1
|
Ghosh S, Abdullah MF. Extraction of polysaccharide fraction from cadamba (Neolamarckia cadamba) fruits and evaluation of its in vitro and in vivo antioxidant activities. Int J Biol Macromol 2024; 279:135564. [PMID: 39270906 DOI: 10.1016/j.ijbiomac.2024.135564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
In this study, polysaccharide fraction (PFFNC) derived from Neolamarckia cadamba fruits showed remarkable antioxidant activity. The PFFNC was successfully extracted from the fruits by the hot water extraction process, followed by decolorization, defatting, and deproteinization. The chemical composition of PFFNC was effectively characterized by the use of UV-Vis, FT-IR, CHN, GC-MS, and 13C NMR spectroscopy. The findings indicated that PFFNC had an average molecular weight of 292 kDa and was predominantly composed of carbohydrates (76 %), with notable contributions from uronic acids (37.22 %) and proteins (12.35 %). The primary components of the sugar content were glucose (19.24 %), galactose (10.19 %), mannose (4.09 %), and glucuronic acid (2.8 %). The tertiary structural study verified the existence of a triple-helical structure. PFFNC exhibited a strong reducing power in vitro as determined by ABTS (IC50: 121 ± 0.12 μg/mL), DPPH (IC50: 146.065 ± 0.54 μg/mL), FRAP (677.788 ± 24.189 mM Fe (II)/g), hydroxyl radical scavenging (IC50: 78.736 ± 0.32 μg/mL), and phosphomolybdate assay (90.7 ± 0.43 mg AAE/g). In addition, the PFFNC furthermore showed significant in vivo antioxidant capacity, as determined using the brine shrimp (Bsmp) (Artemia salina Leach) model. The PFFNC exhibits significant antioxidant potential, suggesting broad spectrum applications in pharmaceuticals, nutraceuticals, and oxidative stress-related disorders.
Collapse
Affiliation(s)
- Soumyadeep Ghosh
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India.
| | - Md Farooque Abdullah
- Division of Pharmaceutical and Fine Chemical Technology, Department of Chemical Technology, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, West Bengal, India.
| |
Collapse
|
2
|
Qi J, Zhang J, Wang K, Cheng Y, Sheng Q, Kurtovic I, Yuan Y, Yue T. Tibetan kefir grains fermentation alters physicochemical properties and improves antioxidant activities of Lycium barbarum pulp polysaccharides. Food Chem 2024; 453:139659. [PMID: 38776792 DOI: 10.1016/j.foodchem.2024.139659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/25/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
There is a lack of research on how Tibetan kefir grains fermentation alters the physicochemical properties and biological activity of Lycium barbarum pulp polysaccharides, despite some reports that fermentation can affect the structure and activity of plant polysaccharides. This study demonstrated that, through fermentation, the molecular weight of polysaccharides decreased from 25.33 to 15.11 kg/mol while the contents of total sugar and uronic acid increased by 19.11% and 40.38%, respectively. Furthermore, after fermentation, the polysaccharides exhibited an uneven and rough surface along with a reduced number of branched chains and triple helix structures. Tibetan kefir grains fermentation enhanced the antioxidant activity of polysaccharides, which may be attributed to an increase in arabinose, galactose, and uronic acid content and a decrease in polysaccharide molecular weight. This research offers an alternative viewpoint on the potential application of Tibetan kefir grains-fermented Lycium barbarum pulp polysaccharides in functional foods.
Collapse
Affiliation(s)
- Jianrui Qi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yifan Cheng
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qinglin Sheng
- College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Ivan Kurtovic
- College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
3
|
Jia H, Zheng Z, Qu J, Feng T, Jiang X, Yu H, Zhu Z, Su F, Yang Y, Lu Q, Jie Q. Study on the synthesis of iron-based nanomedicine assisted by angelica sinensis polysaccharide with enhanced retention performance and its application in anemia treatment. Int J Biol Macromol 2024; 280:135969. [PMID: 39322144 DOI: 10.1016/j.ijbiomac.2024.135969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Inappropriate treatment of chronic inflammation and infection can lead to serious consequences, with anemia being the most common secondary disease that often requires systematic treatment. However, the complex pathology and gastrointestinal irritation associated with oral iron supplements limit their effectiveness. To address this, a bioactive ingredient derived from natural herbs, Angelica sinensis polysaccharide (ASP), was utilized as an ideal adjuvant for regulating the size and stability of iron oxide nanoparticles (IONPs). Highly hydrophilic ASP-modified IONPs (IONPs@ASP) with a mesoporous structure were developed under the induction of microemulsion.The as-prepared IONPs@ASP exhibited enhanced stability, retention performance and controlled degradation in blood and lysosomal environments, respectively, which is beneficial for long-term intravenous iron maintenance in anemia treatment. After confirming the biosafety of IONPs@ASP, pharmacodynamic results showed that hemoglobin levels increased significantly and rapidly returned to normal levels in anemia model rats treated with IONPs@ASP, even surpassing the effects of IONPs or ASP monotherapy. Additionally, analysis of inflammatory factors in rat serum suggested that ASP effectively upregulated the expression of anti-inflammatory factors, indicating synergistic effects of iron-based nanomedicine and immune regulation in anemia treatment. These findings represent a significant advancement in anemia treatment and open new possibilities for developing versatile nanoparticles based on ASP.
Collapse
Affiliation(s)
- Haoruo Jia
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; Clinical Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an 710054, China; Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an 710054, China
| | - Ziyuan Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jining Qu
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; Clinical Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an 710054, China; Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an 710054, China
| | | | - Xin Jiang
- Xi'an Medical University, Xian 710068, China
| | - Hongtao Yu
- First Affiliated Hospital, Shihezi University, Shihezi 832008, China
| | - Zhoujun Zhu
- Department of Joint Surgery, Sixth Affiliated Hospital, Xinjiang Medical University, Urumqi 830092, China
| | - Fei Su
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; Clinical Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an 710054, China; Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an 710054, China
| | - Yating Yang
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; Clinical Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an 710054, China; Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an 710054, China
| | - Qingda Lu
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; Clinical Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an 710054, China; Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an 710054, China
| | - Qiang Jie
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; Clinical Research Center for Pediactric Skeletal Deformity and Injury of Shaanxi Province, Xi'an 710054, China; Xi'an Key Laboratory of Skeletal Developmental Deformity and Injury Repain, Xi'an 710054, China.
| |
Collapse
|
4
|
Zhao L, Zhu Y, Zhang L, Huang Y, Fan Y, Gao L, Zhao Y, Wang X, Mo D, Lu H, Wang D. Dicliptera chinensis-derived polysaccharide enhanced the growth activity of submandibular gland cells in vitro after radiotherapy. Heliyon 2024; 10:e31005. [PMID: 38799761 PMCID: PMC11126834 DOI: 10.1016/j.heliyon.2024.e31005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 03/28/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Objective Radiotherapy for head and neck can damage the salivary gland cells, which can easily result in xerostomia. No effective treatment for radiation-induced salivary gland dysfunction currently exists. Thus, we aimed to study the protective effect of Dicliptera chinensis polysaccharides (DCP) on the prevention of submandibular gland (SMG) cell damage caused by radiotherapy in Sprague-Dawley rats. Design Mechanical enzyme digestion was used to extract primary rat SMG cells. A radiation injury model was established by treating these cells with a dose of 8 Gy, followed by intervention using different DCP concentrations. The cell counting kit 8 assay was used to determine the inhibition rate of SMG cells in each group. The rates of apoptosis and cell cycle progression were detected using flow cytometry. Expression of the Mre11/Rad50/Nbs1 complex (MRN) was detected using western blotting. Results DCP increased the proliferation of SMG cells after irradiation, and cell growth activity positively correlated with polysaccharide concentration. Flow cytometry analysis of SMG cell apoptosis revealed that DCP markedly reduced the total apoptosis rate after irradiation, especially the early apoptosis rate. Cell cycle results suggested that DCP reduced the number of cells in the S and G2 phases after irradiation and alleviated the S and G2 blocks. Western blot results indicated that the expression of Mre11, Rad50, and Nbs1 decreased in the radiation-injured group, whereas their expression increased after DCP treatment. Conclusions DCP can protect the rat SMG cells after radiation and be used as a protective agent against salivary gland cell damage caused by radiotherapy.
Collapse
Affiliation(s)
- Lixiang Zhao
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| | - Yanchun Zhu
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
- Xiaolan People's Hospital, ZhongShan, 528415, China
| | - Lihua Zhang
- Liuzhou People's Hospital, Liuzhou, 545000, China
| | - Yude Huang
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| | - Yiyang Fan
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
- Yichang City Hospital of Traditional Chinese Medicine, Yichang, 443000, China
| | - Linjin Gao
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| | - Yanfei Zhao
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| | - Xian Wang
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| | - Dongqing Mo
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| | - Haoyu Lu
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| | - Daiyou Wang
- College & Hospital of Stomatology, Guangxi Medical University, NO. 10 Shuangyong Road, Nanning, Guangxi, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Deformity, Nanning, 530021, China
| |
Collapse
|
5
|
Shen J, Qin H, Li K, Ding H, Chen X, Peng M, Jiang X, Han Y. The angelica Polysaccharide: a review of phytochemistry, pharmacology and beneficial effects on systemic diseases. Int Immunopharmacol 2024; 133:112025. [PMID: 38677093 DOI: 10.1016/j.intimp.2024.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024]
Abstract
Angelica sinensis is a perennial herb widely distributed around the world, and angelica polysaccharide (APS) is a polysaccharide extracted from Angelica sinensis. APS is one of the main active components of Angelica sinensis. A large number of studies have shown that APS has hematopoietic, promoting blood circulation, radiation resistance, lowering blood glucose, enhancing the body immunity and other pharmacological effects in a variety of diseases. However, different extraction methods and extraction sites greatly affect the efficacy of APS. In recent years, with the emerging of new technologies, there are more and more studies on the combined application and structural modification of APS. In order to promote the comprehensive development and in-depth application of APS, this narrative review systematically summarizes the effects of different drying methods and extraction sites on the biological activity of APS, and the application of APS in the treatment of diseases, hoping to provide a scientific basis for the experimental study and clinical application of APS.
Collapse
Affiliation(s)
- Jie Shen
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Huan Qin
- School of Basic Medical Sciences, Qingdao, China
| | - Kangkang Li
- School of Basic Medical Sciences, Qingdao, China
| | - Huiqing Ding
- School of Basic Medical Sciences, Qingdao, China.
| | - Xuehong Chen
- School of Basic Medical Sciences, Qingdao, China.
| | - Meiyu Peng
- School of Basic Medical Sciences, Shandong Second Medical University, China
| | - Xin Jiang
- School of Basic Medical Sciences, Qingdao, China.
| | - Yantao Han
- School of Basic Medical Sciences, Qingdao, China.
| |
Collapse
|
6
|
Ni S, Yi N, Yuan H, Li D, Chen X, Zhuang C. Angelica sinensis polysaccharide improves mitochondrial metabolism of osteoarthritis chondrocytes through PPARγ/SOD2/ROS pathways. Phytother Res 2023; 37:5394-5406. [PMID: 37632225 DOI: 10.1002/ptr.7979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Osteoarthritis (OA) is a common degenerative joint disease, which is characterized by wear of articular cartilage and narrow joint space, resulting in joint movement disorder. At present, accurate molecular mechanisms and effective interventions are still being explored. Here, we propose that angelica sinensis polysaccharide (ASP) alleviates OA progression by activating peroxisome proliferator-activated receptor gamma (PPARγ). Therapeutic effect of ASP improving mitochondrial metabolism of OA chondrocytes was evaluated in vitro and in vivo, respectively. During cell experiments, the concentration and time response of tert butyl hydroperoxide (TBHP) and ASP were determined by cell viability. Apoptosis was detected by flow cytometry. Mitochondrial metabolism was detected by reactive oxygen species (ROS), mitochondrial membrane potential (MMP), release of cytochrome C, adenosine triphosphate (ATP) production, and superoxide dismutase 2 (SOD2) activity. Expressions of Aggrecan, collagen type II (Col2a1), PPARγ, and SOD2 were detected by qRT-PCR and western blot. In animal experiments, we detected cell apoptosis and target protein expression separately through terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) staining and immunohistochemistry. Pretreatment of ASP significantly activated PPARγ and SOD2 in rat chondrocytes incubated with TBHP, cleared ROS, improved mitochondrial metabolism, increased chondrocytes viability, and alleviated chondrocytes apoptosis. In vivo, the administration of ASP could effectively ameliorate cartilage degeneration in OA rats, promote extracellular matrix synthesis, and decelerate the progress of OA. Our research identifies the role of ASP in mitochondrial metabolism of OA chondrocytes through PPARγ/SOD2/ROS pathways, which provides a new idea for the treatment of OA.
Collapse
Affiliation(s)
- Su Ni
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Bone Disease Research and Clinical Rehabilitation Center, Changzhou Medical Center, NanjingMedicalUniversity, Changzhou, China
| | - Ning Yi
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Graduate School of Dalian Medical University, Dalian, China
| | - Hang Yuan
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Graduate School of Bengbu Medical College, Bengbu, China
| | - Dong Li
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xu Chen
- Laboratory of Clinical Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Chao Zhuang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
7
|
Tuo W, Wang S, Shi Y, Cao W, Liu Y, Su Y, Xiu M, He J. Angelica sinensis polysaccharide extends lifespan and ameliorates aging-related diseases via insulin and TOR signaling pathways, and antioxidant ability in Drosophila. Int J Biol Macromol 2023; 241:124639. [PMID: 37121419 DOI: 10.1016/j.ijbiomac.2023.124639] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Angelica sinensis polysaccharide (ASP) is one of the principal active components of Angelica sinensis (AS) that is widely used in natural medicine and has various pharmacological activities, including antioxidant, anti-inflammatory, and enhancing immunity. However, its pharmacological role of anti-aging needs to be clarified. Here, we detected the beneficial effect and mechanism of ASP on healthy aging and aging-related diseases using the Drosophila melanogaster model. The results showed that oral administration of ASP remarkably extended lifespan, increased reproduction, improved climbing ability, and increased resistance to starvation and oxidative stress in aged flies, mainly via inhibiting insulin signaling (IIS) and TOR signaling and boosting antioxidant ability. Further, ASP supplementation protected against aging-induced intestinal homeostasis imbalance via inhibiting intestinal stem cells (ISCs) hyperproliferation and oxidative damage, improved sleep disorders via rescuing sleep rhythm in aged flies, and had a neuroprotective effect on Aβ42 transgenic flies. Taken together, our findings shed light on the possibility that ASP could increase lifespan, improve healthy aging, and ultimately reduce the incidence of age-related illnesses. It holds promise as a candidate for anti-aging intervention and treatment for aging-associated disorders.
Collapse
Affiliation(s)
- Wenjuan Tuo
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Shuwei Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Yan Shi
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Wangjie Cao
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China
| | - Yun Su
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China
| | - Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China.
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou 730000, China; College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, China; Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou 730000, China.
| |
Collapse
|
8
|
Ulriksen ES, Butt HS, Ohrvik A, Blakeney RA, Kool A, Wangensteen H, Inngjerdingen M, Inngjerdingen KT. The discovery of novel immunomodulatory medicinal plants by combination of historical text reviews and immunological screening assays. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115402. [PMID: 35640738 DOI: 10.1016/j.jep.2022.115402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/12/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With the advent of immunotherapies against cancers, autoimmune diseases and infections, there is a steady demand for novel medicines. New sources for discovery of potentially novel immunomodulatory compounds are therefore needed. Nature contains a large and diverse reservoir of novel compounds that can be exploited for their potential as new drugs, and exploring the pharmaceutical potential of medicinal plants used in traditional medicine is highly relevant. AIM OF THE STUDY We aimed with this study to explore usage of medicinal plants in Scandinavian folk medicine against diseases interpreted to involve the immune system, and to further screen water extracts from previously overlooked medicinal plants in order to discover potential new sources of immunomodulatory compounds. MATERIALS AND METHODS We systematically investigated historical records dating back to the 1800s with an emphasis on plants used as treatment for wounds or diseases interpreted to be inflammatory. Of 74 candidate plants, 23 pharmacologically under-studied species were selected for further characterization. The plants were collected from their natural habitats in Southern Norway, air-dried, and subjected to boiling water and accelerated solvent extraction. The crude extracts were separated into polysaccharide-enriched fractions and C-18 solid phase extracted fractions. Immunological screenings were performed with all extracts and fractions. Monosaccharide composition and total phenolic content were determined and compared across all species. RESULTS We identified 10 species with clear immune activating effects and 8 species with immune inhibitory effects by comparing cytokine production by human peripheral blood mononuclear cells, primary human T- and NK-cell proliferation, and nitric oxide production from macrophages. CONCLUSIONS With this study, we provide a comprehensive overview of Scandinavian medicinal plants and their usage, and our findings support an approach of combining historical sources with modern pharmacology in the discovery of plant sources containing potentially new pharmacological compounds.
Collapse
Affiliation(s)
| | - Hussain Shakeel Butt
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | - Ane Ohrvik
- Cultural History and Museology, Department of Culture Studies and Oriental Languages, Faculty of Humanities, University of Oslo, Oslo, Norway.
| | | | - Anneleen Kool
- Natural History Museum, University of Oslo, Oslo, Norway.
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
9
|
Guo H, Su Y, Guo C, Chen Q, Liu Z, Geng H, Mu K, Wang J, Chen D. Polysaccharide based drug delivery systems for Chinese medicines. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Nai J, Zhang C, Shao H, Li B, Li H, Gao L, Dai M, Zhu L, Sheng H. Extraction, structure, pharmacological activities and drug carrier applications of Angelica sinensis polysaccharide. Int J Biol Macromol 2021; 183:2337-2353. [PMID: 34090852 DOI: 10.1016/j.ijbiomac.2021.05.213] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/04/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
Angelica sinensis polysaccharide (ASP) is one of the main active components of Angelica sinensis (AS) that is widely used in traditional Chinese medicine. ASP is water-soluble polysaccharides, and it is mainly composed of glucose (Glc), galactose (Gal), arabinose (Ara), rhamnose (Rha), fucose (Fuc), xylose (Xyl) and galacturonic acid (GalUA). The extraction methods of ASP include hot water extraction and ultrasonic wave extraction, and different extraction methods can affect the yield of ASP. ASP has a variety of pharmacological activities, including hematopoietic activity, promoting immunity, antitumor, anti-inflammatory, antioxidant, anti-aging, anti-virus, liver protection, and so on. As a kind of natural polysaccharide, ASP has potential application as drug carriers. This review provides a comprehensive summary of the latest extraction and purification methods of ASP, the strategies used for monosaccharide compositional analysis plus polysaccharide structural characterization, pharmacological activities and drug carrier applications, and it can provide a basis for further study on ASP.
Collapse
Affiliation(s)
- Jijuan Nai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengmeng Dai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
11
|
Bi SJ, Fu RJ, Li JJ, Chen YY, Tang YP. The Bioactivities and Potential Clinical Values of Angelica Sinensis Polysaccharides. Nat Prod Commun 2021. [DOI: 10.1177/1934578x21997321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Angelica sinensis Radix (ASR), one of the most commonly used traditional Chinese medicines, contains many chemical components such as polysaccharides, volatile oil, flavonoids, amino acids, and organic acids, among which polysaccharides play an indispensable role in the therapeutic effect of ASR. A. sinensis polysaccharide (ASP) has many biological activities, for instance, hematopoietic, anti-tumor, and liver protection, which are closely related to the treatment of human diseases such as chronic anemia, leukemia, and diabetes. In addition, there are excellent application prospects for drug delivery in nanoparticles. This paper reviews the chemical compositions, extraction methods, biological activity, action mechanism, potential clinical applications, nanoparticles, and research prospect of ASP from 2010 to 2020, so as to provide references for its further development.
Collapse
Affiliation(s)
- Shi-Jie Bi
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Jia-Jia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi’an, China
| |
Collapse
|
12
|
Iqbal S, Shah MA, Rasul A, Saadullah M, Tabassum S, Ali S, Zafar M, Muhammad H, Uddin MS, Batiha GES, Vargas-De-La-Cruz C. Radioprotective Potential of Nutraceuticals and their Underlying Mechanism of Action. Anticancer Agents Med Chem 2021; 22:40-52. [PMID: 33622231 DOI: 10.2174/1871520621666210223101246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 11/22/2022]
Abstract
Radiations are an efficient treatment modality in cancer therapy. Besides the treatment effects of radiations, the ionizing radiations interact with biological systems and generate reactive oxygen species that interfere with the normal cellular process. Previous investigations of synthetic radioprotectors have shown less effectiveness, mainly owing to some limiting effects. The nutraceuticals act as efficient radioprotectors to protect the tissues from the deleterious effects of radiation. The main radioprotection mechanism of nutraceuticals is the scavenging of free radicals while other strategies are involved modulation of signaling transduction of pathways like MAPK (JNK, ERK1/2, ERK5, and P38), NF-kB, cytokines, and their protein regulatory genes expression. The current review is focused on the radioprotective effects of nutraceuticals including vitamin E, -C, organosulphur compounds, phenylpropanoids, and polysaccharides. These natural entities protect against radiation-induced DNA damage. The review mainly entails the antioxidant perspective and mechanism of action of their radioprotective activities on a molecular level, DNA repair pathway, anti-inflammation, immunomodulatory effects, the effect on cellular signaling pathways, and regeneration of hematopoietic cells.
Collapse
Affiliation(s)
- Shabnoor Iqbal
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad. Pakistan
| | - Muhammad A Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad. Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University Faisalabad. Pakistan
| | - Malik Saadullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad. Pakistan
| | - Sobia Tabassum
- Department of Biological Sciences, International Islamic University, Islamabad. Pakistan
| | - Shujat Ali
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013. China
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad. Pakistan
| | - Haji Muhammad
- Department of Chemistry, Federal Urdu University of Arts, Science & Technology, Karachi. Pakistan
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka. Pakistan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira. Egypt
| | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Enseñanza e Investigación en Bacteriología Alimentaria (CLEIBA), Universidad Nacional Mayor de San Marcos, Lima15001. Peru
| |
Collapse
|
13
|
Xu C, Ni S, Zhuang C, Li C, Zhao G, Jiang S, Wang L, Zhu R, van Wijnen AJ, Wang Y. Polysaccharide from Angelica sinensis attenuates SNP-induced apoptosis in osteoarthritis chondrocytes by inducing autophagy via the ERK1/2 pathway. Arthritis Res Ther 2021; 23:47. [PMID: 33514407 PMCID: PMC7847159 DOI: 10.1186/s13075-020-02409-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/26/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Chondrocyte apoptosis plays a vital role in osteoarthritis (OA) progression. Angelica sinensis polysaccharide (ASP), a traditional Chinese medicine, possesses anti-inflammatory and anti-apoptotic properties in chondrocytes. This study aimed to determine the protective role of ASP on sodium nitroprusside (SNP)-induced chondrocyte apoptosis, and explore the underlying mechanism. METHOD Human primary chondrocytes isolated from the articular cartilage of OA patients were treated with SNP alone or in combination with different doses of ASP. Cell viability and apoptosis were assessed, and apoptosis-related proteins including Bcl-2 and Bax were detected. Autophagy levels were evaluated by light chain 3 (LC3) II immunofluorescence staining, mRFP-GFP-LC3 fluorescence localization, and western blot (LC3II, p62, Beclin-1, Atg5). Meanwhile, activation of the ERK 1/2 pathway was determined by western blot. The autophagy inhibitors, 3-methyladenine (3-MA), chloroquine (CQ), and a specific inhibitor of ERK1/2, SCH772984, were used to confirm the autophagic effect of ASP. RESULTS The results showed that SNP-induced chondrocyte apoptosis was significantly rescued by ASP, whereas ASP alone promoted chondrocyte proliferation. The anti-apoptotic effect of ASP was related to the enhanced autophagy and depended on the activation of the ERK1/2 pathway. CONCLUSION ASP markedly rescued SNP-induced apoptosis by activating ERK1/2-dependent autophagy in chondrocytes, and it made ASP as a potential therapeutic supplementation for OA treatment.
Collapse
Affiliation(s)
- Chao Xu
- Trauma Center, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Su Ni
- Medical Research Center, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Chao Zhuang
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Chenkai Li
- Medical Research Center, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Gongyin Zhao
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Shijie Jiang
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Ruixia Zhu
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN USA
| | - Yuji Wang
- Department of Orthopedics, The Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, 29 Xinglong Alley, Changzhou, 213003 China
- Department of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN USA
- Department of Orthopedics, The Third Affiliated Hospital of Gansu University of Chinese Medicine, 222 Silong Road, Baiyin, 730900 China
| |
Collapse
|
14
|
Chang WCW, Yen CC, Cheng CP, Wu YT, Hsu MC. Chinese herbal decoction (Danggui Buxue Tang) supplementation augments physical performance and facilitates physiological adaptations in swimming rats. PHARMACEUTICAL BIOLOGY 2020; 58:545-552. [PMID: 32538243 PMCID: PMC8641674 DOI: 10.1080/13880209.2020.1774622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/13/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Context: Danggui Buxue Tang (DBT), one of the popular Danggui (DG) decoctions, has traditionally been used to nourish 'qi' (vital energy) and enrich 'blood' (body circulation). DBT may possess performance-enhancing effects.Objective: This work determines whether DBT can improve physical capacity and alter energy expenditure under exercise training.Materials and methods: Forty male Wistar rats were assigned to four groups: sedentary (SE), exercise training (ET), ET supplemented with 0.3 g/kg rat/d DG extract, and ET supplemented with 1.8 g/kg rat/d DBT extract. The supplementations were administered via oral gavage. During the 21-day treatment period, the exercised groups were subjected to a protocol of swimming training with a gradually increased load. Physical performance evaluation was assessed using the forelimb grip strength test and an exhaustive swimming test. Muscle glycogen contents and exercise-related biochemical parameters were analysed.Results: Both herbal supplementations remarkably increased the grip strength (DG by 49.7% and DBT by 85.7%) and prolonged the swimming time (DG by 48.4% and DBT by 72.7%) compared with SE. DBT spared a certain amount of glycogen in the muscle cells under exercise training. Regarding the regulation of fuel usage, DBT had a positive impact alongside ET on promoting aerobic glycolysis via significantly decreasing serum lactate by 31.6% and lactic dehydrogenase levels by 61.8%.Conclusions: This study found that DBT could be considered a promising sports ergogenic aid for athletic population or fitness enthusiasts. Future work focussing on isolating the bioactive components that truly provide the ergogenic effects would be of interest.
Collapse
Affiliation(s)
| | - Ching-Chi Yen
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Pei Cheng
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Tse Wu
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Mei-Chich Hsu
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Substance and Behavior Addiction Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Patchaiyappan A, Prabakaran M, Sarangapany S, Kudungal H, Devipriya S. Cytotoxic and antioxidant activity of the polysaccharide isolated from the seeds of Strychnos potatorum. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Wang W, Xue C, Mao X. Radioprotective effects and mechanisms of animal, plant and microbial polysaccharides. Int J Biol Macromol 2020; 153:373-384. [PMID: 32087223 DOI: 10.1016/j.ijbiomac.2020.02.203] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Ionizing radiation is increasingly used to successfully diagnose many human health problems, but ionizing radiation may cause damage to organs/tissues in the living organisms such as the spleen, liver, skin, and brain. Many radiation protective agents have been discovered, with the deepening of radiation research. Unfortunately, these protective agents have many side effects, which cause drug resistance, nausea, vomiting, osteoporosis, etc. The polysaccharides extracted from natural sources are widely available and low in toxicity. In vivo and in vitro experiments have demonstrated that polysaccharides have anti-radiation activity through anti-oxidation, immune regulation, protection of hematopoietic system and protection against DNA damage. Recently, some studies have shown that polysaccharides were resistant to radiation. In the review, the anti-radiation activities of polysaccharides from different sources are summarized, and the anti-radiation mechanisms are discussed as well. It can be used to develop more effective anti-radiation management drugs.
Collapse
Affiliation(s)
- Wenjie Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
17
|
Gu P, Wusiman A, Zhang Y, Liu Z, Bo R, Hu Y, Liu J, Wang D. Rational Design of PLGA Nanoparticle Vaccine Delivery Systems To Improve Immune Responses. Mol Pharm 2019; 16:5000-5012. [DOI: 10.1021/acs.molpharmaceut.9b00860] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Polyethylenimine-coated PLGA nanoparticles-encapsulated Angelica sinensis polysaccharide as an adjuvant to enhance immune responses. Carbohydr Polym 2019; 223:115128. [PMID: 31427012 DOI: 10.1016/j.carbpol.2019.115128] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/24/2019] [Accepted: 07/24/2019] [Indexed: 01/28/2023]
Abstract
Nanoparticle delivery systems have been widely investigated as new vaccines strategy to enhance the immune responses to antigens against infectious diseases. The positively charged nanoparticles could efficiently improve the immune responses due to targeting and activating the antigen-presenting cells. In this study, the immunopotentiator Angelica sinensis polysaccharide (ASP) was encapsulated into Poly (lactic-co-glycolic acid) (PLGA) nanoparticles, and the polyethylenimine, one of the cationic polymers, was used to coat nanoparticles to develop a new nanoparticle delivery system (ASP-PLGA-PEI) with positively charged. The ASP-PLGA-PEI nanoparticles significantly activated macrophages, and promoted the expression of the MHCII and CD86 and the production of IL-1β and IL-12p70 cytokines of macrophages. Furthermore, the antigen adsorbed on the surface of the ASP-PLGA-PEI nanoparticles enhanced the antigen uptake by macrophages. Moreover, the mice immunized with PCV2 antigen adsorbed ASP-PLGA-PEI nanoparticles significantly enhanced PCV2-specific IgG immune response and the levels of cytokines, induced a mixed Th1/Th2 immune response with Th1 bias compared with other groups. These findings demonstrate that the positively charged nanoparticles (ASP-PLGA-PEI) have the potential to serve as an effective vaccine delivery and adjuvant system to induce vigorous and long-term immune responses.
Collapse
|
19
|
Tang Y, Xiao Y, Tang Z, Jin W, Wang Y, Chen H, Yao H, Shan Z, Bu T, Wang X. Extraction of polysaccharides from Amaranthus hybridus L. by hot water and analysis of their antioxidant activity. PeerJ 2019; 7:e7149. [PMID: 31223543 PMCID: PMC6571129 DOI: 10.7717/peerj.7149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/17/2019] [Indexed: 02/01/2023] Open
Abstract
Background Amaranthus hybridus L. is an annual herb that belongs to the Amaranthceae family, a type of multi-purpose grain, vegetable and feed crop that has received considerable attention due to its great economic value. However, the composition of polysaccharides from A. hybridus has rarely been previously reported. Methods In this study, the aboveground part of A. hybridus was used as material and polysaccharides were isolated by the hot water extraction method. Two acidic polysaccharides were isolated and purified by the Sevage method and diethylaminoethyl cellulose-32 column chromatography. Results Two acidic polysaccharides were obtained from A. hybridus: AHP-H-1 and AHP-H-2. There were significant differences between the monosaccharide content from each sample according to gas chromatography-mass spectrometer. AHP-H-2 had higher antioxidant activity in vitro than AHP-H-1. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging rate of two mg/mL AHP-H-2 was 80%, its hydroxyl radical scavenging rate was approximately 48.5%, its superoxide anion radical scavenging rate was 85.3% and its reduction ability of Fe3+ was approximately 0.92. The total antioxidant capacity of each milligram of AHP-H-2 was 6.5, which was higher than ascorbic acid. Conclusion The results of the study promote the effective use of A. hybridus and provide a theoretical basis for its development.
Collapse
Affiliation(s)
- Yujia Tang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Ya'an, China
| | - Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Weiqiong Jin
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Yinsheng Wang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Zhi Shan
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Xiaoli Wang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| |
Collapse
|
20
|
Zhao JL, Zhang M, Zhou HL. Microwave-Assisted Extraction, Purification, Partial Characterization, and Bioactivity of Polysaccharides from Panax ginseng. Molecules 2019; 24:E1605. [PMID: 31018583 PMCID: PMC6514599 DOI: 10.3390/molecules24081605] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022] Open
Abstract
Polysaccharides are a main active substance in Panax ginseng; however, microwave-assisted extraction used to prepare P. ginseng polysaccharides (MPPG) has rarely been reported, and knowledge of the bactericidal activity of P. ginseng polysaccharides remains low. Thus, this study was designed to investigate the extraction of P. ginseng polysaccharides by using two methods-hot water extraction and microwave-assisted extraction-and compare their chemical composition and structure. In addition, their antibacterial and antioxidant activities were also determined. The data implied that P. ginseng polysaccharides extracted by microwave-assisted extraction possessed a higher extraction yield than hot water extraction (WPPG) under optimized conditions, and the actual yields were 41.6% ± 0.09% and 28.5% ± 1.62%, respectively. Moreover, the preliminary characterization of polysaccharides was identified after purification. The WPPG with the molecular weight (Mw) of 2.07 × 105 Da was composed of Man, Rib, Rha, GalA, Glu, Gal, and Arab, and the typical characteristics of polysaccharides were determined by IR spectra. Compared with WPPG, MPPG had a higher Mw, uronic acid content, and Glu content. More importantly, the antioxidant activity of MPPG was higher than WPPG, which was probably ascribed to its highly Mw and abundant uronic acid content. Besides, both of them exhibited high bactericidal activity. These results demonstrate that microwave-assisted extraction is an effective method for obtaining P. ginseng polysaccharides, and MPPG could be applied as an antioxidant and antibacterial agent.
Collapse
Affiliation(s)
- Jing-Li Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China.
- Institution of Pharmaceutical and Environmental Technology, Jilin Vocational College of Industry and Technology, Jilin 132013, China.
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Hong-Li Zhou
- Engineering Research Center for Agricultural Resources and Comprehensive Utilization of Jilin Provence, Jilin Institute of Chemical Technology, Jilin 132022, China.
| |
Collapse
|
21
|
Zhang Y, He Z, Liu X, Chen Z, Sun J, Wu Z, Yang X, Chen X, Tang Z, Wang K. Oral administration of Angelica sinensis polysaccharide protects against pancreatic islets failure in type 2 diabetic mice: Pancreatic β-cell apoptosis inhibition. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
22
|
Choi KO, Kim D, Lim JD, Ko S, Hong GP, Lee S. Functional enhancement of ultrafine Angelica gigas powder by spray-drying microencapsulation. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.10.097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Yin M, Zhang Y, Li H. Advances in Research on Immunoregulation of Macrophages by Plant Polysaccharides. Front Immunol 2019; 10:145. [PMID: 30804942 PMCID: PMC6370632 DOI: 10.3389/fimmu.2019.00145] [Citation(s) in RCA: 254] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/17/2019] [Indexed: 01/02/2023] Open
Abstract
Polysaccharides are among the most important members of the biopolymer family. They are natural macromolecules composed of monosaccharides. To date, more than 300 kinds of natural polysaccharide compounds have been identified. They are present in plants, animals, and microorganisms, and they engage in a variety of physiological functions. In the 1950s, due to the discovery of their immunoregulatory and anti-tumor activities, polysaccharides became a popular topic of research in pharmacology, especially in immunopharmacology. Plants are an important source of natural polysaccharides. Pharmacological and clinical studies have shown that plant polysaccharides have many functions, such as immune regulation, anti-tumor activity, anti-inflammatory activity, anti-viral functions, anti-radiation functions, and a hypoglycaemic effect. The immunomodulatory effects of plant polysaccharides have received much attention. Polysaccharides with these effects are also referred to as biological response modifiers (BRMs), and research on them is one of the most active areas of polysaccharide research. Thus, we summarize immunomodulatory effects of botanical polysaccharides isolated from different species of plants on the macrophage. The primary effect of botanical polysaccharides is to enhance and/or activate macrophage immune responses, including increasing reactive oxygen species (ROS) production, and enhancing secretion of cytokines and chemokines. Therefore, it is believed that botanical polysaccharides have significant therapeutic potential, and represent a new method for discovery and development of novel immunomodulatory medicine.
Collapse
Affiliation(s)
| | | | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
24
|
Microwave-assisted extraction releases the antioxidant polysaccharides from seabuckthorn (Hippophae rhamnoides L.) berries. Int J Biol Macromol 2019; 123:280-290. [DOI: 10.1016/j.ijbiomac.2018.11.074] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/22/2018] [Accepted: 11/12/2018] [Indexed: 12/23/2022]
|
25
|
Yang Q, Wang Q, Deng W, Sun C, Wei Q, Adu-Frimpong M, Shi J, Yu J, Xu X. Anti-hyperuricemic and anti-gouty arthritis activities of polysaccharide purified from Lonicera japonica in model rats. Int J Biol Macromol 2019; 123:801-809. [DOI: 10.1016/j.ijbiomac.2018.11.077] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/13/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
|
26
|
Wang RS, He XH, Lin H, Liang RH, Liang L, Chen J, Liu CM. Solubility Difference between Pectic Fractions from Creeping Fig Seeds. Polymers (Basel) 2019; 11:E159. [PMID: 30960143 PMCID: PMC6401943 DOI: 10.3390/polym11010159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/12/2019] [Accepted: 01/12/2019] [Indexed: 12/02/2022] Open
Abstract
Crude water-extracted pectin (WEP) isolated from creeping fig seeds were mainly fractionated into WEP-0.3 and WEP-0.4 fractions. Fractions were confirmed to be nonstarch, nonreducing sugars, nonpolyphenols and protein-unbounded acidic polysaccharides. Interestingly, a significant difference in solubility was found between WEP-0.3 (higher solubility than WEP) and WEP-0.4 (remarkably insoluble), which was consistent with the amorphous and porous sponge-like structure of WEP-0.3 as well as the crystalline and dense rod-like state of WEP-0.4. However, the result of the FT-IR spectra was contradicted by the solubility of WEP-0.4, which possessed the lowest degree of methoxylation and ought to possess the highest solubility. Through mineral analysis, a considerably high content of Ca2+ was found in WEP-0.4, suggesting that the low solubility of WEP-0.4 was probably attributable to the formation of microgels during dialysis. Therefore, metal divalent cations in the dialysate were suggested to be depleted for the dialysis of low methoxyl pectin.
Collapse
Affiliation(s)
- Ri-Si Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xiao-Hong He
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Hong Lin
- Jiangxi Academy of Forestry, Nanchang 330032, China.
| | - Rui-Hong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Lu Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jun Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Cheng-Mei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
27
|
Xu M, Rao J, Chen B. Phenolic compounds in germinated cereal and pulse seeds: Classification, transformation, and metabolic process. Crit Rev Food Sci Nutr 2019; 60:740-759. [DOI: 10.1080/10408398.2018.1550051] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Minwei Xu
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
28
|
Zeng P, Li J, Chen Y, Zhang L. The structures and biological functions of polysaccharides from traditional Chinese herbs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:423-444. [PMID: 31030757 PMCID: PMC7102684 DOI: 10.1016/bs.pmbts.2019.03.003] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Most of traditional Chinese medicine substances come from herbal plants. The medicinal quality of herbal plants varies with the locations of cultivation, the parts of the herb collected, the season of the herb collected, and the herb processing method. Polysaccharides are major components of the herb plants and their biosynthesis is partly controlled by the genes but mostly influenced by the availability of the nutrition and determined by the various environmental factors. In recent decades, polysaccharides isolated from different kinds of Chinese herbs have received much attention due to their important biological activities, such as anti-tumor, anti-oxidant, anti-diabetic, radiation protecting, antiviral, hypolipidemic, and immunomodulatory activities. Interestingly, different batches of the same herb can obtain different polysaccharide fractions with subtle differences in molecular weight, monosaccharide compositions, glycosidic linkages, and biological functions. Even with these variations, a large number of bioactive polysaccharides from different kinds of traditional Chinese herbs have been purified, characterized, and reported. This review provides a comprehensive summary of the latest polysaccharide extraction methods and the strategies used for monosaccharide compositional analysis plus polysaccharide structural characterization. Most importantly, the reported chemical characteristics and biological activities of the polysaccharides from the famous traditional Chinese herbs including Astragalus membranaceus, Ginseng, Lycium barbarum, Angelica sinensis, Cordyceps sinensis, and Ophiopogon japonicus will be reviewed and discussed. The published studies provide evidence that polysaccharides from traditional Chinese herbs play an important role in their medical applications, which forms the basis for future research, development, and application of these polysaccharides as functional foods and therapeutics in modern medicine.
Collapse
Affiliation(s)
- Pengjiao Zeng
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China,Corresponding authors:
| | - Juan Li
- Department of Medical Records, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yulong Chen
- Department of Gynecology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China,Corresponding authors:
| |
Collapse
|
29
|
Li Y, Chen J, Cao L, Li L, Wang F, Liao Z, Chen J, Wu S, Zhang L. Characterization of a novel polysaccharide isolated from Phyllanthus emblica L. and analysis of its antioxidant activities. Journal of Food Science and Technology 2018; 55:2758-2764. [PMID: 30042592 DOI: 10.1007/s13197-018-3199-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/10/2017] [Accepted: 05/09/2018] [Indexed: 11/28/2022]
Abstract
Phyllanthus emblica L. is a tropical deciduous tree producing edible berries with potential medicinal value. In this study, a novel water-soluble phyllanthus emblica polysaccharide (PEP) from the berries was isolated by precipitation and purification, and analyzed for its structure features. The results showed that PEP was a α-pyran acidic heteropolysaccharide with a molecular weight of 1.31 × 105 Da, which included galacturonic acid, galactose, rhamnose, and arabinose with a molar ratio of 3.21:6.59:1:0.23. Furthermore, the antioxidant activities of PEP were determined and showed remarkable antioxidant capacities in DPPH, superoxide anion- and hydroxyl-radical scavenging, ferric-reducing antioxidant power, and lipid peroxidation inhibition. This work indicated that PEP as a natural antioxidant agent from the berries of Phyllanthus emblica L. had potential application for developing valuable nutraceutical in food industry.
Collapse
Affiliation(s)
- Yongyu Li
- 1College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China.,3Environmental Horticulture Department and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703 USA
| | - Jianyan Chen
- 2Department of Biology, Ningde Normal University, Ningde, 352100 People's Republic of China
| | - Lili Cao
- 1College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
| | - Liang Li
- 1College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
| | - Fang Wang
- 1College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
| | - Zhengping Liao
- 1College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
| | - Jianjun Chen
- 3Environmental Horticulture Department and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703 USA
| | - Shaohua Wu
- 1College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
| | - Liaoyuan Zhang
- 4College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 People's Republic of China
| |
Collapse
|
30
|
Xu M, Jin Z, Ohm JB, Schwarz P, Rao J, Chen B. Improvement of the Antioxidative Activity of Soluble Phenolic Compounds in Chickpea by Germination. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6179-6187. [PMID: 29860843 DOI: 10.1021/acs.jafc.8b02208] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Our recent study found that antioxidative activity of phenolic compounds extracted from germinated chickpea was boosted in both in vitro assays and oil-in-water emulsions [ Xu et al. Food Chem. 2018 , 250 , 140 ]. The purpose of this study was to elucidate the mechanism by which germination enhances the antioxidative activity of the phenolic compounds extracted from chickpea. Liquid chromatography coupled with electrospray-ionization quadrupole time-of-flight mass spectrometry (LC-ESI-QTOF-MS) and size-exclusion chromatography with multiangle-light-scattering and refractive-index detection (SEC-MALS-RI) were employed to evaluate the phenolic composition of soluble phenolic compounds (free and bound) and molar masses of soluble bound phenolic compounds, respectively, over 6 days of germination. According to principal-component analysis of the interrelationship between germination time and phenolic composition, it is revealed that protocatechuic acid 4- O-glucoside and 6-hydroxydaidzein played a pivotal role in the soluble free phenolic compounds, whereas gentisic acid and 7,3',4'-trihydroxyflavone were important in the soluble bound phenolic compounds. Molar masses of soluble bound phenolic compounds were increased after 6 days of germination. Protective and dual antioxidative effects were proposed to explicate how the antioxidative activity of soluble bound phenolic compounds in oil-in-water emulsions was improved with germination.
Collapse
Affiliation(s)
- Minwei Xu
- Department of Plant Sciences , North Dakota State University , Fargo , North Dakota 58108 , United States
| | - Zhao Jin
- Department of Plant Sciences , North Dakota State University , Fargo , North Dakota 58108 , United States
| | - Jae-Bom Ohm
- Red River Valley Agricultural Research Center, Cereal Crops Research Unit, Hard Spring and Durum Wheat Quality Lab , USDA-ARS , Fargo , North Dakota 58108 , United States
| | - Paul Schwarz
- Department of Plant Sciences , North Dakota State University , Fargo , North Dakota 58108 , United States
| | - Jiajia Rao
- Department of Plant Sciences , North Dakota State University , Fargo , North Dakota 58108 , United States
| | - Bingcan Chen
- Department of Plant Sciences , North Dakota State University , Fargo , North Dakota 58108 , United States
| |
Collapse
|
31
|
Zhang YT, Xiao MF, Deng KW, Yang YT, Zhou YQ, Zhou J, He FY, Liu WL. Novel mathematic models for quantitative transitivity of quality-markers in extraction process of the Buyanghuanwu decoction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 45:68-75. [PMID: 29699843 DOI: 10.1016/j.phymed.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 01/05/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Nowadays, to research and formulate an efficiency extraction system for Chinese herbal medicine, scientists have always been facing a great challenge for quality management, so that the transitivity of Q-markers in quantitative analysis of TCM was proposed by Prof. Liu recently. In order to improve the quality of extraction from raw medicinal materials for clinical preparations, a series of integrated mathematic models for transitivity of Q-markers in quantitative analysis of TCM were established. Buyanghuanwu decoction (BYHWD) was a commonly TCMs prescription, which was used to prevent and treat the ischemic heart and brain diseases. In this paper, we selected BYHWD as an extraction experimental subject to study the quantitative transitivity of TCM. STUDY DESIGN Based on theory of Fick's Rule and Noyes-Whitney equation, novel kinetic models were established for extraction of active components. Meanwhile, fitting out kinetic equations of extracted models and then calculating the inherent parameters in material piece and Q-marker quantitative transfer coefficients, which were considered as indexes to evaluate transitivity of Q-markers in quantitative analysis of the extraction process of BYHWD. METHODS HPLC was applied to screen and analyze the potential Q-markers in the extraction process. Fick's Rule and Noyes-Whitney equation were adopted for mathematically modeling extraction process. Kinetic parameters were fitted and calculated by the Statistical Program for Social Sciences 20.0 software. The transferable efficiency was described and evaluated by potential Q-markers transfer trajectory via transitivity availability AUC, extraction ratio P, and decomposition ratio D respectively. The Q-marker was identified with AUC, P, D. RESULTS Astragaloside IV, laetrile, paeoniflorin, and ferulic acid were studied as potential Q-markers from BYHWD. The relative technologic parameters were presented by mathematic models, which could adequately illustrate the inherent properties of raw materials preparation and affection of Q-markers transitivity in equilibrium processing. AUC, P, D for potential Q-markers of AST-IV, laetrile, paeoniflorin, and FA were obtained, with the results of 289.9 mAu s, 46.24%, 22.35%; 1730 mAu s, 84.48%, 1.963%; 5600 mAu s, 70.22%, 0.4752%; 7810 mAu s, 24.29%, 4.235%, respectively. CONCLUSION The results showed that the suitable Q-markers were laetrile and paeoniflorin in our study, which exhibited acceptable traceability and transitivity in the extraction process of TCMs. Therefore, these novel mathematic models might be developed as a new standard to control TCMs quality process from raw medicinal materials to product manufacturing.
Collapse
Affiliation(s)
- Yu-Tian Zhang
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China
| | - Mei-Feng Xiao
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China; Supramolecular Mechanism and Mathematic-Physics Characterization for Chinese Materia Medicine, Changsha, Hunan 410208, China
| | - Kai-Wen Deng
- The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410007, China
| | - Yan-Tao Yang
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China; Supramolecular Mechanism and Mathematic-Physics Characterization for Chinese Materia Medicine, Changsha, Hunan 410208, China
| | - Yi-Qun Zhou
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China; Supramolecular Mechanism and Mathematic-Physics Characterization for Chinese Materia Medicine, Changsha, Hunan 410208, China
| | - Jin Zhou
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China; Supramolecular Mechanism and Mathematic-Physics Characterization for Chinese Materia Medicine, Changsha, Hunan 410208, China
| | - Fu-Yuan He
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China; Supramolecular Mechanism and Mathematic-Physics Characterization for Chinese Materia Medicine, Changsha, Hunan 410208, China.
| | - Wen-Long Liu
- Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, China; Supramolecular Mechanism and Mathematic-Physics Characterization for Chinese Materia Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
32
|
Ashfaque AK, Shahzor GK, Ying L, Saghir AS, Yan-Feng W, Dong XB, Mamoun AH, Abdul GD, Javaid AL, Si H, Wen H. Characterization and antioxidant properties of crude water soluble polysaccharides from three
edible mushrooms. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/jmpr2017.6441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
33
|
Zhou SS, Xu J, Tsang CK, Yip KM, Yeung WP, Zhao ZZ, Zhu S, Fushimi H, Chang HY, Chen HB. Comprehensive quality evaluation and comparison of Angelica sinensis radix and Angelica acutiloba radix by integrated metabolomics and glycomics. J Food Drug Anal 2018; 26:1122-1137. [PMID: 29976405 PMCID: PMC9303037 DOI: 10.1016/j.jfda.2018.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Angelica radix (Danggui in Chinese) used in China and Japan is derived from two species of Angelica, namely Angelica sinensis and Angelica acutiloba, respectively. The differences in quality between A. sinensis radix (ASR) and A. acutiloba radix (AAR) should be therefore investigated to guide the medicinal and dietary applications of these two species. Secondary metabolites and carbohydrates have been demonstrated to be the two major kinds of bioactive components of Danggui. However, previously, quality comparison between ASR and AAR intensively concerned secondary metabolites but largely overlooked carbohydrates, thus failing to include or take into consideration an important aspect of the holistic quality of Danggui. In this study, untargeted/targeted metabolomics and glycomics were integrated by multiple chromatography-based analytical techniques for qualitative and quantitative characterization of secondary metabolites and carbohydrates in Danggui so as to comprehensively evaluate and compare the quality of ASR and AAR. The results revealed that not only secondary metabolites but also carbohydrates in ASR and AAR were different in type and amount, which should collectively contribute to their quality difference. By providing more comprehensive chemical information, the research results highlighted the need to assess characteristics of both carbohydrates and secondary metabolites for overall quality evaluation and comparison of ASR and AAR.
Collapse
Affiliation(s)
- Shan-Shan Zhou
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Chuen-Kam Tsang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Ka-Man Yip
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Wing-Ping Yeung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Zhong-Zhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Shu Zhu
- Department of Medicinal Resources, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hirotoshi Fushimi
- Museum of Materia Medica, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Heng-Yuan Chang
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| |
Collapse
|
34
|
Xie JH, Jin ML, Morris GA, Zha XQ, Chen HQ, Yi Y, Li JE, Wang ZJ, Gao J, Nie SP, Shang P, Xie MY. Advances on Bioactive Polysaccharides from Medicinal Plants. Crit Rev Food Sci Nutr 2017; 56 Suppl 1:S60-84. [PMID: 26463231 DOI: 10.1080/10408398.2015.1069255] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Jian-Hua Xie
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| | - Ming-Liang Jin
- b Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China
| | - Gordon A Morris
- c Department of Chemical Sciences , School of Applied Sciences, University of Huddersfield , Huddersfield , UK
| | - Xue-Qiang Zha
- d School of Biotechnology and Food Engineering, Hefei University of Technology , Hefei , P.R. China
| | - Han-Qing Chen
- d School of Biotechnology and Food Engineering, Hefei University of Technology , Hefei , P.R. China
| | - Yang Yi
- e College of Food Science and Engineering, Wuhan Polytechnic University , Wuhan , P.R. China
| | - Jing-En Li
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China.,f College of Food Science and Engineering, Jiangxi Agricultural University , Nanchang , P.R. China
| | - Zhi-Jun Wang
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| | - Jie Gao
- d School of Biotechnology and Food Engineering, Hefei University of Technology , Hefei , P.R. China
| | - Shao-Ping Nie
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| | - Peng Shang
- b Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University , Xi'an , P.R. China
| | - Ming-Yong Xie
- a State Key Laboratory of Food Science and Technology, Nanchang University , Nanchang , P.R. China
| |
Collapse
|
35
|
Wei WL, Zeng R, Gu CM, Qu Y, Huang LF. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:116-141. [PMID: 27211015 DOI: 10.1016/j.jep.2016.05.023] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelica sinensis (Oliv.) Diels, known as Dang Gui (in Chinese), is a traditional medicinal and edible plant that has long been used for tonifying, replenishing, and invigorating blood as well as relieving pain, lubricating the intestines, and treating female irregular menstruation and amenorrhea. A. sinensis has also been used as a health product and become increasingly popular in China, Japan, and Korea. AIM OF THE REVIEW This paper aims to provide a systemic review of traditional uses of A. sinensis and its recent advances in the fields of phytochemistry, analytical methods and toxicology. In addition, possible trends, therapeutic potentials, and perspectives for future research of this plant are also briefly discussed. MATERIALS AND METHODS An extensive review of the literature was conducted, and electronic databases including China National Knowledge Infrastructure, PubMed, Google Scholar, Science Direct, and Reaxys were used to assemble the data. Ethnopharmacological literature and digitalised sources of academic libraries were also systematically searched. In addition, information was obtained from local books and The Plant List (TPL, www.theplantlist.org). RESULT This study reviews the progress in chemical analysis of A. sinensis and its preparations. Previously and newly established methods, including spectroscopy, thin-layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), ultra-performance liquid chromatography(UPLC), and nuclear magnetic resonance analysis (NMR), are summarized. Moreover, identified bioactive components such as polysaccharides, ligustilide and ferulic acid were reviewed, along with analytical methods for quantitative and qualitative determination of target analytes, and fingerprinting authentication, quality evaluation of A. sinensis, and toxicology and pharmacodynamic studies. Scientific reports on crude extracts and pure compounds and formulations revealed a wide range of pharmacological activities, including anti-inflammatory activity, antifibrotic action, antispasmodic activity, antioxidant activities, and neuroprotective action, as well as cardio- and cerebrovascular effects. CONCLUSIONS Within the published scientific literature are numerous reports regarding analytical methods that use various chromatographic and spectrophotometric technologies to monitor various types of components with different physicochemical properties simultaneously. This review discusses the reasonable selection of marker compounds based on high concentrations, analytical methods, and commercial availabilities with the goal of developing quick, accurate, and applicable analytical approaches for quality evaluation and establishing harmonised criteria for the analysis of A. sinensis and its finished products. Compounds isolated from A. sinensis are abundant sources of chemical diversity, from which we can discover active molecules. Thus, more studies on the pharmacological mechanisms of the predominant active compounds of A. sinensis are needed. In addition, given that A. sinensis is one of the most popular traditional herbal medicines, its main therapeutic aspects, toxicity, and adverse effects warrant further investigation in the future.
Collapse
Affiliation(s)
- Wen-Long Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Rui Zeng
- College of Pharmacy, Southwest University for Nationalities, Chengdu 610041, China
| | - Cai-Mei Gu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Yan Qu
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Lin-Fang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
36
|
Zhao Y, Shi Y, Yang H, Mao L. Extraction of Angelica sinensis polysaccharides using ultrasound-assisted way and its bioactivity. Int J Biol Macromol 2016; 88:44-50. [DOI: 10.1016/j.ijbiomac.2016.01.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 01/06/2016] [Accepted: 01/29/2016] [Indexed: 11/30/2022]
|
37
|
Zhuang C, Xu NW, Gao GM, Ni S, Miao KS, Li CK, Wang LM, Xie HG. Polysaccharide from Angelica sinensis protects chondrocytes from H2O2-induced apoptosis through its antioxidant effects in vitro. Int J Biol Macromol 2016; 87:322-8. [DOI: 10.1016/j.ijbiomac.2016.02.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/01/2016] [Accepted: 02/11/2016] [Indexed: 12/22/2022]
|
38
|
Jin Y, Qu C, Tang Y, Pang H, Liu L, Zhu Z, Shang E, Huang S, Sun D, Duan JA. Herb pairs containing Angelicae Sinensis Radix (Danggui): A review of bio-active constituents and compatibility effects. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:158-71. [PMID: 26807913 DOI: 10.1016/j.jep.2016.01.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 01/17/2016] [Accepted: 01/21/2016] [Indexed: 05/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herb compatibility is one of the most important characteristics of traditional Chinese medicine (TCM). Rather than being used singly, Chinese herbs are often used in formulae to obtain synergistic effects or to diminish possible adverse reactions. Herb pair, the most fundamental and simplest form of multi-herb formulae, is a centralized representative of herb compatibility. Danggui (Angelicae Sinensis Radix), a widely used Chinese medicine, is usually combined with another herb to treat women's diseases in the clinic. A series of herb pairs containing Danggui have gradually become a focus of modern research, and they exhibit encouraging prospects for development. MATERIALS AND METHODS A systematic search for studies related to herb pairs containing Danggui was performed via a library search (books, theses, reports, newspapers, magazines, and conference proceedings) and an electronic search (Web of Science, PubMed, and Google Scholar). These sources were scrutinized for information on Danggui herb pairs. RESULTS Based on a previous statistical analysis, a database containing 16,529 formulae of Danggui from the "Dictionary of Traditional Chinese Medicine Formulae" was reviewed. The results showed a high frequency of compatibility between Danggui and other 22 herbs. The most common ratio among these chosen herb pairs was 1:1, and a majority of the pairs were applied for the treatment of diseases in internal medicine. The present paper reviews ethnopharmacology and advances in variations of the bio-active components and compatibility effects of the herb pairs containing Danggui, especially Danggui-Huangqi, Danggui-Chuanxiong, and Danggui-Shaoyao, which are used at high frequency. It was also observed that there were fewer studies of Danggui-Fuzi, Danggui-Huanglian, Danggui-Gancao, Danggui-Fangfeng and Danggui-Ganjiang, although they have been recorded in classical books as commonly used herb pairs. Moreover, some herb pairs such as Danggui-Niuxi and Danggui-Chaihu have been used at high frequency according to the statistical analysis, however, they were not recognized as herb pairs in many relevant books. CONCLUSIONS Recently, several TCM researchers have become interested in investigating the bio-active constituents and compatibility effects of herb pairs. Thus, some methods for in-depth study of herb pairs are essential to be established. The in vitro or in vivo bio-active constituents of herb pairs may differ from those of the single herbs. Additionally, comparative methods should be applied to study not only the bio-active constituents but also the effects of herb pairs. Study of component compatibility may be considered when the bio-active constituents and effects of an herb pair have been definitively demonstrated. Overall, the goal of our basic study of herb pairs should be their clinical application and the development of new drugs.
Collapse
Affiliation(s)
- Yi Jin
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Cheng Qu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Yuping Tang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China.
| | - Hanqing Pang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Liling Liu
- Jiangsu Revolence Pharmaceutical Co., Ltd., Huaian 223200, Jiangsu Province, China
| | - Zhenhua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Shengliang Huang
- Jiangsu Revolence Pharmaceutical Co., Ltd., Huaian 223200, Jiangsu Province, China
| | - Dazheng Sun
- Jiangsu Revolence Pharmaceutical Co., Ltd., Huaian 223200, Jiangsu Province, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| |
Collapse
|
39
|
Kalam Azad MA, Wang F, Kim HR. Identification of a novel sugar compound from Korean pine seeds. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0265-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Khaskheli SG, Zheng W, Sheikh SA, Khaskheli AA, Liu Y, Soomro AH, Feng X, Sauer MB, Wang YF, Huang W. Characterization of Auricularia auricula polysaccharides and its antioxidant properties in fresh and pickled product. Int J Biol Macromol 2015; 81:387-95. [DOI: 10.1016/j.ijbiomac.2015.08.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/30/2015] [Accepted: 08/09/2015] [Indexed: 10/23/2022]
|
41
|
Pu X, Ma X, Liu L, Ren J, Li H, Li X, Yu S, Zhang W, Fan W. Structural characterization and antioxidant activity in vitro of polysaccharides from angelica and astragalus. Carbohydr Polym 2015; 137:154-164. [PMID: 26686116 DOI: 10.1016/j.carbpol.2015.10.053] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/09/2015] [Accepted: 10/14/2015] [Indexed: 01/28/2023]
Abstract
In the present study, structural characterization and antioxidant activity of a fraction (AAP-2A) of polysaccharides from angelica and astragalus (AAP) were investigated. Characteriztion assay showed that AAP-2A had molecular weight (Mw), root-mean square (RMS) radius and polydispersity index (Mw/Mn) of 2.252 × 10(3)kDa, 28.4 nm and 1.038, respectively. There were infrared characteristic absorption peaks of polysaccharides in FT-IR spectroscopy. AAP-2A was composed of rhamnose (Rha), galactose (Gal), arabinose (Ara) and glucose (Glc) with a molar ratio of 1:2.13:3.22:6.18 in GC analysis. Methylation analysis combined with NMR spectroscopic analysis demonstrated that a preliminary structure of AAP-2A was proposed as follows: 1,3-linked Rhap, 1,3-linked Galp, 1,3-linked Araf, 1,5-linked Araf, 1,3,5-linked Araf, 1,4-linked Glcp and 1,4,6-linked Glcp interspersed with terminal Glcp. AAP-2A exhibited a surface with a sheet-like appearance in scanning electron microscope and stronger antioxidant capacity compared with AAP.
Collapse
Affiliation(s)
- Xiuying Pu
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; The Key Lab of Screening, Evaluated and Advanced Processing of Traditional Chinese Medicine and Tibetan Medicine, Gansu Educational Department, Lanzhou 730050, China.
| | - Xiaolong Ma
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; The Key Lab of Screening, Evaluated and Advanced Processing of Traditional Chinese Medicine and Tibetan Medicine, Gansu Educational Department, Lanzhou 730050, China
| | - Lu Liu
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; The Key Lab of Screening, Evaluated and Advanced Processing of Traditional Chinese Medicine and Tibetan Medicine, Gansu Educational Department, Lanzhou 730050, China
| | - Jing Ren
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; The Key Lab of Screening, Evaluated and Advanced Processing of Traditional Chinese Medicine and Tibetan Medicine, Gansu Educational Department, Lanzhou 730050, China
| | - Haibing Li
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; The Key Lab of Screening, Evaluated and Advanced Processing of Traditional Chinese Medicine and Tibetan Medicine, Gansu Educational Department, Lanzhou 730050, China
| | - Xiaoyue Li
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; The Key Lab of Screening, Evaluated and Advanced Processing of Traditional Chinese Medicine and Tibetan Medicine, Gansu Educational Department, Lanzhou 730050, China
| | - Shuang Yu
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; The Key Lab of Screening, Evaluated and Advanced Processing of Traditional Chinese Medicine and Tibetan Medicine, Gansu Educational Department, Lanzhou 730050, China
| | - Weijie Zhang
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; The Key Lab of Screening, Evaluated and Advanced Processing of Traditional Chinese Medicine and Tibetan Medicine, Gansu Educational Department, Lanzhou 730050, China
| | - Wenbo Fan
- College of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; The Key Lab of Screening, Evaluated and Advanced Processing of Traditional Chinese Medicine and Tibetan Medicine, Gansu Educational Department, Lanzhou 730050, China
| |
Collapse
|
42
|
Sun SH, Park S, Jeong JJ, Lee KH, Yu JS, Seo HS, Kwon KR. Single-dose Intravenous Toxicology Testing of Daebohwalryeok Pharmcopuncture in Sprague-Dawley Rats. J Pharmacopuncture 2015; 18:42-50. [PMID: 26120487 PMCID: PMC4481398 DOI: 10.3831/kpi.2015.18.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/14/2015] [Indexed: 11/16/2022] Open
Abstract
Objectives: The aims of the study were to test the single-dose intravenous toxicity of Daebohwalryeok pharmacopuncture (DHRP) in Sprague-Dawley (SD) rats and to estimate the crude lethal dose. Methods: The experiments were conducted at Biotoxtech Co., a Good Laboratory Practice (GLP) laboratory, according to the GLP regulation and were approved by the Institutional Animal Care and Use Committee of Biotoxtech Co. (Approval no: 110156). The rats were divided into three groups: DHRP was injected into the rats in the two test groups at doses of 10 mL/kg and 20 mL/kg, respectively, and normal saline solution was injected into the rats in the control group. Single doses of DHRP were injected intravenously into 6 week old SD rats (5 male and 5 female rats per group). General symptoms were observed and weights were measured during the 14 day observation period after the injection. After the observation period, necropsies were done. Then, histopathological tests were performed. Weight data were analyzed with a one-way analysis of variance (ANOVA) by using statistical analysis system (SAS, version 9.2). Results: No deaths and no statistical significant weight changes were observed for either male or female SD rats in either the control or the test groups during the observation period. In addition, no treatment related general symptoms or necropsy abnormalities were observed. Histopathological results showed no DHRP related effects in the 20 mL/kg DHRP group for either male or female rats. Conclusion: Under the conditions of this study, the results from single-dose intravenous injections of DHRP showed that estimated lethal doses for both male and female rats were above 20 mL/kg.
Collapse
Affiliation(s)
- Seung-Ho Sun
- Department of Internal Medicine, College of Korean Medicine, Sangji University, Wonju, Korea
| | - Sunju Park
- Department of Preventive Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea
| | - Jong-Jin Jeong
- Department of Internal Medicine, College of Korean Medicine, Sangji University, Wonju, Korea
| | - Kwang-Ho Lee
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Sangji University, Wonju, Korea
| | - Jun-Sang Yu
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Sangji University, Wonju, Korea
| | - Hyung-Sik Seo
- Department of Ophthalmology, Otolaryngology, and Dermatology, Korean Medicine Hospital, Pusan National University, Yangsan, Korea
| | - Ki-Rok Kwon
- Research Center of the Korean Pharmacopuncture Institute, Seoul, Korea
| |
Collapse
|
43
|
Sun S, Jeong J, Park S, Lee K, Yu J, Seo HS, Kwon K. Single-dose Intramuscular Injection Toxicology of Danggui Pharmacopuncture (DGP) in Sprague-Dawley Rats. J Pharmacopuncture 2015; 18:56-62. [PMID: 25830059 PMCID: PMC4379476 DOI: 10.3831/kpi.2015.18.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022] Open
Abstract
Objectives: The purpose of the study is to assess both the approximate lethal dose and the single dose intramuscular injection toxicity of Danggui (Angelica gigantis radix) pharmacopuncture (DGP) in Sprague-Dawley (SD) rats. Methods: The experiments were conducted at the good laboratory practice (GLP) laboratory, Biotoxtech Co., which is a laboratory approved by the ministry of food and drug safety (MFDS). The study was performed according to the GLP regulation and the toxicity test guidelines of the MFDS (2009) after approval of the institutional animal care and use committee of Biotoxtech. Single doses of DGP were injected intramuscularly into the rats in three test groups of 6 week old SD rats (5 male and 5 female rats per groups) in the amounts of 0.1, 0.5, and 1.0 mL/animal for groups 2, 3, and 4, respectively, and normal saline solution in the amount of 1.0 mL/animal was injected intramuscularly into the rats (5 male and 5 female rats) in the control group. Observations of the general symptoms and weight measurements were performed during the 14 day observation period after the injection. Hematologic and serum biochemical examination, necropsy, and a local tolerance test at the injection site were done after the observation period. Results: No death was observed in three test groups (0.1, 0.5 and 1.0 mL/animal group). In addition, the injection of DGP had no effect on general symptoms, weights, hematologic and serum biochemical examination, and necropsy. The results from the local tolerance tests at injection site showed no treatment related effects in the SD rats. Conclusion: The results of single dose intramuscular injection of DGP suggest that the approximate lethal dose is above 1.0 mL/animal for both male and female SD rats and that intramuscular injection of DGP may be safe.
Collapse
Affiliation(s)
- SeungHo Sun
- Department of Internal Medicine, College of Korean Medicine, Sangji University, Wonju, Korea
| | - JongJin Jeong
- Department of Internal Medicine, College of Korean Medicine, Sangji University, Wonju, Korea
| | - Sunju Park
- Department of Preventive Medicine, College of Korean Medicine, Daejeon University, Daejeon, Korea
| | - KwangHo Lee
- Department of Acupuncture & Moxibustion Medicine, College of Korean Medicine, Sangji University, Wonju, Korea
| | - JunSang Yu
- Department of Sasang Constitutional Medicine, College of Korean Medicine, Sangji University, Wonju, Korea
| | - Hyung-Sik Seo
- Department of Ophthalmology, Otolaryngology, and Dermatology, Korean Medicine Hospital, Pusan National University, Yangsan, Korea
| | - KiRok Kwon
- Research Center of the Korean Pharmacopuncture Institute, Seoul, Korea
| |
Collapse
|
44
|
Banerjee S, Parasramka M, Paruthy SB. Polysaccharides in Cancer Prevention: From Bench to Bedside. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
45
|
Tadayoni M, Sheikh-Zeinoddin M, Soleimanian-Zad S. Isolation of bioactive polysaccharide from acorn and evaluation of its functional properties. Int J Biol Macromol 2015; 72:179-84. [DOI: 10.1016/j.ijbiomac.2014.08.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/17/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
|
46
|
Banerjee S, Parasramka M, Paruthy SB. Polysaccharides in Cancer Prevention: From Bench to Bedside. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-03751-6_26-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
47
|
Ji P, Wei Y, Sun H, Xue W, Hua Y, Li P, Zhang W, Zhang L, Zhao H, Li J. Metabolomics research on the hepatoprotective effect of Angelica sinensis polysaccharides through gas chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 973C:45-54. [DOI: 10.1016/j.jchromb.2014.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 11/25/2022]
|
48
|
Abstract
The roots of Angelica sinensis (RAS), are a Chinese herbal medicine traditionally used in prescriptions for replenishing blood, treating abnormal menstruation, and other women's diseases. It has also been widely marketed as health food for women's care in Asia, and as a dietary supplement in Europe and America. RAS is well-known for its hematopoietic, antioxidant, and immunoregulatory activities. RAS also possesses anti-cancer, memory, radioprotective, and neuroprotective effects. Phytochemical investigations on this plant led to organic acids, phthalides, polysaccharides, and other metabolites. Based on recent animal studies and clinical trials, RAS has been used in the treatment of gynecologic diseases, cardio-cerebrovascular disease, nervous system diseases, and nephrotic syndrome. In this review, the recent phytochemical and pharmacological studies, drug-drug interactions, clinical applications, and toxicity of RAS are summarized.
Collapse
|
49
|
Optimization for the extraction of polysaccharides from Gentiana scabra Bunge and their antioxidant in vitro and anti-tumor activity in vivo. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2013.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
50
|
Ji P, Wei Y, Xue W, Hua Y, Zhang M, Sun H, Song Z, Zhang L, Li J, Zhao H, Zhang W. Characterization and antioxidative activities of polysaccharide in Chinese angelica and its processed products. Int J Biol Macromol 2014; 67:195-200. [DOI: 10.1016/j.ijbiomac.2014.03.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/05/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|