1
|
Toro A, Arévalo AP, Pereira-Gómez M, Sabater A, Zizzi EA, Perbolianachis P, Pascual G, Lage-Vickers S, Pórfido JL, Achinelli I, Seniuk R, Bizzotto J, Sanchis P, Olivera A, Leyva A, Moreno P, Costábile A, Fajardo A, Carrión F, Fló M, Olivero-Deibe N, Rodriguez F, Nin N, Anselmino N, Labanca E, Vazquez E, Cotignola J, Alonso DF, Valacco MP, Marti M, Gentile F, Cherkasov A, Crispo M, Moratorio G, Gueron G. Blood matters: the hematological signatures of Coronavirus infection. Cell Death Dis 2024; 15:863. [PMID: 39609423 PMCID: PMC11605097 DOI: 10.1038/s41419-024-07247-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
Recent developments have broadened our perception of SARS-CoV-2, indicating its capability to affect the body systemically beyond its initial recognition as a mere respiratory pathogen. However, the pathways of its widespread are not well understood. Employing a dual-modality approach, we integrated findings from a Murine Hepatitis Virus (MHV) infection model with corroborative clinical data to investigate the pervasive reach of Coronaviruses. The novel presence of viral particles within red blood cells (RBCs) was demonstrated via high-resolution transmission electron microscopy, with computational modeling elucidating a potential heme-mediated viral entry mechanism via Spike protein affinity. Our data affirm viral localization in RBCs, suggesting heme moieties as facilitators for cellular invasion. Exacerbation of MHV pathology upon hemin administration, contrasted with chloroquine-mediated amelioration, underscoring a heme-centric pathway in disease progression. These observations extend the paradigm of Coronavirus pathogenicity to include hemoprotein interactions. This study casts new light on the systemic invasion capabilities of Coronaviruses, linking RBC hemoproteins with viral virulence. The modulation of disease severity through heme-interacting agents heralds a promising avenue for COVID-19 therapeutics. Our findings propose a paradigm shift in the treatment approach, leveraging the virus-heme interplay as a strategic hinge for intervention.
Collapse
Affiliation(s)
- Ayelen Toro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Ana P Arévalo
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Marianoel Pereira-Gómez
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustina Sabater
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Eric A Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Paula Perbolianachis
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gaston Pascual
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sofia Lage-Vickers
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge L Pórfido
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ines Achinelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rocio Seniuk
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Juan Bizzotto
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Pablo Sanchis
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Tecnología (INTEC), Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| | - Alvaro Olivera
- Laboratorio de Alta Resolución, Departamento de Desarrollo Tecnológico, Centro Universitario Regional Este (CURE), Universidad de la República, Rocha, Uruguay
| | - Alejandro Leyva
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Alicia Costábile
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Centro de Innovación en Vigilancia Epidemiológica, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alvaro Fajardo
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Federico Carrión
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Martín Fló
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Fernando Rodriguez
- Unidad de Cuidados Intensivos, Hospital Español "Juan José Crottoggini", Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | - Nicolas Nin
- Unidad de Cuidados Intensivos, Hospital Español "Juan José Crottoggini", Administración de Servicios de Salud del Estado, Montevideo, Uruguay
| | - Nicolas Anselmino
- Department of Genitourinary Medical Oncology and The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Estefania Labanca
- Department of Genitourinary Medical Oncology and The David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elba Vazquez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Javier Cotignola
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel F Alonso
- Centro de Oncología Molecular y Traslacional y Plataforma de Servicios Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Maria P Valacco
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcelo Marti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Francesco Gentile
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Artem Cherkasov
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Martina Crispo
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
- Laboratorio de Evolución Experimental de Virus, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| | - Geraldine Gueron
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Maas AF, Wyers C, Dielis A, Barten DG, van Kampen VE, van der Krieken TE, de Kruif M, Simsek S, Spaetgens B, van Haaps T, Appelman B, Gritters NC, Doornbos S, Moeniralam HS, Noordzij PG, Reidinga A, Douma RA, Nossent EJ, Beudel M, Elbers P, Middeldorp S, van Es N, van den Bergh JP, van Osch FH. The Incidence of Pulmonary Embolism in Hospitalized Non-ICU Patients with COVID-19 during the First Wave: A Multicenter Retrospective Cohort Study in the Netherlands. J Vasc Res 2024; 61:142-150. [PMID: 38631294 PMCID: PMC11151976 DOI: 10.1159/000538312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/05/2024] [Indexed: 04/19/2024] Open
Abstract
INTRODUCTION During the first COVID-19 outbreak in 2020 in the Netherlands, the incidence of pulmonary embolism (PE) appeared to be high in COVID-19 patients admitted to the intensive care unit (ICU). This study was performed to evaluate the incidence of PE during hospital stay in COVID-19 patients not admitted to the ICU. METHODS Data were retrospectively collected from 8 hospitals in the Netherlands. Patients admitted between February 27, 2020, and July 31, 2020, were included. Data extracted comprised clinical characteristics, medication use, first onset of COVID-19-related symptoms, admission date due to COVID-19, and date of PE diagnosis. Only polymerase chain reaction (PCR)-positive patients were included. All PEs were diagnosed with computed tomography pulmonary angiography (CTPA). RESULTS Data from 1,852 patients who were admitted to the hospital ward were collected. Forty patients (2.2%) were diagnosed with PE within 28 days following hospital admission. The median time to PE since admission was 4.5 days (IQR 0.0-9.0). In all 40 patients, PE was diagnosed within the first 2 weeks after hospital admission and for 22 (55%) patients within 2 weeks after onset of symptoms. Patient characteristics, pre-existing comorbidities, anticoagulant use, and laboratory parameters at admission were not related to the development of PE. CONCLUSION In this retrospective multicenter cohort study of 1,852 COVID-19 patients only admitted to the non-ICU wards, the incidence of CTPA-confirmed PE was 2.2% during the first 4 weeks after onset of symptoms and occurred exclusively within 2 weeks after hospital admission.
Collapse
Affiliation(s)
- Arno F.G. Maas
- VieCuri Medical Center, Department of Internal Medicine, Venlo, The Netherlands
| | - Caroline Wyers
- VieCuri Medical Center, Department of Internal Medicine, Venlo, The Netherlands
| | - Arne Dielis
- VieCuri Medical Center, Department of Internal Medicine, Venlo, The Netherlands
| | - Dennis G. Barten
- VieCuri Medical Center, Department of Emergency Medicine, Venlo, The Netherlands
| | | | | | - Martijn de Kruif
- Zuyderland Hospital, Department of Pulmonology, Heerlen, The Netherlands
| | - Suat Simsek
- Northwest Clinics, Department of Internal Medicine, Alkmaar, The Netherlands
- Department of Internal Medicine/Endocrinology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Bart Spaetgens
- Department of Internal Medicine, Division of General Internal Medicine, Section Geriatric Medicine, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Thijs van Haaps
- Amsterdam University Medical Center, Department of Vascular Medicine, Amsterdam, The Netherlands
| | - Brent Appelman
- Center for Experimental and Molecular Medicine, Amsterdam UMC Location University of Amsterdam, Department(s), Amsterdam, the Netherlands
| | - Niels C. Gritters
- Treant Zorggroep, Department of Intensive Care, Emmen,The Netherlands
| | - Stefan Doornbos
- Treant Zorggroep, Department of Intensive Care, Emmen,The Netherlands
| | - Hazra S. Moeniralam
- St Antonius Hospital, Department of Internal Medicine, Nieuwegein, The Netherlands
| | - Peter G. Noordzij
- St Antonius Hospital, Department of Intensive Care, Nieuwegein, The Netherlands
| | - Auke Reidinga
- Department of Intensive Care, Martini Ziekenhuis, Groningen, The Netherlands
| | - Renée A. Douma
- Flevo Hospital, Department of Internal Medicine, Almere, The Netherlands
| | - Esther J. Nossent
- Department of Pulmonary Medicine, Free University Amsterdam, Cardiovascular Sciences Research Institute, Amsterdam, The Netherlands
| | - Martijn Beudel
- Department of Neurology, Amsterdam Neuroscience Institute, Amsterdam, The Netherlands
| | - Paul Elbers
- Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands
| | - Saskia Middeldorp
- Department of Internal Medicine, Division of General Internal Medicine, Section Geriatric Medicine, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Nick van Es
- Department of Internal Medicine, Division of General Internal Medicine, Section Geriatric Medicine, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Joop P.W. van den Bergh
- VieCuri Medical Center, Department of Internal Medicine, Venlo, The Netherlands
- Maastricht University, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Frits H.M. van Osch
- Maastricht University, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- VieCuri Medical Center, Department of Clinical Epidemiology, Venlo, The Netherlands
| |
Collapse
|
3
|
Sokolova AS, Yarovaya OI, Artyushin OI, Sharova EV, Baev DS, Mordvinova ED, Shcherbakov DN, Shnaider TA, Nikitina TV, Esaulkova IL, Ilyina PA, Zarubaev VV, Brel VK, Tolstikova TG, Salakhutdinov NF. Design, synthesis and antiviral evaluation of novel conjugates of the 1,7,7-trimethylbicyclo[2.2.1]heptane scaffold and saturated N-heterocycles via 1,2,3-triazole linker. Arch Pharm (Weinheim) 2024; 357:e2300549. [PMID: 38036303 DOI: 10.1002/ardp.202300549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
A new series of heterocyclic derivatives with a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment was designed, synthesised and biologically evaluated. Synthesis of the target compounds was performed using the Cu(I) catalysed cycloaddition reaction. The key starting substances in the click reaction were an alkyne containing a 1,7,7-trimethylbicyclo[2.2.1]heptane fragment and a series of azides with saturated nitrogen-containing heterocycles. Some of the derivatives were found to exhibit strong antiviral activity against Marburg and Ebola pseudotype viruses. Lysosomal trapping assays revealed the derivatives to possess lysosomotropic properties. The molecular modelling study demonstrated the binding affinity between the compounds investigated and the possible active site to be mainly due to hydrophobic interactions. Thus, combining a natural hydrophobic structural fragment and a lysosome-targetable heterocycle may be an effective strategy for designing antiviral agents.
Collapse
Affiliation(s)
- Anastasiya S Sokolova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Olga I Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Oleg I Artyushin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Elena V Sharova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitriy S Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis SB RAS, Koltsovo, Russian Federation
| | - Ekaterina D Mordvinova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region, Russian Federation
| | - Dmitriy N Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Koltsovo, Novosibirsk Region, Russian Federation
| | - Tatiana A Shnaider
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Tatiana V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Iana L Esaulkova
- Pasteur Institute of Epidemiology and Microbiology, St. Petersburg, Russian Federation
| | - Polina A Ilyina
- Pasteur Institute of Epidemiology and Microbiology, St. Petersburg, Russian Federation
| | - Vladimir V Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, St. Petersburg, Russian Federation
| | - Valery K Brel
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatyana G Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| |
Collapse
|
4
|
Ferreira BL, Ferreira DP, Borges SF, Ferreira AM, Holanda FH, Ucella-Filho JGM, Cruz RAS, Birolli WG, Luque R, Ferreira IM. Diclofenac, ibuprofen, and paracetamol biodegradation: overconsumed non-steroidal anti-inflammatories drugs at COVID-19 pandemic. Front Microbiol 2023; 14:1207664. [PMID: 37965564 PMCID: PMC10642723 DOI: 10.3389/fmicb.2023.1207664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
The consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have increased significantly in the last years (2020-2022), especially for patients in COVID-19 treatment. NSAIDs such as diclofenac, ibuprofen, and paracetamol are often available without restrictions, being employed without medical supervision for basic symptoms of inflammatory processes. Furthermore, these compounds are increasingly present in nature constituting complex mixtures discarded at domestic and hospital sewage/wastewater. Therefore, this review emphasizes the biodegradation of diclofenac, ibuprofen, and paracetamol by pure cultures or consortia of fungi and bacteria at in vitro, in situ, and ex situ processes. Considering the influence of different factors (inoculum dose, pH, temperature, co-factors, reaction time, and microbial isolation medium) relevant for the identification of highly efficient alternatives for pharmaceuticals decontamination, since biologically active micropollutants became a worldwide issue that should be carefully addressed. In addition, we present a quantitative bibliometric survey, which reinforces that the consumption of these drugs and consequently their impact on the environment goes beyond the epidemiological control of COVID-19.
Collapse
Affiliation(s)
- Beatriz L. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Dionisia P. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Swanny F. Borges
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Adriana M. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Fabricio H. Holanda
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - João G. M. Ucella-Filho
- Department of Forestry and Wood Sciences, Federal University of Espírito Santo, Jerônimo Monteiro, Espirito Santo, Brazil
| | - Rodrigo Alves S. Cruz
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| | - Willian G. Birolli
- Molecular Oncology Research Center, Institute of Learning and Research, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Rafael Luque
- Universidad ECOTEC, Via Principal Campus Ecotec, Samborondón, Ecuador
| | - Irlon M. Ferreira
- Biocatalysis and Applied Organic Synthesis Laboratory, Federal University of Amapá, Macapá, AP, Brazil
| |
Collapse
|
5
|
Kamga Kapchoup MV, Hescheler J, Nguemo F. In vitro effect of hydroxychloroquine on pluripotent stem cells and their cardiomyocytes derivatives. Front Pharmacol 2023; 14:1128382. [PMID: 37502208 PMCID: PMC10369049 DOI: 10.3389/fphar.2023.1128382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
Introduction: Hydroxychloroquine (HDQ) is an antimalarial drug that has also shown its effectiveness in autoimmune diseases. Despite having side effects such as retinopathy, neuromyopathy and controversial cardiac toxicity, HDQ has been presented and now intensively studied for the treatment and prevention of coronavirus disease 2019 (COVID-19). Recent works revealed both beneficial and toxic effects during HDQ treatment. The cardiotoxic profile of HDQ remains unclear and identifying risk factors is challenging. Methods: Here, we used well-established cell-cultured to study the cytotoxic effect of HDQ, mouse induced pluripotent stem cells (miPSC) and their cardiomyocytes (CMs) derivatives were exposed to different concentrations of HDQ. Cell colony morphology was assessed by microscopy whereas cell viability was measured by flow cytometry and impedance-based methods. The effect of HDQ on beating activity of mouse and human induced pluripotent stem cell-derived CMs (miPSC-CMs and hiPSC-CMs, respectively) and mouse embryonic stem cell-derived CMs (mESC-CMs) were captured by the xCELLigence RTCA and microelectrode array (MEA) systems. Results and discussion: Our results revealed that 20 µM of HDQ promotes proliferation of stem cells used suggesting that if appropriately monitored, HDQ may have a cardioprotective effect and may also represent a possible candidate for tissue repair. In addition, the field potential signals revealed that higher doses of this medication caused bradycardia that could be reversed with a higher concentration of ß-adrenergic agonist, Isoproterenol (Iso). On the contrary, HDQ caused an increase in the beating rate of hiPSC-CMs, which was further helped upon application of Isoproterenol (Iso) suggesting that HDQ and Iso may also work synergistically. These results indicate that HDQ is potentially toxic at high concentrations and can modulate the beating activity of cardiomyocytes. Moreover, HDQ could have a synergistic inotropic effect with isoproterenol on cardiac cells.
Collapse
|
6
|
Lee J, Kim J, Kang J, Lee HJ. COVID-19 drugs: potential interaction with ATP-binding cassette transporters P-glycoprotein and breast cancer resistance protein. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:1-22. [PMID: 36320434 PMCID: PMC9607806 DOI: 10.1007/s40005-022-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/30/2022] [Indexed: 01/08/2023]
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2, has resulted in acute respiratory distress, fatal systemic manifestations (extrapulmonary as well as pulmonary), and premature mortality among many patients. Therapy for COVID-19 has focused on the treatment of symptoms and of acute inflammation (cytokine storm) and the prevention of viral infection. Although the mechanism of COVID-19 is not fully understood, potential clinical targets have been identified for pharmacological, immunological, and vaccinal approaches. Area covered Pharmacological approaches including drug repositioning have been a priority for initial COVID-19 therapy due to the time-consuming nature of the vaccine development process. COVID-19 drugs have been shown to manage the antiviral infection cycle (cell entry and replication of proteins and genomic RNA) and anti-inflammation. In this review, we evaluated the interaction of current COVID-19 drugs with two ATP-binding cassette transporters [P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP)] and potential drug-drug interactions (DDIs) among COVID-19 drugs, especially those associated with P-gp and BCRP efflux transporters. Expert opinion Overall, understanding the pharmacodynamic/pharmacokinetic DDIs of COVID-19 drugs can be useful for pharmacological therapy in COVID-19 patients.
Collapse
Affiliation(s)
- Jaeok Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Jihye Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Jiyeon Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Hwa Jeong Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| |
Collapse
|
7
|
Hage A, de Vries M, Leffler A, Stoetzer C. Local Anesthetic Like Inhibition of the Cardiac Na+ Channel Nav1.5 by Chloroquine and Hydroxychloroquine. J Exp Pharmacol 2022; 14:353-365. [DOI: 10.2147/jep.s375349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/16/2022] [Indexed: 11/09/2022] Open
|
8
|
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, West R, Dastghaib S, Igder S, Torshizi SRN, Mahmoodzadeh A, Mokarram P, Madrakian T, Albensi BC, Łos MJ, Ghavami S, Pecic S. Enhancing autophagy in Alzheimer's disease through drug repositioning. Pharmacol Ther 2022; 237:108171. [PMID: 35304223 DOI: 10.1016/j.pharmthera.2022.108171] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the biggest human health threats due to increases in aging of the global population. Unfortunately, drugs for treating AD have been largely ineffective. Interestingly, downregulation of macroautophagy (autophagy) plays an essential role in AD pathogenesis. Therefore, targeting autophagy has drawn considerable attention as a therapeutic approach for the treatment of AD. However, developing new therapeutics is time-consuming and requires huge investments. One of the strategies currently under consideration for many diseases is "drug repositioning" or "drug repurposing". In this comprehensive review, we have provided an overview of the impact of autophagy on AD pathophysiology, reviewed the therapeutics that upregulate autophagy and are currently used in the treatment of other diseases, including cancers, and evaluated their repurposing as a possible treatment option for AD. In addition, we discussed the potential of applying nano-drug delivery to neurodegenerative diseases, such as AD, to overcome the challenge of crossing the blood brain barrier and specifically target molecules/pathways of interest with minimal side effects.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Aida Adlimoghaddam
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada
| | | | - Ryan West
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benedict C Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; Nova Southeastern Univ. College of Pharmacy, Davie, FL, United States of America; University of Manitoba, College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America.
| |
Collapse
|
9
|
Ren PX, Shang WJ, Yin WC, Ge H, Wang L, Zhang XL, Li BQ, Li HL, Xu YC, Xu EH, Jiang HL, Zhu LL, Zhang LK, Bai F. A multi-targeting drug design strategy for identifying potent anti-SARS-CoV-2 inhibitors. Acta Pharmacol Sin 2022; 43:483-493. [PMID: 33907306 PMCID: PMC8076879 DOI: 10.1038/s41401-021-00668-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023] Open
Abstract
The COVID-19, caused by SARS-CoV-2, is threatening public health, and there is no effective treatment. In this study, we have implemented a multi-targeted anti-viral drug design strategy to discover highly potent SARS-CoV-2 inhibitors, which simultaneously act on the host ribosome, viral RNA as well as RNA-dependent RNA polymerases, and nucleocapsid protein of the virus, to impair viral translation, frameshifting, replication, and assembly. Driven by this strategy, three alkaloids, including lycorine, emetine, and cephaeline, were discovered to inhibit SARS-CoV-2 with EC50 values of low nanomolar levels potently. The findings in this work demonstrate the feasibility of this multi-targeting drug design strategy and provide a rationale for designing more potent anti-virus drugs.
Collapse
Affiliation(s)
- Peng-Xuan Ren
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Wei-Juan Shang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wan-Chao Yin
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Huan Ge
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Lin Wang
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Xiang-Lei Zhang
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Bing-Qian Li
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- Department of Chemistry, Imperial College London, London, United Kingdom
| | - Hong-Lin Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Ye-Chun Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Eric H Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Liang Jiang
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Li Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lei-Ke Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Fang Bai
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
10
|
Srinivasan K, Pandey AK, Livingston A, Venkatesh S. Roles of host mitochondria in the development of COVID-19 pathology: Could mitochondria be a potential therapeutic target? MOLECULAR BIOMEDICINE 2021; 2:38. [PMID: 34841263 PMCID: PMC8608434 DOI: 10.1186/s43556-021-00060-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
The recent emergence of severe acute respiratory syndrome-Corona Virus 2 (SARS-CoV-2) in late 2019 and its spread worldwide caused an acute pandemic of Coronavirus disease 19 (COVID-19). Since then, COVID-19 has been under intense scrutiny as its outbreak led to significant changes in healthcare, social activities, and economic settings worldwide. Although angiotensin-converting enzyme-2 (ACE-2) receptor is shown to be the primary port of SARS-CoV-2 entry in cells, the mechanisms behind the establishment and pathologies of COVID-19 are poorly understood. As recent studies have shown that host mitochondria play an essential role in virus-mediated innate immune response, pathologies, and infection, in this review, we will discuss in detail the entry and progression of SARS-CoV-2 and how mitochondria could play roles in COVID-19 disease. We will also review the potential interactions between SARS-CoV-2 and mitochondria and discuss possible treatments, including whether mitochondria as a potential therapeutic target in COVID-19. Understanding SARS-CoV-2 and mitochondrial interactions mediated virus establishment, inflammation, and other consequences may provide a unique mechanism and conceptual advancement in finding a novel treatment for COVID-19.
Collapse
Affiliation(s)
- Kavya Srinivasan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers -New Jersey Medical School, The State University of New Jersey, Newark, NJ USA
- New York Institute of Technology, Old Westbury, NY USA
| | - Ashutosh Kumar Pandey
- Department of Pharmacology, Physiology and Neuroscience, Rutgers -New Jersey Medical School, The State University of New Jersey, Newark, NJ USA
| | | | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers -New Jersey Medical School, The State University of New Jersey, Newark, NJ USA
| |
Collapse
|
11
|
Gerlovin H, Posner DC, Ho YL, Rentsch CT, Tate JP, King JT, Kurgansky KE, Danciu I, Costa L, Linares FA, Goethert ID, Jacobson DA, Freiberg MS, Begoli E, Muralidhar S, Ramoni RB, Tourassi G, Gaziano JM, Justice AC, Gagnon DR, Cho K. Pharmacoepidemiology, Machine Learning, and COVID-19: An Intent-to-Treat Analysis of Hydroxychloroquine, With or Without Azithromycin, and COVID-19 Outcomes Among Hospitalized US Veterans. Am J Epidemiol 2021; 190:2405-2419. [PMID: 34165150 PMCID: PMC8384407 DOI: 10.1093/aje/kwab183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 12/11/2022] Open
Abstract
Hydroxychloroquine (HCQ) was proposed as an early therapy for coronavirus disease
2019 (COVID-19) after in vitro studies indicated possible
benefit. Previous in vivo observational studies have presented
conflicting results, though recent randomized clinical trials have reported no
benefit from HCQ amongst hospitalized COVID-19 patients. We examined the effects
of HCQ alone, and in combination with azithromycin, in a hospitalized COVID-19
positive, United States (US) Veteran population using a propensity score
adjusted survival analysis with imputation of missing data. From March 1, 2020
through April 30, 2020, 64,055 US Veterans were tested for COVID-19 based on
Veteran Affairs Healthcare Administration electronic health record data. Of the
7,193 positive cases, 2,809 were hospitalized, and 657 individuals were
prescribed HCQ within the first 48-hours of hospitalization for the treatment of
COVID-19. There was no apparent benefit associated with HCQ receipt, alone or in
combination with azithromycin, and an increased risk of intubation when used in
combination with azithromycin [Hazard Ratio (95% Confidence Interval):
1.55 (1.07, 2.24)]. In conclusion, we assessed the effectiveness of HCQ with or
without azithromycin in treating patients hospitalized with COVID-19 using a
national sample of the US Veteran population. Using rigorous study design and
analytic methods to reduce confounding and bias, we found no evidence of a
survival benefit from the administration of HCQ.
Collapse
|
12
|
Cui X, Sun J, Minkove SJ, Li Y, Cooper D, Couse Z, Eichacker PQ, Torabi‐Parizi P. Effects of chloroquine or hydroxychloroquine treatment on non-SARS-CoV2 viral infections: A systematic review of clinical studies. Rev Med Virol 2021; 31:e2228. [PMID: 33694220 PMCID: PMC8209942 DOI: 10.1002/rmv.2228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) have been used as antiviral agents for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection. We performed a systematic review to examine whether prior clinical studies that compared the effects of CQ and HCQ to a control for the treatment of non-SARS-CoV2 infection supported the use of these agents in the present SARS-CoV2 outbreak. PubMed, EMBASE, Scopus and Web of Science (PROSPERO CRD42020183429) were searched from inception through 2 April 2020 without language restrictions. Of 1766 retrieved reports, 18 studies met our inclusion criteria, including 17 prospective controlled studies and one retrospective study. CQ or HCQ were compared to control for the treatment of infectious mononucleosis (EBV, n = 4), warts (human papillomavirus, n = 2), chronic HIV infection (n = 6), acute chikungunya infection (n = 1), acute dengue virus infection (n = 2), chronic HCV (n = 2), and as preventive measures for influenza infection (n = 1). Survival was not evaluated in any study. For HIV, the virus that was most investigated, while two early studies suggested HCQ reduced viral levels, four subsequent ones did not, and in two of these CQ or HCQ increased viral levels and reduced CD4 counts. Overall, three studies concluded CQ or HCQ were effective; four concluded further research was needed to assess the treatments' effectiveness; and 11 concluded that treatment was ineffective or potentially harmful. Prior controlled clinical trials with CQ and HCQ for non-SARS-CoV2 viral infections do not support these agents' use for the SARS-CoV2 outbreak.
Collapse
Affiliation(s)
- Xizhong Cui
- Critical Care Medicine DepartmentNational Institutes of HealthBethesdaMarylandUSA
| | - Junfeng Sun
- Critical Care Medicine DepartmentNational Institutes of HealthBethesdaMarylandUSA
| | - Samuel J. Minkove
- Critical Care Medicine DepartmentNational Institutes of HealthBethesdaMarylandUSA
| | - Yan Li
- Critical Care Medicine DepartmentNational Institutes of HealthBethesdaMarylandUSA
| | - Diane Cooper
- NIH LibraryClinical CenterNational Institutes of HealthBethesdaMarylandUSA
| | - Zoe Couse
- Critical Care Medicine DepartmentNational Institutes of HealthBethesdaMarylandUSA
| | - Peter Q. Eichacker
- Critical Care Medicine DepartmentNational Institutes of HealthBethesdaMarylandUSA
| | | |
Collapse
|
13
|
Kamat S, Kumari M, Jayabaskaran C. Nano-engineered tools in the diagnosis, therapeutics, prevention, and mitigation of SARS-CoV-2. J Control Release 2021; 338:813-836. [PMID: 34478750 PMCID: PMC8406542 DOI: 10.1016/j.jconrel.2021.08.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 01/07/2023]
Abstract
The recent outbreak of SARS-CoV-2 has forever altered mankind resulting in the COVID-19 pandemic. This respiratory virus further manifests into vital organ damage, resulting in severe post COVID-19 complications. Nanotechnology has been moonlighting in the scientific community to combat several severe diseases. This review highlights the triune of the nano-toolbox in the areas of diagnostics, therapeutics, prevention, and mitigation of SARS-CoV-2. Nanogold test kits have already been on the frontline of rapid detection. Breath tests, magnetic nanoparticle-based nucleic acid detectors, and the use of Raman Spectroscopy present myriads of possibilities in developing point of care biosensors, which will ensure sensitive, affordable, and accessiblemass surveillance. Most of the therapeutics are trying to focus on blocking the viral entry into the cell and fighting with cytokine storm, using nano-enabled drug delivery platforms. Nanobodies and mRNA nanotechnology with lipid nanoparticles (LNPs) as vaccines against S and N protein have regained importance. All the vaccines coming with promising phase 3 clinical trials have used nano-delivery systems for delivery of vaccine-cargo, which are currently administered widely in many countries. The use of chemically diverse metal, carbon and polymeric nanoparticles, nanocages and nanobubbles demonstrate opportunities to develop anti-viral nanomedicine. In order to prevent and mitigate the viral spread, high-performance charged nanofiber filters, spray coating of nanomaterials on surfaces, novel materials for PPE kits and facemasks have been developed that accomplish over 90% capture of airborne SARS-CoV-2. Nano polymer-based disinfectants are being tested to make smart-transport for human activities. Despite the promises of this toolbox, challenges in terms of reproducibility, specificity, efficacy and emergence of new SARS-CoV-2 variants are yet to overcome.
Collapse
Affiliation(s)
- Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India.
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
14
|
Computational studies reveal Fluorine based quinolines to be potent inhibitors for proteins involved in SARS-CoV-2 assembly. J Fluor Chem 2021; 250:109865. [PMID: 34393265 PMCID: PMC8356738 DOI: 10.1016/j.jfluchem.2021.109865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/18/2022]
Abstract
World is witnessing one of the worst pandemics of this century caused by SARS-CoV-2 virus which has affected millions of individuals. Despite rapid efforts to develop vaccines and drugs for COVID-19, the disease is still not under control. Chloroquine (CQ) and Hydroxychloroquine (HCQ) are two very promising inhibitors which have shown positive effect in combating the disease in preliminary experimental studies, but their use was reduced due to severe side-effects. Here, we performed a theoretical investigation of the same by studying the binding of the molecules with SARS-COV-2 Spike protein, the complex formed by Spike and ACE2 human receptor and a human serine protease TMPRSS2 which aids in cleavage of the Spike protein to initiate the viral activation in the body. Both the molecules had shown very good docking energies in the range of -6kcal/mol. Subsequently, we did a high throughput screening for other potential quinoline candidates which could be used as inhibitors. From the large pool of ligand candidates, we shortlisted the top three ligands (binding energy -8kcal/mol). We tested the stability of the docked complexes by running Molecular Dynamics (MD) simulations where we observed the stability of the quinoline analogues with the Spike-ACE2 and TMPRSS2 nevertheless the quinolines were not stable with the Spike protein alone. Thus, although the inhibitors bond very well with the protein molecules their intrinsic binding affinity depends on the protein dynamics. Moreover, the quinolines were stable when bound to electronegative pockets of Spike-ACE2 or TMPRSS2 but not with Viral Spike protein. We also observed that a Fluoride based compound: 3-[3-(Trifluoromethyl)phenyl]quinoline helps the inhibitor to bind with both Spike-ACE2 and TMPRSS2 with equal probability. The molecular details presented in this study would be very useful for developing quinoline based drugs for COVID-19 treatment.
Collapse
|
15
|
Identification of lead compounds from large natural product library targeting 3C-like protease of SARS-CoV-2 using E-pharmacophore modelling, QSAR and molecular dynamics simulation. In Silico Pharmacol 2021; 9:49. [PMID: 34395160 PMCID: PMC8349134 DOI: 10.1007/s40203-021-00109-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a novel disease caused by SARS-CoV-2 and has made a catastrophic impact on the global economy. As it is, there is no officially FDA approved drug to alleviate the negative impact of SARS-CoV-2 on human health. Numerous drug targets for neutralizing coronavirus infection have been identified, among them is 3-chymotrypsin-like-protease (3CLpro), a viral protease responsible for the viral replication is chosen for this study. This study aimed at finding novel inhibitors of SARS-CoV-2 3C-like protease from the natural library using computational approaches. A total of 69,000 compounds from natural product library were screened to match a minimum of 3 features from the five sites e-pharmacophore model. Compounds with fitness score of 1.00 and above were consequently filtered by executing molecular docking studies via Glide docking algorithm. Qikprop also predicted the compounds drug-likeness and pharmacokinetic features; besides, the QSAR model built from KPLS analysis with radial as binary fingerprint was used to predict the compounds inhibition properties against SARS-CoV-2 3C-like protease. Fifty ns molecular dynamics (MD) simulation was carried out using GROMACS software to understand the dynamics of binding. Nine (9) lead compounds from the natural products library were discovered; seven among them were found to be more potent than lopinavir based on energies of binding. STOCK1N-98687 with docking score of -9.295 kcal/mol had considerable predicted bioactivity (4.427 µM) against SARS-CoV-2 3C-like protease and satisfactory drug-like features than the experimental drug lopinavir. Post-docking analysis by MM-GBSA confirmed the stability of STOCK1N-98687 bound 3CLpro crystal structure. MD simulation of STOCKIN-98687 with 3CLpro at 50 ns showed high stability and low fluctuation of the complex. This study revealed compound STOCK1N-98687 as potential 3CLpro inhibitor; therefore, a wet experiment is worth exploring to confirm the therapeutic potential of STOCK1N-98687 as an antiviral agent.
Collapse
|
16
|
Taher I, Almaeen A, Ghazy A, Abu-Farha M, Mohamed Channanath A, Elsa John S, Hebbar P, Arefanian H, Abubaker J, Al-Mulla F, Alphonse Thanaraj T. Relevance Between COVID-19 and Host Genetics of Immune Response. Saudi J Biol Sci 2021; 28:6645-6652. [PMID: 34305429 PMCID: PMC8285220 DOI: 10.1016/j.sjbs.2021.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 12/09/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) was caused by the newly emerged corona virus (2019-nCoV alias SARS-CoV-2) that resembles the severe acute respiratory syndrome virus (SARS-CoV). SARS-CoV-2, which was first identified in Wuhan (China) has spread globally, resulting in a high mortality worldwide reaching ~4 million deaths to date. As of first week of July 2021, ~181 million cases of COVID-19 have been reported. SARS-CoV-2 infection is mediated by the binding of virus spike protein to Angiotensin Converting Enzyme 2 (ACE2). ACE2 is expressed on many human tissues; however, the major entry point is probably pneumocytes, which are responsible for synthesis of alveolar surfactant in lungs. Viral infection of pneumocytes impairs immune responses and leads to, apart from severe hypoxia resulting from gas exchange, diseases with serious complications. During viral infection, gene products (e.g. ACE2) that mediate viral entry, antigen presentation, and cellular immunity are of crucial importance. Human leukocyte antigens (HLA) I and II present antigens to the CD8+ and CD4+ T lymphocytes, which are crucial for immune defence against pathogens including viruses. HLA gene variants affect the recognition and presentation of viral antigenic peptides to T-cells, and cytokine secretion. Additionally, endoplasmic reticulum aminopeptidases (ERAP) trim antigenic precursor peptides to fit into the binding groove of MHC class I molecules. Polymorphisms in ERAP genes leading to aberrations in ERAP’s can alter antigen presentation by HLA class I molecules resulting in aberrant T-cell responses, which may affect susceptibility to infection and/or activation of immune response. Polymorphisms from these genes are associated, in global genetic association studies, with various phenotype traits/disorders many of which are related to the pathogenesis and progression of COVID-19; polymorphisms from various genes are annotated in genotype-tissue expression data as regulating the expression of ACE2, HLA’s and ERAP’s. We review such polymorphisms and illustrate variations in their allele frequencies in global populations. These reported findings highlight the roles of genetic modulators (e.g. genotype changes in ACE2, HLA’s and ERAP’s leading to aberrations in the expressed gene products or genotype changes at other genes regulating the expression levels of these genes) in the pathogenesis of viral infection.
Collapse
Affiliation(s)
- Ibrahim Taher
- Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Abdulrahman Almaeen
- Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Amany Ghazy
- Department of Pathology, College of Medicine, Jouf University, Sakaka, Saudi Arabia.,Departments of Microbiology & Medical Immunology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | | | - Sumi Elsa John
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Hossein Arefanian
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | | |
Collapse
|
17
|
Kuzikov M, Costanzi E, Reinshagen J, Esposito F, Vangeel L, Wolf M, Ellinger B, Claussen C, Geisslinger G, Corona A, Iaconis D, Talarico C, Manelfi C, Cannalire R, Rossetti G, Gossen J, Albani S, Musiani F, Herzog K, Ye Y, Giabbai B, Demitri N, Jochmans D, Jonghe SD, Rymenants J, Summa V, Tramontano E, Beccari AR, Leyssen P, Storici P, Neyts J, Gribbon P, Zaliani A. Identification of Inhibitors of SARS-CoV-2 3CL-Pro Enzymatic Activity Using a Small Molecule in Vitro Repurposing Screen. ACS Pharmacol Transl Sci 2021; 4:1096-1110. [PMID: 35287429 PMCID: PMC7986981 DOI: 10.1021/acsptsci.0c00216] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Compound repurposing is an important strategy for the identification of effective treatment options against SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (3CL-Pro), also termed M-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyproteins pp1a and pp1ab at multiple distinct cleavage sites. We here report the results of a repurposing program involving 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and small molecules regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro and have identified 62 additional compounds with IC50 values below 1 μM and profiled their selectivity toward chymotrypsin and 3CL-Pro from the Middle East respiratory syndrome virus. A subset of eight inhibitors showed anticytopathic effect in a Vero-E6 cell line, and the compounds thioguanosine and MG-132 were analyzed for their predicted binding characteristics to SARS-CoV-2 3CL-Pro. The X-ray crystal structure of the complex of myricetin and SARS-Cov-2 3CL-Pro was solved at a resolution of 1.77 Å, showing that myricetin is covalently bound to the catalytic Cys145 and therefore inhibiting its enzymatic activity.
Collapse
Affiliation(s)
- Maria Kuzikov
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Elisa Costanzi
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Jeanette Reinshagen
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Francesca Esposito
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | - Laura Vangeel
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Markus Wolf
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Carsten Claussen
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and
Pharmacology
ITMP, Theodor Stern Kai
7, 60596 Frankfurt
am Main, Germany
- Institute
of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Angela Corona
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | - Daniela Iaconis
- Dompé
Farmaceutici SpA, via Campo di Pile, 67100 L’Aquila, Italy
| | - Carmine Talarico
- Dompé
Farmaceutici SpA, via Campo di Pile, 67100 L’Aquila, Italy
| | - Candida Manelfi
- Dompé
Farmaceutici SpA, via Campo di Pile, 67100 L’Aquila, Italy
| | - Rolando Cannalire
- Department
of Pharmacy, University of Naples Federico
II, Via D. Montesano,
49, 80131 Naples, Italy
| | - Giulia Rossetti
- Institute
of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation
(IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum
Jülich, D-52425 Jülich, Germany
- Faculty
of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jonas Gossen
- Institute
of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation
(IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum
Jülich, D-52425 Jülich, Germany
| | - Simone Albani
- Institute
of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation
(IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum
Jülich, D-52425 Jülich, Germany
| | - Francesco Musiani
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40216 Bologna, Italy
| | - Katja Herzog
- EU-OPENSCREEN
ERIC, Robert-Rössle-Straße
10, 13125 Berlin, Germany
| | - Yang Ye
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Barbara Giabbai
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Dirk Jochmans
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Jasper Rymenants
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Vincenzo Summa
- Department
of Pharmacy, University of Naples Federico
II, Via D. Montesano,
49, 80131 Naples, Italy
| | - Enzo Tramontano
- Dipartimento
di Scienze della vita e dell’ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | | | - Pieter Leyssen
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Paola Storici
- Elettra-Sincrotrone
Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Johan Neyts
- Department
of Microbiology, Immunology and Transplantation, Rega Institute for
Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Philip Gribbon
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Andrea Zaliani
- Fraunhofer
Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| |
Collapse
|
18
|
Kuzikov M, Costanzi E, Reinshagen J, Esposito F, Vangeel L, Wolf M, Ellinger B, Claussen C, Geisslinger G, Corona A, Iaconis D, Talarico C, Manelfi C, Cannalire R, Rossetti G, Gossen J, Albani S, Musiani F, Herzog K, Ye Y, Giabbai B, Demitri N, Jochmans D, Jonghe SD, Rymenants J, Summa V, Tramontano E, Beccari AR, Leyssen P, Storici P, Neyts J, Gribbon P, Zaliani A. Identification of Inhibitors of SARS-CoV-2 3CL-Pro Enzymatic Activity Using a Small Molecule in Vitro Repurposing Screen. ACS Pharmacol Transl Sci 2021; 4:1096-1110. [PMID: 35287429 DOI: 10.1101/2020.12.16.422677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Indexed: 05/18/2023]
Abstract
Compound repurposing is an important strategy for the identification of effective treatment options against SARS-CoV-2 infection and COVID-19 disease. In this regard, SARS-CoV-2 main protease (3CL-Pro), also termed M-Pro, is an attractive drug target as it plays a central role in viral replication by processing the viral polyproteins pp1a and pp1ab at multiple distinct cleavage sites. We here report the results of a repurposing program involving 8.7 K compounds containing marketed drugs, clinical and preclinical candidates, and small molecules regarded as safe in humans. We confirmed previously reported inhibitors of 3CL-Pro and have identified 62 additional compounds with IC50 values below 1 μM and profiled their selectivity toward chymotrypsin and 3CL-Pro from the Middle East respiratory syndrome virus. A subset of eight inhibitors showed anticytopathic effect in a Vero-E6 cell line, and the compounds thioguanosine and MG-132 were analyzed for their predicted binding characteristics to SARS-CoV-2 3CL-Pro. The X-ray crystal structure of the complex of myricetin and SARS-Cov-2 3CL-Pro was solved at a resolution of 1.77 Å, showing that myricetin is covalently bound to the catalytic Cys145 and therefore inhibiting its enzymatic activity.
Collapse
Affiliation(s)
- Maria Kuzikov
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Elisa Costanzi
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Jeanette Reinshagen
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Francesca Esposito
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | - Laura Vangeel
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Markus Wolf
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Carsten Claussen
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
- Institute of Clinical Pharmacology, Goethe-University, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| | - Angela Corona
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | - Daniela Iaconis
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Carmine Talarico
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Candida Manelfi
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Rolando Cannalire
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131 Naples, Italy
| | - Giulia Rossetti
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich, D-52425 Jülich, Germany
- Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Jonas Gossen
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Simone Albani
- Institute of Neuroscience and Medicine (INM-9)/Institute for Advanced Simulation (IAS-5) and Jülich Supercomputing Centre (JSC) Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, 40216 Bologna, Italy
| | - Katja Herzog
- EU-OPENSCREEN ERIC, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Yang Ye
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Barbara Giabbai
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Dirk Jochmans
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Steven De Jonghe
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Jasper Rymenants
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131 Naples, Italy
| | - Enzo Tramontano
- Dipartimento di Scienze della vita e dell'ambiente, Cittadella Universitaria di Monserrato, SS-554 Monserrato, Cagliari, Italy
| | - Andrea R Beccari
- Dompé Farmaceutici SpA, via Campo di Pile, 67100 L'Aquila, Italy
| | - Pieter Leyssen
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Paola Storici
- Elettra-Sincrotrone Trieste S.C.p.A., SS 14 - km 163, 5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49, Box 1043, 3000 Leuven, Belgium
| | - Philip Gribbon
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| | - Andrea Zaliani
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Schnackenburgallee 114, 22525 Hamburg, Germany
| |
Collapse
|
19
|
Siri M, Dastghaib S, Zamani M, Rahmani-Kukia N, Geraylow KR, Fakher S, Keshvarzi F, Mehrbod P, Ahmadi M, Mokarram P, Coombs KM, Ghavami S. Autophagy, Unfolded Protein Response, and Neuropilin-1 Cross-Talk in SARS-CoV-2 Infection: What Can Be Learned from Other Coronaviruses. Int J Mol Sci 2021; 22:5992. [PMID: 34206057 PMCID: PMC8199451 DOI: 10.3390/ijms22115992] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
The COVID-19 pandemic is caused by the 2019-nCoV/SARS-CoV-2 virus. This severe acute respiratory syndrome is currently a global health emergency and needs much effort to generate an urgent practical treatment to reduce COVID-19 complications and mortality in humans. Viral infection activates various cellular responses in infected cells, including cellular stress responses such as unfolded protein response (UPR) and autophagy, following the inhibition of mTOR. Both UPR and autophagy mechanisms are involved in cellular and tissue homeostasis, apoptosis, innate immunity modulation, and clearance of pathogens such as viral particles. However, during an evolutionary arms race, viruses gain the ability to subvert autophagy and UPR for their benefit. SARS-CoV-2 can enter host cells through binding to cell surface receptors, including angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1). ACE2 blockage increases autophagy through mTOR inhibition, leading to gastrointestinal complications during SARS-CoV-2 virus infection. NRP1 is also regulated by the mTOR pathway. An increased NRP1 can enhance the susceptibility of immune system dendritic cells (DCs) to SARS-CoV-2 and induce cytokine storm, which is related to high COVID-19 mortality. Therefore, signaling pathways such as mTOR, UPR, and autophagy may be potential therapeutic targets for COVID-19. Hence, extensive investigations are required to confirm these potentials. Since there is currently no specific treatment for COVID-19 infection, we sought to review and discuss the important roles of autophagy, UPR, and mTOR mechanisms in the regulation of cellular responses to coronavirus infection to help identify new antiviral modalities against SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Morvarid Siri
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (M.S.); (M.Z.)
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran;
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (M.S.); (M.Z.)
| | - Nasim Rahmani-Kukia
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (N.R.-K.); (S.F.); (F.K.)
| | | | - Shima Fakher
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (N.R.-K.); (S.F.); (F.K.)
| | - Fatemeh Keshvarzi
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (N.R.-K.); (S.F.); (F.K.)
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran;
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (M.S.); (M.Z.)
- Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (N.R.-K.); (S.F.); (F.K.)
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Saeid Ghavami
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; (M.S.); (M.Z.)
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
| |
Collapse
|
20
|
Kadela-Tomanek M, Jastrzębska M, Marciniec K, Chrobak E, Bębenek E, Boryczka S. Lipophilicity, Pharmacokinetic Properties, and Molecular Docking Study on SARS-CoV-2 Target for Betulin Triazole Derivatives with Attached 1,4-Quinone. Pharmaceutics 2021; 13:pharmaceutics13060781. [PMID: 34071116 PMCID: PMC8224687 DOI: 10.3390/pharmaceutics13060781] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
A key parameter in the design of new active compounds is lipophilicity, which influences the solubility and permeability through membranes. Lipophilicity affects the pharmacodynamic and toxicological profiles of compounds. These parameters can be determined experimentally or by using different calculation methods. The aim of the research was to determine the lipophilicity of betulin triazole derivatives with attached 1,4-quinone using thin layer chromatography in a reverse phase system and a computer program to calculate its theoretical model. The physiochemical and pharmacokinetic properties were also determined by computer programs. For all obtained parameters, the similarity analysis and multilinear regression were determined. The analyses showed that there is a relationship between structure and properties under study. The molecular docking study showed that betulin triazole derivatives with attached 1,4-quinone could inhibit selected SARS-CoV-2 proteins. The MLR regression showed that there is a correlation between affinity scoring values (ΔG) and the physicochemical properties of the tested compounds.
Collapse
Affiliation(s)
- Monika Kadela-Tomanek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.C.); (E.B.); (S.B.)
- Correspondence: ; Tel.: +48-32-3641666
| | - Maria Jastrzębska
- Silesian Center for Education and Interdisciplinary Research, Institute of Physics, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland;
| | - Krzysztof Marciniec
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.C.); (E.B.); (S.B.)
| | - Elwira Chrobak
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.C.); (E.B.); (S.B.)
| | - Ewa Bębenek
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.C.); (E.B.); (S.B.)
| | - Stanisław Boryczka
- Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland; (K.M.); (E.C.); (E.B.); (S.B.)
| |
Collapse
|
21
|
Maity S, Saha A. Therapeutic Potential of Exploiting Autophagy Cascade Against Coronavirus Infection. Front Microbiol 2021; 12:675419. [PMID: 34054782 PMCID: PMC8160449 DOI: 10.3389/fmicb.2021.675419] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Since its emergence in December 2019 in Wuhan, China, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) created a worldwide pandemic of coronavirus disease (COVID-19) with nearly 136 million cases and approximately 3 million deaths. Recent studies indicate that like other coronaviruses, SARS-CoV-2 also hijacks or usurps various host cell machineries including autophagy for its replication and disease pathogenesis. Double membrane vesicles generated during initiation of autophagy cascade act as a scaffold for the assembly of viral replication complexes and facilitate RNA synthesis. The use of autophagy inhibitors - chloroquine and hydroxychloroquine initially appeared to be as a potential treatment strategy of COVID-19 patients but later remained at the center of debate due to high cytotoxic effects. In the absence of a specific drug or vaccine, there is an urgent need for a safe, potent as well as affordable drug to control the disease spread. Given the intricate connection between autophagy machinery and viral pathogenesis, the question arises whether targeting autophagy pathway might show a path to fight against SARS-CoV-2 infection. In this review we will discuss about our current knowledge linking autophagy to coronaviruses and how that is being utilized to repurpose autophagy modulators as potential COVID-19 treatment.
Collapse
Affiliation(s)
| | - Abhik Saha
- School of Biotechnology, Presidency University, Kolkata, India
| |
Collapse
|
22
|
Dauby N, Hautekiet J, Catteau L, Montourcy M, Van Beckhoven D, Bottieau E, Goetghebeur E. Reply to "The perceived efficacy of hydroxychloroquine in observational studies: the results of the confounding effects of 'goals of care'". Int J Antimicrob Agents 2021; 57:106307. [PMID: 33609720 PMCID: PMC7888993 DOI: 10.1016/j.ijantimicag.2021.106307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Nicolas Dauby
- Department of Infectious Diseases, CHU Saint-Pierre, Brussels, Belgium; Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium; Environmental Health Research Centre, Public Health School, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Joris Hautekiet
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium; Cancer Centre, Sciensano, Brussels, Belgium
| | - Lucy Catteau
- Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | | | | | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute for Tropical Medicine, Antwerp, Belgium
| | - Els Goetghebeur
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| |
Collapse
|
23
|
Ho TC, Wang YH, Chen YL, Tsai WC, Lee CH, Chuang KP, Chen YMA, Yuan CH, Ho SY, Yang MH, Tyan YC. Chloroquine and Hydroxychloroquine: Efficacy in the Treatment of the COVID-19. Pathogens 2021; 10:pathogens10020217. [PMID: 33671315 PMCID: PMC7922580 DOI: 10.3390/pathogens10020217] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/23/2022] Open
Abstract
Chloroquine (CQ) and its derivative, hydroxychloroquine (HCQ), have attracted wide attention for treating coronavirus disease 2019 (COVID-19). However, conflicting outcomes have been found in COVID-19 clinical trials after treatment with CQ or HCQ. To date, it remains uncertain whether CQ and HCQ are beneficial antiviral drugs for combating COVID-19. We performed a systematic review to depict the efficacy of CQ or HCQ for the treatment of COVID-19. The guidelines of PRISMA were used to conduct this systematic review. We searched through articles from PubMed, Web of Science and other sources that were published from 1 January 2020 to 31 October 2020. The search terms included combinations of human COVID-19, CQ, and HCQ. Eleven qualitative articles comprising of four clinical trials and seven observation studies were utilized in our systematic review. The analysis shows that CQ and HCQ do not have efficacy in treatment of patients with severe COVID-19. In addition, CQ and HCQ have caused life-threatening adverse reactions which included cardiac arrest, electrocardiogram modification, and QTc prolongation, particularly during the treatment of patients with severe COVID-19. Our systematic review suggested that CQ and HCQ are not beneficial antiviral drugs for curing patients with severe COVID-19. The treatment effect of CQ and HCQ is not only null but also causes serious side effects, which may cause potential cardiotoxicity in severe COVID-19 patients.
Collapse
Affiliation(s)
- Tzu-Chuan Ho
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | | | - Yi-Ling Chen
- Department of Nuclear Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Che-Hsin Lee
- Department of Biological Science, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
| | - Kuo-Pin Chuang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Yi-Ming Arthur Chen
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Cheng-Hui Yuan
- Mass Spectrometry Laboratory, Department of Chemistry, National University of Singapore, Singapore 119077, Singapore;
| | - Sheng-Yow Ho
- Department of Radiation Oncology, Chi Mei Medical Center, Graduate Institute of Medical Science, Chang Jung Christian University, Tainan 710, Taiwan;
| | - Ming-Hui Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
- Correspondence: (M.-H.Y.); (Y.-C.T.)
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- Neuroscience Research Center, Graduate Institute of Medicine, College of Medicine, Center for Cancer Research, Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.-H.Y.); (Y.-C.T.)
| |
Collapse
|
24
|
Paz-y-Miño C, Karina Zambrano A, Leone PE. Interactoma de predisposición y resistencia a SARS-CoV-2. Proteínas, genes y funciones. BIONATURA 2021; 6:1555-1562. [DOI: 10.21931/rb/2021.05.04.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025] Open
Abstract
Se ha informado que la infección por SARS-CoV-2 tiene al menos tres aspectos: la capacidad patogénica del virus, la susceptibilidad y la interacción virus-huésped en un ambiente. Para varios virus, está demostrado que tienen receptores celulares específicos de unión con las células y son determinantes en la entrada o no del virus a las células. Para el virus SARS-CoV-2, se conoce que el receptor ACE2 (Enzima Convertidora de Angiotensina 2), es clave para que el virus se adhiera a la membrana celular del epitelio pulmonar, al neumocito. El receptor ACE2 tiene su gen específico con el mismo nombre localizado en el cromosoma Xp22.2 y tiene a su vez interacciones con algunos genes. Nos propusimos encontrar interacciones de proteínas que tengan relación con la entrada, sintomatología y progreso de la COVID-19 y con otras proteínas similares o coadyuvantes. Estas interacciones son extremadamente importantes para entender la fisiopatología de la enfermedad y los diversos grados de afectación que se han observado asintomáticos, leves, moderados, graves y críticos, lo que se conoce como heterogeneidad clínica. La heterogeneidad en los síntomas es probable que refleje una heterogeneidad de interacciones de proteínas que se encuentran interrelacionadas con la infección por el virus COVID-19 y su correlación entre sí. La meta final es encontrar los genes que comandan estas interacciones proteicas y asociarlas con la variación clínica. Este es un estudio inicial de interactoma proteico para continuar con el análisis de proteínas específicas y sus variantes en la población ecuatoriana.
Collapse
Affiliation(s)
- César Paz-y-Miño
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Av. Mariscal Sucre, Quito 170129, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Av. Mariscal Sucre, Quito 170129, Ecuador
| | - Paola E. Leone
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Av. Mariscal Sucre, Quito 170129, Ecuador
| |
Collapse
|
25
|
Eze P, Mezue KN, Nduka CU, Obianyo I, Egbuche O. Efficacy and safety of chloroquine and hydroxychloroquine for treatment of COVID-19 patients-a systematic review and meta-analysis of randomized controlled trials. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2021; 11:93-107. [PMID: 33815925 PMCID: PMC8012280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The coronavirus disease 19 (COVID-19) pandemic has caused significant morbidity and mortality worldwide and an effective treatment is needed. Chloroquine (CQ) and hydroxychloroquine (HCQ) have shown in vitro antiviral activity against SARS-CoV-2 which causes the disease, but the evidence from in vivo studies so far has been inconclusive. OBJECTIVE To evaluate the efficacy and safety of CQ and HCQ in the treatment of COVID-19. DATA SOURCES We systematically searched the PubMed, Embase, MEDLINE, Cochrane CENTRAL, CINAHL, Scopus, Joanna Briggs Institute Database, ClinicalTrials.gov, and Chinese Clinical Trial Registry (ChiCTR) for all articles published between 01 January 2020 to 15 September 2020 on CQ/HCQ and COVID-19 using a predefined search protocol; without any language restrictions. A search of grey literature repositories (New York Academy of Medicine Grey Literature and Open Grey), and pre-publication server deposits (medRxIV and bioRxIV) was also performed. STUDY SELECTION Randomized clinical trials (RCT) which compared CQ/HCQ to standard supportive therapy in treating COVID-19 were included. DATA EXTRACTION AND SYNTHESIS Data were extracted from original publications by four independent reviewers. Risk of bias was assessed using the Cochrane Collaboration's assessment tool. Data were meta-analyzed using a random-effect models. Results are reported according to PRISMA guidelines. Main Outcome(s) and Measure(s): The primary prespecified efficacy outcome was all-cause mortality. The primary safety outcome was any adverse effect attributed to use of CQ/HCQ. RESULTS Eight RCTs were included and pooled in the mortality meta-analysis (6,592 unique participants; mean age = 59.4 years; 42% women). CQ/HCQ did not show any mortality benefit when compared to standard supportive therapy (Pooled Relative Risk [RR] 1.07; 95% CI = 0.97-1.18; I2 statistic = 0.00%). Sensitivity and sub-group analyses showed similar findings. Any adverse event was significantly higher in patients randomized to CQ/HCQ (RR = 2.51; 95% CI = 1.53-4.12; n = 1,818 patients), but the risk of developing severe adverse event was not statistically significant (RR = 0.99, 95% CI = 0.53-1.86; n = 6,456 patients). CONCLUSIONS AND RELEVANCE Evidence from currently published RCTs do not demonstrate any added benefit for the use of CQ or HCQ in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Paul Eze
- Department of Health Policy and Administration, Pennsylvania State UniversityUniversity Park, PA 16802, USA
| | - Kenechukwu N Mezue
- Division of Nuclear Cardiology, Massachusetts General Hospital, Harvard Medical SchoolBoston, MA 02114, USA
| | - Chidozie U Nduka
- Population Evidence and Technologies, Warwick Medical School, University of WarwickCoventry, CV4 7AL, UK
| | - Ijeoma Obianyo
- Department of Surgery, University of Nigeria Teaching HospitalItuku-Ozalla, Enugu, Nigeria
| | - Obiora Egbuche
- Division of Cardiovascular Disease, Morehouse School of MedicineAtlanta, GA 30310, USA
| |
Collapse
|
26
|
Kumar P, Sah AK, Tripathi G, Kashyap A, Tripathi A, Rao R, Mishra PC, Mallick K, Husain A, Kashyap MK. Role of ACE2 receptor and the landscape of treatment options from convalescent plasma therapy to the drug repurposing in COVID-19. Mol Cell Biochem 2021; 476:553-574. [PMID: 33029696 PMCID: PMC7539757 DOI: 10.1007/s11010-020-03924-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
Since the first case reports in Wuhan, China, the SARS-CoV-2 has caused a pandemic and took lives of > 8,35,000 people globally. This single-stranded RNA virus uses Angiotensin-converting enzyme 2 (ACE2) as a receptor for entry into the host cell. Overexpression of ACE2 is mainly observed in hypertensive, diabetic and heart patients that make them prone to SARS-CoV-2 infection. Mitigations strategies were opted globally by the governments to minimize transmission of SARS-CoV-2 via the implementation of social distancing norms, wearing the facemasks, and spreading awareness using digital platforms. The lack of an approved drug treatment regimen, and non-availability of a vaccine, collectively posed a challenge for mankind to fight against the SARS-CoV-2 pandemic. In this scenario, repurposing of existing drugs and old treatment options like convalescent plasma therapy can be one of the potential alternatives to treat the disease. The drug repurposing provides a selection of drugs based on the scientific rationale and with a shorter cycle of clinical trials, while plasma isolated from COVID-19 recovered patients can be a good source of neutralizing antibody to provide passive immunity. In this review, we provide in-depth analysis on these two approaches currently opted all around the world to treat COVID-19 patients. For this, we used "Boolean Operators" such as AND, OR & NOT to search relevant research articles/reviews from the PUBMED for the repurposed drugs and the convalescent plasma in the COVID-19 treatment. The repurposed drugs like Chloroquine and Hydroxychloroquine, Tenofovir, Remdesivir, Ribavirin, Darunavir, Oseltamivir, Arbidol (Umifenovir), Favipiravir, Anakinra, and Baricitinib are already being used in clinical trials to treat the COVID-19 patients. These drugs have been approved for a different indication and belong to a diverse category such as anti-malarial/anti-parasitic, anti-retroviral/anti-viral, anti-cancer, or against rheumatoid arthritis. Although, the vaccine would be an ideal option for providing active immunity against the SARS-CoV-2, but considering the current situation, drug repurposing and convalescent plasma therapy and repurposed drugs are the most viable option against SARS-CoV-2.
Collapse
Affiliation(s)
- Pravindra Kumar
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | - Ashok Kumar Sah
- Department of Medical Laboratory Technology, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, India
| | - Greesham Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Anjali Kashyap
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Avantika Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Rashmi Rao
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | - Prabhu C Mishra
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Koustav Mallick
- National Liver Disease Biobank, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research, Bhopal, India
- Innovation and Incubation Centre for Entrepreneurship (IICE), Indian Institute of Science Education and Research, Bhopal, India
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India.
| |
Collapse
|
27
|
Accinelli RA, Ynga-Meléndez GJ, León-Abarca JA, López LM, Madrid-Cisneros JC, Mendoza-Saldaña JD. Hydroxychloroquine / azithromycin in COVID-19: The association between time to treatment and case fatality rate. Travel Med Infect Dis 2021; 44:102163. [PMID: 34534686 PMCID: PMC8438859 DOI: 10.1016/j.tmaid.2021.102163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND Currently, there is no formally accepted pharmacological treatment for COVID-19. MATERIALS AND METHODS We included COVID-19 outpatients of a Peruvian primary care center from Lima, Peru, who were treated between April 30 - September 30, 2020, with hydroxychloroquine and azithromycin. Logistic regression was applied to determine factors associated with case-fatality rate. RESULTS A total of 1265 COVID-19 patients with an average age of 44.5 years were studied. Women represented 50.1% of patients, with an overall 5.9 symptom days, SpO2 97%, temperature of 37.3 °C, 41% with at least one comorbidity and 96.1% one symptom or sign. No patient treated within the first 72 h of illness died. The factors associated with higher case fatality rate were age (OR = 1.06; 95% CI 1.01-1.11, p = 0.021), SpO2 (OR = 0.87; 95% CI 0.79-0.96, p = 0.005) and treatment onset (OR = 1.16; 95% CI 1.06-1.27, p = 0.002), being the latter the only associated in the multivariate analysis (OR = 1.18; 95% CI 1.05-1.32, p = 0.005). 0.6% of our patients died. CONCLUSIONS The case fatality rate in COVID-19 outpatients treated with hydroxychloroquine/azithromycin was associated with the number of days of illness on which treatment was started.
Collapse
Affiliation(s)
- Roberto Alfonso Accinelli
- Instituto de Investigaciones de la Altura. Universidad Peruana Cayetano Heredia, Lima, Peru; Facultad de Medicina Alberto Hurtado, Universidad Peruana Cayetano Heredia, Lima, Peru; Hospital Cayetano Heredia, Peru.
| | | | | | - Lidia Marianella López
- Instituto de Investigaciones de la Altura. Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | |
Collapse
|
28
|
Witika BA, Makoni PA, Mweetwa LL, Ntemi PV, Chikukwa MTR, Matafwali SK, Mwila C, Mudenda S, Katandula J, Walker RB. Nano-Biomimetic Drug Delivery Vehicles: Potential Approaches for COVID-19 Treatment. Molecules 2020; 25:E5952. [PMID: 33339110 PMCID: PMC7765509 DOI: 10.3390/molecules25245952] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Department of Pharmacy, DDT College of Medicine, P.O. Box 70587, Gaborone 00000, Botswana; (B.A.W.); (L.L.M.)
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Pedzisai A. Makoni
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Larry L. Mweetwa
- Department of Pharmacy, DDT College of Medicine, P.O. Box 70587, Gaborone 00000, Botswana; (B.A.W.); (L.L.M.)
| | - Pascal V. Ntemi
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Melissa T. R. Chikukwa
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Scott K. Matafwali
- Department of Basic Sciences, School of Medicine, Copperbelt University, Ndola 10101, Zambia;
| | - Chiluba Mwila
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (S.M.)
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (S.M.)
| | - Jonathan Katandula
- Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| |
Collapse
|
29
|
Ruiz S, Concordet D, Lanot T, Georges B, Goudy P, Baklouti S, Mané C, Losha E, Vinour H, Rousset D, Lavit M, Minville V, Conil JM, Gandia P. Hydroxychloroquine lung pharmacokinetics in critically ill patients with COVID-19. Int J Antimicrob Agents 2020; 57:106247. [PMID: 33259916 PMCID: PMC7698654 DOI: 10.1016/j.ijantimicag.2020.106247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/27/2020] [Accepted: 11/22/2020] [Indexed: 12/27/2022]
Abstract
HCQ pharmacokinetics in COVID-19 patients cannot be predicted using data from lupus or rheumatoid arthritis patients. Bronchoalveolar lavage fluid may be a more instructive matrix than plasma on the degree of HCQ lung exposure. Low plasma concentrations should not induce an increase in drug dosage because lung exposure could already be high.
Different dosage regimens of hydroxychloroquine (HCQ) have been used to manage COVID-19 (coronavirus disease 2019) patients, with no information on lung exposure in this population. The aim of our study was to evaluate HCQ concentrations in the lung epithelial lining fluid (ELF) in patients infected with SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the virus that causes COVID-19. This was a retrospective, observational, multicentre, pharmacokinetic study of HCQ in critically ill COVID-19 patients. No additional interventions or additional samples compared with standard care of these patients were conducted in our teaching hospital. We included all intubated COVID-19 patients treated with crushed HCQ tablets, regardless of the dosage administered by nasogastric tube. Blood and bronchoalveolar lavage samples (n = 28) were collected from 22 COVID-19 patients and total HCQ concentrations in ELF were estimated. Median (interquartile range) HCQ plasma concentrations were 0.09 (0.06–0.14) mg/L and 0.07 (0.05–0.08) mg/L for 400 mg × 1/day and 200 mg × 3/day, respectively. Median HCQ ELF concentrations were 3.74 (1.10–7.26) mg/L and 1.81 (1.20–7.25) for 400 mg × 1/day and 200 mg × 3/day, respectively. The median ratio of ELF/plasma concentrations was 40.0 (7.3–162.7) and 21.2 (18.4–109.5) for 400 mg × 1/day and 200 mg × 3/day, respectively. ELF exposure is likely to be underestimated from HCQ concentrations in plasma. In clinical practice, low plasma concentrations should not induce an increase in drug dosage because lung exposure may already be high.
Collapse
Affiliation(s)
- S Ruiz
- CHU de Toulouse, Réanimation Polyvalente Hôpital Rangueil, Pôle d'Anesthésie-Réanimation, 1 avenue du Professeur Jean Poulhès, 31059, Toulouse cedex 9, France.
| | - D Concordet
- INTHERES, Université de Toulouse, INRA, ENVT, 23 Chemin des Capelles, BP 87614, 31076, Toulouse cedex 3, France
| | - T Lanot
- CHU de Toulouse, Laboratoire de Pharmacocinétique et Toxicologie Clinique, Institut Fédératif de Biologie, 330 avenue de Grande-Bretagne, 31059, Toulouse cedex 9, France
| | - B Georges
- CHU de Toulouse, Réanimation Polyvalente Hôpital Rangueil, Pôle d'Anesthésie-Réanimation, 1 avenue du Professeur Jean Poulhès, 31059, Toulouse cedex 9, France
| | - P Goudy
- CHU de Toulouse, Réanimation Polyvalente Hôpital Rangueil, Pôle d'Anesthésie-Réanimation, 1 avenue du Professeur Jean Poulhès, 31059, Toulouse cedex 9, France
| | - S Baklouti
- CHU de Toulouse, Laboratoire de Pharmacocinétique et Toxicologie Clinique, Institut Fédératif de Biologie, 330 avenue de Grande-Bretagne, 31059, Toulouse cedex 9, France
| | - C Mané
- CHU de Toulouse, Laboratoire de Pharmacocinétique et Toxicologie Clinique, Institut Fédératif de Biologie, 330 avenue de Grande-Bretagne, 31059, Toulouse cedex 9, France
| | - E Losha
- CHU de Toulouse, Laboratoire de Pharmacocinétique et Toxicologie Clinique, Institut Fédératif de Biologie, 330 avenue de Grande-Bretagne, 31059, Toulouse cedex 9, France
| | - H Vinour
- CHU de Toulouse, Réanimation Polyvalente URM, Pôle d'Anesthésie-Réanimation, 330 avenue de Grande-Bretagne, 31059, Toulouse cedex 9, France
| | - D Rousset
- CHU de Toulouse, Réanimation Neurochirurgicale, Pôle d'Anesthésie-Réanimation, 330 avenue de Grande-Bretagne, 31059, Toulouse cedex 9, France
| | - M Lavit
- CHU de Toulouse, Laboratoire de Pharmacocinétique et Toxicologie Clinique, Institut Fédératif de Biologie, 330 avenue de Grande-Bretagne, 31059, Toulouse cedex 9, France
| | - V Minville
- CHU de Toulouse, Réanimation Polyvalente Hôpital Rangueil, Pôle d'Anesthésie-Réanimation, 1 avenue du Professeur Jean Poulhès, 31059, Toulouse cedex 9, France
| | - J-M Conil
- CHU de Toulouse, Réanimation Polyvalente Hôpital Rangueil, Pôle d'Anesthésie-Réanimation, 1 avenue du Professeur Jean Poulhès, 31059, Toulouse cedex 9, France
| | - P Gandia
- INTHERES, Université de Toulouse, INRA, ENVT, 23 Chemin des Capelles, BP 87614, 31076, Toulouse cedex 3, France; CHU de Toulouse, Laboratoire de Pharmacocinétique et Toxicologie Clinique, Institut Fédératif de Biologie, 330 avenue de Grande-Bretagne, 31059, Toulouse cedex 9, France
| |
Collapse
|
30
|
Pharmacokinetic Basis of the Hydroxychloroquine Response in COVID-19: Implications for Therapy and Prevention. Eur J Drug Metab Pharmacokinet 2020; 45:715-723. [PMID: 32780273 PMCID: PMC7418279 DOI: 10.1007/s13318-020-00640-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Chloroquine/hydroxychloroquine has recently been the subject of intense debate regarding its potential antiviral activity against SARS-Cov-2, the etiologic agent of COVID-19. Some report possible curative effects; others do not. Therefore, the objective of this study was to simulate possible scenarios of response to hydroxychloroquine in COVID-19 patients using mathematical modeling. METHODS To shed some light on this controversial topic, we simulated hydroxychloroquine-based interventions on virus/host cell dynamics using a basic system of previously published differential equations. Mathematical modeling was implemented using Python programming language v 3.7. RESULTS According to mathematical modeling, hydroxychloroquine may have an impact on the amplitude of the viral load peak and viral clearance if the drug is administered early enough (i.e., when the virus is still confined within the pharyngeal cavity). The effects of chloroquine/hydroxychloroquine may be fully explained only when also considering the capacity of this drug to increase the death rate of SARS-CoV-2-infected cells, in this case by enhancing the cell-mediated immune response. CONCLUSIONS These considerations may not only be applied to chloroquine/hydroxychloroquine but may have more general implications for development of anti-COVID-19 combination therapies and prevention strategies through an increased death rate of the infected cells.
Collapse
|
31
|
Kumar P, Sah AK, Tripathi G, Kashyap A, Tripathi A, Rao R, Mishra PC, Mallick K, Husain A, Kashyap MK. Role of ACE2 receptor and the landscape of treatment options from convalescent plasma therapy to the drug repurposing in COVID-19. Mol Cell Biochem 2020. [PMID: 33029696 DOI: 10.1007/s11010-020-03924-2,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since the first case reports in Wuhan, China, the SARS-CoV-2 has caused a pandemic and took lives of > 8,35,000 people globally. This single-stranded RNA virus uses Angiotensin-converting enzyme 2 (ACE2) as a receptor for entry into the host cell. Overexpression of ACE2 is mainly observed in hypertensive, diabetic and heart patients that make them prone to SARS-CoV-2 infection. Mitigations strategies were opted globally by the governments to minimize transmission of SARS-CoV-2 via the implementation of social distancing norms, wearing the facemasks, and spreading awareness using digital platforms. The lack of an approved drug treatment regimen, and non-availability of a vaccine, collectively posed a challenge for mankind to fight against the SARS-CoV-2 pandemic. In this scenario, repurposing of existing drugs and old treatment options like convalescent plasma therapy can be one of the potential alternatives to treat the disease. The drug repurposing provides a selection of drugs based on the scientific rationale and with a shorter cycle of clinical trials, while plasma isolated from COVID-19 recovered patients can be a good source of neutralizing antibody to provide passive immunity. In this review, we provide in-depth analysis on these two approaches currently opted all around the world to treat COVID-19 patients. For this, we used "Boolean Operators" such as AND, OR & NOT to search relevant research articles/reviews from the PUBMED for the repurposed drugs and the convalescent plasma in the COVID-19 treatment. The repurposed drugs like Chloroquine and Hydroxychloroquine, Tenofovir, Remdesivir, Ribavirin, Darunavir, Oseltamivir, Arbidol (Umifenovir), Favipiravir, Anakinra, and Baricitinib are already being used in clinical trials to treat the COVID-19 patients. These drugs have been approved for a different indication and belong to a diverse category such as anti-malarial/anti-parasitic, anti-retroviral/anti-viral, anti-cancer, or against rheumatoid arthritis. Although, the vaccine would be an ideal option for providing active immunity against the SARS-CoV-2, but considering the current situation, drug repurposing and convalescent plasma therapy and repurposed drugs are the most viable option against SARS-CoV-2.
Collapse
Affiliation(s)
- Pravindra Kumar
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | - Ashok Kumar Sah
- Department of Medical Laboratory Technology, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, India
| | - Greesham Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Anjali Kashyap
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Avantika Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Rashmi Rao
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | - Prabhu C Mishra
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Koustav Mallick
- National Liver Disease Biobank, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research, Bhopal, India.,Innovation and Incubation Centre for Entrepreneurship (IICE), Indian Institute of Science Education and Research, Bhopal, India
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Manesar, Gurugram, Haryana, 122413, India.
| |
Collapse
|
32
|
Catteau L, Dauby N, Montourcy M, Bottieau E, Hautekiet J, Goetghebeur E, van Ierssel S, Duysburgh E, Van Oyen H, Wyndham-Thomas C, Van Beckhoven D. Low-dose hydroxychloroquine therapy and mortality in hospitalised patients with COVID-19: a nationwide observational study of 8075 participants. Int J Antimicrob Agents 2020; 56:106144. [PMID: 32853673 PMCID: PMC7444610 DOI: 10.1016/j.ijantimicag.2020.106144] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Hydroxychloroquine (HCQ) has been largely used and investigated as therapy for COVID-19 across various settings at a total dose usually ranging from 2400 mg to 9600 mg. In Belgium, off-label use of low-dose HCQ (total 2400 mg over 5 days) was recommended for hospitalised patients with COVID-19. We conducted a retrospective analysis of in-hospital mortality in the Belgian national COVID-19 hospital surveillance data. Patients treated either with HCQ monotherapy and supportive care (HCQ group) were compared with patients treated with supportive care only (no-HCQ group) using a competing risks proportional hazards regression with discharge alive as competing risk, adjusted for demographic and clinical features with robust standard errors. Of 8075 patients with complete discharge data on 24 May 2020 and diagnosed before 1 May 2020, 4542 received HCQ in monotherapy and 3533 were in the no-HCQ group. Death was reported in 804/4542 (17.7%) and 957/3533 (27.1%), respectively. In the multivariable analysis, mortality was lower in the HCQ group compared with the no-HCQ group [adjusted hazard ratio (aHR) = 0.684, 95% confidence interval (CI) 0.617-0.758]. Compared with the no-HCQ group, mortality in the HCQ group was reduced both in patients diagnosed ≤5 days (n = 3975) and >5 days (n = 3487) after symptom onset [aHR = 0.701 (95% CI 0.617-0.796) and aHR = 0.647 (95% CI 0.525-0.797), respectively]. Compared with supportive care only, low-dose HCQ monotherapy was independently associated with lower mortality in hospitalised patients with COVID-19 diagnosed and treated early or later after symptom onset.
Collapse
Affiliation(s)
- Lucy Catteau
- Department of Epidemiology and public health, Sciensano, Brussels, Belgium
| | - Nicolas Dauby
- Department of Infectious Diseases, CHU Saint-Pierre, Brussels, Belgium; Institute for Medical Immunology, Université Libre de Bruxelles (ULB), Brussels, Belgium; Environmental Health Research Centre, Public Health School, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| | - Marion Montourcy
- Department of Epidemiology and public health, Sciensano, Brussels, Belgium
| | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Joris Hautekiet
- Department of Epidemiology and public health, Sciensano, Brussels, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Els Goetghebeur
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Sabrina van Ierssel
- Department of General Internal Medicine, Infectious Diseases and Tropical Medicine, University Hospital Antwerp (UZA), Edegem, Belgium
| | - Els Duysburgh
- Department of Epidemiology and public health, Sciensano, Brussels, Belgium
| | - Herman Van Oyen
- Department of Epidemiology and public health, Sciensano, Brussels, Belgium; Public Health and Primary Care, Gent University, Gent, Belgium
| | | | | |
Collapse
|
33
|
Valko KL, Zhang T. Biomimetic properties and estimated in vivo distribution of chloroquine and hydroxy-chloroquine enantiomers. ADMET AND DMPK 2020; 9:151-165. [PMID: 35299770 PMCID: PMC8920107 DOI: 10.5599/admet.929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/10/2021] [Indexed: 11/18/2022] Open
Abstract
Chloroquine and hydroxy-chloroquine already established as anti-malarial and lupus drugs have recently gained renewed attention in the fight against the Covid-19 pandemic. Bio-mimetic HPLC methods have been used to measure the protein and phospholipid binding of the racemic mixtures of the drugs. The tissue binding and volume of distribution of the enantiomers have been estimated. The enantiomers can be separated using Chiralpak AGP HPLC columns. From the α-1-acid-glycoprotein (AGP) binding, the lung tissue binding can be estimated for the enantiomers. The drugs have a large volume of distribution, showed strong and stereoselective glycoprotein binding, medium-strong phospholipid-binding indicating only moderate phospholipidotic potential, hERG inhibition and promiscuous binding. The drug efficiency of the compounds was estimated to be greater than 2 % which indicates a high level of free biophase concentration relative to dose. The biomimetic properties of the compounds support the well-known tolerability of the drugs.
Collapse
Affiliation(s)
- Klara L Valko
- Bio-Mimetic Chromatography Ltd, Business & Technology Centre, Bessemer Drive, Stevenage, Herts SG1 2DX UK
| | - Tong Zhang
- Chiral Technologies Europe, Parc d’Innovation 160, Bd Gonthier d’Andernach CS 80140 67404 ILLKIRCH CEDEX France
| |
Collapse
|