
- Department of TechnologyFaculty of HealthUniversity College CopenhagenCopenhagenDenmark
| | - Jessica Struve Andersen
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
- Department of TechnologyFaculty of HealthUniversity College CopenhagenCopenhagenDenmark
| | - Magnus Bock
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
| | | | - Torgny Sunnerhagen
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
- Section for Infection Medicine, Department of Sciences LundLund UniversityLundSweden
- Department of Clinical MicrobiologyOffice for Medical ServicesLundSweden
| | | | - Lene Bay
- Department of Immunology and Microbiology, Costerton Biofilm CenterUniversity of CopenhagenCopenhagenDenmark
| | - Henning Bundgaard
- Department of CardiologyCopenhagen University Hospital HerlevCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Niels Høiby
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
- Department of Immunology and Microbiology, Costerton Biofilm CenterUniversity of CopenhagenCopenhagenDenmark
| | - Claus Moser
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
- Department of Immunology and Microbiology, Costerton Biofilm CenterUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
16
|
Lerche CJ, Schwartz F, Pries-Heje MM, Fosbøl EL, Iversen K, Jensen PØ, Høiby N, Hyldegaard O, Bundgaard H, Moser C. Potential Advances of Adjunctive Hyperbaric Oxygen Therapy in Infective Endocarditis. Front Cell Infect Microbiol 2022; 12:805964. [PMID: 35186793 PMCID: PMC8851036 DOI: 10.3389/fcimb.2022.805964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Patients with infective endocarditis (IE) form a heterogeneous group by age, co-morbidities and severity ranging from stable patients to patients with life-threatening complications with need for intensive care. A large proportion need surgical intervention. In-hospital mortality is 15-20%. The concept of using hyperbaric oxygen therapy (HBOT) in other severe bacterial infections has been used for many decades supported by various preclinical and clinical studies. However, the availability and capacity of HBOT may be limited for clinical practice and we still lack well-designed studies documenting clinical efficacy. In the present review we highlight the potential beneficial aspects of adjunctive HBOT in patients with IE. Based on the pathogenesis and pathophysiological conditions of IE, we here summarize some of the important mechanisms and effects by HBOT in relation to infection and inflammation in general. In details, we elaborate on the aspects and impact of HBOT in relation to the host response, tissue hypoxia, biofilm, antibiotics and pathogens. Two preclinical (animal) studies have shown beneficial effect of HBOT in IE, but so far, no clinical study has evaluated the feasibility of HBOT in IE. New therapeutic options in IE are much needed and adjunctive HBOT might be a therapeutic option in certain IE patients to decrease morbidity and mortality and improve the long-term outcome of this severe disease.
Collapse
Affiliation(s)
- Christian Johann Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Virus and Microbiology Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- *Correspondence: Christian Johann Lerche,
| | - Franziska Schwartz
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Mia Marie Pries-Heje
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emil Loldrup Fosbøl
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasper Iversen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Emergency Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Lichtenberg M, Jakobsen TH, Kühl M, Kolpen M, Jensen PØ, Bjarnsholt T. OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6574409. [PMID: 35472245 PMCID: PMC9438473 DOI: 10.1093/femsre/fuac018] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/04/2022] [Accepted: 04/24/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mads Lichtenberg
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark
| | - Tim Holm Jakobsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Mette Kolpen
- Department of Clinical Microbiology, Copenhagen University Hospital, Ole Maaløes vej 26, 2200, København, Denmark
| | - Peter Østrup Jensen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Ole Maaløes vej 26, 2200, København, Denmark
| | - Thomas Bjarnsholt
- Corresponding author: Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark. Tel: +45 20659888; E-mail:
| |
Collapse
|
18
|
RŮŽIČKA J, DEJMEK J, BOLEK L, BENEŠ J, KUNCOVÁ J. Hyperbaric oxygen influences chronic wound healing – a cellular level review. Physiol Res 2021; 70:S261-S273. [DOI: 10.33549/physiolres.934822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic wound is a serious medical issue due to its high prevalence and complications; hyperbaric oxygen therapy (HBOT) is also considered in comprehensive treatment. Clinical trials, including large meta-analyses bring inconsistent results about HBOT efficacy. This review is summarizing the possible effect of HBOT on the healing of chronic wound models at the cellular level. HBOT undoubtedly escalates the production of reactive oxygen and nitrogen radicals (ROS and RNS), which underlie both the therapeutic and toxic effects of HBOT on certain tissues. HBOT paradoxically elevates the concentration of Hypoxia inducible factor (HIF) 1 by diverting the HIF-1 degradation to pathways that are independent of the oxygen concentration. Elevated HIF-1 stimulates the production of different growth factors, boosting the healing process. HBOT supports synthesis of Heat shock proteins (HSP), which are serving as chaperones of HIF-1. HBOT has antimicrobial effect, increases the effectiveness of some antibiotics, stimulates fibroblasts growth, collagen synthesis and suppresses the activity of proteolytic enzymes like matrix metalloproteinases. All effects of HBOT were investigated on cell cultures and animal models, the limitation of their translation is discussed at the end of this revie
Collapse
Affiliation(s)
- J RŮŽIČKA
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - J DEJMEK
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - L BOLEK
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - J BENEŠ
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - J KUNCOVÁ
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| |
Collapse
|
19
|
Schwartz FA, Christophersen L, Laulund AS, Lundquist R, Lerche C, Rude Nielsen P, Bundgaard H, Høiby N, Moser C. Novel human in vitro vegetation simulation model for infective endocarditis. APMIS 2021; 129:653-662. [PMID: 34580927 DOI: 10.1111/apm.13182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/09/2021] [Indexed: 01/01/2023]
Abstract
Infective endocarditis (IE) is a heart valve infection with high mortality rates. IE results from epithelial lesions, inducing sterile healing vegetations consisting of platelets, leucocytes, and fibrin that are susceptible for colonization by temporary bacteremia. Clinical testing of new treatments for IE is difficult and fast models sparse. The present study aimed at establishing an in vitro vegetation simulation IE model for fast screening of novel treatment strategies. A healing promoting platelet and leucocyte-rich fibrin patch was used to establish an IE organoid-like model by colonization with IE-associated bacterial isolates Staphylococcus aureus, Streptococcus spp (S. mitis group), and Enterococcus faecalis. The patch was subsequently exposed to tobramycin, ciprofloxacin, or penicillin. Bacterial colonization was evaluated by microscopy and quantitative bacteriology. We achieved stable bacterial colonization on the patch, comparable to clinical IE vegetations. Microscopy revealed uneven, biofilm-like colonization of the patch. The surface-associated bacteria displayed increased tolerance to antibiotics compared to planktonic bacteria. The present study succeeded in establishing an IE simulation model with the relevant pathogens S. aureus, S. mitis group, and E. faecalis. The findings indicate that the IE model mirrors the natural IE process and has the potential for fast screening of treatment candidates.
Collapse
Affiliation(s)
| | | | - Anne Sofie Laulund
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen N, Denmark
| | | | - Christian Lerche
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen N, Denmark
| | - Pia Rude Nielsen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen N, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen N, Denmark
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Lerche CJ, Schwartz F, Theut M, Fosbøl EL, Iversen K, Bundgaard H, Høiby N, Moser C. Anti-biofilm Approach in Infective Endocarditis Exposes New Treatment Strategies for Improved Outcome. Front Cell Dev Biol 2021; 9:643335. [PMID: 34222225 PMCID: PMC8249808 DOI: 10.3389/fcell.2021.643335] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Infective endocarditis (IE) is a life-threatening infective disease with increasing incidence worldwide. From early on, in the antibiotic era, it was recognized that high-dose and long-term antibiotic therapy was correlated to improved outcome. In addition, for several of the common microbial IE etiologies, the use of combination antibiotic therapy further improves outcome. IE vegetations on affected heart valves from patients and experimental animal models resemble biofilm infections. Besides the recalcitrant nature of IE, the microorganisms often present in an aggregated form, and gradients of bacterial activity in the vegetations can be observed. Even after appropriate antibiotic therapy, such microbial formations can often be identified in surgically removed, infected heart valves. Therefore, persistent or recurrent cases of IE, after apparent initial infection control, can be related to biofilm formation in the heart valve vegetations. On this background, the present review will describe potentially novel non-antibiotic, antimicrobial approaches in IE, with special focus on anti-thrombotic strategies and hyperbaric oxygen therapy targeting the biofilm formation of the infected heart valves caused by Staphylococcus aureus. The format is translational from preclinical models to actual clinical treatment strategies.
Collapse
Affiliation(s)
- Christian Johann Lerche
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Franziska Schwartz
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marie Theut
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emil Loldrup Fosbøl
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kasper Iversen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Emergency Medicine, Herlev and Gentofte Hospital, University of Copenhagen, Herlev, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
21
|
Hedetoft M, Jensen PØ, Moser C, Vinkel J, Hyldegaard O. Hyperbaric oxygen treatment impacts oxidative stress markers in patients with necrotizing soft-tissue infection. J Investig Med 2021; 69:1330-1338. [PMID: 34006573 PMCID: PMC8485130 DOI: 10.1136/jim-2021-001837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 02/02/2023]
Abstract
Necrotizing soft-tissue infection (NSTI) is a rare, severe, and fast-progressing bacterial infection associated with a high risk of developing sepsis or septic shock. Increasing evidence indicates that oxidative stress is crucial in the development and progression of sepsis, but its role in NSTI specifically has not been investigated. Some patients with NSTI receive hyperbaric oxygen (HBO2) treatment as the restoration of oxidative stress balance is considered an important mechanism of action, which HBO2 facilitates. However, a gap in knowledge exists regarding the effect of HBO2 treatment on oxidative stress in patients with NSTI. In the present observational study, we aimed to investigate HBO2 treatment effects on known markers of oxidative stress in patients with NSTI. We measured plasma myeloperoxidase (MPO), superoxide dismutase (SOD), heme oxygenase-1 (HO-1) and nitrite+nitrate in 80 patients with NSTI immediately before and after their first HBO2 treatment, and on the following day. We found that HBO2 treatment was associated with a significant increase in MPO and SOD by a median of 3.4 and 8.8 ng/mL, respectively. Moreover, we observed an HBO2 treatment-associated increase in HO-1 in patients presenting with septic shock (n=39) by a median of 301.3 pg/mL. All markers were significantly higher in patients presenting with septic shock compared to patients without shock, and all markers correlated with disease severity. High baseline SOD was associated with 90-day mortality. In conclusion, HBO2 treatment was associated with an increase in MPO and SOD in patients with NSTI, and oxidative stress was more pronounced in patients with septic shock.
Collapse
Affiliation(s)
- Morten Hedetoft
- Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Costerton Biofilm Center, Institute of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Julie Vinkel
- Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Valente Aguiar P, Carvalho B, Monteiro P, Linhares P, Camacho Ó, Vaz R. Hyperbaric oxygen treatment: Results in seven patients with severe bacterial postoperative central nervous system infections and refractory mucormycosis. Diving Hyperb Med 2021; 51:86-93. [PMID: 33761547 DOI: 10.28920/dhm51.1.86-93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/08/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Resistant bacterial infections following brain and spine surgery and spontaneous mucormycosis with central nervous system (CNS) involvement represent a serious treatment challenge and more efficient therapeutic approaches ought to be considered. Hyperbaric oxygen treatment (HBOT) has shown promise as a complementary therapy. This case series evaluated whether HBOT contributed to infection resolution in seven patients with refractory CNS infectious conditions. METHODS Clinical results for seven patients referred for HBOT between 2010 to 2018 to treat refractory postoperative brain and spine infections or spontaneously developing mucormycosis were retrospectively analysed. The patients' clinical files and follow-up consultations were reviewed to assess evolution and outcome. RESULTS Seven patients were referred with a median age of 56 years. The median follow-up was 20 months. Four patients had postoperative infections and three had rhino-orbital-cerebral mucormycosis (ROCM). HBOT was used as an adjunctive treatment to antimicrobial therapy in all patients. Prior to HBOT, all patients had undergone an average of four operations due to infection refractoriness and had completed an average of five months of antimicrobial therapy. After HBOT, infection resolution was obtained in six patients without additional operations, while one patient with ROCM stopped HBOT after the third session due to intolerance. Three patients stopped antimicrobial therapy while four were maintained on prophylactic treatment. CONCLUSIONS Infection resolution was reached in the six patients that completed HBOT as prescribed. HBOT may serve as an effective complementary treatment in CNS refractory postoperative and spontaneous infections.
Collapse
Affiliation(s)
- Pedro Valente Aguiar
- Neurosurgery Department, Centro Hospitalar Universitário São João, Oporto, Portugal.,Faculty of Medicine, Oporto University, Oporto, Portugal.,Corresponding author: Dr Pedro D Valente Aguiar, Department of Neurosurgery, Centro Hospitalar Universitário São João, Alameda Professor Hernâni Monteiro, 4200-319, Porto, Portugal,
| | - Bruno Carvalho
- Neurosurgery Department, Centro Hospitalar Universitário São João, Oporto, Portugal.,Faculty of Medicine, Oporto University, Oporto, Portugal
| | - Pedro Monteiro
- Neurosurgery Department, Centro Hospitalar Universitário São João, Oporto, Portugal.,Faculty of Medicine, Oporto University, Oporto, Portugal
| | - Paulo Linhares
- Neurosurgery Department, Centro Hospitalar Universitário São João, Oporto, Portugal.,Faculty of Medicine, Oporto University, Oporto, Portugal.,Neurosciences Centre, Hospital CUF, Oporto, Portugal
| | - Óscar Camacho
- Hyperbaric Medical Unit, Unidade Local de Saúde de Matosinhos, Portugal
| | - Rui Vaz
- Neurosurgery Department, Centro Hospitalar Universitário São João, Oporto, Portugal.,Faculty of Medicine, Oporto University, Oporto, Portugal.,Neurosciences Centre, Hospital CUF, Oporto, Portugal
| |
Collapse
|
23
|
Hedetoft M, Bennett MH, Hyldegaard O. Adjunctive hyperbaric oxygen treatment for necrotising soft-tissue infections: A systematic review and meta-analysis. Diving Hyperb Med 2021; 51:34-43. [PMID: 33761539 DOI: 10.28920/dhm51.1.34-43] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Surgical intervention, broad-spectrum antibiotics and intensive care support are the standard of care in the treatment of necrotising soft-tissue infections (NSTI). Hyperbaric oxygen treatment (HBOT) may be a useful adjunctive treatment and has been used for almost 60 years, but its efficacy remains unknown and has not been systematically appraised. The aim was to systematically review and synthesise the highest level of clinical evidence available to support or refute the use of HBOT in the treatment of NSTI. METHODS The review was prospectively registered (PROSPERO; CRD42020148706). MEDLINE, EMBASE, CENTRAL and CINAHL were searched for eligible studies that reported outcomes in both HBOT treated and non-HBOT treated individuals with NSTI. In-hospital mortality was the primary outcome. Odds ratio (ORs) were pooled using random-effects models. RESULTS The search identified 486 papers of which 31 were included in the qualitative synthesis and 21 in the meta-analyses. Meta-analysis on 48,744 patients with NSTI (1,237 (2.5%) HBOT versus 47,507 (97.5%) non-HBOT) showed in-hospital mortality was 4,770 of 48,744 patients overall (9.8%) and the pooled OR was 0.44 (95% CI 0.33-0.58) in favour of HBOT. For major amputation the pooled OR was 0.60 (95% CI 0.28-1.28) in favour of HBOT. The dose of oxygen in these studies was incompletely reported. CONCLUSIONS Meta-analysis of the non-random comparative data indicates patients with NSTI treated with HBOT have reduced odds of dying during the sentinel event and may be less likely to require a major amputation. The most effective dose of oxygen remains unclear.
Collapse
Affiliation(s)
- Morten Hedetoft
- Department of Anaesthesia, Centre of Head and Orthopaedics, Rigshospitalet, University of Copenhagen, Denmark.,Department of Anaesthesia and Hyperbaric Medicine, Prince of Wales Hospital, Sydney, Australia.,Corresponding author: Dr Morten Hedetoft, Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Blegdamsvej 8, 2100 Copenhagen, Denmark,
| | - Michael H Bennett
- Department of Anaesthesia and Hyperbaric Medicine, Prince of Wales Hospital, Sydney, Australia
| | - Ole Hyldegaard
- Department of Anaesthesia, Centre of Head and Orthopaedics, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
24
|
Hedetoft M, Garred P, Madsen MB, Hyldegaard O. Hyperbaric oxygen treatment is associated with a decrease in cytokine levels in patients with necrotizing soft-tissue infection. Physiol Rep 2021; 9:e14757. [PMID: 33719215 PMCID: PMC7957267 DOI: 10.14814/phy2.14757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The pathophysiological understanding of the inflammatory response in necrotizing soft-tissue infection (NSTI) and its impact on clinical progression and outcomes are not resolved. Hyperbaric oxygen (HBO2 ) treatment serves as an adjunctive treatment; however, its immunomodulatory effects in the treatment of NSTI remains unknown. Accordingly, we evaluated fluctuations in inflammatory markers during courses of HBO2 treatment and assessed the overall inflammatory response during the first 3 days after admission. METHODS In 242 patients with NSTI, we measured plasma TNF-α, IL-1β, IL-6, IL-10, and granulocyte colony-stimulating factor (G-CSF) upon admission and daily for three days, and before/after HBO2 in the 209 patients recieving HBO2 . We assessed the severity of disease by Simplified Acute Physiology Score (SAPS) II, SOFA score, and blood lactate. RESULTS In paired analyses, HBO2 treatment was associated with a decrease in IL-6 in patients with Group A-Streptococcus NSTI (first HBO2 treatment, median difference -29.5 pg/ml; second HBO2 treatment, median difference -7.6 pg/ml), and overall a decrease in G-CSF (first HBO2 treatment, median difference -22.5 pg/ml; 2- HBO2 treatment, median difference -20.4 pg/ml). Patients presenting with shock had significantly higher baseline cytokines values compared to non-shock patients (TNF-α: 51.9 vs. 23.6, IL-1β: 1.39 vs 0.61, IL-6: 542.9 vs. 57.5, IL-10: 21.7 vs. 3.3 and G-CSF: 246.3 vs. 11.8 pg/ml; all p < 0.001). Longitudinal analyses demonstrated higher concentrations in septic shock patients and those receiving renal-replacement therapy. All cytokines were significantly correlated to SAPS II, SOFA score, and blood lactate. In adjusted analysis, high baseline G-CSF was associated with 30-day mortality (OR 2.83, 95% CI: 1.01-8.00, p = 0.047). CONCLUSION In patients with NSTI, HBO2 treatment may induce immunomodulatory effects by decreasing plasma G-CSF and IL-6. High levels of inflammatory markers were associated with disease severity, whereas high baseline G-CSF was associated with increased 30-day mortality.
Collapse
Affiliation(s)
- Morten Hedetoft
- Department of Anaesthesia, Hyperbaric Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology Section 7631, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Martin Bruun Madsen
- Department of Intensive Care, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ole Hyldegaard
- Department of Anaesthesia, Hyperbaric Unit, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
25
|
Heinzinger LR, Johnson A, Wurster JI, Nilson R, Penumutchu S, Belenky P. Oxygen and Metabolism: Digesting Determinants of Antibiotic Susceptibility in the Gut. iScience 2020; 23:101875. [PMID: 33354661 PMCID: PMC7744946 DOI: 10.1016/j.isci.2020.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Microbial metabolism is a major determinant of antibiotic susceptibility. Environmental conditions that modify metabolism, notably oxygen availability and redox potential, can directly fine-tune susceptibility to antibiotics. Despite this, relatively few studies have discussed these modifications within the gastrointestinal tract and their implication on in vivo drug activity and the off-target effects of antibiotics in the gut. In this review, we discuss the environmental and biogeographical complexity of the gastrointestinal tract in regard to oxygen availability and redox potential, addressing how the heterogeneity of gut microhabitats may modify antibiotic activity in vivo. We contextualize the current literature surrounding oxygen availability and antibiotic efficacy and discuss empirical treatments. We end by discussing predicted patterns of antibiotic activity in prominent microbiome taxa, given gut heterogeneity, oxygen availability, and polymicrobial interactions. We also propose additional work required to fully elucidate the role of oxygen metabolism on antibiotic susceptibility in the context of the gut.
Collapse
Affiliation(s)
- Lauren R. Heinzinger
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Angus Johnson
- Department of Biological Science, Binghamton University, Binghamton, NY 13902, USA
| | - Jenna I. Wurster
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Rachael Nilson
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
26
|
Hyperbaric oxygen treatment: A complementary treatment modality of Modic changes? Med Hypotheses 2020; 138:109617. [PMID: 32065934 DOI: 10.1016/j.mehy.2020.109617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/05/2020] [Accepted: 02/09/2020] [Indexed: 11/23/2022]
Abstract
Modic changes (MCs) have attracted great interest in recent years. The complex process of MC development and progression seems to involve interplay between mechanical, infective, inflammatory, and degenerative processes that cannot be clearly differentiated. Based on signal intensity on T1- and T2-weighted MRI scans, MCs can be divided three types: Type 1, Type 2, and Type 3. Predominantly Type 1 MCs are commonly associated with chronic low back pain that is unresponsive to classic treatment options. Infection with low-virulent anaerobic microorganisms, most commonly Propionibacterium acnes, has been implicated in MC development following a disc herniation when a tear enables bacteria to enter the disc. Recent studies in patients with chronic low back pain following a lumbar disc herniation associated with Type 1 MCs have reported promising results following prolonged systemic antibiotic treatment with amoxicillin-clavulanate. Hyperbaric oxygen therapy, as primary or adjuvant treatment in association combination with systemic antibiotics or anti-inflammatory therapy, could offer important advantages in treating patients with suspected low-virulent disc infections due to anaerobic microorganisms associated with Type 1 MCs. We believe that hyperbaric oxygenation could contribute to faster resolution of Type 1 MCs and associated pain through multiple effects-including direct antimicrobial effects through formation of reactive oxygen species (ROS), altering the favorable low oxygen tension milieu such that it becomes unfavorable for bacterial growth and survival, and anti-biofilm effects. Additionally, hyperbaric oxygenation could contribute to faster pain resolution via direct and indirect anti-inflammatory effects. As an adjuvant treatment administered in combination with systemic antibiotics, HBOT could increase the sensitivity of Propionibacterium acnes to antimicrobial drugs under hyperoxic conditions, resulting in faster MC resolution. Overall, the faster infection resolution, diminished bacterial load, and anti-inflammatory effects due to reduced cytokine expression and levels of infectious by-products could lead to faster pain resolution following HBOT, and a significant improvement of quality of life in these patients.
Collapse
|
27
|
Stryja J, Sandy-Hodgetts K, Collier M, Moser C, Ousey K, Probst S, Wilson J, Xuereb D. PREVENTION AND MANAGEMENT ACROSS HEALTH-CARE SECTORS. J Wound Care 2020; 29:S1-S72. [DOI: 10.12968/jowc.2020.29.sup2b.s1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jan Stryja
- Vascular Surgeon, Centre of vascular and miniinvasive surgery, Hospital Podlesi, Trinec, The Czech Republic. Salvatella Ltd., Centre of non-healing wounds treatment, Podiatric outpatients’ department, Trinec, The Czech Republic
| | - Kylie Sandy-Hodgetts
- Senior Research Fellow – Senior Lecturer, Faculty of Medicine, School of Biomedical Sciences, University of Western Australia, Director, Skin Integrity Clinical Trials Unit, University of Western Australia
| | - Mark Collier
- Nurse Consultant and Associate Lecturer – Tissue Viability, Independent – formerly at the United Lincolnshire Hospitals NHS Trust, c/o Pilgrim Hospital, Sibsey Road, Boston, Lincolnshire, PE21 9Q
| | - Claus Moser
- Clinical microbiologist, Rigshospitalet, Department of Clinical Microbiology, Copenhagen, Denmark
| | - Karen Ousey
- Professor of Skin Integrity, University of Huddersfield. Institute of Skin Integrity and Infection Prevention, Huddersfield, UK
| | - Sebastian Probst
- Professor of wound care, HES-SO University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland
| | - Jennie Wilson
- Professor of Healthcare Epidemiology, University of West London, College of Nursing, Midwifery and Healthcare, London, UK
| | - Deborah Xuereb
- Senior Infection Prevention & infection Control Nurse, Mater Dei Hospital, Msida, Malta
| |
Collapse
|
28
|
Jensen P, Møller S, Lerche C, Moser C, Bjarnsholt T, Ciofu O, Faurholt-Jepsen D, Høiby N, Kolpen M. Improving antibiotic treatment of bacterial biofilm by hyperbaric oxygen therapy: Not just hot air. Biofilm 2019; 1:100008. [PMID: 33447795 PMCID: PMC7798444 DOI: 10.1016/j.bioflm.2019.100008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 10/26/2022] Open
Abstract
Bacteria and fungi show substantial increased recalcitrance when growing as infectious biofilms. Chronic infections caused by biofilm growing microorganisms is considered a major problem of modern medicine. New strategies are needed to improve antibiotic treatment of biofilms. We have improved antibiotic treatment of bacterial biofilms by reviving the dormant bacteria and thereby make them susceptible to antibiotics by means of reoxygenation. Here we review the rationale for associating lack of oxygen with low susceptibility in infectious biofilm, and how hyperbaric oxygen therapy may result in reoxygenation leading to enhanced bactericidal activity of antibiotics. We address issues of feasibility and potential adverse effects regarding patient safety and development of resistance. Finally, we propose means for supplying reoxygenation to antibiotic treatment of infectious biofilm with the potential to benefit large groups of patients.
Collapse
Affiliation(s)
- P.Ø. Jensen
- Department of Clinical Microbiology, Rigshospitalet, 2100, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, 2200, Copenhagen, Denmark
| | - S.A. Møller
- Department of Clinical Microbiology, Rigshospitalet, 2100, Copenhagen, Denmark
| | - C.J. Lerche
- Department of Clinical Microbiology, Rigshospitalet, 2100, Copenhagen, Denmark
| | - C. Moser
- Department of Clinical Microbiology, Rigshospitalet, 2100, Copenhagen, Denmark
| | - T. Bjarnsholt
- Department of Clinical Microbiology, Rigshospitalet, 2100, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, 2200, Copenhagen, Denmark
| | - O. Ciofu
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, 2200, Copenhagen, Denmark
| | - D. Faurholt-Jepsen
- Copenhagen Cystic Fibrosis Center, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK2100, Copenhagen, Denmark
| | - N. Høiby
- Department of Clinical Microbiology, Rigshospitalet, 2100, Copenhagen, Denmark
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health Sciences University of Copenhagen, 2200, Copenhagen, Denmark
| | - M. Kolpen
- Department of Clinical Microbiology, Rigshospitalet, 2100, Copenhagen, Denmark
| |
Collapse
|
29
|
Hajdamowicz NH, Hull RC, Foster SJ, Condliffe AM. The Impact of Hypoxia on the Host-Pathogen Interaction between Neutrophils and Staphylococcus aureus. Int J Mol Sci 2019; 20:ijms20225561. [PMID: 31703398 PMCID: PMC6888323 DOI: 10.3390/ijms20225561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/26/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are key to host defence, and impaired neutrophil function predisposes to infection with an array of pathogens, with Staphylococcus aureus a common and sometimes life-threatening problem in this setting. Both infiltrating immune cells and replicating bacteria consume oxygen, contributing to the profound tissue hypoxia that characterises sites of infection. Hypoxia in turn has a dramatic effect on both neutrophil bactericidal function and the properties of S. aureus, including the production of virulence factors. Hypoxia thereby shapes the host-pathogen interaction and the progression of infection, for example promoting intracellular bacterial persistence, enabling local tissue destruction with the formation of an encaging abscess capsule, and facilitating the establishment and propagation of bacterial biofilms which block the access of host immune cells. Elucidating the molecular mechanisms underlying host-pathogen interactions in the setting of hypoxia will enable better understanding of persistent and recalcitrant infections due to S. aureus and may uncover novel therapeutic targets and strategies.
Collapse
Affiliation(s)
- Natalia H Hajdamowicz
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Beech Hill Road, Sheffield S10 2TN, UK; (N.H.H.); (R.C.H.)
- Florey Institute, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK;
| | - Rebecca C Hull
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Beech Hill Road, Sheffield S10 2TN, UK; (N.H.H.); (R.C.H.)
- Florey Institute, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK;
| | - Simon J Foster
- Florey Institute, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK;
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Beech Hill Road, Sheffield S10 2TN, UK; (N.H.H.); (R.C.H.)
- Florey Institute, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK;
- Correspondence:
| |
Collapse
|
30
|
Crabbé A, Jensen PØ, Bjarnsholt T, Coenye T. Antimicrobial Tolerance and Metabolic Adaptations in Microbial Biofilms. Trends Microbiol 2019; 27:850-863. [PMID: 31178124 DOI: 10.1016/j.tim.2019.05.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/25/2019] [Accepted: 05/07/2019] [Indexed: 01/04/2023]
Abstract
Active bacterial metabolism is a prerequisite for optimal activity of many classes of antibiotics. Hence, bacteria have developed strategies to reduce or modulate metabolic pathways to become tolerant. This review describes the tight relationship between metabolism and tolerance in bacterial biofilms, and how physicochemical properties of the microenvironment at the host-pathogen interface (such as oxygen and nutritional content) are key to this relationship. Understanding how metabolic adaptations lead to tolerance brings us to novel approaches to tackle antibiotic-tolerant biofilms. We describe the use of hyperbaric oxygen therapy, metabolism-stimulating metabolites, and alternative strategies to redirect bacterial metabolism towards an antibiotic-susceptible phenotype.
Collapse
Affiliation(s)
- Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Peter Østrup Jensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| |
Collapse
|
31
|
Ciofu O, Tolker-Nielsen T. Tolerance and Resistance of Pseudomonas aeruginosa Biofilms to Antimicrobial Agents-How P. aeruginosa Can Escape Antibiotics. Front Microbiol 2019; 10:913. [PMID: 31130925 PMCID: PMC6509751 DOI: 10.3389/fmicb.2019.00913] [Citation(s) in RCA: 389] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/10/2019] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is one of the six bacterial pathogens, Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp., which are commonly associated with antimicrobial resistance, and denoted by their acronym ESKAPE. P. aeruginosa is also recognized as an important cause of chronic infections due to its ability to form biofilms, where the bacteria are present in aggregates encased in a self-produced extracellular matrix and are difficult or impossible to eradicate with antibiotic treatment. P. aeruginosa causes chronic infections in the lungs of patients with cystic fibrosis and chronic obstructive lung disease, as well as chronic urinary tract infections in patients with permanent bladder catheter, and ventilator-associated pneumonia in intubated patients, and is also an important pathogen in chronic wounds. Antibiotic treatment cannot eradicate these biofilm infections due to their intrinsic antibiotic tolerance and the development of mutational antibiotic resistance. The tolerance of biofilms to antibiotics is multifactorial involving physical, physiological, and genetic determinants, whereas the antibiotic resistance of bacteria in biofilms is caused by mutations and driven by the repeated exposure of the bacteria to high levels of antibiotics. In this review, both the antimicrobial tolerance and the development of resistance to antibiotics in P. aeruginosa biofilms are discussed. Possible therapeutic approaches based on the understanding of the mechanisms involved in the tolerance and resistances of biofilms to antibiotics are also addressed.
Collapse
Affiliation(s)
- Oana Ciofu
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
32
|
Kadam S, Shai S, Shahane A, Kaushik KS. Recent Advances in Non-Conventional Antimicrobial Approaches for Chronic Wound Biofilms: Have We Found the 'Chink in the Armor'? Biomedicines 2019; 7:biomedicines7020035. [PMID: 31052335 PMCID: PMC6631124 DOI: 10.3390/biomedicines7020035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/27/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic wounds are a major healthcare burden, with huge public health and economic impact. Microbial infections are the single most important cause of chronic, non-healing wounds. Chronic wound infections typically form biofilms, which are notoriously recalcitrant to conventional antibiotics. This prompts the need for alternative or adjunct ‘anti-biofilm’ approaches, notably those that account for the unique chronic wound biofilm microenvironment. In this review, we discuss the recent advances in non-conventional antimicrobial approaches for chronic wound biofilms, looking beyond standard antibiotic therapies. These non-conventional strategies are discussed under three groups. The first group focuses on treatment approaches that directly kill or inhibit microbes in chronic wound biofilms, using mechanisms or delivery strategies distinct from antibiotics. The second group discusses antimicrobial approaches that modify the biological, chemical or biophysical parameters in the chronic wound microenvironment, which in turn enables the disruption and removal of biofilms. Finally, therapeutic approaches that affect both, biofilm bacteria and microenvironment factors, are discussed. Understanding the advantages and limitations of these recent approaches, their stage of development and role in biofilm management, could lead to new treatment paradigms for chronic wound infections. Towards this end, we discuss the possibility that non-conventional antimicrobial therapeutics and targets could expose the ‘chink in the armor’ of chronic wound biofilms, thereby providing much-needed alternative or adjunct strategies for wound infection management.
Collapse
Affiliation(s)
- Snehal Kadam
- Ramalingaswami Re-entry Fellowship, Department of Biotechnology, Pune 411045, India.
| | - Saptarsi Shai
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed (to be) University, Erandwane, Pune 411038, India.
| | - Aditi Shahane
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed (to be) University, Erandwane, Pune 411038, India.
| | - Karishma S Kaushik
- Ramalingaswami Re-entry Fellowship, Department of Biotechnology, Pune 411045, India.
| |
Collapse
|
33
|
Lerche CJ, Christophersen LJ, Goetze JP, Nielsen PR, Thomsen K, Enevold C, Høiby N, Jensen PØ, Bundgaard H, Moser C. Adjunctive dabigatran therapy improves outcome of experimental left-sided Staphylococcus aureus endocarditis. PLoS One 2019; 14:e0215333. [PMID: 31002679 PMCID: PMC6474597 DOI: 10.1371/journal.pone.0215333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Staphylococcus aureus is the most frequent and fatal cause of left-sided infective endocarditis (IE). New treatment strategies are needed to improve the outcome. S. aureus coagulase promotes clot and fibrin formation. We hypothesized that dabigatran, could reduce valve vegetations and inflammation in S. aureus IE. Methods We used a rat model of severe aortic valve S. aureus IE. All infected animals were randomized to receive adjunctive dabigatran (10 mg/kg b.i.d., n = 12) or saline (controls, n = 11) in combination with gentamicin. Valve vegetation size, bacterial load, cytokine, cell integrins expression and peripheral platelets and neutrophils were assessed 3 days post-infection. Results Adjunctive dabigatran treatment significantly reduced valve vegetation size compared to controls (p< 0.0001). A significant reduction of the bacterial load in aortic valves was seen in dabigatran group compared to controls (p = 0.02), as well as expression of key pro-inflammatory markers keratinocyte-derived chemokine, IL-6, ICAM-1, TIMP-1, L-selectin (p< 0.04). Moreover, the dabigatran group had a 2.5-fold increase of circulating platelets compared to controls and a higher expression of functional and activated platelets (CD62p+) unbound to neutrophils. Conclusion Adjunctive dabigatran reduced the vegetation size, bacterial load, and inflammation in experimental S. aureus IE.
Collapse
Affiliation(s)
- Christian J. Lerche
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Immunology and Microbiology, University of Copenhagen, Denmark
- * E-mail:
| | - Lars J. Christophersen
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jens Peter Goetze
- Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Pia R. Nielsen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Kim Thomsen
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Christian Enevold
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Peter Ø. Jensen
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Immunology and Microbiology, University of Copenhagen, Denmark
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Claus Moser
- Department of Clinical Microbiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Institute of Immunology and Microbiology, University of Copenhagen, Denmark
| |
Collapse
|
34
|
Hyperbaric oxygen treatment increases killing of aggregating Pseudomonas aeruginosa isolates from cystic fibrosis patients. J Cyst Fibros 2019; 18:657-664. [PMID: 30711384 DOI: 10.1016/j.jcf.2019.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Pseudomonas aeruginosa is a major pathogen of the chronic lung infections in cystic fibrosis (CF) patients. These persistent bacterial infections are characterized by bacterial aggregates with biofilm-like properties and are treated with nebulized or intravenous tobramycin in combination with other antibiotics. However, the chronic infections are close to impossible to eradicate due to reasons that are far from fully understood. Recent work has shown that re‑oxygenation of hypoxic aggregates by hyperbaric oxygen (O2) treatment (HBOT: 100% O2 at 2.8 bar) will increase killing of aggregating bacteria by antibiotics. This is relevant for treatment of infected CF patients where bacterial aggregates are found in the endobronchial secretions that are depleted of O2 by the metabolism of polymorphonuclear leukocytes (PMNs). The main objective of this study was to investigate the effect of HBOT as an adjuvant to tobramycin treatment of aggregates formed by P. aeruginosa isolates from CF patients. METHODS The effect was tested using a model with bacterial aggregates embedded in agarose. O2 profiling was used to confirm re‑oxygenation of aggregates. RESULTS We found that HBOT was able to significantly enhance the effect of tobramycin against aggregates of all the P. aeruginosa isolates in vitro. The effect was attributed to increased O2 levels leading to increased growth and thus increased uptake of and killing by tobramycin. CONCLUSIONS Re‑oxygenation may in the future be a clinical possibility as adjuvant to enhance killing by antibiotics in cystic fibrosis lung infections.
Collapse
|
35
|
Hyperbaric oxygen therapy: Antimicrobial mechanisms and clinical application for infections. Biomed Pharmacother 2018; 109:440-447. [PMID: 30399579 DOI: 10.1016/j.biopha.2018.10.142] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 11/24/2022] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is a treatment procedure that involves breathing 100% O2 for a certain time and under a certain pressure. HBOT is commonly administrated as a primary or alternative therapy for different diseases such as infections. In this paper, we reviewed the general aspect of HBOT procedures, the mechanisms of antimicrobial effects and the application in the treatment of infections. Parts of the antimicrobial effects of HBOT are believed to result of reactive from the formation of reactive oxygen species (ROS). It is also said that HBOT enhances the antimicrobial effects of the immune system and has an additive or synergistic effect with certain antimicrobial agents. HBOT has been described as a useful procedure for different infections, particularly in deep and chronic infections such as necrotizing fasciitis, osteomyelitis, chronic soft tissue infections, and infective endocarditis. The anti-inflammation property of HBOT has demonstrated that it may play a significant role in decreasing tissue damage and infection expansion. Patients treated by HBOT need carful pre-examination and monitoring. If safety standards are strictly tracked, HBOT can be considered a suitable procedure with an apt rate of complication.
Collapse
|
36
|
Memar MY, Ghotaslou R, Samiei M, Adibkia K. Antimicrobial use of reactive oxygen therapy: current insights. Infect Drug Resist 2018; 11:567-576. [PMID: 29731645 PMCID: PMC5926076 DOI: 10.2147/idr.s142397] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infections caused by drug-resistant pathogens are a global public health problem. The introduction of a new antimicrobial strategy is an unavoidable option for the management of drug-resistant pathogens. Induction of high levels of reactive oxygen species (ROS) by several procedures has been extensively studied for the treatment of infections. In this article, the general aspects of ROS production and the common procedures that exert their antimicrobial effects due to ROS formation are reviewed. ROS generation is the antimicrobial mechanism of nanoparticles, hyperbaric oxygen therapy, medical honey, and photodynamic therapy. In addition, it is an alternative bactericidal mechanism of clinically traditional antibiotics. The development of ROS delivery methods with a desirable selectivity for pathogens without side effects for the host tissue may be a promising approach for the treatment of infections, especially those caused by drug-resistant organisms.
Collapse
Affiliation(s)
| | - Reza Ghotaslou
- Department of Microbiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Faculity of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khosro Adibkia
- Research Center for Pharmaceutical Nanotechnology and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
37
|
Hyperbaric Oxygen Reduces Aspergillus fumigatus Proliferation In Vitro and Influences In Vivo Disease Outcomes. Antimicrob Agents Chemother 2018; 62:AAC.01953-17. [PMID: 29229641 DOI: 10.1128/aac.01953-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/06/2017] [Indexed: 12/23/2022] Open
Abstract
Recent estimates suggest that more than 3 million people have chronic or invasive fungal infections, causing more than 600,000 deaths every year. Aspergillus fumigatus causes invasive pulmonary aspergillosis (IPA) in patients with compromised immune systems and is a primary contributor to increases in human fungal infections. Thus, the development of new clinical modalities as stand-alone or adjunctive therapy for improving IPA patient outcomes is critically needed. Here we tested the in vitro and in vivo impacts of hyperbaric oxygen (HBO) (100% oxygen, >1 atmosphere absolute [ATA]) on A. fumigatus proliferation and murine IPA outcomes. Our findings indicate that HBO reduces established fungal biofilm proliferation in vitro by over 50%. The effect of HBO under the treatment conditions was transient and fungistatic, with A. fumigatus metabolic activity rebounding within 6 h of HBO treatment being removed. In vivo, daily HBO provides a dose-dependent but modest improvement in murine IPA disease outcomes as measured by survival analysis. Intriguingly, no synergy was observed between subtherapeutic voriconazole or amphotericin B and HBO in vitro or in vivo with daily HBO dosing, though the loss of fungal superoxide dismutase genes enhanced HBO antifungal activity. Further studies are needed to optimize the HBO treatment regimen and better understand the effects of HBO on both the host and the pathogen during a pulmonary invasive fungal infection.
Collapse
|
38
|
Sønderholm M, Bjarnsholt T, Alhede M, Kolpen M, Jensen PØ, Kühl M, Kragh KN. The Consequences of Being in an Infectious Biofilm: Microenvironmental Conditions Governing Antibiotic Tolerance. Int J Mol Sci 2017; 18:E2688. [PMID: 29231866 PMCID: PMC5751290 DOI: 10.3390/ijms18122688] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/27/2017] [Accepted: 12/06/2017] [Indexed: 12/22/2022] Open
Abstract
The main driver behind biofilm research is the desire to understand the mechanisms governing the antibiotic tolerance of biofilm-growing bacteria found in chronic bacterial infections. Rather than genetic traits, several physical and chemical traits of the biofilm have been shown to be attributable to antibiotic tolerance. During infection, bacteria in biofilms exhibit slow growth and a low metabolic state due to O₂ limitation imposed by intense O₂ consumption of polymorphonuclear leukocytes or metabolically active bacteria in the biofilm periphery. Due to variable O₂ availability throughout the infection, pathogen growth can involve aerobic, microaerobic and anaerobic metabolism. This has serious implications for the antibiotic treatment of infections (e.g., in chronic wounds or in the chronic lung infection of cystic fibrosis patients), as antibiotics are usually optimized for aerobic, fast-growing bacteria. This review summarizes knowledge about the links between the microenvironment of biofilms in chronic infections and their tolerance against antibiotics.
Collapse
Affiliation(s)
- Majken Sønderholm
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Thomas Bjarnsholt
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Clinical Microbiology, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Maria Alhede
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Mette Kolpen
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Clinical Microbiology, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Peter Ø Jensen
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
- Department of Clinical Microbiology, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, DK-3000 Elsinore, Denmark.
- Climate Change Cluster, University of Technology Sydney, Ultimo NSW 2007, Australia.
| | - Kasper N Kragh
- Costerton Biofilm Centre, Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
39
|
Hyperbaric Oxygen Sensitizes Anoxic Pseudomonas aeruginosa Biofilm to Ciprofloxacin. Antimicrob Agents Chemother 2017; 61:AAC.01024-17. [PMID: 28874373 PMCID: PMC5655102 DOI: 10.1128/aac.01024-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023] Open
Abstract
Chronic Pseudomonas aeruginosa lung infection is characterized by the presence of endobronchial antibiotic-tolerant biofilm, which is subject to strong oxygen (O2) depletion due to the activity of surrounding polymorphonuclear leukocytes. The exact mechanisms affecting the antibiotic susceptibility of biofilms remain unclear, but accumulating evidence suggests that the efficacy of several bactericidal antibiotics is enhanced by stimulation of aerobic respiration of pathogens, while lack of O2 increases their tolerance. In fact, the bactericidal effect of several antibiotics depends on active aerobic metabolism activity and the endogenous formation of reactive O2 radicals (ROS). In this study, we aimed to apply hyperbaric oxygen treatment (HBOT) to sensitize anoxic P. aeruginosa agarose biofilms established to mimic situations with intense O2 consumption by the host response in the cystic fibrosis (CF) lung. Application of HBOT resulted in enhanced bactericidal activity of ciprofloxacin at clinically relevant durations and was accompanied by indications of restored aerobic respiration, involvement of endogenous lethal oxidative stress, and increased bacterial growth. The findings highlight that oxygenation by HBOT improves the bactericidal activity of ciprofloxacin on P. aeruginosa biofilm and suggest that bacterial biofilms are sensitized to antibiotics by supplying hyperbaric O2.
Collapse
|