1
|
Shah M, Hameed A, Kashif M, Majeed N, Muhammad J, Shah N, Rehan T, Khan A, Uddin J, Khan A, Kashtoh H. Advances in agar-based composites: A comprehensive review. Carbohydr Polym 2024; 346:122619. [PMID: 39245496 DOI: 10.1016/j.carbpol.2024.122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/05/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024]
Abstract
This review article explores the developments and applications in agar-based composites (ABCs), emphasizing various constituents such as metals, clay/ceramic, graphene, and polymers across diversified fields like wastewater treatment, drug delivery, food packaging, the energy sector, biomedical engineering, bioplastics, agriculture, and cosmetics. The focus is on agar as a sustainable and versatile biodegradable polysaccharide, highlighting research that has advanced the technology of ABCs. A bibliometric analysis is conducted using the Web of Science database, covering publications from January 2020 to March 2024, processed through VOSviewer Software Version 1.6.2. This analysis assesses evolving trends and scopes in the literature, visualizing co-words and themes that underscore the growing importance and potential of ABCs in various applications. This review paper contributes by showcasing the existing state-of-the-art knowledge and motivating further development in this promising field.
Collapse
Affiliation(s)
- Muffarih Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Abdul Hameed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Muhammad Kashif
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Noor Majeed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Javariya Muhammad
- Department of Zoology Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Nasrullah Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan.
| | - Touseef Rehan
- department of Biochemistry, Women University Mardan, Mardan 23200, KP, Pakistan
| | - Abbas Khan
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan 23200, KP, Pakistan
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, 616 Birkat Al Mauz, Nizwa, Sultanate of Oman; Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea.
| |
Collapse
|
2
|
Channab BE, Tayi F, Aqlil M, Akil A, Essamlali Y, Chakir A, Zahouily M. Graphene oxide, starch, and kraft lignin bio-nanocomposite controlled-release phosphorus fertilizer: Effect on P management and maize growth. Int J Biol Macromol 2024; 282:137190. [PMID: 39500420 DOI: 10.1016/j.ijbiomac.2024.137190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/10/2024]
Abstract
This study focuses on the synthesis and practical application of bio-nanocomposite films made from a mixture of starch (ST) and Kraft lignin (KL) with graphene oxide (GO) nanoparticles. FTIR, XRD, Raman, SEM, and TEM analysis confirmed the synthesis's success of GO. The bio-nanocomposites were used as advanced coatings for triple superphosphate (TSP) fertilizers, and their implications for maize (Zea mays L.) plant growth were examined. Incorporating GO into the composite matrix is a significant accomplishment of this study, as demonstrated by the noticeable changes observed in the FTIR spectra, indicating consequent structural changes. Morphological analyses conducted by SEM reveal changes in the surface characteristics of the ST/KL films, providing essential information about the structural details of the bio-nanocomposite. The utilization of precision-coated TSP fertilizers leads to a significant enhancement in mechanical strength, as demonstrated by the improved crush resistance. Furthermore, these formulations guarantee a gradual release of phosphorus, showcasing their potential for efficient nutrient management in agricultural settings. The study examines the practical application of coated TSP fertilizers in agriculture and their positive effects on various growth parameters of Maize (Zea mays L.) plants. Using these fertilizers promotes sustainable and efficient agricultural practices, contributing to developing innovative agrochemical solutions.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco; Center of Excellence in Soil and Fertilizer Research in Africa (CESFRA), College for Sustainable Agriculture and Environmental Sciences (CSAES), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco.
| | - Fatima Tayi
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Meryem Aqlil
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco
| | - Adil Akil
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco; Center of Excellence in Soil and Fertilizer Research in Africa (CESFRA), College for Sustainable Agriculture and Environmental Sciences (CSAES), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Younes Essamlali
- Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Achraf Chakir
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco
| | - Mohamed Zahouily
- Laboratoire de Matériaux, Catalyse & Valorisation des Ressources Naturelles, URAC 24, Faculté des Sciences et Techniques, Université Hassan II, Casablanca B.P. 146, Morocco; Center of Excellence in Soil and Fertilizer Research in Africa (CESFRA), College for Sustainable Agriculture and Environmental Sciences (CSAES), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
3
|
Mostafa H, Hamdi M, Airouyuwaa JO, Hamed F, Wang Y, Maqsood S. Lignin and green solvent extracted phenolic compounds from date palm leaves as functional ingredients for the formulation of soy protein isolate biocomposite packaging materials: A circular packaging concept. Int J Biol Macromol 2024; 279:134843. [PMID: 39159795 DOI: 10.1016/j.ijbiomac.2024.134843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/26/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
The current study investigated valorization of lignin nanoparticles (LNPs) and phenolic compounds loaded in chitosan (DLECNPs) extracted from date palm leaves into the soy protein isolate (SPI) biocomposite films. The mechanical, structural, barrier, physiochemical, thermal, optical, antioxidant, and antimicrobial properties of the formulated composite films were investigated. The findings showed that the incorporation of DLECNPs into the SPI films significantly improved the film's antioxidant properties by more than 3 times and showed antibacterial inhibition zone in the range of 10-15 mm against six pathogenic bacteria. Further, incorporating LNPs into SPI-DLECNPs films notably improved the mechanical properties from 4.32 MPa and 29.27 % tensile strength and elongation at break, respectively to 10.13 MPa and 54.94 %, the water vapor permeability from 7.38 g/Pa s m to 5.59 g/Pa s m, and the antibacterial inhibition zone from a range of 10.2 mm to 15.0-21.5 mm as well as making the films more heterogeneous and stronger than control SPI film. Moreover, LNPs changed the initial films' color from light yellow to dark red and reduced the films' transparency. The results indicated that LNPs reinforced SPI composite films showed significant improvements in several properties and thus can be used as a potential ingredient for formulation of biodegradable packaging films.
Collapse
Affiliation(s)
- Hussein Mostafa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Marwa Hamdi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Jennifer Osamede Airouyuwaa
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Fathalla Hamed
- Department of Physics, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates; ASPIRE Research Institute for Food Security in the Dry lands (ARIFSID), United Arab Emirates University, Al-Ain, 15551, United Arab Emirates.
| |
Collapse
|
4
|
de Souza AMN, Avila LB, Contessa CR, Valério Filho A, de Rosa GS, Moraes CC. Biodegradation Study of Food Packaging Materials: Assessment of the Impact of the Use of Different Biopolymers and Soil Characteristics. Polymers (Basel) 2024; 16:2940. [PMID: 39458768 PMCID: PMC11511331 DOI: 10.3390/polym16202940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
In this article, the relationship between the properties of different membranes (agar, chitosan, and agar + chitosan) and biodegradability in natural and sterilized soil was investigated. The membranes under investigation exhibited variations in the biodegradation process, a phenomenon closely linked to both the soil microbiota composition and their water affinity. Higher solubility in water and greater swelling tendencies correlated with shorter initiation times for the biodegradation process in soil. Overall, all tested membranes began biodegradation within 14 days, as assessed through thickness and morphological analysis parameters, demonstrating a superior degradation rate compared to low-density polyethylene films.
Collapse
Affiliation(s)
- Amanda Martinello Neres de Souza
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650 Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil; (A.M.N.d.S.); (G.S.d.R.)
| | - Luisa Bataglin Avila
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria 97105-900, Brazil;
- Chemical Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil
| | - Camila Ramão Contessa
- Engineering and Science of Food Graduate Program, Laboratory Bioprocess Engineering, College of Chemistry and Food Engineering, Federal University of Rio Grande, Italy Avenue, km 08, Campus Carreiros, Rio Grande 96203-900, Brazil;
- Food Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil
| | - Alaor Valério Filho
- Graduate Program in Materials Science and Engineering, Technology Development Center, Federal University of Pelotas, 1 Gomes Carneiro, Pelotas 96010-610, Brazil;
| | - Gabriela Silveira de Rosa
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650 Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil; (A.M.N.d.S.); (G.S.d.R.)
- Chemical Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil
| | - Caroline Costa Moraes
- Graduate Program in Science and Engineering of Materials, Federal University of Pampa, 1650 Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil; (A.M.N.d.S.); (G.S.d.R.)
- Food Engineering, Federal University of Pampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé 96413-172, Brazil
| |
Collapse
|
5
|
Hai LV, Bandi R, Dadigala R, Han SY, Cho SW, Yang GU, Ma SY, Lee DY, Jin JW, Moon HC, Kwon GJ, Lee SH. Hydrophobic, ultraviolet radiation-shielding, and antioxidant functionalities of TEMPO-oxidized cellulose nanofibril film coated with modified lignin nanoparticles. Int J Biol Macromol 2024; 277:134464. [PMID: 39098701 DOI: 10.1016/j.ijbiomac.2024.134464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024]
Abstract
In this study, lignin nanoparticles (LN) and octadecylamine-modified LN (LN-ODA) were utilized as coating materials to enhance the hydrophobic, antioxidant, and ultraviolet radiation-shielding (UV-shielding) properties of a TEMPO-oxidized nanocellulose film (TOCNF). The water contact angle (WCA) of the TOCNF was approximately 53° and remained stable for 1 min, while the modified LN-ODA-coated TOCNF reached over 130° and maintained approximately 85° for an hour. Pure TOCNF exhibited low antioxidant properties (4.7 %), which were significantly enhanced in TOCNF-LN (81.6 %) and modified LN-ODA (10.3 % to 27.5 %). Modified LN-ODA-coated TOCNF exhibited antioxidant properties two to six times higher than those of pure TOCNF. Modified LN-ODA exhibited thermal degradation max (Tmax) at 421 °C, while pure LN showed the main degradation temperature at approximately Tmax 330 °C. The thermal stability of TOCNF-LN-ODA-coated materials remained consistent with that of pure TOCNF, while the crystallinity index of the sample showed a slight decrease due to the amorphous nature of the lignin structure. The tensile strength of TOCNF was approximately 114.1 MPa and decreased to 80.1, 51.3, and 30.3 MPa for LN-ODA coating at 5, 10, and 15 g/m2, respectively.
Collapse
Affiliation(s)
- Le Van Hai
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ramakrishna Dadigala
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Song-Yi Han
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung-Woo Cho
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Go-Un Yang
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seo-Young Ma
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Da-Young Lee
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ju-Won Jin
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hae-Chan Moon
- Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gu-Joong Kwon
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
6
|
Pal N, Agarwal M. Development and characterization of eco-friendly guar gum-agar-beeswax-based active packaging film for cheese preservation. Int J Biol Macromol 2024; 277:134333. [PMID: 39094873 DOI: 10.1016/j.ijbiomac.2024.134333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/23/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
In this work, an attempt has been made to develop a novel natural polysaccharide-based composite packaging biofilm prepared through a solution casting method. The biofilm is prepared from guar gum (GG) and agar-agar (AA) beeswax (BE). The incorporation of 20 % wt./wt.glycerol BE in the blended polymer GG/AA (50:50) (GG/AA/BE20 (50:50)) film shows a reduction in water solubility (66.67 %), water vapour permeability (69.28 %) and oxygen permeability (72.23 %). Moreover, GG/AA/BE20 (50:50) shows an increment in the tensile strength and elongation of a break by 48.32 % and 26.05 %, respectively, compared to pristine GG film. The scanning electron microscopy (SEM) image reveals defects-free smooth surfaces of the film. The Fourier transform-infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) demonstrated the strong hydrogen bonding between GG, AA, and BE. The biodegradable film shows 99 % degradation within 28 days when placed in the soil. The developed film plays a crucial role in extending the shelf life of cheese, effectively maintaining its moisture content, texture, colour, and pH over a span of up to two months from the point of packaging. These results suggest that GG/AA/BE20 (50:50) composite film is a promising packaging film for cheese preservation.
Collapse
Affiliation(s)
- Neha Pal
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India
| | - Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology, Jaipur 302017, India.
| |
Collapse
|
7
|
Silva L, Colussi F, Martins JT, Vieira JM, Pastrana LM, Teixeira JA, Cerqueira MA, Michelin M. Strategies for the incorporation of organosolv lignin in hydroxypropyl methylcellulose-based films: A comparative study. Int J Biol Macromol 2024; 280:135498. [PMID: 39255887 DOI: 10.1016/j.ijbiomac.2024.135498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Organosolv lignin extracted from vine pruning residues was added to hydroxypropyl methylcellulose (HPMC)-based films using three strategies: i) lignin incorporated into the film (lignin-based film), ii) lignin nanoparticles (LNPs) incorporated into the film (LNPs-based film), and iii) lignin coated on HPMC films' surface (lignin-coated film). The films obtained were evaluated in terms of morphology, water barrier and mechanical properties, and antioxidant capacity. Results showed that LNPs incorporation did not affect the films´ water vapour permeability (WVP). Nonetheless, the lignin-based and lignin-coated films improved the water barrier properties of HPMC-based films, achieving a 31.5 and 36 % reduction of WVP, respectively. The morphological evaluation, performed by scanning electron microscopy, revealed films' morphology changes with the lignin incorporation, which was more evident in the lignin-based films. Fourier transform infrared spectroscopy (FTIR) showed minor changes in the film's structure using the different lignin incorporation methods. The mechanical properties were improved, including a significant increase in the tensile strength in the lignin-based and lignin-coated films. All films showed high radical scavenging activity (RSA) after 24 h, with a gradual increase in the lignin-coated films over time. The lignin-coated films showed to be the most promising incorporation strategy to improve the HPMC-based film's properties.
Collapse
Affiliation(s)
- Lúcio Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Francieli Colussi
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana T Martins
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge M Vieira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Lorenzo M Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - José A Teixeira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Michele Michelin
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
8
|
Linan LZ, Fakhouri FM, Nogueira GF, Zoppe J, Velasco JI. Benefits of Incorporating Lignin into Starch-Based Films: A Brief Review. Polymers (Basel) 2024; 16:2285. [PMID: 39204505 PMCID: PMC11359989 DOI: 10.3390/polym16162285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024] Open
Abstract
Polysaccharides are an excellent renewable source for developing food-packing materials. It is expected that these packages can be an efficient barrier against oxygen; can reduce lipid peroxidation, and can retain the natural aroma of a food commodity. Starch has tremendous potential to be explored in the preparation of food packaging; however, due to their high hydrophilic nature, packaging films produced from starch possess poor protective moisture barriers and low mechanical properties. This scenario limits their applications, especially in humid conditions. In contrast, lignin's highly complex aromatic hetero-polymer network of phenylpropane units is known to play a filler role in polysaccharide films. Moreover, lignin can limit the biodegradability of polysaccharides films by a physical barrier, mainly, and by non-productive bindings. The main interactions affecting lignin non-productive bindings are hydrophobic interactions, electrostatic interactions, and hydrogen-bonding interactions, which are dependent on the total phenolic -OH and -COOH content in its chemical structure. In this review, the use of lignin as a reinforcement to improve the biodegradability of starch-based films in wet environments is presented. Moreover, the characteristics of the used lignins, the mechanisms of molecular interaction among these materials, and the sensitive physicochemical parameters for biodegradability detection are related.
Collapse
Affiliation(s)
- Lamia Zuniga Linan
- Department of Chemical Engineering, Federal University of Maranhão (COEQ/UFMA), Av. dos Portugueses 1966, São Luis 65080-805, Brazil
| | - Farayde Matta Fakhouri
- Poly2 Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC Barcelona Tech), Carrer de Colom 11, 08222 Terrassa-Barcelona, Spain; (J.Z.); (J.I.V.)
| | | | - Justin Zoppe
- Poly2 Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC Barcelona Tech), Carrer de Colom 11, 08222 Terrassa-Barcelona, Spain; (J.Z.); (J.I.V.)
| | - José Ignacio Velasco
- Poly2 Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC Barcelona Tech), Carrer de Colom 11, 08222 Terrassa-Barcelona, Spain; (J.Z.); (J.I.V.)
| |
Collapse
|
9
|
Yang D, Fan B, He YC. UV-blocking, antibacterial, corrosion resistance, antioxidant, and fruit packaging ability of lignin-rich alkaline black liquor composite film. Int J Biol Macromol 2024; 275:133344. [PMID: 38914391 DOI: 10.1016/j.ijbiomac.2024.133344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/18/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
The novel multifunctional active packaging composite film with antimicrobial, antioxidant, water-vapor and UV-barrier, and corrosion resistance properties was successfully prepared from waste biomass. In this study, waste poplar sawdust was pretreated using green liquor to extract black liquor (BL). BL was then mixed with polyvinyl alcohol (PVA) solution for synthesizing silver nanoparticles (AgNPs). PVA-BL-AgNPs film was fabricated by solution casting method, and the microstructure characterization and macroscopic performance testing of the composite film were conducted. The results revealed that PVA-BL-AgNPs film exhibited inhibitory effects against Staphylococcus aureus (inhibition zone: 33.6 mm), Pseudomonas aeruginosa (inhibition zone: 31.6 mm), and Escherichia coli (inhibition zone: 32.0 mm). It could eliminate over 99 % of 2,2-diazodi (3-ethyl-benzothiazol-6-sulfonic acid) (ABTS) free radicals and provided 100 % UV-blocking, reducing light-induced food damage. It exhibited the improvement of water-vapor barrier properties and corrosion resistance. In vitro cytotoxicity assays demonstrated that no significant impact occurred on cell proliferation, confirming the safety of the film. Packaging experiments showed that PVA-BL-AgNPs film effectively inhibited milk spoilage and prolonged the shelf-life of bread and bananas. Therefore, PVA-BL-AgNPs film might extend the shelf-life of food and offer significant opportunities in addressing the issues of low safety and environmental pollution associated with traditional packaging films.
Collapse
Affiliation(s)
- Dan Yang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Bo Fan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
10
|
Zhu Y, Li H, Zhao QS, Zhao B. Effect of DES lignin incorporation on physicochemical, antioxidant and antimicrobial properties of carboxymethyl cellulose-based films. Int J Biol Macromol 2024; 263:130294. [PMID: 38382790 DOI: 10.1016/j.ijbiomac.2024.130294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Herein, three pretreated grapevine lignins were incorporated into carboxymethyl cellulose films. The effects of traditional NaOH pretreated lignin and DES (ChCl-LA, ChCl-LA & K2CO3-EG) pretreated lignin on film properties were compared. Modern analytical techniques were employed to systematically characterize the pretreated lignin and the different CMC-lignin films. The results showed that DES lignin was of high purity, low molecular weight, and homogeneous structure. It outperformed traditional NaOH lignin in terms of compatibility with CMC, enabling it to perform its bioactivity and physicochemical functions in films. This feature effectively enhanced the hydrophobicity, UV shielding ability, water vapor barrier, thermal stability, mechanical properties, and biological activity of CMC-DES lignin film. NMR (2D HSQC) showed that the excellent antioxidant and antibacterial capabilities of CMC-DES lignin film are due to the retention of butyl (S) and p-hydroxyphenyl (H) units in DES lignin, resulting in its rich phenolic hydroxyl content. The detailed structural elucidation of DES lignin's chemical interactions with CMC provided valuable insights into the advantageous properties observed in the films, presenting innovative solutions for applications in the food packaging and preservation industries.
Collapse
Affiliation(s)
- Yuan Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hang Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing-Sheng Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
11
|
Esakkimuthu ES, Ponnuchamy V, Sipponen MH, DeVallance D. Elucidating intermolecular forces to improve compatibility of kraft lignin in poly(lactic acid). Front Chem 2024; 12:1347147. [PMID: 38389728 PMCID: PMC10882097 DOI: 10.3389/fchem.2024.1347147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Owing to its abundant supply from renewable resources, lignin has emerged as a promising functional filler for the development of sustainable composite materials. However, achieving good interfacial compatibility between lignin and synthetic polymers, particularly poly (lactic acid) (PLA), remains a fundamental challenge. To advance the development of high-performance bio-based composites incorporating lignin and PLA, our study has scrutinized to unravel the nuances of interfacial binding interactions with the lignin and PLA composite system. Molecular level and experimental examinations were employed to decipher fundamental mechanisms governing and demonstrating the interfacial adhesion. We synthesized casted films of lignin/PLA and acetylated lignin/PLA at varying weight percentages of lignin (5%, 10%, and 20%) and comprehensively investigated their physicochemical and mechanical properties. The inclusion of acetylated lignin in the composites resulted in improved mechanical strength and Young's modulus, while the glass transition temperature and melting point were reduced compared to neat PLA. Systematic variations in these properties revealed distinct compatibility behaviors between unmodified lignin and acetylated lignin when incorporated into PLA. Molecular dynamics (MD) simulation results elucidated that the observed changes in material properties were primarily attributed to the acetylation of lignin. Acetylated lignin exhibited lower Coulombic interaction energy and higher van der Waals forces, indicating a stronger affinity to PLA and a reduced propensity for intermolecular aggregation compared to unmodified lignin. Our findings highlight the critical role of controlling intermolecular interactions and lignin aggregation to develop PLA composites with predictable performance for new applications, such as functional packaging materials.
Collapse
Affiliation(s)
- Esakkiammal Sudha Esakkimuthu
- InnoRenew CoE, Izola, Slovenia
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Veerapandian Ponnuchamy
- InnoRenew CoE, Izola, Slovenia
- Andrej Marušič Institute, University of Primorska, Koper, Slovenia
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Wallenberg Wood Science Center, Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - David DeVallance
- InnoRenew CoE, Izola, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| |
Collapse
|
12
|
Wang K, Liu K, Dai L, Si C. Bioinspired multiscale cellulose/lignin-silver composite films with robust mechanical, antioxidant and antibacterial properties for ultraviolet shielding. Int J Biol Macromol 2024; 258:129046. [PMID: 38154714 DOI: 10.1016/j.ijbiomac.2023.129046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Constructing a high-performance ultraviolet shielding film is an effective way for addressing the growing problem of ultraviolet radiation. However, it is still a great challenge to achieve a combination of multifunctional, excellent mechanical properties and low cost. Here, inspired by the multiscale structure of biomaterials and features of lignin, a multifunctional composite film (CNF/CMF/Lig-Ag) is constructed via a facile vacuum-filtration method by introducing micron-sized cellulose fibers (CMF) and lignin-silver nanoparticles (Lig-Ag NPs) into the cellulose nanofibers (CNF) film network. In this composite film, the microfibers interweave with nanofibers to form a multiscale three-dimensional network, which ensures satisfactory mechanical properties of the composite film. Meanwhile, the Lig-Ag NPs are employed as a multifunctional filler to enhance the composite film's antioxidant, antibacterial and ultraviolet shielding abilities. As a result, the prepared CNF/CMF/Lig-Ag composite film demonstrates excellent mechanical properties (with tensile strength of 133.8 MPa and fracture strain of 7.4 %), good biocompatibility, high thermal stability, potent antioxidant and antibacterial properties. More importantly, such composite film achieves a high ultraviolet shielding rate of 98.2 % for ultraviolet radiation A (UVA) and 99.4 % for ultraviolet radiation B (UVB), respectively. Therefore, the prepared CNF/CMF/Lig-Ag composite film shows great potential in application of ultraviolet protection.
Collapse
Affiliation(s)
- Kuien Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Department of Military Sick and Wounded Administration, No 983 Hospital of Chinese People's Liberation Army, Tianjin 300457, China
| | - Kefeng Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuanling Si
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
13
|
Esakkimuthu ES, Ponnuchamy V, Mikuljan M, Schwarzkopf M, DeVallance D. Fungal enzyme degradation of lignin-PLA composites: Insights from experiments and molecular docking simulations. Heliyon 2024; 10:e23838. [PMID: 38192859 PMCID: PMC10772188 DOI: 10.1016/j.heliyon.2023.e23838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/18/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
Fungal enzymes are effective in degrading various polymeric materials. In this study, we assessed the initial degradation of composites consisting of lignin-poly(lactic acid) (PLA) with both unmodified lignin (LIG) and oxypropylated lignin (oLIG) incorporated at 10 % and 40 % weight within the PLA matrix in a fungal environment. Trametes versicolor fungi were used, and the samples were treated only for eight weeks. Although there was no significant difference in weight loss, the degradation process impacted the chemical and thermal properties of the composites, as shown by Fourier transform infrared spectroscopy (FTIR) and Differential scanning calorimetry (DSC) analyses. After the degradation process, the carbonyl index values decreased for all composites and the hydroxyl index values increased for LIG/PLA and a reverse trend was observed for oLIG/PLA composites. The first heating scan from DSC results showed that the melting peak and the cold crystallization peak disappeared after the degradation process. Microscopic analysis revealed that LIG/PLA exhibited higher roughness than oLIG/PLA. Molecular docking simulations were carried out using guaiacylglycerol-β-guaiacyl ether (GGE) and lactic acid (LA) as model compounds for lignin and PLA, respectively, with laccase (Lac) enzyme for Trametes versicolor. The docking results showed that GGE had the strongest binding interaction and affinity with Lac than lactic acid and oxypropylated GGE. The oxypropylated GGE formed a shorter hydrogen bonding with the Lac enzyme than GGE and LA. The trend associated with the degradation of composites from experimental and molecular docking findings was consistent. This combined approach provided insights into the degradation process using fungi and had the potential to be applied to different polymeric composites.
Collapse
Affiliation(s)
| | - Veerapandian Ponnuchamy
- InnoRenew CoE, Livade 6a, 6310, Izola, Slovenia
- University of Primorska, Andrej Marušič Institute, Muzejski trg 2, 6000, Koper, Slovenia
| | | | - Matthew Schwarzkopf
- InnoRenew CoE, Livade 6a, 6310, Izola, Slovenia
- University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, 6000, Koper, Slovenia
| | - David DeVallance
- InnoRenew CoE, Livade 6a, 6310, Izola, Slovenia
- University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaška 8, 6000, Koper, Slovenia
| |
Collapse
|
14
|
Kim D, Kim JC, Kim J, Cho YM, Yoon CH, Shin JH, Kwak HW, Choi IG. Enhancement of elongation at break and UV-protective properties of poly(lactic acid) film with cationic ring opening polymerized (CROP)-lignin. Int J Biol Macromol 2023; 253:127293. [PMID: 37806424 DOI: 10.1016/j.ijbiomac.2023.127293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
In this study, the intrinsic brittleness of poly(lactic acid) (PLA) was overcome by chemical modification using ethyl acetate-extracted lignin (EL) via cationic ring-opening polymerization (CROP). The CROP was conducted to promote homopolymerization under starvation of the initiator (oxyrane). This method resulted in the formation of lignin-based polyether (LPE). LPE exhibited enhanced interfacial compatibility with nonpolar and hydrophobic PLA owing to the fewer hydrophilic hydroxyl groups and a long polyether chain. In addition, because of the UV-protecting and radical-scavenging abilities of lignin, LPE/PLA exhibited multifunctional properties, resulting in improved chemical properties compared with the neat PLA film. Notably, one of the LPE/PLA films (EL_MCF) exhibited excellent elongation at break of 297.7 % and toughness of 39.92 MJ/m3. Furthermore, the EL_MCF film showed superior UV-protective properties of 99.52 % in UVA and 88.95 % in UVB ranges, both significantly higher than those of the PLA film, without sacrificing significant transparency in 515 nm. In addition, the radical scavenging activity improved after adding LPE to the PLA film. These results suggest that LPEs can be used as plasticizing additives in LPE/PLA composite films, offering improved physicochemical properties.
Collapse
Affiliation(s)
- Daye Kim
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jong-Chan Kim
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jonghwa Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young-Min Cho
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Chae-Hwi Yoon
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jun-Ho Shin
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyo Won Kwak
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - In-Gyu Choi
- Department of Agriculture, Forestry, and Bioresources, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
15
|
Muhammed AP, Thangarasu S, Oh TH. Green interconnected network structure of chitosan-microcrystalline cellulose-lignin biopolymer film for active packaging applications. Int J Biol Macromol 2023; 253:127471. [PMID: 37863142 DOI: 10.1016/j.ijbiomac.2023.127471] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
As an excellent alternative to petroleum-based food packaging materials, a novel green hybrid composite film with an excellent interconnected network structure was successfully fabricated by integrating chitosan (chi), microcrystalline cellulose (MCC), and lignin nanoparticles (LNP), including the desired amount of plasticizer glycerol (gly). Overall, 36 combinations were developed and investigated for superior biocomposite film formation. Among the various concentration ratios, the 40:35:25 chi-MCC-gly film provided well-organized film formation, good physicochemical properties, mechanical stability, efficient water contact angle, reduced water solubility, and lower water vapor permeability (11.43 ± 0.55 × 10-11 g.m-1.s-1.Pa-1). The performance of the chi-MCC-gly film further enhanced by the homogeneous incorporation of ∼100 nm LNP. With 1 % LNP addition, the tensile strength of the film increased (28.09 MPa, 47.10 % increase) and the water vapor permeability reached a minimum of 11.43 × 10-11 g.m-1.s-1.Pa-1, which proved the impact of LNP in composite films. Moreover, the films showed excellent resistance to thermal shrinkage even at 100 °C and exhibited nearly 100 % UV blocking efficiency at higher LNP concentrations. Interestingly, the green composite films extended the shelf life of freshly cut cherry tomatoes to seven days without spoilage. Overall, the facile synthesis of strong, insoluble, UV-blocking, and thermally stable green composite films realized for food packaging applications.
Collapse
Affiliation(s)
- Ajmal P Muhammed
- School of Chemical engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sadhasivam Thangarasu
- School of Chemical engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Tae Hwan Oh
- School of Chemical engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
16
|
Ren Z, Zhou X, Ding K, Ji T, Sun H, Chi X, Wei Y, Xu M, Cai L, Xia C. Design of sustainable 3D printable polylactic acid composites with high lignin content. Int J Biol Macromol 2023; 253:127264. [PMID: 37804892 DOI: 10.1016/j.ijbiomac.2023.127264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
In this study, we report the development of a sustainable polymer system with 50 wt% lignin content, suitable for additive manufacturing and high value-added utilization of lignin. The plasticized polylactic acid (PLA) was incorporated with lignin to develop the bendable and malleable green composites with excellent 3D printing adaptability. The biocomposites exhibit increases of 765.54 % and 125.27 % in both elongation and toughness, respectively. The plasticizer enhances the dispersion of lignin and the molecular mobility of the PLA chains. The good dispersion of lignin particles within the structure and the reduction of chemical cross-linking promote the local relaxation of the polymer chains. The good local relaxation of the polymer chains and the high flexibility allow to obtain a better integration between the printed layers with good printability. This research demonstrates the promising potential of this composite system for sustainable manufacturing and provides insights into novel material design for high-value applications of lignin.
Collapse
Affiliation(s)
- Zechun Ren
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xinyuan Zhou
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Kejiao Ding
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Tong Ji
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Hao Sun
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xiang Chi
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Yunzhao Wei
- Institute of Petrochemistry, Heilongjiang, Academy of Sciences, Harbin 150040, China
| | - Min Xu
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Liping Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changlei Xia
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
17
|
Zhang S, Zhang X, Wan X, Zhang H, Tian J. Fabrication of biodegradable films with UV-blocking and high-strength properties from spent coffee grounds. Carbohydr Polym 2023; 321:121290. [PMID: 37739526 DOI: 10.1016/j.carbpol.2023.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
Utilizing spent coffee grounds (SCG) to produce high value-added materials is attractive and meaningful. In this work, a multi-functional biomass film is prepared from SCG and dissolving pulp through a dissolution and regeneration process. Importantly, dissolving pulp as a reinforcing additive can significantly enhance the mechanical strength of the regenerated SCG film. The prepared composite films with SCG contents ranging from 33.33 wt% to 81.82 wt% demonstrate excellent optical and mechanical properties. The composite film with 66.67 wt% SCG exhibits outstanding UV blocking capability (99.43 % for UVB and 96.59 % for UVA) and high haze (69.22%); meanwhile, the composite film with 33.33 wt% SCG performs better mechanical strength (58.69 MPa tensile strength and 3.13 GPa Young's modulus) and superior biodegradability (fully degraded within 26 days by being buried in soil) than commercial plastic. This work generally introduces a facile and practical approach to converting waste SCG into promising materials in various fields.
Collapse
Affiliation(s)
- Shaokai Zhang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xue Zhang
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China; China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, China
| | - Xiaofang Wan
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Hongjie Zhang
- China National Pulp and Paper Research Institute Co., Ltd., Beijing 100102, China.
| | - Junfei Tian
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
18
|
Zhao N, Zhang H, Yang S, Sun Y, Zhao G, Fan W, Yan Z, Lin J, Wan C. Direct Induction of Porous Graphene from Mechanically Strong and Waterproof Biopaper for On-Chip Multifunctional Flexible Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300242. [PMID: 37381614 DOI: 10.1002/smll.202300242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Graphene with a 3D porous structure is directly laser-induced on lignocellulosic biopaper under ambient conditions and is further explored for multifunctional biomass-based flexible electronics. The mechanically strong, flexible, and waterproof biopaper is fabricated by surface-functionalizing cellulose with lignin-based epoxy acrylate (LBEA). This composite biopaper shows as high as a threefold increase in tensile strength and excellent waterproofing compared with pure cellulose one. Direct laser writing (DLW) rapidly induces porous graphene from the biopaper in a single step. The porous graphene shows an interconnected carbon network, well-defined graphene domains, and high electrical conductivity (e.g., ≈3 Ω per square), which can be tuned by lignin precursors and loadings as well as lasing conditions. The biopaper in situ embedded with porous graphene is facilely fabricated into flexible electronics for on-chip and paper-based applications. The biopaper-based electronic devices, including the all-solid-state planer supercapacitor, electrochemical and strain biosensors, and Joule heater, show great performances. This study demonstrates the facile, versatile, and low-cost fabrication of multifunctional graphene-based electronics from lignocellulose-based biopaper.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
- School of Ecology and Environment, Zhengzhou University, 100 Kexue Blvd, Zhengzhou, Henan Province, 450001, China
| | - Hanwen Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Shuhong Yang
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Yisheng Sun
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, 416 South 6th Street, Columbia, MO, 65211, USA
| | - Wenjun Fan
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
- Department of Mechanical and Aerospace Engineering, University of Missouri, 416 South 6th Street, Columbia, MO, 65211, USA
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering, University of Missouri, 416 South 6th Street, Columbia, MO, 65211, USA
| | - Caixia Wan
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 East Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
19
|
Chelliah R, Wei S, Vijayalakshmi S, Barathikannan K, Sultan G, Liu S, Oh DH. A Comprehensive Mini-Review on Lignin-Based Nanomaterials for Food Applications: Systemic Advancement and Future Trends. Molecules 2023; 28:6470. [DOI: https:/doi.10.3390/molecules28186470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
The shift to an environmentally friendly material economy requires renewable resource exploration. This shift may depend on lignin valorization. Lignin is an aromatic polymer that makes up one-third of total lingo-cellulosic biomass and is separated into large amounts for biofuel and paper manufacture. This renewable polymer is readily available at a very low cost as nearly all the lignin that is produced each year (90–100 million tons) is simply burned as a low-value fuel. Lignin offers potential qualities for many applications, and yet it is underutilized. This Perspective highlights lignin-based material prospects and problems in food packaging, antimicrobial, and agricultural applications. The first half will discuss the present and future studies on exploiting lignin as an addition to improve food packaging’s mechanical, gas, UV, bioactive molecules, polyphenols, and antioxidant qualities. Second, lignin’s antibacterial activity against bacteria, fungi, and viruses will be discussed. In conclusion, lignin agriculture will be discussed in the food industries.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
- Saveetha School of Engineering, SIMATS University, Kanchipuram 600124, India
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ghazala Sultan
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
20
|
Chelliah R, Wei S, Vijayalakshmi S, Barathikannan K, Sultan G, Liu S, Oh DH. A Comprehensive Mini-Review on Lignin-Based Nanomaterials for Food Applications: Systemic Advancement and Future Trends. Molecules 2023; 28:6470. [PMID: 37764246 PMCID: PMC10535768 DOI: 10.3390/molecules28186470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The shift to an environmentally friendly material economy requires renewable resource exploration. This shift may depend on lignin valorization. Lignin is an aromatic polymer that makes up one-third of total lingo-cellulosic biomass and is separated into large amounts for biofuel and paper manufacture. This renewable polymer is readily available at a very low cost as nearly all the lignin that is produced each year (90-100 million tons) is simply burned as a low-value fuel. Lignin offers potential qualities for many applications, and yet it is underutilized. This Perspective highlights lignin-based material prospects and problems in food packaging, antimicrobial, and agricultural applications. The first half will discuss the present and future studies on exploiting lignin as an addition to improve food packaging's mechanical, gas, UV, bioactive molecules, polyphenols, and antioxidant qualities. Second, lignin's antibacterial activity against bacteria, fungi, and viruses will be discussed. In conclusion, lignin agriculture will be discussed in the food industries.
Collapse
Affiliation(s)
- Ramachandran Chelliah
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
- Saveetha School of Engineering, SIMATS University, Kanchipuram 600124, India
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Selvakumar Vijayalakshmi
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
| | - Kaliyan Barathikannan
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
| | - Ghazala Sultan
- Department of Computer Science, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India;
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; (R.C.); (S.L.)
- Collaborative Innovation Centre of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (S.V.); (K.B.)
- Kangwon Institute of Inclusive Technology (KIIT), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
21
|
Martín-Sampedro R, Aranda P, Del Real G, Ruiz-Hitzky E, Darder M. Effect of the combined addition of ultrasonicated kraft lignin and montmorillonite on hydroxypropyl methylcellulose bionanocomposites. NANOSCALE ADVANCES 2023; 5:4107-4123. [PMID: 37560428 PMCID: PMC10408596 DOI: 10.1039/d3na00283g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023]
Abstract
Although hydroxypropyl methylcellulose (HPMC) has been proposed as renewable substitute for traditional plastic, its barrier and active properties need to be improved. Thus, the combination of an organic residue such as kraft lignin (0-10% w/w) and a natural clay such as montmorillonite (3% w/w) by application of ultrasound can significantly improve HPMC properties. This is most likely due to the close interaction between lignin and montmorillonite, which leads to delamination of the clay and improves its dispersion within the HPMC matrix. Specifically, the addition of kraft lignin to the bionanocomposite films provided them with UV-shielding, antioxidant capacity and antibacterial activity. The incorporation of 3% montmorillonite resulted in reductions of 65.8% and 11.4% in oxygen (OP) and water vapor permeabilities (WVP), respectively. Moreover, a reduction of 43.8% in WVP was achieved when both lignin (1%) and montmorillonite (3%) were incorporated, observing a synergistic effect. Thus, the HPMC bionanocomposite with 1% lignin and 3% montmorillonite, presented good thermal stability and mechanical strength with significantly improved gas barrier permeability, as well as UV-shielding (maintaining a good transparency), antioxidant and antibacterial activities.
Collapse
Affiliation(s)
- Raquel Martín-Sampedro
- Materials Science Institute of Madrid (ICMM), CSIC C/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
- Institute of Forest Sciences (ICIFOR), INIA - CSIC Ctra. de la Coruña, km 7.5 28040 Madrid Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC) Madrid Spain
| | - Pilar Aranda
- Materials Science Institute of Madrid (ICMM), CSIC C/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC) Madrid Spain
| | - Gustavo Del Real
- National Institute of Agricultural and Food Research and Technology (INIA), CSIC Ctra. de la Coruña, km 7.5 28040 Madrid Spain
| | - Eduardo Ruiz-Hitzky
- Materials Science Institute of Madrid (ICMM), CSIC C/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC) Madrid Spain
| | - Margarita Darder
- Materials Science Institute of Madrid (ICMM), CSIC C/ Sor Juana Inés de la Cruz 3 28049 Madrid Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC) Madrid Spain
| |
Collapse
|
22
|
Boarino A, Klok HA. Opportunities and Challenges for Lignin Valorization in Food Packaging, Antimicrobial, and Agricultural Applications. Biomacromolecules 2023; 24:1065-1077. [PMID: 36745923 PMCID: PMC10015462 DOI: 10.1021/acs.biomac.2c01385] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The exploration of renewable resources is essential to help transition toward a more sustainable materials economy. The valorization of lignin can be a key component of this transition. Lignin is an aromatic polymer that constitutes approximately one-third of the total lignocellulosic biomass and is isolated in huge quantities as a waste material of biofuel and paper production. About 98% of the 100 million tons of lignin produced each year is simply burned as low-value fuel, so this renewable polymer is widely available at very low cost. Lignin has valuable properties that make it a promising material for numerous applications, but it is far from being fully exploited. The aim of this Perspective is to highlight opportunities and challenges for the use of lignin-based materials in food packaging, antimicrobial, and agricultural applications. In the first part, the ongoing research and the possible future developments for the use of lignin as an additive to improve mechanical, gas and UV barrier, and antioxidant properties of food packaging items will be treated. Second, the application of lignin as an antimicrobial agent will be discussed to elaborate on the activity of lignin against bacteria, fungi, and viruses. Finally, the use of lignin in agriculture will be presented by focusing on the application of lignin as fertilizer.
Collapse
Affiliation(s)
- Alice Boarino
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut
des Matériaux and Institut des Sciences et Ingénierie
Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Silva KF, Marques CS, de Freitas Junior A, Dias MV, Mori FA. Whey protein isolate and kraft lignin multifunctional films for potential food packaging application: UV block and antioxidant potential. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
24
|
Hararak B, Wanmolee W, Wijaranakul P, Prakymoramas N, Winotapun C, Kraithong W, Nakason K. Physicochemical properties of lignin nanoparticles from softwood and their potential application in sustainable pre-harvest bagging as transparent UV-shielding films. Int J Biol Macromol 2023; 229:575-588. [PMID: 36592857 DOI: 10.1016/j.ijbiomac.2022.12.270] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/11/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
Technical lignin can be mainly obtained as a waste by-product from pulp industry, and it exhibits unique properties including ultraviolet adsorption, biodegradable, antibacterial, and antioxidant which can be utilized for bioplastic applications. However, common limitations of technical lignin for plastic applications are compatibility mainly due to poor interfacial adhesion, relatively large particle size and impurity. In this study lignin nanoparticles from softwood (S-LNPs) were successfully produced through a continuous-green-scalable antisolvent precipitation and the suitability of S-LNPs for fabrication of bio-composite polybutylene succinate (PBS) films using conventional blown film extrusion was examined. The attained S-LNPs showed lower ash content, higher phenolic content and higher lignin content compared to pristine softwood kraft lignin (S-lignin). Rheological property including shear viscosity and melt-flow index was determined. The obtained PBS/S-LNP composite films showed improved tensile modulus, higher water vapor transmission rate and excellent UV-shielding ability compared to neat PBS and PBS/S-lignin films. Accelerated weathering testing was conducted to replicate outdoor conditions. Degradation indices including carbonyl, vinyl and hydroxyl of the weathered PBS/lignin composites were evaluated for photo-oxidative stability. The S-LNPs as multifunctional bio-additives in biodegradable composite film exhibited superior performances of transparency, UV-absorption and stiffness with high photo-oxidative stability suitable for outdoor applications.
Collapse
Affiliation(s)
- Bongkot Hararak
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand.
| | - Wanwitoo Wanmolee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Pawarisa Wijaranakul
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Natcha Prakymoramas
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Charinee Winotapun
- National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Wasawat Kraithong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Khlong-Nueng, Khlong Luang, Pathumthani 12120, Thailand
| | - Kamonwat Nakason
- Department of Sanitary Engineering, Faculty of Public Health, Mahidol University, Bangkok 10400, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| |
Collapse
|
25
|
Lignin Nanoparticles for Enhancing Physicochemical and Antimicrobial Properties of Polybutylene Succinate/Thymol Composite Film for Active Packaging. Polymers (Basel) 2023; 15:polym15040989. [PMID: 36850272 PMCID: PMC9967065 DOI: 10.3390/polym15040989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
The natural abundance, polymer stability, biodegradability, and natural antimicrobial properties of lignin open a wide range of potential applications aiming for sustainability. In this work, the effects of 1% (w/w) softwood kraft lignin nanoparticles (SLNPs) on the physicochemical properties of polybutylene succinate (PBS) composite films were investigated. Incorporation of SLNPs into neat PBS enhanced Td from 354.1 °C to 364.7 °C, determined through TGA, whereas Tg increased from -39.1 °C to -35.7 °C while no significant change was observed in Tm and crystallinity, analyzed through DSC. The tensile strength of neat PBS increased, to 35.6 MPa, when SLNPs were added to it. Oxygen and water vapor permeabilities of PBS with SLNPs decreased equating to enhanced barrier properties. The good interactions among SLNPs, thymol, and PBS matrix, and the high homogeneity of the resultant PBS composite films, were determined through FTIR and FE-SEM analyses. This work revealed that, among the PBS composite films tested, PBS + 1% SLNPs + 10% thymol showed the strongest microbial growth inhibition against Colletotrichum gloeosporioides and Lasiodiplodia theobromae, both in vitro, through a diffusion method assay, and in actual testing on active packaging of mango fruit (cultivar "Nam Dok Mai Si Thong"). SLNPs could be an attractive replacement for synthetic substances for enhancing polymer properties without compromising the biodegradability of the resultant material, and for providing antimicrobial functions for active packaging applications.
Collapse
|
26
|
Rojas-Lema S, Nilsson K, Langton M, Trifol J, Gomez-Caturla J, Balart R, Garcia-Garcia D, Moriana R. The effect of pine cone lignin on mechanical, thermal and barrier properties of faba bean protein films for packaging applications. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Sogut E, Seydim AC. Utilization of chestnut shell lignin in alginate films. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1049-1058. [PMID: 35043985 DOI: 10.1002/jsfa.11785] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lignocellulosic structures obtained from agricultural wastes can re-design sustainable packaging materials. The present study investigated the utilization of lignocellulose (LS), alkali lignin (L) and hydroxymethylated (modified) lignin (ML), separated from chestnut shells in alginate (AL) films at 100 and 200 mg g-1 (10% and 20%, w/w based on AL), as reinforcing agents. Lignin modification and concentration effects on the AL films were characterized by water vapor permeability (WVP), as well as morphological, mechanical, optical, thermal and active properties. RESULTS Fourier transform infrared spectroscopy results showed that extracted L and LS had different structures, and the modification of L resulted in a peak shift and a decrease in peak intensities between 1250 and 800 cm-1 . The antioxidant and antimicrobial activity tests showed that films containing L had higher activity values (P < 0.05). WVP of the films containing ML was the lowest (P < 0.05) and the results revealed that 20% (w/w) concentration had an adverse effect on the WVP of films. The addition of L, LS and ML increased the tensile strength, elastic modulus and thermal properties (P < 0.05) compared to AL control films. With an increasing concentration, films containing L-based structures showed higher opacity and relatively lower L* values (P < 0.05). CONCLUSION These results show that the addition of lignin to biopolymers is a promising method for improving the properties of biopolymers and providing functional attributes. LS had no or little effect on the film properties; however, the modification of L had the advantage of enhancing WVP and thermal properties at the same time as showing a decrease in functional properties compared to L. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ece Sogut
- Suleyman Demirel University, Faculty of Engineering, Food Engineering Department, Isparta, Turkey
| | - Atif Can Seydim
- Suleyman Demirel University, Faculty of Engineering, Food Engineering Department, Isparta, Turkey
| |
Collapse
|
28
|
Effect of Loblolly Pine ( Pinus taeda L.) Hemicellulose Structure on the Properties of Hemicellulose-Polyvinyl Alcohol Composite Film. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010046. [PMID: 36615241 PMCID: PMC9822227 DOI: 10.3390/molecules28010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Hemicellulose is the second most abundant natural polysaccharide and a promising feedstock for biomaterial synthesis. In the present study, the hemicellulose of loblolly pine was obtained by the alkali extraction-graded ethanol precipitation technique, and the hemicellulose-polyvinyl alcohol (hemicellulose-PVA) composite film was prepared by film casting from water. Results showed that hemicellulose with a low degree of substitution is prone to self-aggregation during film formation, while hemicellulose with high branching has better compatibility with PVA and is easier to form a homogeneous composite film. In addition, the higher molecular weight of hemicellulose facilitates the preparation of hemicellulose-PVA composite film with better mechanical properties. More residual lignin in hemicellulose results in the better UV shielding ability of the composite film. This study provides essential support for the efficient and rational utilization of hemicellulose.
Collapse
|
29
|
Zhao J, Liu T, Xia K, Liu X, Zhang X. Preparation and application of edible agar-based composite films modified by cellulose nanocrystals. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
30
|
Emerging challenges on viability and commercialization of lignin in biobased polymers for food packaging: A review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Julinová M, Vaňharová L, Šašinková D, Kalendová A, Burešová I. Characterization and biodegradation of ternary blends of lignosulfonate/synthetic zeolite/polyvinylpyrrolidone for agricultural chemistry. Int J Biol Macromol 2022; 213:110-122. [PMID: 35644317 DOI: 10.1016/j.ijbiomac.2022.05.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/13/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
Abstract
This study investigates novel ternary polymer blends based on polyvinylpyrrolidone (PVP) as the matrix in combination with lignosulfonate and synthetic zeolite. The blends were prepared by the casting method, and their properties were analysed by various techniques, i.e. FTIR analysis, differential scanning calorimetry and thermogravimetric analysis, including tests for water solubility and uptake, and determination of adhesion and hardness. The biodegradation of the blends in soil was also evaluated, and an experiment was conducted on plant growth (Sinapis alba). Optical microscopy showed that particles of the synthetic zeolite were relatively evenly distributed in the polymer matrix, forming random networks therein. The FTIR spectra for the blends proved that hydrogen bonding interactions had occurred between the PVP/synthetic zeolite and PVP/lignosulfonate. DSC analysis confirmed the good miscibility of the PVP and lignosulfonate. TGA results indicated that the thermal stability of the PVP was maintained. Lignosulfonate had the effect of reducing the adhesion of the blends. However, it was revealed that effect depends greatly on the presence of zeolite and the concentration of lignosulfonate. The obtained results showed that the optimal composition of the blend is 2.5 wt% of zeolite and 5 wt% of lignosulfonate into the PVP. Its water solubility and uptake was satisfactory from the perspective of handling and further utilization. A respirometric biodegradation test confirmed that the ternary blend was environmentally friendly, in addition to which a germination experiment evidenced that the lignosulfonate and synthetic zeolite promoted the root growth and development of S. alba. From these findings it was concluded that the novel ternary polymer blend was applicable as either as seed carriers (in the form of seed tapes) or as a biocompatible coating to protect seeds.
Collapse
Affiliation(s)
- Markéta Julinová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01 Zlín, Czech Republic.
| | - Ludmila Vaňharová
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01 Zlín, Czech Republic
| | - Dagmar Šašinková
- Department of Environmental Protection Engineering, Faculty of Technology, Tomas Bata University in Zlín, Nad Ovčírnou 3685, 760 01 Zlín, Czech Republic
| | - Alena Kalendová
- Department of Polymer Engineering, Faculty of Technology, Tomas Bata University in Zlin, Vavrečkova 275, 762 72 Zlín, Czech Republic
| | - Iva Burešová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, Mostní 5139, 760 01 Zlín, Czech Republic
| |
Collapse
|
32
|
Hernández V, Ibarra D, Triana JF, Martínez-Soto B, Faúndez M, Vasco DA, Gordillo L, Herrera F, García-Herrera C, Garmulewicz A. Agar Biopolymer Films for Biodegradable Packaging: A Reference Dataset for Exploring the Limits of Mechanical Performance. MATERIALS 2022; 15:ma15113954. [PMID: 35683252 PMCID: PMC9182270 DOI: 10.3390/ma15113954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023]
Abstract
This article focuses on agar biopolymer films that offer promise for developing biodegradable packaging, an important solution for reducing plastics pollution. At present there is a lack of data on the mechanical performance of agar biopolymer films using a simple plasticizer. This study takes a Design of Experiments approach to analyze how agar-glycerin biopolymer films perform across a range of ingredients concentrations in terms of their strength, elasticity, and ductility. Our results demonstrate that by systematically varying the quantity of agar and glycerin, tensile properties can be achieved that are comparable to agar-based materials with more complex formulations. Not only does our study significantly broaden the amount of data available on the range of mechanical performance that can be achieved with simple agar biopolymer films, but the data can also be used to guide further optimization efforts that start with a basic formulation that performs well on certain property dimensions. We also find that select formulations have similar tensile properties to thermoplastic starch (TPS), acrylonitrile butadiene styrene (ABS), and polypropylene (PP), indicating potential suitability for select packaging applications. We use our experimental dataset to train a neural network regression model that predicts the Young's modulus, ultimate tensile strength, and elongation at break of agar biopolymer films given their composition. Our findings support the development of further data-driven design and fabrication workflows.
Collapse
Affiliation(s)
- Valentina Hernández
- Department of Management, Faculty of Management and Economics, University of Santiago of Chile (USACH), Avenida Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170022, Chile
| | - Davor Ibarra
- Department of Mechanical Engineering, University of Santiago of Chile (USACH), Avenida Libertador Bernardo O'Higgins 3363, Santiago 9170022, Chile
| | - Johan F Triana
- Department of Physics, University of Santiago of Chile (USACH), Avenida Victor Jara 3493, Santiago 9170124, Chile
| | - Bastian Martínez-Soto
- Department of Mathematics and Computer Science, University of Santiago of Chile (USACH), Las Sophoras 173, Santiago 9170124, Chile
| | - Matías Faúndez
- Department of Mechanical Engineering, University of Santiago of Chile (USACH), Avenida Libertador Bernardo O'Higgins 3363, Santiago 9170022, Chile
| | - Diego A Vasco
- Department of Mechanical Engineering, University of Santiago of Chile (USACH), Avenida Libertador Bernardo O'Higgins 3363, Santiago 9170022, Chile
| | - Leonardo Gordillo
- Department of Physics, University of Santiago of Chile (USACH), Avenida Victor Jara 3493, Santiago 9170124, Chile
| | - Felipe Herrera
- Department of Physics, University of Santiago of Chile (USACH), Avenida Victor Jara 3493, Santiago 9170124, Chile
- ANID-Millennium Institute for Research in Optics, Concepción 4030000, Chile
| | - Claudio García-Herrera
- Department of Mechanical Engineering, University of Santiago of Chile (USACH), Avenida Libertador Bernardo O'Higgins 3363, Santiago 9170022, Chile
| | - Alysia Garmulewicz
- Department of Management, Faculty of Management and Economics, University of Santiago of Chile (USACH), Avenida Libertador Bernardo O'Higgins 3363, Estación Central, Santiago 9170022, Chile
- CABDyN Complexity Centre, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
33
|
Kinetic and thermodynamic study on the esterification of oleic acid over SO 3H-functionalized eucalyptus tree bark biochar catalyst. Sci Rep 2022; 12:8653. [PMID: 35606402 PMCID: PMC9126883 DOI: 10.1038/s41598-022-12539-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/26/2022] [Indexed: 11/15/2022] Open
Abstract
Herein, esterification of oleic acid (OA) over tosylic acid functionalized eucalyptus bark biochar (TsOH-MBC) to synthesize fatty acid methyl ester (FAME) was investigated. The TsOH-MBC catalyst was prepared via pyrolysis-activation-sulfonation process at various impregnation ratios and was characterized by SEM, FTIR, EDX, XRD, BET, TGA and acid site density techniques. The catalytic performance of the sulfonated biochar catalyst was described in terms of acidity and FAME yield. 6 g of sulfonic acid loaded on 10 g of MBC (6TsOH-MBC) appeared to be most appropriate combination to achieve a highly active catalyst for the esterification of OA with 96.28% conversion to FAME at 80 °C for 5 h with catalyst loading of 4.0 wt% and 8:1 methanol/OA molar ratio. The catalytic reaction kinetic data were very well described by the second-order model, with a rate coefficient of 0.223 mL mol−1 h−1 at 80 °C and activation energy of 81.77 kJ mol−1. The thermodynamic parameters such as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta H$$\end{document}ΔH, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta S$$\end{document}ΔS and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta G$$\end{document}ΔG were determined to be 78.94 kJ mol−1, 135.3 J mol−1 K−1 and 33.03 kJ mol−1, respectively. This research provided an environmentally friendly procedure for FAME production that could be replicated on a commercial scale.
Collapse
|
34
|
Yusuff AS, Thompson-Yusuff KA, Porwal J. Sulfonated biochar catalyst derived from eucalyptus tree shed bark: synthesis, characterization and its evaluation in oleic acid esterification. RSC Adv 2022; 12:10237-10248. [PMID: 35424967 PMCID: PMC8972392 DOI: 10.1039/d1ra09179d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, fatty acid (oleic acid, OA) was upgraded to fatty acid methyl ester (FAME) via esterification reaction using sulfonated biochar obtained from eucalyptus tree shed bark as solid acid catalyst. Under the optimal esterification conditions (i.e., at 65 °C for 2 h using a methanol/OA molar ratio of 10 : 1 with a catalyst dosage of 4 wt%), the FAME yield was 97.05 ± 0.28% when a solid acid catalyst prepared by loading 6 g of p-Toluenesulfonic acid (p-TSA) on 2 g of activated biochar (p-TSA3/ABC) was used. The remarkable performance of the p-TSA3/ABC could be attributed to its high acidity (468.8 μmol g-1) and dominance of the SO3H acid site on the catalyst surface. Experimental findings showed that the p-TSA3/ABC was relatively stable due to its highly functionalized structure. The catalyst was recycled for five successive cycles and exhibited no dramatic decrease in catalytic activity.
Collapse
Affiliation(s)
- Adeyinka S Yusuff
- Department of Chemical and Petroleum Engineering, College of Engineering, Afe Babalola University Ado-Ekiti Nigeria
| | - Kudirat A Thompson-Yusuff
- Department of Chemical and Polymer Engineering, Faculty of Engineering, Lagos State University Epe Campus Epe Nigeria
| | - Jyoti Porwal
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum Dehradun India
| |
Collapse
|
35
|
Structural characteristics and thermal properties of regenerated cellulose, hemicellulose and lignin after being dissolved in ionic liquids. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Qiao D, Lu J, Shi W, Li H, Zhang L, Jiang F, Zhang B. Deacetylation enhances the properties of konjac glucomannan/agar composites. Carbohydr Polym 2022; 276:118776. [PMID: 34823792 DOI: 10.1016/j.carbpol.2021.118776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023]
Abstract
From a microstructural point of view, this work concerns how deacetylation improves the practical characteristics of deacetylated-konjac glucomannan/agar (DK/A) composite films. As disclosed by infrared spectroscopy and X-ray diffraction, the deacetylation of konjac glucomannan (KGM) enhanced the chain interactions in DK/A composites and suppressed the realignment of agar molecules into crystallites. The enhanced associations between acetyl-free regions of KGM and agar reduced the exposure of OH groups and thus increased the hydrophobicity of the composites. Besides, the partial removal of acetyl groups allowed shortened distances between chains; consequently, denser composite matrices emerged with lower water vapor permeability and higher tensile strength. Also, the KGM deacetylation increased the matrix flexibility and elongation at break for DK/A composites, associated with the hindered rearrangement of agar chains. Thus, altering the deacetylation degree of KGM may be an effective way to design KGM-based composites with improved hydrophobicity and mechanical performance.
Collapse
Affiliation(s)
- Dongling Qiao
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jieyi Lu
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Wenjuan Shi
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Hao Li
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Liang Zhang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Fatang Jiang
- Glyn O. Phillips Hydrocolloid Research Centre at HBUT, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Binjia Zhang
- Group for Cereals and Oils Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
37
|
Vijayakumar R, Sivaraman Y, Pavagada Siddappa KM, Dandu JPR. Synthesis of lignin nanoparticles employing acid precipitation method and its application to enhance the mechanical, UV-barrier and antioxidant properties of chitosan films. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2021. [DOI: 10.1080/1023666x.2021.2016305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ramya Vijayakumar
- Food Packaging Technology Department, Polymer Materials Lab, CSIR – Central Food Technological Research Institute, Mysuru, India
| | - Yamini Sivaraman
- Food Packaging Technology Department, Polymer Materials Lab, CSIR – Central Food Technological Research Institute, Mysuru, India
| | - Keshava Murthy Pavagada Siddappa
- Food Packaging Technology Department, Polymer Materials Lab, CSIR – Central Food Technological Research Institute, Mysuru, India
| | - Jeevan Prasad Reddy Dandu
- Food Packaging Technology Department, Polymer Materials Lab, CSIR – Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
38
|
Dextran-Based Edible Coatings to Prolong the Shelf Life of Blueberries. Polymers (Basel) 2021; 13:polym13234252. [PMID: 34883755 PMCID: PMC8659454 DOI: 10.3390/polym13234252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
The development of edible films and coatings in the food packaging industry presents one of the modern strategies for protecting food products and ensuring their freshness and quality during their shelf lives. The application of microbial polysaccharides to the development of food package materials, as an alternative option to the commonly used plastic materials, is both economic and environmentally favorable. New edible films were developed using dextran from lactic acid bacterium Leuconostoc mesenteroides T3, and additionally plasticized by different concentrations of polyglycerol. The best tensile strength of the films was obtained using a formulation that contained 10 wt% of polyglycerol, which corresponded to a value of 4.6 MPa. The most flexible formulation, with elongation at break of 602%, was obtained with 30 wt% of polyglycerol. Water vapor permeability values of the films synthesized in this study were in the range of (3.45–8.81) ∗ 10−12 g/m s Pa. Such low values indicated that they could be efficient in preventing fruit from drying out during storage. Thus, the film formulations were used to coat blueberries in order to assess their quality during a storage time of 21 days at 8 °C. The results showed that dextran/polyglycerol films could be efficient in extending the shelf life of blueberries, which was evidenced by lower weight loss and total sugar solids values, as well as a delay in titratable acidity, in comparison to the uncoated blueberries.
Collapse
|
39
|
Oral Films with Addition Mushroom (Agaricus bisporus) as a Source of Active Compounds. J Pharm Sci 2021; 111:1739-1748. [PMID: 34863975 DOI: 10.1016/j.xphs.2021.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022]
Abstract
The purpose of this study was to develop oral films (OFs) based on agar-agar with the incorporation of mushroom powder (MP) as a source of phenolic compounds. To this end, three different OFs were produced using different concentrations of MP, containing sorbitol and agar-agar. The OFs were characterized based on visual assessment, mass, thickness, moisture content, folding endurance, surface pH, contact angle, and phenolic compound content, scanning electron microscopy, X-ray diffraction, and FTIR, as well as an assessment of their antioxidant capacity. In general, all the OFs showed film-forming capacity after the incorporation of MP, although their mass, thickness, moisture content, and folding endurance differed significantly. The surface pH value remained close to neutrality (∼6.7), regardless of MP concentration. The incorporation of MP increased the crystallinity of the OFs in comparison to that of the agar-based film, but all the OFs showed similar FTIR spectra. The oral films containing 2 g of MP showed antioxidant capacity by ABTS●+ and FRAP of 3.68±0.23 and 14.61±0.66 mMol ET/g OF, respectively, and total phenolic content of 3.55±0.27 µmol GAE/g OF. Thus, oral films offer an innovative source of delivery of active compounds, and their consumption does not cause oral mucosal irritation.
Collapse
|
40
|
M. Rangaraj V, Rambabu K, Banat F, Mittal V. Natural antioxidants-based edible active food packaging: An overview of current advancements. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101251] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Contessa CR, da Rosa GS, Moraes CC. New Active Packaging Based on Biopolymeric Mixture Added with Bacteriocin as Active Compound. Int J Mol Sci 2021; 22:ijms221910628. [PMID: 34638967 PMCID: PMC8508738 DOI: 10.3390/ijms221910628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
The objective of this work was to develop a chitosan/agar-agar bioplastic film incorporated with bacteriocin that presents active potential when used as food packaging. The formulation of the film solution was determined from an experimental design, through the optimization using the desirability function. After establishing the concentrations of the biopolymers and the plasticizer, the purified bacteriocin extract of Lactobacillus sakei was added, which acts as an antibacterial agent. The films were characterized through physical, chemical, mechanical, barrier, and microbiological analyses. The mechanical properties and water vapor permeability were not altered by the addition of the extract. The swelling property decreased with the addition of the extract and the solubility increased, however, the film remained intact when in contact with the food, thus allowing an efficient barrier. Visible light protection was improved by increased opacity and antibacterial capacity was effective. When used as Minas Frescal cream cheese packaging, it contributed to the increase of microbiological stability, showing a reduction of 2.62 log UFC/g, contributing a gradual release of the active compound into the food during the storage time. The film had an active capacity that could be used as a barrier to the food, allowing it to be safely packaged.
Collapse
|
42
|
Lizundia E, Sipponen MH, Greca LG, Balakshin M, Tardy BL, Rojas OJ, Puglia D. Multifunctional lignin-based nanocomposites and nanohybrids. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:6698-6760. [PMID: 34671223 PMCID: PMC8452181 DOI: 10.1039/d1gc01684a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/20/2021] [Indexed: 05/05/2023]
Abstract
Significant progress in lignins valorization and development of high-performance sustainable materials have been achieved in recent years. Reports related to lignin utilization indicate excellent prospects considering green chemistry, chemical engineering, energy, materials and polymer science, physical chemistry, biochemistry, among others. To fully realize such potential, one of the most promising routes involves lignin uses in nanocomposites and nanohybrid assemblies, where synergistic interactions are highly beneficial. This review first discusses the interfacial assembly of lignins with polysaccharides, proteins and other biopolymers, for instance, in the synthesis of nanocomposites. To give a wide perspective, we consider the subject of hybridization with metal and metal oxide nanoparticles, as well as uses as precursor of carbon materials and the assembly with other biobased nanoparticles, for instance to form nanohybrids. We provide cues to understand the fundamental aspects related to lignins, their self-assembly and supramolecular organization, all of which are critical in nanocomposites and nanohybrids. We highlight the possibilities of lignin in the fields of flame retardancy, food packaging, plant protection, electroactive materials, energy storage and health sciences. The most recent outcomes are evaluated given the importance of lignin extraction, within established and emerging biorefineries. We consider the benefit of lignin compared to synthetic counterparts. Bridging the gap between fundamental and application-driven research, this account offers critical insights as far as the potential of lignin as one of the frontrunners in the uptake of bioeconomy concepts and its application in value-added products.
Collapse
Affiliation(s)
- Erlantz Lizundia
- Life Cycle Thinking group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU) Bilbao 48013 Spain
- BCMaterials, Basque Center Centre for Materials, Applications and Nanostructures UPV/EHU Science Park 48940 Leioa Spain
| | - Mika H Sipponen
- Department of Materials and Environmental Chemistry, Stockholm University Svante Arrhenius väg 16C SE-106 91 Stockholm Sweden
| | - Luiz G Greca
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Mikhail Balakshin
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P.O. Box 16300 FI-00076 Aalto Finland
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry, and Department of Wood Science, University of British Columbia 2360 East Mall Vancouver BC V6T 1Z4 Canada
| | - Debora Puglia
- Civil and Environmental Engineering Department, University of Perugia Strada di Pentima 4 05100 Terni Italy
| |
Collapse
|
43
|
Whey protein isolate-lignin complexes as encapsulating agents for enhanced survival during spray drying, storage, and in vitro gastrointestinal passage of Lactobacillus reuteri KUB-AC5. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Cellulose Nanofibers from Olive Tree Pruning as Food Packaging Additive of a Biodegradable Film. Foods 2021; 10:foods10071584. [PMID: 34359453 PMCID: PMC8307744 DOI: 10.3390/foods10071584] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022] Open
Abstract
A biodegradable packaging film containing cellulose nanofibers from olive tree pruning, a by-product of olives production, was obtained using a solvent casting method. Nanocellulose was added to polyvinyl alcohol (PVA) to enhance the technological properties of the composite film as food packaging material. Nanocellulose was obtained from unbleached and bleached pulp through a mechanical and TEMPO pretreatment. Crystalline and chemical structure, surface microstructure, UV and gas barrier, optical, mechanical and antioxidant properties, as well as thermal stability were evaluated. Regarding optical properties, the UV barrier was increased from 6% for the pure PVA film to 50% and 24% for unbleached and bleached nanocellulose, respectively. The antioxidant capacity increased significantly in unbleached mechanical nanocellulose-films (5.3%) compared to pure PVA film (1.7%). In terms of mechanical properties, the tensile strength of the 5% unbleached mechanical nanocellulose films was significantly improved compared to the pure PVA film. Similarly, the 5% nanocellulose films had increased the thermal stability and improved barrier properties, reducing water vapor permeability by 38–59% and presenting an oxygen barrier comparable to aluminum layer and plastic films. Our results support the use of the developed films as a green alternative material for food packaging.
Collapse
|
45
|
Park CW, Han SY, Bandi R, Dadigala R, Lee EA, Kim JK, Cindradewi AW, Kwon GJ, Lee SH. Esterification of Lignin Isolated by Deep Eutectic Solvent Using Fatty Acid Chloride, and Its Composite Film with Poly(lactic acid). Polymers (Basel) 2021; 13:polym13132149. [PMID: 34209918 PMCID: PMC8271993 DOI: 10.3390/polym13132149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/05/2022] Open
Abstract
In this study, the effect of lignin esterification with fatty acid chloride on the properties of lignin and lignin/poly(lactic acid) (PLA) composites was investigated. Lignocellulose (Pinus densiflora S. et Z.) was treated using a deep eutectic solvent (DES) with choline chloride (ChCl)/lactic acid (LA). From the DES-soluble fraction, DES-lignin (DL) was isolated by a regeneration process. Lignin esterification was conducted with palmitoyl chloride (PC). As the PC loading increased for DL esterification, the Mw of esterified DL (EDL) was increased, and the glass transition temperature (Tg) was decreased. In DL or EDL/PLA composite films, it was observed that EDL/PLA had cleaner and smoother morphological characteristics than DL/PLA. The addition of DL or EDL in a PLA matrix resulted in a deterioration of tensile properties as compared with neat PLA. The EDL/PLA composite film had a higher tensile strength and elastic modulus than the DL/PLA composite film. DL esterification decreased water absorption with lower water diffusion coefficients. The effect of lignin esterification on improving the compatibility of lignin and PLA was demonstrated. These results are expected to contribute to the development of high-strength lignin composites.
Collapse
Affiliation(s)
- Chan-Woo Park
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (C.-W.P.); (S.-Y.H.); (R.B.); (R.D.); (G.-J.K.)
| | - Song-Yi Han
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (C.-W.P.); (S.-Y.H.); (R.B.); (R.D.); (G.-J.K.)
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (C.-W.P.); (S.-Y.H.); (R.B.); (R.D.); (G.-J.K.)
| | - Ramakrishna Dadigala
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (C.-W.P.); (S.-Y.H.); (R.B.); (R.D.); (G.-J.K.)
| | - Eun-Ah Lee
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (E.-A.L.); (J.-K.K.); (A.W.C.)
| | - Jeong-Ki Kim
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (E.-A.L.); (J.-K.K.); (A.W.C.)
| | - Azelia Wulan Cindradewi
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (E.-A.L.); (J.-K.K.); (A.W.C.)
| | - Gu-Joong Kwon
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (C.-W.P.); (S.-Y.H.); (R.B.); (R.D.); (G.-J.K.)
- Kangwon Institute of Inclusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (C.-W.P.); (S.-Y.H.); (R.B.); (R.D.); (G.-J.K.)
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (E.-A.L.); (J.-K.K.); (A.W.C.)
- Kangwon Institute of Inclusion Technology, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: ; Tel.: +82-33-250-8329
| |
Collapse
|
46
|
Can Sustainable Packaging Help to Reduce Food Waste? A Status Quo Focusing Plant-Derived Polymers and Additives. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11115307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The promotion of sustainable packaging is part of the European Green Deal and plays a key role in the EU’s social and political strategy. One option is the use of renewable resources and biomass waste as raw materials for polymer production. Lignocellulose biomass from annual and perennial industrial crops and agricultural residues are a major source of polysaccharides, proteins, and lignin and can also be used to obtain plant-based extracts and essential oils. Therefore, these biomasses are considered as potential substitute for fossil-based resources. Here, the status quo of bio-based polymers is discussed and evaluated in terms of properties related to packaging applications such as gas and water vapor permeability as well as mechanical properties. So far, their practical use is still restricted due to lower performance in fundamental packaging functions that directly influence food quality and safety, the length of shelf life, and thus the amount of food waste. Besides bio-based polymers, this review focuses on plant extracts as active packaging agents. Incorporating extracts of herbs, flowers, trees, and their fruits is inevitable to achieve desired material properties that are capable to prolong the food shelf life. Finally, the adoption potential of packaging based on polymers from renewable resources is discussed from a bioeconomy perspective.
Collapse
|
47
|
Amin U, Khan MU, Majeed Y, Rebezov M, Khayrullin M, Bobkova E, Shariati MA, Chung IM, Thiruvengadam M. Potentials of polysaccharides, lipids and proteins in biodegradable food packaging applications. Int J Biol Macromol 2021; 183:2184-2198. [PMID: 34062159 DOI: 10.1016/j.ijbiomac.2021.05.182] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/06/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Bio-based packaging materials are gaining importance due to their biodegradability, sustainability and environmental friendliness. To control the food quality and improve the food safety standards, proteins polysaccharide and lipid-based packaging films are enriched with bioactive and functional substances. However, poor permeability and mechanical characteristics are the challenging areas in their commercialization. Scientists and researchers are using a combination of techniques i.e. hydrogels, crosslinking, etc. to improve the intermolecular forces between different components of the film formulation to counter these challenges More recently, biodegradable packaging materials, sometimes edible, are also used for the delivery of functional ingredients which reveals their potential for drug delivery to counter the nutrient deficiency problems. This study highlights the potentials of bio-based materials i.e. proteins, polysaccharides, lipids, etc. to develop biodegradable packaging materials. It also explores the additives used to improve the physicochemical and mechanical properties of biodegradable packaging materials. Furthermore, it highlights the novel trends in biodegradable packaging from a food safety and quality point of view.
Collapse
Affiliation(s)
- Usman Amin
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Usman Khan
- Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Yaqoob Majeed
- Department of Food Engineering, University of Agriculture, Faisalabad 38000, Pakistan
| | - Maksim Rebezov
- V M Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 26 Talalikhina St., Moscow 109316, Russian Federation; Prokhorov General Physics Institute of the Russian Academy of Science, 38 Vavilova str., Moscow 119991, Russian Federation
| | - Mars Khayrullin
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Elena Bobkova
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Mohammad Ali Shariati
- Department of Technology of Food Products, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73, Zemlyanoy Val St., Moscow 109004, Russian Federation
| | - Ill Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
48
|
Marques de Farias P, Barros de Vasconcelos L, da Silva Ferreira ME, Alves Filho EG, De Freitas VAA, Tapia-Blácido DR. Nopal cladode as a novel reinforcing and antioxidant agent for starch-based films: A comparison with lignin and propolis extract. Int J Biol Macromol 2021; 183:614-626. [PMID: 33933543 DOI: 10.1016/j.ijbiomac.2021.04.143] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
The potential use of nopal cladode flour (NC) as reinforcing/bioactive agent in cassava starch-based films was evaluated and compared with the use of propolis extract or lignin, which are commonly used for these purposes. Cassava starch-based films containing untreated NC (S-NC), NC treated at pH 12 (S-NC12), aqueous propolis extract at two different concentrations (SP1 or SP2), or lignin (S-L) were produced by the casting technique; glycerol was used as plasticizer. NC12 and NC affected the mechanical properties of the cassava starch-based film similarly as compared to propolis extract and lignin. Moreover, NC and NC12 had different performance as reinforcing and antioxidant agent in cassava starch-based film. Thus, S-NC12 film was more elongable (28.5 ± 6.5%), more hydrophobic (contact angle: 70.8° ± 0.1), less permeable to water vapor (0.8 ± 0.0 × 10-10 g·m-1·s-1·Pa-1) and had better antioxidant activity by ABTS•+ (44.70 ± 0.3 μM Trolox·g-1 of film) than the S-NC film. SEM and TGA analysis of films showed that NC12 was better incorporated into the cassava starch matrix than NC, lignin and propolis extract. Overall, nopal cladode flour has potential use in the production of active biodegradable packaging for the food preservation with high oxidation rate.
Collapse
Affiliation(s)
- Patrícia Marques de Farias
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Av. Mister Hull, 2977 - Bloco 847 - Campus do Pici, CEP 60356-001 Fortaleza, CE, Brazil
| | - Lucicleia Barros de Vasconcelos
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Av. Mister Hull, 2977 - Bloco 847 - Campus do Pici, CEP 60356-001 Fortaleza, CE, Brazil
| | - Márcia Eliana da Silva Ferreira
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café, S/N, CEP 14040-903 Ribeirão Preto, SP, Brazil
| | - Elenilson G Alves Filho
- Departamento de Engenharia de Alimentos, Universidade Federal do Ceará, Av. Mister Hull, 2977 - Bloco 847 - Campus do Pici, CEP 60356-001 Fortaleza, CE, Brazil
| | - Victor A A De Freitas
- Departamento de Ciências naturais, Universidade Federal de São João del-Rei, Building B, Office B.07, Minas Gerais, Brazil
| | - Delia Rita Tapia-Blácido
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo, Av. Bandeirantes, 3900 - CEP 14040-901 Bairro Monte Alegre- Ribeirão Preto, SP, Brazil.
| |
Collapse
|
49
|
The Role of Inorganic-Organic Bio-Fillers Containing Kraft Lignin in Improvement in Functional Properties of Polyethylene. MATERIALS 2021; 14:ma14092114. [PMID: 33921994 PMCID: PMC8122499 DOI: 10.3390/ma14092114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
In this study, MgO-lignin (MgO-L) dual phase fillers with varying amounts of lignin as well as pristine lignin and magnesium oxide were used as effective bio-fillers to increase the ultraviolet light protection and enhance the barrier performance of low density polyethylene (LDPE) thin sheet films. Differential scanning calorimetry (DSC) was used to check the crystalline structure of the studied samples, and scanning electron microscopy (SEM) was applied to determine morphological characteristics. The results of optical spectrometry in the range of UV light indicated that LDPE/MgO-L (1:5 wt/wt) composition exhibited the best protection factor, whereas LDPE did not absorb ultraviolet waves. Moreover, the addition of hybrid filler decreased the oxygen permeability factor and water vapor transmission compared with neat LDPE and its composites with pristine additives, such as lignin and magnesium oxide. The strong influence of the microstructure on thin sheet films was observed in the DSC results, as double melting peaks were detected only for LDPE compounded with inorganic-organic bio-fillers: LDPE/MgO-L.
Collapse
|
50
|
Liang J, Ning R, Sun Z, Liu X, Sun W, Zhou X. Preparation and characterization of an eco-friendly dust suppression and sand-fixation liquid mulching film. Carbohydr Polym 2021; 256:117429. [PMID: 33483018 DOI: 10.1016/j.carbpol.2020.117429] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/16/2020] [Accepted: 11/17/2020] [Indexed: 01/06/2023]
Abstract
An eco-friendly dust suppression and sand-fixation liquid mulching film was prepared via a facile secondary spraying process in this work. Water polyurethane (WPU) was blended with dissolved humic acid (HA) firstly, and then the blend solutions (HWPU) were sprayed on the surface of cationic starch (CS) / sodium lignosulfonate (LS) film to synthesize the liquid mulching film (CLS-HWPU). The effects of liquid mulching film composition on mechanical properties in dry and wet states were investigated. The results showed that the optimal composition of liquid mulching film was: 3% (CS), 0.9 % (LS), 1.5 % (glycerol), 2% (HA), and 30 % (WPU). The CLS-HWPU liquid mulching films were characterized in terms of light transmittance, degradation performance test, contact angle test, scanning electron microscopy (SEM), total reflectance-Fourier transform infrared spectrometer (ATR-FTIR), thermo gravimetric analysis (TGA), and erosion resistance test. The results indicated that the CLS-HWPU film had good UV resistance, thermal stability, anti-erosion, and biodegradation. The CLS-HWPU film meets the demand of dust suppression and sand-fixation in dusty areas and desertification environments, which opens a new application field for liquid mulching film with high safety and environmental protection.
Collapse
Affiliation(s)
- Jie Liang
- College of Engineering, Qufu Normal University, Rizhao, 276826, China
| | - Ruxia Ning
- College of Engineering, Qufu Normal University, Rizhao, 276826, China
| | - Zhonghua Sun
- College of Engineering, Qufu Normal University, Rizhao, 276826, China.
| | - Xin Liu
- College of Engineering, Qufu Normal University, Rizhao, 276826, China
| | - Wei Sun
- College of Engineering, Qufu Normal University, Rizhao, 276826, China
| | - Xiangsheng Zhou
- Lithium Battery Product Quality Supervision and Inspection Center, Zaozhuang, 277000, China
| |
Collapse
|