1
|
Zou J, Zhong H, Jiang C, Zhu G, Lin X, Huang Y. Ginkgo biloba leaf polysaccharide-stabled selenium nanozyme as an efficient glutathione peroxidase mimic for the preservation of bananas and cherry tomatoes. Food Chem 2024; 459:140443. [PMID: 39003861 DOI: 10.1016/j.foodchem.2024.140443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
To develop functional, sustainable and eco-friendly active packaging materials as alternatives to plastic films, we successfully prepared Ginkgo biloba leaf polysaccharide-stabilized selenium nanomaterials (Se-GBLP). Se-GBLP with glutathione peroxidase-like activity could efficiently remove harmful reactive oxygen species. As a functional additive, Se-GBLP was incorporated into degradable chitosan (CS) to fabricate CS/Se-GBLP films. The addition of Se-GBLP improved the mechanical properties, UV-visible light barrier performance, water vapor permeability, and antioxidant activity of the films. Preservation experiments demonstrated CS/Se-GBLP film could maintain quality and prolong the storage time of bananas and cherry tomatoes. It was the first time to use selenium-based nanozyme for fruit preservation. This work offered a cost-effective solution to reduce post-harvest losses, increasing sustainability and profitability. Future research should focus on more factors affecting freshness such as variety, maturity, harvest and storage conditions to improve preservation, as well as on the material's safety concern and environmental impact.
Collapse
Affiliation(s)
- Jiahui Zou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huimin Zhong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Cong Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guancheng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xueer Lin
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Chen N, Jiang T, Xu J, Xi W, Shang E, Xiao P, Duan JA. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int J Biol Macromol 2024; 270:132391. [PMID: 38761914 DOI: 10.1016/j.ijbiomac.2024.132391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Qi Z, Duan A, Ng K. Selenosugar, selenopolysaccharide, and putative selenoflavonoid in plants. Compr Rev Food Sci Food Saf 2024; 23:e13329. [PMID: 38551194 DOI: 10.1111/1541-4337.13329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
Selenium (Se) is a naturally occurring essential micronutrient that is required for human health. Selenium supports cellular antioxidant defense and possesses bioeffects such as anti-inflammation, anti-cancer, anti-diabetic, and cardiovascular and liver protective effects arising from Se-enhanced cellular antioxidant activity. Past studies on Se have focused on elucidating Se speciation in foods, biofortification strategies to produce Se-enriched foods to address Se deficiency in the population, and the biochemical activities of Se in health. The bioavailability and toxicity of Se are closely correlated to its chemical forms and may exhibit varying effects on body physiology. Selenium exists in inorganic and organic forms, in which inorganic Se such as sodium selenite and sodium selenate is more widely available. However, it is a challenge for safe and effective supplementation considering inorganic Se low bioavailability and high cytotoxicity. Organic Se, by contrast, exhibits higher bioavailability and lower toxicity and has a more diverse composition and structure. Organic Se exists as selenoamino acids and selenoproteins, but recent research has provided evidence that it also exists as selenosugars, selenopolysaccharides, and possibly as selenoflavonoids. Different food categories contain various Se compounds, and their Se profiles vary significantly. Therefore, it is necessary to delineate Se speciation in foods to understand their impact on health. This comprehensive review documents our knowledge of the recent uncovering of the existence of selenosugars and selenopolysaccharides and the putative evidence for selenoflavonoids. The bioavailability and bioactivities of these food-derived organic Se compounds are highlighted, in addition to their composition, structural features, and structure-activity relationships.
Collapse
Affiliation(s)
- Ziqi Qi
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Alex Duan
- Melbourne TrACEES Platform, School of Chemistry, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Ken Ng
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Wei Z, Guo D, He J, Liu X, Wei Y, Bao A, Jin X, Kong W, Zhang J, Wang J. Synthesis of Se polysaccharide catalyzed by sulfonic acid functionalized ionic liquids: Synergism effect of anion/cation. Int J Biol Macromol 2023:125474. [PMID: 37336379 DOI: 10.1016/j.ijbiomac.2023.125474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The rational design and construction of controllable selenylation strategy are important for the study on the structure-activity relationship of Se polysaccharides. Herein, selenized Artemisia sphaerocephala polysaccharides (SePASs) were synthesized by using sulfonic acid functionalized ionic liquids (SFILs) as catalysts in order to study the regulation of the cation/anion constitute on the selenylation efficiency and Se polysaccharide structure. Impressively, SFILs could promote the efficient substitution of seleno-group on the polysaccharide backbone through the synergistic catalysis by cation/anions (Se content up to 5582.7 μg/g). Further, reaction mechanism and potential dissolution effect was supported by DFT calculation and polarized light microscopy. 13C NMR and FT-IR spectra analysis of SePASs exhibited that selenite existed in polysaccharides and the substitution position occured at C-6. SEC-MALLS, monosaccharide composition results revealed that strong acidity of SFILs lead to the driving forces toward low molecular mass polysaccharide fragments and synergistic effect of anion/cations in SFILs (-SO3H group of cations as proton donor, anions as nucleophile) showed regulation on average molecular mass. In addition, the strong attractions between the seleno-groups generated agglomeration of polysaccharide chain, which was proved by applying AFM analysis. Therefore, this work provided a new insight for manipulate Se content and MW of Se polysaccharides.
Collapse
Affiliation(s)
- Zhangkun Wei
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Duoduo Guo
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Jianhua He
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaoxiao Liu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Lanzhou Institute for Food and Drug Control, Lanzhou 730050, People's Republic of China
| | - Yabing Wei
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Aijuan Bao
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaojie Jin
- College of Pharmacy Gansu University of Chinese Medicine, Lanzhou 730030, People's Republic of China
| | - Weibao Kong
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Junlong Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| |
Collapse
|
5
|
Li X, Zhu J, Wang T, Sun J, Guo T, Zhang L, Yu G, Xia X. Antidiabetic activity of Armillaria mellea polysaccharides: Joint ultrasonic and enzyme assisted extraction. ULTRASONICS SONOCHEMISTRY 2023; 95:106370. [PMID: 36965312 PMCID: PMC10060363 DOI: 10.1016/j.ultsonch.2023.106370] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/25/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Armillaria mellea polysaccharides (AMPs) were obtained by ultrasonic assisted extraction (U), enzyme assisted extraction (E) and ultrasonic-enzyme assisted extraction (UE), respectively. The yield of UE-AMPs (6.32 ± 0.14%) was 1.64 times higher than that of U-AMPs (3.86 ± 0.11%) and 1.21 times higher than that of E-AMPs (5.21 ± 0.09%); meanwhile, the highest total sugar content and the lowest protein content were found in UE-AMPs. AMPs obtained from the three extraction methods had the same monosaccharide composition but in different proportions, allowing UE-AMPs to have the most potent antioxidant activity. The antidiabetic activity of UE-AMPs was investigated in streptozotocin (STZ)-induced diabetic mice. UE-AMPs, when given by gavage, greatly prevented weight loss, increased water intake, and considerably decreased blood glucose levels in diabetic mice, which were dose-dependent (P < 0.05). In addition, UE-AMPs also had a positive effect on the reduction of lipid levels in the blood, oxidative damage and liver function impairment. The pathological observation by hematoxylin-eosin staining (HE) revealed that UE-AMPs protected the organs of mice from diabetic complications (liver disease and nephropathy). Hence, our findings demonstrate that UE-AMPs are a suitable choice for improving diabetes and its complications and have great application prospects in the fields of natural medicine and functional food.
Collapse
Affiliation(s)
- Xiaoyi Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingshu Zhu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tengyu Wang
- School of Grain Engineering, Heilongjiang Communications Polytechnic, Harbin 150025, China
| | - Jiapeng Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianhao Guo
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lijuan Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Guoping Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Sun W, Xu JD, Zhang W, Guo MF, Kong M, Zhu H, Zhou SS, Wu CY, Li SL, Mao Q. Holistic quality evaluation of Callicarpae Formosanae Folium by multi-chromatography-based qualitative and quantitative analysis of polysaccharides and small molecules. J Pharm Biomed Anal 2023; 227:115282. [PMID: 36791651 DOI: 10.1016/j.jpba.2023.115282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Callicarpae Formosanae Folium (CFF), derived from the leaves of Callicarpa formosana Rolfe, is a common Chinese medicinal herb used for the treatment of hematemesis. Phytochemical studies found that phenylpropanoids, flavonoids, terpenoids and polysaccharides were the main ingredients of CFF. However, there is limited scientific information concerning holistic quality method and quality consistency evaluation of CFF. In this study, a strategy integrating HPGPC-ELSD, HPLC-PDA, UV-VIS and UPLC-QTOF-MS/MS was firstly developed to simultaneously qualify and quantify polysaccharides, as well as representative small molecules in CFF. HPGPC-ELSD was applied to characterize the molecular weight distribution of polysaccharides, HPLC-PDA was developed to qualitatively and quantitatively determine monosaccharides. UV-VIS was used to determine the total polysaccharides content, and UPLC-QTOF-MS/MS was established to characterize the small molecules. The quality consistency of commercial CFF (CM-CFF) was also evaluated. It was shown that the relative molecular weights, the compositional monosaccharides and small molecules composition in CM-CFF and self-collected CFF (SC-CFF) samples were similar. A total of 32 small molecules including 6 phenylpropanoids, 7 flavonoids and 19 terpenoids were characterized in CFF. However, the variation was observed in the content of polysaccharides, luteolin, ursolic acid, as well as total contents of terponoids in CM-CFF samples, which implied that the holistic quality of CM-CFF was inconsistent. The results suggested that the proposed evaluation strategy could be applied as a potential approach for the quality control of CFF. And the quality of CM-CFF should be improved by Good Agriculture Practice (GAP) base and standard processing method.
Collapse
Affiliation(s)
- Wen Sun
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Jin-Di Xu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China
| | - Wei Zhang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Meng-Fei Guo
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Ming Kong
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - He Zhu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Cheng-Yin Wu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| | - Qian Mao
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, PR China.
| |
Collapse
|
7
|
Structural characterization and bioactivities of a novel polysaccharide obtained from Lachnum YM38 together with its zinc and selenium derivatives. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
8
|
Duan WX, Yang XH, Zhang HF, Feng J, Zhang MY. Chemical Structure, Hypoglycemic Activity, and Mechanism of Action of Selenium Polysaccharides. Biol Trace Elem Res 2022; 200:4404-4418. [PMID: 34843085 PMCID: PMC8628488 DOI: 10.1007/s12011-021-03035-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/14/2021] [Indexed: 12/14/2022]
Abstract
Selenium polysaccharides (Se-polysaccharides) are one of important forms of organic Se, in which selenium (Se) and polysaccharides are joined by covalent bonds. In the present review, recent progress in chemical structure and hypoglycemic activity of Se-polysaccharides is summarized. In particular, the mechanism underlying hypoglycemic capacity of Se-polysaccharides is discussed, and the relationship between hypoglycemic activity and chemical structure is analyzed. Besides, strategies for further research into chemical structure and hypoglycemic activity of Se-polysaccharides are proposed. Hypoglycemic activity of Se-polysaccharides is closely related to their inhibitory effect on α-amylase and α-glucosidase, influence on insulin signal pathway especially IRS-PI3K-Akt signaling pathway, and protection capacity against oxidative stress.
Collapse
Affiliation(s)
- Wen-Xia Duan
- Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Xiao-Hua Yang
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Hua-Feng Zhang
- Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
- Municipal Expert Workstation for Hua-Feng Zhang, Academician and Expert Workstation in Pu'er City of Yunnan Province, Pu'er, 665600, People's Republic of China.
| | - Jing Feng
- Agrarian and Technological Institute, Peoples' Friendship University of Russia, Moscow, 119991, Russia
| | - Meng-Yuan Zhang
- Provincial Research Station of Se-Enriched Foods in Hanyin County of Shaanxi Province, International Joint Research Center of Shaanxi Province for Food and Health Sciences, National Engineering Laboratory for Resources Development of Endangered Crude Drugs in Northwest China, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
- Municipal Expert Workstation for Hua-Feng Zhang, Academician and Expert Workstation in Pu'er City of Yunnan Province, Pu'er, 665600, People's Republic of China
| |
Collapse
|
9
|
The Barrier-Enhancing Function of Soluble Yam (Dioscorea opposita Thunb.) Polysaccharides in Rat Intestinal Epithelial Cells, as Affected by the Covalent Se Conjugation. Nutrients 2022; 14:nu14193950. [PMID: 36235602 PMCID: PMC9571917 DOI: 10.3390/nu14193950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The non-starch yam polysaccharides (YP) are the bioactive substances of edible yam, while Se is an essential nutrient for the human body. Whether a covalent conjugation of Se to YP might cause bioactivity change for the resultant selenylated YP in the intestine is still insufficiently studied, including the critical intestinal barrier function. In this study, two selenylated YP products, namely, YPSe-I and YPSe-II, with corresponding Se contents of 795 and 1480 mg/kg, were obtained by the reaction of YP and Na2SeO3 in the presence of HNO3 and then assessed for their bioactivities to a cell model (i.e., rat intestinal epithelial IEC-6 cells). The results showed that YP, YPSe-I, and YPSe-II at 5–80 μg/mL dosages could promote cell growth with treatment times of 12–24 h. The three samples also could improve barrier integrity via increasing cell monolayer resistance and anti-bacterial activity against E. coli or by reducing paracellular permeability and bacterial translocation. Additionally, the three samples enhanced F-actin distribution and promoted the expression of the three tight junction proteins, namely, zonula occluden-1, occludin, and claudin-1. Meanwhile, the expression levels of ROCK and RhoA, two critical proteins in the ROCK/RhoA singling pathway, were down-regulated by these samples. Collectively, YPSe-I and, especially, YPSe-II were more potent than YP in enhancing the assessed bioactivities. It is thus concluded that this chemical selenylation of YP brought about enhanced activity in the cells to promote barrier integrity, while a higher selenylation extent of the selenylated YP induced much activity enhancement. Collectively, the results highlighted the important role of the non-metal nutrient Se in the modified polysaccharides.
Collapse
|
10
|
Green synthesized Se–ZnO/attapulgite nanocomposites using Aloe vera leaf extract: Characterization, antibacterial and antioxidant activities. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Hu J, Zhou T, Zhou X, Qin X, Kong W, Zhang J, Wang J. Selenylation of Guar Gum Mediated by
N
‐Methyl‐2‐pyrrolidone Hydrosulfate: Insights into Regulation of Selenium Content and Molecular Weight. ChemistrySelect 2022. [DOI: 10.1002/slct.202201325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiahuan Hu
- College of Life Science Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Tiantian Zhou
- College of Life Science Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Xiaoxue Zhou
- College of Life Science Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Xiaojie Qin
- College of Life Science Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Weibao Kong
- College of Life Science Northwest Normal University Lanzhou 730070 People's Republic of China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou 730070 People's Republic of China
- Institute of New Rural Development Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Ji Zhang
- College of Life Science Northwest Normal University Lanzhou 730070 People's Republic of China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou 730070 People's Republic of China
- Institute of New Rural Development Northwest Normal University Lanzhou 730070 People's Republic of China
| | - Junlong Wang
- College of Life Science Northwest Normal University Lanzhou 730070 People's Republic of China
- Bioactive Products Engineering Research Center for Gansu Distinctive Plants Northwest Normal University Lanzhou 730070 People's Republic of China
- Institute of New Rural Development Northwest Normal University Lanzhou 730070 People's Republic of China
| |
Collapse
|
12
|
Zhang W, Li L, Ma Y, Chen X, Lan T, Chen L, Zheng Z. Structural Characterization and Hypoglycemic Activity of a Novel Pumpkin Peel Polysaccharide-Chromium(III) Complex. Foods 2022; 11:1821. [PMID: 35804640 PMCID: PMC9265534 DOI: 10.3390/foods11131821] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/21/2022] Open
Abstract
The aim of our study was to synthesize a pumpkin peel polysaccharide (PPP)-Cr(III) complex and investigate its hypoglycemic activity. Firstly, a novel PPP-Cr(III) complex with a Cr content of 23.77 mg/g was synthesized and characterized. Physicochemical characterization indicated that PPP-Cr(III) had some changes in chemical composition, monosaccharide composition, and morphological structure compared with PPP. The molecular weights of PPP-Cr(III) and PPP were 1.398 × 106 g/mol and 3.386 × 106 g/mol, respectively, showing a lower molecular weight after the introduction of Cr(III). Fourier transform infrared spectroscopy showed that a new characteristic absorption peak of Cr-O appeared at 534 cm-1 in PPP-Cr(III), indicating that Cr(III) was successfully complexed with PPP. Secondly, the hypoglycemic activity of PPP-Cr(III) based on α-glucosidase inhibitory and insulin resistance (IR)-HepG2 cells was evaluated. Compared with PPP, PPP-Cr(III) exhibited a more significantly α-glucosidase inhibitory activity. The IR-HepG2 cells confirmed an obvious increase in glucose consumption. Western blot analysis demonstrated that the treated IR-HepG2 cells were able to increase the protein levels of p-AMPK and p-GSK-3β, indicating that IR-HepG2 cells exerted hypoglycemic activity via the AMPK/GSK-3β signaling pathway. These results suggested that PPP-Cr(III) had good hypoglycemic activity, which could provide theoretical support for the development of novel hypoglycemic products.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (W.Z.); (L.L.); (X.C.)
| | - Lingyu Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (W.Z.); (L.L.); (X.C.)
| | - Yue Ma
- Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China;
| | - Xiaole Chen
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (W.Z.); (L.L.); (X.C.)
| | - Tao Lan
- Sub-Institute of Agriculture and Food Standardization, China National Institute of Standardization, Beijing 100191, China
| | - Long Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China;
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai’an 271018, China; (W.Z.); (L.L.); (X.C.)
| |
Collapse
|
13
|
Tao W, An X, Guo Z, Yang N, Wu M, Oliveira H, Zhang R, He J. Structural characterization, acute toxicity assessment and protective effects of selenylated apple pectin on dextran sulfate sodium-induced ulcerative colitis. Food Funct 2022; 13:7320-7332. [PMID: 35726791 DOI: 10.1039/d1fo04189d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study was aimed at investigating the structural characterization, acute toxicity and protective effect of selenylated apple pectin on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. Selenylated apple pectin was characterized by ion chromatography, NMR and SEC-RI-MALLS. The acute toxicity and protective effect of selenylated apple pectin against UC were investigated by gavage administration in mice. The organ state and coefficients, inflammatory cytokine (IL-6, IL-10 and TNF-α) contents in serum, GSH-Px activity and MPO content in colon tissues were also evaluated. The results indicated that selenylated apple pectin was non-toxic and contained 244.28 μgselenium per g. The monosaccharide composition with different molar ratios, different relative molecular weights and a weakened signal peak (CH2-O group) at 3-4 ppm were observed after selenylation. The selenylated apple pectin showed the protective effect against UC by down-regulating IL-6 and TNF-α contents and up-regulating the IL-10 content in serum, as well as increasing the GSH-Px activity and decreasing the MPO content in colon tissues. Moreover, DSS-induced alterations were effectively recovered by a high-dose sample. These findings provide evidence in support of selenylated apple pectin as a novel dietary selenium supplement for UC protection.
Collapse
Affiliation(s)
- Wen Tao
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, P. R. China.
| | - Xiaoyu An
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, P. R. China.
| | - Ziqi Guo
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, P. R. China.
| | - Ning Yang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, P. R. China.
| | - Muci Wu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, P. R. China. .,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, P. R. China.
| | - Hélder Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rui Zhang
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, P. R. China. .,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, P. R. China.
| | - Jingren He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, P. R. China. .,Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, No. 36 Huanhu Middle Road, Jinyinhu District, Wuhan 430023, P. R. China.
| |
Collapse
|
14
|
A review on plant polysaccharide based on drug delivery system for construction and application, with emphasis on traditional Chinese medicine polysaccharide. Int J Biol Macromol 2022; 211:711-728. [PMID: 35588976 DOI: 10.1016/j.ijbiomac.2022.05.087] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/22/2022]
Abstract
Carbohydrate polymers with unique chemical composition, molecular weight and functional chemical groups show multiple potentials in drug delivery. Most carbohydrate polymers such as plant polysaccharides exhibit advantages of biodegradability, ease of modification, low immunogenicity and low toxicity. They can be conjugated, cross-linked or functionally modified, and then used as nanocarrier materials. Polysaccharide drug delivery system can avoid the phagocytosis of the reticuloendothelial system, prevent the degradation of biomolecules, and increase the bioavailability of small molecules, thus exerting effective therapeutic effects. Therefore, they have been fully explored. In this paper, we reviewed the construction methods of drug delivery systems based on carbohydrate polymers (astragalus polysaccharide, angelica polysaccharide, lycium barbarum polysaccharide, ganoderma lucidum polysaccharide, bletilla polysaccharide, glycyrrhiza polysaccharide, and epimedium polysaccharides, etc). The application of polysaccharide drug delivery systems to deliver small molecule chemotherapeutic drugs, gene drugs, and metal ion drugs was also briefly introduced. At the same time, the role of the polysaccharide drug delivery system in tumor treatment, targeted therapy, and wound healing was discussed. In addition, the research of polysaccharide delivery systems based on the therapeutic efficacy of traditional Chinese medicine was also summarized and prospected.
Collapse
|
15
|
Deep eutectic solvents boosting solubilization and Se-functionalization of heteropolysaccharide: Multiple hydrogen bonds modulation. Carbohydr Polym 2022; 284:119159. [DOI: 10.1016/j.carbpol.2022.119159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
|
16
|
Li Q, Zhu L, Qi X, Zhou T, Li Y, Cai M, Yan Y, Qian JY, Peng D. Immunostimulatory and antioxidant activities of the selenized polysaccharide from edible Grifola frondosa. Food Sci Nutr 2022; 10:1289-1298. [PMID: 35432982 PMCID: PMC9007304 DOI: 10.1002/fsn3.2764] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 01/06/2023] Open
Abstract
Grifola frondosa polysaccharide (GFP2) was extracted and purified by anion‐exchange chromatography. A selenized G. frondosa polysaccharide, SeGFP2, was modified in selenylation by nitric acid–sodium selenite (HNO3‐Na2SeO3) method. Structural features were investigated, and the lymphocyte proliferation and antioxidant activities were compared taking GFP2 as control. SeGFP2 with a molecular weight of 2.12 × 104 Da was composed of mannose, glucose, and galactose with a ratio of 3.5:11.8:1.0. A typical absorption of selenium ester was observed in SeGFP2 molecule. SeGFP2 was proposed as a branched polysaccharide, which consisted of 1,3‐D‐Glcp, 1,6‐D‐Glcp, 1,4,6‐D‐Galp, and 1,3,6‐D‐Manp. SeGFP2 showed a linear filamentous structure with some branches. SeGFP2 could significantly promote T‐ or B‐lymphocyte proliferation and the enhancement was higher than GFP2. The in vitro antioxidant activities of SeGFP2 were more potent than GFP2. These present data suggested that selenylation could significantly improve the lymphocyte proliferation and in vitro antioxidant activities of GFP2.
Collapse
Affiliation(s)
- Qian Li
- College of Veterinary Medicine Yangzhou University Yangzhou China
| | - Linfei Zhu
- College of Veterinary Medicine Yangzhou University Yangzhou China
| | - Xingpu Qi
- School of Food Science and Engineering Yangzhou University Yangzhou China
| | - Ting Zhou
- College of Veterinary Medicine Yangzhou University Yangzhou China
| | - Yonglian Li
- College of Veterinary Medicine Yangzhou University Yangzhou China
| | - Mingjie Cai
- College of Veterinary Medicine Yangzhou University Yangzhou China
| | - Yuting Yan
- College of Food Science and Technology Jiangsu Agri-animal Husbandry Vocational College Taizhou China
| | - Jian-Ya Qian
- College of Veterinary Medicine Yangzhou University Yangzhou China
| | - Daxin Peng
- School of Agricultural Equipment Engineering Jiangsu University Zhenjiang China
| |
Collapse
|
17
|
Zhang ZH, Liao TT, Deng CM, Li B, Okeke ES, Feng WW, Chen Y, Zhao T, Mao GH, Wu XY. Purification and characterization of Se-enriched Grifola frondosa glycoprotein, and evaluating its amelioration effect on As 3+ -induced immune toxicity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2526-2537. [PMID: 34676564 DOI: 10.1002/jsfa.11594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/05/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Selenium (Se)-enriched glycoproteins have been a research highlight for the role of both Se and glycoproteins in immunoregulation. Arsenic (As) is a toxicant that is potentially toxic to the immune function and consequently to human health. Several reports suggested that Se could reduce the toxicity of heavy metals. Moreover, more and more nutrients in food had been applied to relieve As-induced toxicity. Hence glycoproteins were isolated and purified from Se-enriched Grifola frondosa, and their preliminary characteristics as well as amelioration effect and mechanism on As3+ -induced immune toxicity were evaluated. RESULTS Four factions, namely Se-GPr11 (electrophoresis analysis exhibited one band: 14.32 kDa), Se-GPr22 (two bands: 20.57 and 31.12 kDa), Se-GPr33 (three bands: 15.08, 20.57 and 32.78 kDa) and Se-GPr44 (three bands: 16.73, 32.78 and 42.46 kDa), were obtained from Se-enriched G. frondosa via DEAE-52 and Sephacryl S-400 column. In addition, Se-GPr11 and Se-GPr44 are ideal proteins that contain high amounts of almost all essential amino acids. Thereafter, the RAW264.7 macrophage model was adopted to estimate the effect of Se-GPr11 and Se-GPr44 on As3+ -induced immune toxicity. The results showed that the pre-intervention method was the best consequent and the potential mechanisms were, first, by improving the oxidative stress state (enhancing the activity of superoxide dismutase and glutathione peroxidase, decreasing the levels of reactive oxygen species and malondialdehyde); secondly, through nuclear factor-κB and mitogen-activated protein kinase-mediated upregulation cytokines (interleukin-2 and interferon-γ) secretion induced by As3+ . CONCLUSION The results suggested Se-enriched G. frondosa may be a feasible supplement to improve health level of the As3+ pollution population. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhe-Han Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Tao-Tao Liao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Chun-Meng Deng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Baorui Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Emmanuel Sunday Okeke
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Wei-Wei Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yao Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Guang-Hua Mao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Xiang-Yang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Cytoprotective effect of selenium polysaccharide from Pleurotus ostreatus against H2O2-induced oxidative stress and apoptosis in PC12 cells. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
19
|
Feng Y, Qiu Y, Duan Y, He Y, Xiang H, Sun W, Zhang H, Ma H. Characterization, antioxidant, antineoplastic and immune activities of selenium modified Sagittaria sagittifolia L. polysaccharides. Food Res Int 2022; 153:110913. [DOI: 10.1016/j.foodres.2021.110913] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/18/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023]
|
20
|
Zhan Q, Chen Y, Guo Y, Wang Q, Wu H, Zhao L. Effects of selenylation modification on the antioxidative and immunoregulatory activities of polysaccharides from the pulp of Rose laevigata Michx fruit. Int J Biol Macromol 2022; 206:242-254. [PMID: 35240204 DOI: 10.1016/j.ijbiomac.2022.02.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/24/2022] [Indexed: 12/28/2022]
Abstract
Selenylation modification has been widely utilized to improve the activity of polysaccharides and to develop novel sources of selenium (Se) supplements. A purified pulp polysaccharide of Rose laevigata Michx fruit (PPRLMF-2) was selenized into Se-PPRLMF-2 in this study. PPRLMF-2 + Se was formulated by Na2SeO3 according to the Se content of Se-PPRLMF-2. To investigate the effects of selenylation modification on the structure and functions of PPRLMF-2, the characteristics, antioxidative and immunoregulatory activities of PPRLMF-2 before and after selenylation were compared. The results showed that compared with PPRLMF-2, Se-PPRLMF-2 became an irregular fibrous network, and its Mw decreased and C-6 substitution predominated in 13C NMR spectra. Se-PPRLMF-2 significantly increased chemical antioxidant activity and reduced the oxidative damage of erythrocytes, which was not due to Se alone. Se-PPRLMF-2 significantly increased immunomodulatory activity on macrophages, which was related to Se alone. Se-PPRLMF-2 could be a good potential source of antioxidants, immune enhancers and dietary Se supplements.
Collapse
Affiliation(s)
- Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China; College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Yong Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; College of Chemical and Biological Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, PR China
| | - Yifang Guo
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Qian Wang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Hui Wu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, PR China.
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
21
|
Tao Y, Ma J, Huang C, Lai C, Ling Z, Yong Q. The immunomodulatory activity of degradation products of Sesbania cannabina galactomannan with different molecular weights. Int J Biol Macromol 2022; 205:530-538. [PMID: 35217078 DOI: 10.1016/j.ijbiomac.2022.02.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 11/05/2022]
Abstract
Galactomannan (GM) is widely recognized as an immune enhancer; however, the underlying molecular mechanism is still unknown. Herein, four products with molecular weights in descending order, namely GM40, GM50, GM65, and GMOS, were separated from incomplete degradation products of Sesbania cannabina GM by ethanol precipitation, followed by their immunomodulatory activity. Through FTIR and XPS spectra, the amount of free hydroxyl groups was shown to decrease in the following order: GM > GM50 > GMOS > GM40 > GM65. Moreover, the immunomodulatory activity of different products decreased in abovementioned order. The TNF-α, IL-6 and TLR4 content in RAW 264.7 cells treated with different GM products in the presence or absence of TAK-242 (TLR4 inhibitor) suggested that the immunomodulatory activity of GM and its degradation products is TLR4-dependent. Overall, the preliminary relationship indicated here between the hydroxyl groups or the possible deeper structural changes of GM and the immunomodulatory activity need to be further investigated.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Junmei Ma
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
22
|
Mohanta B, Sen DJ, Mahanti B, Nayak AK. Antioxidant potential of herbal polysaccharides: An overview on recent researches. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
23
|
Ahmad MM. Recent trends in chemical modification and antioxidant activities of plants-based polysaccharides: A review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
24
|
Guan QY, Lin YR, Li LY, Tang ZM, Zhao XH, Shi J. In Vitro Immunomodulation of the Polysaccharides from Yam ( Dioscorea opposita Thunb.) in Response to a Selenylation of Lower Extent. Foods 2021; 10:foods10112788. [PMID: 34829068 PMCID: PMC8624157 DOI: 10.3390/foods10112788] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
The immunomodulation of chemically selenylated polysaccharides has been attracting more attention recently, but the corresponding performance of the yam polysaccharides (YPS) with lower selenylation extent remains, thus far, unsolved. In this study, the YPS was selenylated with Na2SeO3 under acidic conditions generated by HNO3 to reach two lower selenylation extents, yielding two selenylated YPSs, namely SeYPS-1 and SeYPS-2 with selenium contents of 715 and 1545 mg/kg, respectively. The results indicated that YPS, SeYPS-1, and SeYPS-2 all had in vitro immuno-modulation when using RAW 264.7 macrophages and murine splenocytes as cell models. In detail, the three polysaccharide samples at dose levels of 5–160 μg/mL showed insignificant cytotoxicity to the macrophages and splenocytes with cell exposure times of 12–24 h, because of the measured values of cell viability larger than 100%. However, Na2SeO3 at dose levels of 1.3–3.25 μg/mL mostly caused obvious cytotoxic effects on the cells, resulting in reduced cell viability values or cell death, efficiently. The results demonstrated that, compared with YPS, both SeYPS-1 and SeYPS-2 at a lower dose level (5 μg/mL) were more active at promoting phagocytosis activity, increasing the CD4+/CD8+ ratio of the T-lymphocyte sub-population in the murine splenocyte, improving cytokine secretion, including interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in the macrophages, or increasing interferon-γ secretion, but suppressing IL-4 production in the splenocytes. Consistently, SeYPS-2 has more potential than SeYPS-1 at exerting these assessed bioactivities in the cells. Thus, we conclude that a chemical modification of YPS using trace element Se at a lower selenylation extent could bring about higher immunomodulatory activity towards macrophages and splenocytes, while selenylation extent of YPS is a critical factor used to govern the assessed activity changes of YPS.
Collapse
Affiliation(s)
- Qing-Yun Guan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
| | - Ya-Ru Lin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
| | - Ling-Yu Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
| | - Zhi-Mei Tang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China;
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China;
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Correspondence: (X.-H.Z.); (J.S.)
| | - Jia Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China; (Q.-Y.G.); (Y.-R.L.); (L.-Y.L.)
- Correspondence: (X.-H.Z.); (J.S.)
| |
Collapse
|
25
|
Dong Z, Dong G, Lai F, Wu H, Zhan Q. Purification and comparative study of bioactivities of a natural selenized polysaccharide from Ganoderma Lucidum mycelia. Int J Biol Macromol 2021; 190:101-112. [PMID: 34478790 DOI: 10.1016/j.ijbiomac.2021.08.189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023]
Abstract
The development of selenized polysaccharides is a promising strategy for the dietary selenium supplementation. The purpose of this research is to determine the influence of selenium on the structure and bioactivity of a polysaccharide fraction (MPN) isolated from Ganoderma lucidum mycelia. After biological selenium enrichment, the selenium content in the selenized polysaccharide (SeMPN) was 18.91 ± 1.8 μg/g. SeMPN had a slightly lower molecular weight than MPN, but the carbohydrate content and monosaccharide composition remained identical. Additionally, the band at 606 cm-1 in MPN changed to 615 cm-1 in SeMPN as revealed by FT-IR spectra. No significant changes were observed in the types and ratios of glycosidic linkages, as determined by NMR spectroscopy. Extracellular and intracellular antioxidant assays demonstrated that SeMPN was more effective than MPN in scavenging free radicals, inhibiting AAPH-induced erythrocyte hemolysis, and protecting catalase (CAT) and glutathione peroxidase (GSH-Px) activity in H2O2-injured PC12 cells. Additionally, SeMPN had a higher increase effect on RAW 264.7 cells's pinocytic and phagocytic capacity, as well as their production of NO, TNF-α, and IL-6. SeMPN could be as potential functional selenium supplementation.
Collapse
Affiliation(s)
- Zhou Dong
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Gang Dong
- College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Furao Lai
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Hui Wu
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Qiping Zhan
- College of Food Sciences and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
26
|
Drug Packaging Management Based on the Effect of Medical Images on the Intracellular Polysaccharide Synthesis and Antivertigo Activity of Phalaenopsis. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:3793610. [PMID: 34394888 PMCID: PMC8360719 DOI: 10.1155/2021/3793610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022]
Abstract
Many clinically important drugs come directly or indirectly from higher plants. People are increasingly aware of the role of the human immune system in maintaining good health. Diseases related to physical dysfunction, such as vertigo, have attracted increasing attention from medical researchers and clinicians. In this paper, some compounds isolated and identified from medicinal fomes showed promising antivertigo properties. Medical images were used to classify and synthesize polysaccharides in the management of drug subpackages of Cladosporium intracellular polysaccharides. The scientific explanation of how these compounds work in animal and human systems is increasing exponentially. Studies have found that all of these compounds can enhance the innate and adaptive immune responses of the host and activate various immune cells that are important for maintaining homeostasis, such as host cells and chemical messengers, triggering complement and acute phase reactions. The antivertigo compounds derived from the intracellular polysaccharides of Phellinus mucronatus had an activity interference of 35% without drug subpackage. Although the antivertigo activity of many intracellular polysaccharides from Fovea xylostella can reach 86%, only a few of them have been proved to have antivertigo activity. In addition, they can be considered as multicytokine inducers that can induce the expression of various immune-regulatory cytokines and cytokine receptor genes. Lymphocytes that control antibody production and cell-mediated cytotoxicity are also stimulated.
Collapse
|
27
|
Simsek M, Asiyanbi-Hammed TT, Rasaq N, Hammed AM. Progress in Bioactive Polysaccharide-Derivatives: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1935998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miray Simsek
- Department of Plant Sciences, North High School, Fargo ND and North Dakota State University, Fargo, North Dakota, United States
| | | | - Nurudeen Rasaq
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota, United States
| | - Ademola Monsur Hammed
- Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, North Dakota, United States
| |
Collapse
|
28
|
Tao Y, Wang T, Huang C, Lai C, Ling Z, Yong Q. Effects of seleno-Sesbania canabina galactomannan on anti-oxidative and immune function of macrophage. Carbohydr Polym 2021; 261:117833. [PMID: 33766336 DOI: 10.1016/j.carbpol.2021.117833] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/24/2022]
Abstract
Seleno-polysaccharides have become a major topic for research owing to their high anti-oxidative capacity and immune-enhancing activities. In this study, galactomannan (GM) was isolated from Sesbania cannabina, and next modified using HNO3-Na2SeO3 method to obtain six varieties of seleno-galactomannans (SeGMs). FT-IR and GPC results showed the changes in chemical structure of SeGMs, indicating successful combination of selenium and GM. By measuring superoxide dismutase and malondialdehyde, the SeGMs showed a stronger protective effect against H2O2-induced oxidative damage in vitro than unmodified GM using macrophage RAW264.7 cell as a model, and the effect of SeGMs-14 was prominent. However, the selenylation modification did not show any obvious effect on the immunomodulatory activity of GM, as determined by the index of tumor necrosis factor-α, interleukin-6, and interleukin-1β. Overall, the prepared SeGMs from galactomannan could potentially serve as a dietary supplement of Se or an organic antioxidant.
Collapse
Affiliation(s)
- Yuheng Tao
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Ting Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology of the Ministry of Education, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
29
|
Wang Y, Ye H, Qiao L, Du C, Wei Z, Wang T, Wang J, Liu R, Wang P. Intestinal Anti-Inflammatory Effects of Selenized Ulva pertusa Polysaccharides in a Dextran Sulfate Sodium-Induced Inflammatory Bowel Disease Model. J Med Food 2021; 24:236-247. [PMID: 33739884 DOI: 10.1089/jmf.2020.4787] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The purpose of this study was to examine the alleviative effects of selenized polysaccharides from Ulva pertusa (ulvan-Se) on inflammatory bowel disease (IBD) in mice. The dextran sulfate sodium (DSS)-induced IBD mouse model was used to explore the protective effects of ulvan-Se on the intestinal mechanical and immune barrier. At doses less than 1208 mg/kg·bw ulvan-Se showed no significant damage to Institute of Cancer Research (ICR) mice in an acute toxicity test. The results showed that DSS destroyed the mechanical barrier, which includes epithelial cells, while ulvan-Se promoted mRNA expression of tight junction proteins (zonula occludens protein 1, occludin, and claudin-1) and inhibited the infiltration of white blood cells into the intestines. At 100 mg/kg·bw, ulvan-Se enhanced the antioxidant capacity of mice more effectively than the 50 mg/kg·bw ulvan-Se. Furthermore, ulvan-Se improved the intestinal immune barrier by increasing immunoglobulin A and immunoglobulin M, while regulating the levels of interleukin (IL)-1β, interferon-γ, and IL-4. Oral administration of ulvan-Se also suppressed tumor necrosis factor-α, IL-1β, IL-6, and cyclooxygenase-2 mRNA expression mediated by the nuclear factor kappa B pathway. Taken together, our findings reveal that ulvan-Se could be used as a potential alternative supplement for reducing intestinal inflammation in IBD.
Collapse
Affiliation(s)
- Yifan Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Beijing, China
| | - Han Ye
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Leke Qiao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chunying Du
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | | - Ting Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ruizhi Liu
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Beijing, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
30
|
Wang L, Li L, Gao J, Huang J, Yang Y, Xu Y, Liu S, Yu W. Characterization, antioxidant and immunomodulatory effects of selenized polysaccharides from dandelion roots. Carbohydr Polym 2021; 260:117796. [DOI: 10.1016/j.carbpol.2021.117796] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/27/2021] [Accepted: 02/06/2021] [Indexed: 10/22/2022]
|
31
|
Selenium-Containing Polysaccharides—Structural Diversity, Biosynthesis, Chemical Modifications and Biological Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selenosugars are a group of sugar derivatives of great structural diversity (e.g., molar masses, selenium oxidation state, and selenium binding), obtained as a result of biosynthesis, chemical modification of natural compounds, or chemical synthesis. Seleno-monosaccharides and disaccharides are known to be non-toxic products of the natural metabolism of selenium compounds in mammals. In the case of the selenium-containing polysaccharides of natural origin, their formation is also postulated as a form of detoxification of excess selenium in microorganisms, mushroom, and plants. The valency of selenium in selenium-containing polysaccharides can be: 0 (encapsulated nano-selenium), IV (selenites of polysaccharides), or II (selenoglycosides or selenium built into the sugar ring to replace oxygen). The great interest in Se-polysaccharides results from the expected synergy between selenium and polysaccharides. Several plant- and mushroom-derived polysaccharides are potent macromolecules with antitumor, immunomodulatory, antioxidant, and other biological properties. Selenium, a trace element of fundamental importance to human health, has been shown to possess several analogous functions. The mechanism by which selenium exerts anticancer and immunomodulatory activity differs from that of polysaccharide fractions, but a similar pharmacological effect suggests a possible synergy of these two agents. Various functions of Se-polysaccharides have been explored, including antitumor, immune-enhancement, antioxidant, antidiabetic, anti-inflammatory, hepatoprotective, and neuroprotective activities. Due to being non-toxic or much less toxic than inorganic selenium compounds, Se-polysaccharides are potential dietary supplements that could be used, e.g., in chemoprevention.
Collapse
|
32
|
Yang W, Huang G, Chen F, Huang H. Extraction/synthesis and biological activities of selenopolysaccharide. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Mzoughi Z, Majdoub H. Pectic polysaccharides from edible halophytes: Insight on extraction processes, structural characterizations and immunomodulatory potentials. Int J Biol Macromol 2021; 173:554-579. [PMID: 33508358 DOI: 10.1016/j.ijbiomac.2021.01.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The preparation, chemical properties and bio-activities of polysaccharides derived from halophytes have gained an increasing interest in the past few years. Phytochemical and pharmacological reports have shown that carbohydrates are important biologically active compounds of halophytes with numerous biological potentials. It is believed that the mechanisms involved in these bio-activities are due to the modulation of immune system. The main objective of this summary is to appraise available literature of a comparative study on the extraction, structural characterizations and biological potentials, particularly immunomodulatory effects, of carbohydrates isolated from halophytes (10 families). This review also attempts to discuss on bioactivities of polysaccharides related with their structure-activity relationship. Data indicated that the highest polysaccharides yield of around 35% was obtained under microwave irradiation. Structurally, results revealed that the most of extracted carbohydrates are pectic polysaccharides which mainly composed of arabinose (from 0.9 to 72%), accompanied by other monosaccharides (galactose, glucose, rhamnose, mannose and xylose), significant amounts of uronic acids (from 18.9 to 90.1%) and some proportions of fucose (from 0.2 to 8.3%). The molecular mass of these pectic polysaccharides was varied from 10 to 2650 kDa. Hence, the evaluation of these polysaccharides offers a great opportunity to discover novel therapeutic agents that presented especially beneficial immunomodulatory properties. Moreover, reports indicated that uronic acids, molecular weights, as well as the presence of sulfate and unmethylated acidic groups may play a significant role in biological activities of carbohydrates from halophyte species.
Collapse
Affiliation(s)
- Zeineb Mzoughi
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Monastir 5000, Tunisia.
| | - Hatem Majdoub
- University of Monastir, Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
34
|
Chen W, Cheng H, Jiang Q, Xia W. The characterization and biological activities of synthetic N, O-selenized chitosan derivatives. Int J Biol Macromol 2021; 173:504-512. [PMID: 33460653 DOI: 10.1016/j.ijbiomac.2021.01.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/14/2023]
Abstract
Synthetic selenium polysaccharides with potential bioactivity have drawn great interest due to the SeO bonds existing in the structure. Herein, N, O-selenized N-(2-carboxyethyl) chitosan (sNCCS) was synthesized through carboxyethylation and selenylation. Various characterizations were performed to identify the structure of sNCCS, indicating that SeO bonds were formed both at the C-6 hydroxyl groups and the introduced C-2 carboxyethyl groups. The highest yield and selenium content of all sNCCS reached 84.5% and 1.553 mg/g, respectively. In vitro evaluation exhibited that sNCCS has excellent bile acid binding capacity, which was 1.63, 2.00, and 2.55-fold higher than that of N-(2-carboxyethyl) chitosan (NCCS). Moreover, it was found that higher selenium content could significantly enhance the antioxidant properties of sNCCS. Importantly, no obvious cytotoxic effect had been observed on Caco-2 cells. Taken together, sNCCS with desirable biological activity and non-cytotoxicity might be considered as an effective ingredient in the fields of food or medicine.
Collapse
Affiliation(s)
- Wanwen Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hao Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qixing Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wenshui Xia
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
35
|
Shi C, Yue F, Shi F, Qin Q, Wang L, Wang G, Mu L, Liu D, Li Y, Yu T, She J. Selenium-Containing Amino Acids Protect Dextran Sulfate Sodium-Induced Colitis via Ameliorating Oxidative Stress and Intestinal Inflammation. J Inflamm Res 2021; 14:85-95. [PMID: 33488110 PMCID: PMC7814278 DOI: 10.2147/jir.s288412] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Background Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammation of the gastrointestinal tract. Oxidative stress plays a pivotal role in the pathogenesis of IBD. Selenium-containing amino acids reportedly have anti-oxidative and anti-inflammatory properties, but it remains unknown if selenium-containing amino acids can be used to treat IBD. This study aimed to investigate the effects of two selenium-containing amino acids - selenocysteine and selenocystine - on oxidative stress and chronic inflammation in a mouse model of dextran sulfate sodium (DSS)-induced IBD. Methodology C57BL/6 mice were randomly assigned to the following six groups: control, DSS, DSS+selenocysteine, DSS+selenocystine, DSS+sodium selenite, and DSS+N-acetylcysteine (NAC). IBD was induced by 3% DSS. Pro-inflammatory cytokines [interleukin-1β (IL-1β), monocyte chemotactic protein 1 (MCP-1), IL-6, and tumor necrosis factor-α (TNF-α)] and markers for oxidative and anti-oxidative stress [malondialdehyde (MDA), reactive oxygen species (ROS), superoxide dismutase (SOD), and glutathione peroxidase (GPx)] were measured using immunohistochemical analysis. Results Selenocysteine and selenocystine significantly attenuated IBD-related symptoms, including preventing weight loss, decreasing disease activity index (DAI) scores, and increasing colon length. Selenocysteine and selenocystine significantly ameliorated the DSS-induced oxidative stress, as demonstrated by a reduction in ROS and MDA activity and an increase in SOD and GPx activity. IL-1, MCP-1, IL-6, and TNF-α levels were significantly increased in the IBD mice, while treatment with the selenium-containing amino acids significantly reduced the levels of these pro-inflammatory cytokines. In vivo safety analysis showed minimal side effects of the selenium-containing amino acids. Conclusion We found that selenocysteine and selenocystine ameliorated DSS-induced IBD via reducing oxidative stress and intestinal inflammation, indicating that selenium-containing amino acids could be a novel therapeutic option for patients with IBD.
Collapse
Affiliation(s)
- Chengxin Shi
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Fengli Yue
- College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Feiyu Shi
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Qian Qin
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Lizhao Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Guanghui Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Lijun Mu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Dan Liu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yaguang Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Tianyu Yu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China
| |
Collapse
|
36
|
Zhu S, Sun Y, Jia Y, Zhang W, Wang Y, Li L, Zhang J, Wang J. Acid site-regulated solid acids for polysaccharide Se-functionalization: Structural explanations for high reactivity. Carbohydr Polym 2021; 251:117028. [PMID: 33142587 DOI: 10.1016/j.carbpol.2020.117028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 11/18/2022]
Abstract
In this work, the application of acid site-regulated solid acids in Se-functionalization of polysaccharide is evaluated for the first time, which aimed to further improve reaction efficiency and realize environmentally friendly chemistry. A series prepared MxOy/HZSM-5 catalysts possesses standard crystal structure, large specific surface area, pore volume, aperture as well as strong acidity. An efficient substitution of seleno-group on polysaccharide backbone is promoted by regulating the acid site of solid acids (Se content up to 15,170.49 μg/g) compared with the conventional Se-functionalization method (1703 μg/g). Strong Lewis and Brønsted acid sites lead to the driving forces toward low molecular mass polysaccharide fragments, but the deletion of main monosaccharide components is not observed. In summary, it is proved that solid acid can be employed in acid-dependent polysaccharide Se-functionalization which will promote useful in expanding our understanding of how to further develop polysaccharide resources.
Collapse
Affiliation(s)
- Shengyong Zhu
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yaxu Sun
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yue Jia
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Wenyu Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yuxin Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Li Li
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Junlong Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, People's Republic of China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Northwest Normal University, Lanzhou 730070, People's Republic of China; Institute of New Rural Development, Northwest Normal University, Lanzhou 730070, People's Republic of China.
| |
Collapse
|
37
|
Zhu S, Hu J, Liu S, Guo S, Jia Y, Li M, Kong W, Liang J, Zhang J, Wang J. Synthesis of Se-polysaccharide mediated by selenium oxychloride: Structure features and antiproliferative activity. Carbohydr Polym 2020; 246:116545. [DOI: 10.1016/j.carbpol.2020.116545] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/13/2020] [Accepted: 05/30/2020] [Indexed: 12/18/2022]
|
38
|
Li R, Qin X, Liu S, Zhang X, Zeng X, Guo H, Wang T, Zhang Y, Zhang J, Zhang J, Wang J. [HNMP]HSO4 catalyzed synthesis of selenized polysaccharide and its immunomodulatory effect on RAW264.7 cells via MAPKs pathway. Int J Biol Macromol 2020; 160:1066-1077. [DOI: 10.1016/j.ijbiomac.2020.05.261] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
|
39
|
Kakar MU, Kakar IU, Mehboob MZ, Zada S, Soomro H, Umair M, Iqbal I, Umer M, Shaheen S, Syed SF, Deng Y, Dai R. A review on polysaccharides from Artemisia sphaerocephala Krasch seeds, their extraction, modification, structure, and applications. Carbohydr Polym 2020; 252:117113. [PMID: 33183585 DOI: 10.1016/j.carbpol.2020.117113] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 01/16/2023]
Abstract
Artemisia sphaerocephala Krasch (ASK) is an important member of Compositae (Asteraceae) family. Its seeds have been widely used as traditional medicine and to improve the quality of food. Water soluble and water insoluble polysaccharides are found in the seeds of this plant. Research has been conducted on the extraction of polysaccharides, their modification and determination of their structure. To date different techniques for extraction purposes have been applied which are reviewed here. Antioxidant, antidiabetic, anti-obesogenic, antitumor, and immunomodulatory activities have been explored using in vivo and in vitro methods. Moreover, these polysaccharides have been used as packaging material and as a sensing component for monitoring the freshness of packaged food. Some experimental results have shown that the quality of foods is also improved by using them as a food additive. We have also indicated some of the potential areas that are needed to be explored.
Collapse
Affiliation(s)
- Mohib Ullah Kakar
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China; Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Ihsan Ullah Kakar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Muhammad Zubair Mehboob
- CAS Center for Excellence in Biotic Interaction, College of Life Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Shah Zada
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | | | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Imran Iqbal
- Department of Information and Computational Sciences, School of Mathematical Sciences and LMAM, Peking University, Beijing, 100871, China
| | - Muhammad Umer
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Shabnam Shaheen
- Department of Higher Education, Government Girls Degree College Lakki Marwat, City Lakki Marwat, KPK, Pakistan
| | - Shahid Faraz Syed
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Uthal, 90150, Balochistan, Pakistan
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceutical, Beijing Institute of Technology (BIT), Beijing, 100081, PR China.
| |
Collapse
|
40
|
Amin K, Zeng X, You Y, Hu Y, Sun H, Lyu B, Piao C, Yu H. Enhanced thermostability and antioxidant activity of Nattokinase by biogenic enrichment of selenium. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00461-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Wei C, Wang J, Duan C, Fan H, Liu X. Aqueous Extracts of Se-Enriched Auricularia auricular Exhibits Antioxidant Capacity and Attenuate Liver Damage in High-Fat Diet/Streptozotocin-Induced Diabetic Mice. J Med Food 2020; 23:153-160. [DOI: 10.1089/jmf.2019.4416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Chunyan Wei
- Institute of Agricultural Quality Standards and Testing Technology and Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Jingjing Wang
- Institute of Agricultural Quality Standards and Testing Technology and Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Cuicui Duan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Huimei Fan
- Institute of Agricultural Quality Standards and Testing Technology and Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiaoxiao Liu
- Institute of Agricultural Quality Standards and Testing Technology and Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| |
Collapse
|
42
|
Wang L, Zhang PZ, Shen JW, Qian YY, Liu M, Ruan Y, Wang XG, Zhang SN, Ma BJ. Physicochemical properties and bioactivities of original and Se-enriched polysaccharides with different molecular weights extracted from Pleurotus ostreatus. Int J Biol Macromol 2019; 141:150-160. [PMID: 31487514 DOI: 10.1016/j.ijbiomac.2019.08.250] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 11/17/2022]
Abstract
Three polysaccharides (WZP1, WZP2, WZP3) and their Se-enriched products (SeWZP1, SeWZP2 and SeWZP3) were obtained from Pleurotus ostreatus using a simple, rapid method and HNO3-Na2SeO3 method, respectively. The molecular weight distribution profiles of all samples except SeWZP2 showed double peaks. The average molecular weights (Mw) of WZP1-3 were 48.6 kDa, 20.2 kDa and 11.8 kDa, respectively, and of SeWZP1-3 were 19.6 kDa, 37.7 kDa, 14.5 kDa, respectively. The complexity of monosaccharide composition of WZP1-3 was inversely proportional to the ethanol concentration used in the ethanol precipitation process. Additionally, the results of biological activity tests indicated that α-glucosidase inhibitory activity of WZP1-3 was related to the molecular weight and the monosaccharide composition complexity. The selenized modification can improve the α-glucosidase-inhibiting, hydroxyl radical-scavenging activity of P. ostreatus polysaccharides. Therefore, by improving their bioactivities by selenization, the polysaccharides of P. ostreatus could be utilized as a natural health food supplement.
Collapse
Affiliation(s)
- Li Wang
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450001, China
| | - Peng-Zhan Zhang
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450001, China
| | - Jin-Wen Shen
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450001, China
| | - Yan-Yan Qian
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450001, China
| | - Miao Liu
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450001, China
| | - Yuan Ruan
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450001, China
| | - Xu-Guang Wang
- Baiyunmugang Biological Technology Company, Dengfeng 452471, China
| | - Shao-Ning Zhang
- Baiyunmugang Biological Technology Company, Dengfeng 452471, China
| | - Bing-Ji Ma
- Department of Traditional Chinese Medicine, Henan Agricultural University, Zhengzhou 450001, China.
| |
Collapse
|
43
|
Low Molecular Seleno-Aminopolysaccharides Protect the Intestinal Mucosal Barrier of Rats under Weaning Stress. Int J Mol Sci 2019; 20:ijms20225727. [PMID: 31731602 PMCID: PMC6888692 DOI: 10.3390/ijms20225727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Low molecular seleno-aminopolysaccharide (LSA) was synthesized with sodium selenite and low molecular aminopolysaccharide (LA), which is an organic selenium compound. This study is aimed to investigate the protective effect of LSA on the intestinal mucosal barrier in weaning stress rats by detecting the intestinal tissue morphology and function, mucosal thickness and permeability, the structure of MUC2, antioxidant index, the expression level of intracellular transcription factor NF-E2-related factor 2 (Nrf2), and its related factors. The results showed that LSA significantly increased the height of intestinal villi (p < 0.05) and increased the thickness of intestinal mucosa and the number of goblet cells, which indicated that LSA has a protective effect on the intestinal mucosal barrier that is damaged by weaning. Moreover, LSA significantly reduced the level of DAO, D-LA, and LPS compared with the weaning group (p < 0.05), which indicated that LSA reduced the intestinal damage and permeability of weaning rats. In addition, LSA could increase the number and length of glycans chains and the abundance of acid glycans structures in the MUC2 structure, which indicated that LSA alleviated the changes of intestinal mucus protein structure. LSA significantly increased the levels of GSH-Px, SOD, LDH, and CAT, while it decreased the level of MDA in serum and intestinal tissue, which suggested that LSA significantly enhanced the antioxidant capacity and reduced oxidative stress of weaning rats. RT-PCR results showed that LSA significantly increased the expression level of antioxidant genes (GSH-Px, SOD, Nrf2, HO-1), glycosyltransferase genes (GalNT1, GalNT3, GalNT7) and mucin gene (MUC2) in intestinal mucosa (p < 0.05). The results of western blot showed that the LSA activated the Nrf2 signaling pathway by down-regulating the expression of Keap1and up-regulating the expression of Nrf2, and protected the intestinal mucosa from oxidative stress. Overall, LSA could play a protective role in intestinal mucosal barrier of weaning rats by activating the Nrf2 pathway and alleviating the alnormal change of mucin MUC2.
Collapse
|
44
|
Xiao H, Chen C, Li C, Huang Q, Fu X. Physicochemical characterization, antioxidant and hypoglycemic activities of selenized polysaccharides from Sargassum pallidum. Int J Biol Macromol 2019; 132:308-315. [PMID: 30910676 DOI: 10.1016/j.ijbiomac.2019.03.138] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 11/23/2022]
Abstract
This study was carried out to study the effects of selenylation on physicochemical and biological properties of polysaccharide (SPP) extracted from Sargassum pallidum. The selenized derivative of SPP (Se-SPP) with the selenium content of 2419 μg/g was synthesized by sodium selenite/dilute nitric acid method. Physicochemical characterization indicated that selenylation modification resulted in some changes in chemical composition, monosaccharide composition, molecular weight and surface morphology of polysaccharides. FT-IR spectroscopy showed that a new absorption peak appeared at 675 cm-1 in Se-SPP probably due to the substitution of selenyl groups. Bioactivity assay showed that Se-SPP exhibited higher scavenging radical activities and ferrous ion chelating activities than native SPP. Compared with SPP and acarbose, Se-SPP showed more significantly inhibitory effect on α-glucosidase activity in a noncompetitive inhibition type. The IC50 values of SPP, Se-SPP and acarbose were determined as 1.579, 0.896 and 2.742 mg/mL, respectively. These results suggest that Se-SPP can be used to develop a new selenium-complementary ingredient in functional foods.
Collapse
Affiliation(s)
- Heng Xiao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Chun Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Guangzhou 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Chao Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Guangzhou 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Guangzhou 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Guangzhou Institute of Modern Industrial Technology, Guangzhou 511458, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China.
| |
Collapse
|
45
|
Zeng X, Li P, Chen X, Kang Y, Xie Y, Li X, Xie T, Zhang Y. Effects of deproteinization methods on primary structure and antioxidant activity of Ganoderma lucidum polysaccharides. Int J Biol Macromol 2019; 126:867-876. [DOI: 10.1016/j.ijbiomac.2018.12.222] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/14/2018] [Accepted: 12/22/2018] [Indexed: 11/30/2022]
|
46
|
Wei Y, Zhao Q, Wu Q, Zhang H, Kong W, Liang J, Yao J, Zhang J, Wang J. Efficient synthesis of polysaccharide with high selenium content mediated by imidazole-based acidic ionic liquids. Carbohydr Polym 2019; 203:157-166. [DOI: 10.1016/j.carbpol.2018.09.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/01/2018] [Accepted: 09/18/2018] [Indexed: 11/26/2022]
|
47
|
Guo D, Zhang Y, Zhao J, He H, Hou T. Selenium-biofortified corn peptides: Attenuating concanavalin A-Induced liver injury and structure characterization. J Trace Elem Med Biol 2019; 51:57-64. [PMID: 30466939 DOI: 10.1016/j.jtemb.2018.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/06/2018] [Accepted: 09/27/2018] [Indexed: 12/26/2022]
Abstract
The relationship between hepatoprotective effects of selenium-biofortified corn (Zea mays Linn) peptides (SeCPs) and its antioxidant ability was evaluated and the structure of SeCPs was identified. SeCPs and corn peptides (CPs) both had good antioxidant ability, and the effect of SeCPs was significantly higher than CPs within a certain concentration range (P < 0.05). Additionally, animal experiments indicated that SeCPs (200 mg/kg) had a significantly protective effect against concanavalin A (Con A) induced hepatic lesions, as it significantly declined glutamic-pyruvic transaminase (AST), alanine transaminase (ALT) activities, tumor necrosis factor alpha (TNF-α), interferon (IFN)-γ contents in serum, and malondialdehyde (MDA) contents in liver (P < 0.05). Superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities in liver were also significantly increased by SeCPs (P < 0.05). The amino acid composition of SeCPs with Mw < 1 kDa was mainly glutamic acid (Glu, 31.18%), leucine (Leu, 21.06%) and alanine (Ala, 13.26%). According to the retention time, the amino acid sequences of 8 selenium-biofortified corn peptides and 29 selenium-free corn peptides were identified. Our results illustrated that the mechanisms of SeCPs against Con A induced hepatic injury in mice may be related to its antioxidant ability and reduction of lipid peroxidation, inhibiting the release of immune factors, such as TNF-α and IFN-γ.
Collapse
Affiliation(s)
- Danjun Guo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 43000, China
| | - Yan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 43000, China
| | - Juanjuan Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 43000, China
| | - Hui He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 43000, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 43000, China.
| |
Collapse
|
48
|
Zhang Q, Wu C, Wang T, Sun Y, Li T, Fan G. Improvement of Biological Activity of Morchella esculenta Protein Hydrolysate by Microwave-Assisted Selenization. J Food Sci 2018; 84:73-79. [PMID: 30575032 DOI: 10.1111/1750-3841.14411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/28/2018] [Accepted: 11/07/2018] [Indexed: 11/29/2022]
Abstract
Morchella esculenta protein hydrolysate (MPH) from a valued medicinal and edible fungus M. esculenta (L.) is an excellent material for functional food development. To promote MPH utilization, selenization of MPH was performed by applying a simple and environmentally friendly microwave irradiation procedure. The physicochemical characteristics of selenized MPH (Se-MPH) were investigated by SEM-EDX, FTIR, CD, and amino acid analyzer, and its biological activity were assessed by ABTS, DPPH, H2 O2 scavenging, and reducing power assays, as well as α-glucosidase, α-amylase, and tyrosinase inhibition tests. The results showed that MPH was successfully selenized, Se content in Se-MPH reached 59.0 ± 0.64 mg/g, and amino groups, hydroxyl groups, and sulfur atoms of methionine residues in the MPH molecule may participate in selenization. Furthermore, Se-MPH exhibited significantly enhanced antioxidant, antidiabetic, and tyrosinase inhibitory activities, compared with the native MPH and microwave-irradiated MPH. Thus, the microwave-assisted selenization is a feasible strategy for preparing organic Se and improving the biological activity of MPH. PRACTICAL APPLICATION: In this study, selenized Morchella esculenta protein hydrolysate (Se-MPH) was successfully prepared via conjugation with sodium selenite using the microwave-assisted method. The results showed that Se-MPH, synthesized with the aid of microwave, exhibited favorable selenium content and improved antioxidant, antidiabetic, and tyrosinase inhibitory activities. Therefore, microwave can be employed as an innovative and effective avenue for the production of organic selenium in nutraceutical and functional food industry.
Collapse
Affiliation(s)
- Qiang Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.,College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, China.,College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Caie Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.,College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Tao Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.,College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yujun Sun
- College of Life and Health Sciences, Anhui Science and Technology University, Fengyang, 233100, China
| | - Tingting Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.,College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Gongjian Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.,College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
49
|
Cheng L, Wang Y, He X, Wei X. Preparation, structural characterization and bioactivities of Se-containing polysaccharide: A review. Int J Biol Macromol 2018; 120:82-92. [DOI: 10.1016/j.ijbiomac.2018.07.106] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022]
|
50
|
Shao C, Song J, Zhao S, Jiang H, Wang B, Chi A. Therapeutic Effect and Metabolic Mechanism of A Selenium-Polysaccharide from Ziyang Green Tea on Chronic Fatigue Syndrome. Polymers (Basel) 2018; 10:polym10111269. [PMID: 30961194 PMCID: PMC6401680 DOI: 10.3390/polym10111269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 11/23/2022] Open
Abstract
Ziyang green tea was considered a medicine food homology plant to improve chronic fatigue Ssyndrome (CFS) in China. The aim of this research was to study the therapeutic effect of selenium-polysaccharides (Se-TP) from Ziyang green tea on CFS and explore its metabolic mechanism. A CFS-rats model was established in the present research and Se-TP was administrated to evaluate the therapeutic effect on CFS. Some serum metabolites including blood urea nitrogen (BUN), blood lactate acid (BLA), corticosterone (CORT), and aldosterone (ALD) were checked. Urine metabolites were analyzed via gas chromatography-mass spectrometry (GC-MS). Multivariate statistical analysis was also used to check the data. The results selected biomarkers that were entered into the MetPA database to analyze their corresponding metabolic pathways. The results demonstrated that Se-TP markedly improved the level of BUN and CORT in CFS rats. A total of eight differential metabolites were detected in GC-MS analysis, which were benzoic acid, itaconic acid, glutaric acid, 4-acetamidobutyric acid, creatine, 2-hydroxy-3-isopropylbutanedioic acid, l-dopa, and 21-hydroxypregnenolone. These differential metabolites were entered into the MetPA database to search for the corresponding metabolic pathways and three related metabolic pathways were screened out. The first pathway was steroid hormone biosynthesis. The second was tyrosine metabolism, and the third was arginine-proline metabolism. The 21-hydroxypregnenolone level of rats in the CFS group markedly increased after the Se-TP administration. In conclusion, Se-TP treatments on CFS rats improved their condition. Its metabolic mechanism was closely related to that which regulates the steroid hormone biosynthesis.
Collapse
Affiliation(s)
- Changzhuan Shao
- College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306, China.
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| | - Jing Song
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| | - Shanguang Zhao
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| | - Hongke Jiang
- College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306, China.
| | - Baoping Wang
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| | - Aiping Chi
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|