1
|
Teba HE, Khalil IA, Gebreel RM, Fahmy LI, Sorogy HME. Development of antifungal fibrous ocular insert using freeze-drying technique. Drug Deliv Transl Res 2024; 14:2520-2538. [PMID: 38366116 PMCID: PMC11291584 DOI: 10.1007/s13346-024-01527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Candida species is one of the pathogenic fungi of the eye responsible for keratitis that frequently causes vision impairment and blindness. Effective treatment requires long-term use of antifungal drugs, which is opposed by the defensive mechanisms of the eye and inadequate corneal penetration. The objective of this study was to develop a carrier for prolonged ocular application of fluconazole (FLZ) to treat keratitis. FLZ was encapsulated into chitosan fibrous matrices (F1-F4) using different chitosan concentrations (0.02, 0.1, 0.5, and 1%w/v, respectively) by freeze-drying as a single-step technique. Studying the morphology and surface properties of the inserts revealed a porous matrix with fibrous features with a large surface area. Thermal stability and chemical compatibility were confirmed by DSC/TGA/DTA and FT-IR, respectively. Loading capacity (LC) and entrapment efficiency (EE) were determined. According to the in vitro release study, F4 (0.11 mg mg-1 LC and 87.53% EE) was selected as the optimum insert because it had the most sustained release, with 15.85% burst release followed by 75.62% release within 12 h. Ex vivo corneal permeation study revealed a 1.2-fold increase in FLZ permeation from F4 compared to FLZ aqueous solution. Also, in the in vivo pharmacokinetic study in rabbits, F4 increased the AUC0-8 of FLZ by 9.3-fold and its concentration in aqueous humor was maintained above the MIC through the experimentation time. Studies on cytotoxicity (MTT assay) provide evidence for the safety and biocompatibility of F4. Therefore, the freeze-dried FLZ-loaded chitosan fibrous insert could be a promising candidate for treating ocular keratitis.
Collapse
Affiliation(s)
- Hoda E Teba
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 12566, 6th of October, Giza, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 12566, 6th of October, Giza, Egypt
| | - Rana M Gebreel
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 12566, 6th of October, Giza, Egypt
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts, 12451, 6th of October, Giza, Egypt
| | - Heba M El Sorogy
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 12566, 6th of October, Giza, Egypt.
| |
Collapse
|
2
|
Yan Q, Shen S, Liu L, Weng J, Zheng G, Dong X, Yang J, Yang Q, Xie J. Fabrication of controlled porous and ultrafast dissolution porous microneedles by organic-solvent-free ice templating method. Int J Pharm 2024; 660:124220. [PMID: 38734274 DOI: 10.1016/j.ijpharm.2024.124220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Porous Microneedles (PMNs) have been widely used in drug delivery and medical diagnosis owing to their abundant interconnected pores. However, the mechanical strength, the use of organic solvent, and drug loading capacity have long been challenging. Herein, a novel strategy of PMNs fabrication based on the Ice Templating Method is proposed that is suitable for insoluble, soluble, and nanosystem drug loading. The preparation process simplifies the traditional microneedle preparation process with a shorter preparation time. It endows the highly tunable porous morphology, enhanced mechanical strength, and rapid dissolution performance. Micro-CT three-dimensional reconstruction was used to better quantify the internal structures of PMNs, and we further established the equivalent pore network model to statistically analyze the internal pore structure parameters of PMNs. In particular, the mechanical strength is mainly negatively correlated with the surface porosity, while the dissolution velocity is mainly positively correlated with the permeability coefficient by the correlation heatmap. The poorly water-soluble Asiatic acid was encapsulated in PMNs in nanostructured lipid carriers, showing prominent hypertrophic scar healing trends. This work offers a quick and easy way of preparation that may be used to expand PMNs function and be introduced in industrial manufacturing development.
Collapse
Affiliation(s)
- Qinying Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shulin Shen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Linxiao Liu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiaqi Weng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, PR China; College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, PR China
| | - Gensuo Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xu Dong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jing Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qingliang Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, PR China; Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jing Xie
- Third Clinical College of Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou 325000, PR China.
| |
Collapse
|
3
|
Feng Y, Niu L, Gao Z, Zhu L, Li M, Zhang Q, You R. Mild preparation of hyaluronic acid/silk fibroin sponges by modified crosslinking method. Int J Biol Macromol 2024; 272:132805. [PMID: 38825261 DOI: 10.1016/j.ijbiomac.2024.132805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The composites composed of hyaluronic acid (HA) and silk fibroin (SF) exhibit great potential in diverse biomedical applications. However, the utilization of commercial crosslinkers such as 1,4-butanediol diglycidyl ether (BDDE) for crosslinking HA typically necessitates harsh conditions involving strong alkaline, which greatly limits its potential applications. In this study, a mild modified approach was developed to fabricate HA/SF blend sponges crosslinked by BDDE without alkaline conditions. The blend solutions were cryo-concentrated to induce crosslinking reactions. The mechanism of freezing crosslinking was elucidated by investigating the effects of ice crystal growth and HA molecular weight on the degree of crosslinking. The results revealed that HA achieved efficient crosslinking when its molecular weight exceeds 1000 kDa and freezing temperatures ranged from -40 °C to -20 °C. After introducing SF, multiple crosslinks were formed between SF and HA chains, producing water-stable porous sponges. The SEM results demonstrated that the introduction of SF effectively enhanced the interconnectivity between macropores through creating subordinate holes onto the pores wall. Raising the SF content significantly enhanced compression strength, resistance to enzymatic degradation and cell viability of blend sponges. This study provides a novel strategy for designing bioactive HA/SF blend sponges as substitutes for tissue repair and wound dressing.
Collapse
Affiliation(s)
- Yanfei Feng
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, No.1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China
| | - Longxing Niu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Zixin Gao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, No.1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China
| | - Lin Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, No.1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, China
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, No.1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China.
| | - Renchuan You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, No.1 Yangguang Avenue, Jiangxia District, Wuhan 430200, China.
| |
Collapse
|
4
|
Sijin Z, Zhang L, Yin T, You J, Liu R, Wang L, Huang Q, Wang W, Ma H. Exploring the versatility of carbohydrates in surimi and surimi products: novel applications and future perspectives. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1874-1883. [PMID: 37885307 DOI: 10.1002/jsfa.13081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Carbohydrate is one kind of the most important additives in the production of surimi and surimi products, mainly due to its wide range of sources and superior functionality. In recent years, new carbohydrates (oligosaccharides and polysaccharides) have been gradually applied in the production of surimi and surimi products which is mainly driven by consumer requirement on nutritional and the flavors or taste quality and producer requirement on extending the shelf life, like low calorie intake, dietary fiber enrichment, rich taste and improvement of antioxidant properties. Besides anti-freezing and improvement in gelling ability, novel functionalities have been explored such as fat substitution, improving flavor, antibacterial effect, antioxidant effect and improving three-dimensional printability. With an in-depth study of the mechanism of carbohydrate improving the qualities of surimi and surimi products, the application of carbohydrates in surimi would be more effective. Therefore, this review summarizes the new carbohydrates applied in the processing of surimi and surimi products, and their novel functionalities. Additionally, progress of the research on the mechanism of carbohydrate improving the qualities of surimi is also reviewed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhang Sijin
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture genetic and breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, China
- Wuhan Business University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Tao Yin
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture genetic and breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Lan Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-Product Processing Research Sub-Center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Qilin Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- National R & D Branch Center for Conventional Freshwater Fish Processing, Wuhan, China
| | - Weisheng Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Huawei Ma
- ASEAN Key Laboratory of Comprehensive Exploitation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs; Key Laboratory of Aquaculture genetic and breeding and Healthy Aquaculture of Guangxi, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
5
|
Fu Y, Cao Y, Chang Z, Zou C, Jiang D, Gao H, Jia C. Effects of Flammulina velutipes polysaccharide with ice recrystallization inhibition activity on the quality of beef patties during freeze-thaw cycles: An emphasis on water status and distribution. Meat Sci 2024; 209:109420. [PMID: 38154371 DOI: 10.1016/j.meatsci.2023.109420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
The antifreeze activity of Flammulina velutipes polysaccharide (FVP) autoclave-extracted with dilute alkaline and effects of FVP on moisture status, size of ice crystals, physical and chemical characteristics of beef patties during repeated freeze-thaw (F-T) cycles were investigated. Results showed that FVP exhibited ice recrystallization inhibition activity and was able to alter the onset freezing/melting temperature of beef patties. 0.01% FVP significantly alleviated (P < 0.05) the decrement in water holding capacity by inhibiting water migration, restraining the mobility of water, and reducing the size of ice crystals of beef patties during the repeated F-T cycles. In addition, FVP could effectively inhibited oxidation reaction and protein aggregation of beef patties with significant decreases in TBARS value, protein turbidity, contents of total sulfhydryl and carbonyl of myofibrillar protein, and an increase in protein solubility during the repeated cycles. These results suggest FVP could be developed to be a promising cryoprotectant in frozen patties.
Collapse
Affiliation(s)
- Yin Fu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yan Cao
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhongyi Chang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chunjing Zou
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Deming Jiang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hongliang Gao
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Caifeng Jia
- School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
6
|
Ma Y, Bi J, Wu Z, Feng S, Yi J. Tailoring microstructure and mechanical properties of pectin cryogels by modulate intensity of ionic interconnection. Int J Biol Macromol 2024; 262:130028. [PMID: 38340927 DOI: 10.1016/j.ijbiomac.2024.130028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Porous morphology and mechanical properties determine the applications of cryogels. To understand the influence of the ionic network on the microstructure and mechanical properties of pectin cryogels, we prepared low-methoxyl pectin (LMP) cryogels with different Ca2+ concentrations (measured as R-value, ranging from 0 to 2) through freeze-drying (FD). Results showed that the R-values appeared to be crucial parameters that impact the pore morphology and mechanical characteristics of cryogels. It is achieved by altering the network stability and water state properties of the cryogel precursor. Cryogel precursors with a saturated R-value (R = 1) produced a low pore diameter (0.12 mm) microstructure, obtaining the highest crispness (15.00 ± 1.85) and hardness (maximum positive force and area measuring 2.36 ± 0.31 N and 12.30 ± 1.57 N·s respectively). Hardness showed a negative correlation with Ca2+ concentration when R ≤ 1 (-0.89), and a similar correlation with the porosity of the gel network when R ≥ 1 (-0.80). Given the impacts of crosslinking on the pore structure, it is confirmed that the pore diameter can be designed between 56.24 and 153.58 μm by controlling R-value in the range of 0-2.
Collapse
Affiliation(s)
- Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China; College of Mechanical Engineering, Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin University of Science and Technology, Tianjin, China
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| | - Zhonghua Wu
- College of Mechanical Engineering, Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin University of Science and Technology, Tianjin, China
| | - Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China.
| |
Collapse
|
7
|
Li S, Shang L, Chen Y, Song R, Li J, Li B. Preparation of a novel expandable konjac fiber at different freezing temperatures and exploration of its digestion regulation functions. Food Funct 2024; 15:125-138. [PMID: 38047712 DOI: 10.1039/d3fo03814a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
A new form of konjac fiber was successfully prepared, and it could instantaneously expand when in contact with the digestive fluid. The expanded konjac fiber could inhibit the digestion of the ingested food by competing with the substrate for digestive enzymes and space. The konjac fiber with desirable physical properties was obtained at 4 different freezing temperatures (-20 °C, -40 °C, -80 °C, and -196 °C), and the digestion regulation mechanisms of these fibers were systematically explored. The results showed that the konjac fiber prepared at -20 °C displayed an outstanding performance in delaying gastric emptying and preventing intestinal starch hydrolysis, while the fiber prepared under liquid nitrogen conditions (-196 °C) showed the weakest digestion regulation ability. However, the digestion regulation ability of this novel fiber was highly related to the food rheological property, and it exhibited a stronger interference effect on high-viscosity food. Our novel konjac fibers exhibited a great digestion regulation potential. Our findings provide valuable references for the development of dietary fiber-based satiety-enhancing functional foods.
Collapse
Affiliation(s)
- Sha Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Longchen Shang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Yuanyuan Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Rong Song
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, Wuhan 430070, China
| |
Collapse
|
8
|
Yang Q, Li M, Sun X, Wang M, Liu S. Effective mechanical properties of frozen hydrogel with ice inclusions. J Mech Behav Biomed Mater 2023; 148:106190. [PMID: 37913624 DOI: 10.1016/j.jmbbm.2023.106190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Hydrogel exhibits attractive mechanical properties that can be regulated to be extremely tough, strong and resilient, adhesive and fatigue-resistant, thus enabling diverse applications ranging from tissue engineering scaffolds, flexible devices, to soft machines. As a liquid-filled porous material composed of polymer networks and water, the hydrogel freezes at subzero temperatures into a new material composed of polymer matrix and ice inclusions: the frozen hydrogel displays dramatically altered mechanical properties, which can significantly affect its safety and reliability in practical applications. In this study, based upon the theory of homogenization, we predicted the effective mechanical properties (e.g., Young's modulus, shear modulus, bulk modulus and Poisson ratio) of a frozen hydrogel with periodically distributed longitudinal ice inclusions. We firstly estimated its longitudinal Young's modulus, longitudinal Poisson ratio and plane strain bulk modulus using the self-consistent method, and then its longitudinal and transverse shear modulus using the generalized self-consistent method; further, the results were employed to calculate its transverse Young's modulus and transverse Poisson ratio. We validated the theoretical predictions against both finite element (FE) simulation and experimental measurement results, with good agreement achieved. We found that the estimated transverse Poisson ratio ranges from 0.3 to 0.53 and, at low volume fraction of ice inclusions, exhibits a value larger than 0.5 that exceeds the Poisson ratios of both the polymer matrix and the ice inclusion (typically 0.33-0.35). Compared with other homogenization methods (e.g., the rule of mixtures, the Halpin-Tsai equations, and the Mori-Tanaka method), the present approach is more accurate in predicting the effective mechanical properties (in particular, the transverse Poisson ratio) of frozen hydrogel. Our study provides theoretical support for the practical applications of frozen liquid-saturated porous materials such as hydrogel.
Collapse
Affiliation(s)
- Qinyun Yang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Moxiao Li
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Xuechao Sun
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Ming Wang
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Shaobao Liu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China.
| |
Collapse
|
9
|
Wu Y, Wang X, Yao L, Chang S, Wang X. Thermal Insulation Mechanism, Preparation, and Modification of Nanocellulose Aerogels: A Review. Molecules 2023; 28:5836. [PMID: 37570806 PMCID: PMC10421090 DOI: 10.3390/molecules28155836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Energy problems have become increasingly prominent. The use of thermal insulation materials is an effective measure to save energy. As an efficient energy-saving material, nanocellulose aerogels have broad application prospects. However, nanocellulose aerogels have problems such as poor mechanical properties, high flammability, and they easily absorbs water from the environment. These defects restrict their thermal insulation performance and severely limit their application. This review analyzes the thermal insulation mechanism of nanocellulose aerogels and summarizes the methods of preparing them from biomass raw materials. In addition, aiming at the inherent defects of nanocellulose aerogels, this review focuses on the methods used to improve their mechanical properties, flame retardancy, and hydrophobicity in order to prepare high-performance thermal insulation materials in line with the concept of sustainable development, thereby promoting energy conservation, rational use, and expanding the application of nanocellulose aerogels.
Collapse
Affiliation(s)
| | | | - Lihong Yao
- College of Materials Science and Art Design, Wood Science and Technology, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.W.); (X.W.); (S.C.); (X.W.)
| | | | | |
Collapse
|
10
|
Karamikamkar S, Yalcintas EP, Haghniaz R, de Barros NR, Mecwan M, Nasiri R, Davoodi E, Nasrollahi F, Erdem A, Kang H, Lee J, Zhu Y, Ahadian S, Jucaud V, Maleki H, Dokmeci MR, Kim H, Khademhosseini A. Aerogel-Based Biomaterials for Biomedical Applications: From Fabrication Methods to Disease-Targeting Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204681. [PMID: 37217831 PMCID: PMC10427407 DOI: 10.1002/advs.202204681] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Indexed: 05/24/2023]
Abstract
Aerogel-based biomaterials are increasingly being considered for biomedical applications due to their unique properties such as high porosity, hierarchical porous network, and large specific pore surface area. Depending on the pore size of the aerogel, biological effects such as cell adhesion, fluid absorption, oxygen permeability, and metabolite exchange can be altered. Based on the diverse potential of aerogels in biomedical applications, this paper provides a comprehensive review of fabrication processes including sol-gel, aging, drying, and self-assembly along with the materials that can be used to form aerogels. In addition to the technology utilizing aerogel itself, it also provides insight into the applicability of aerogel based on additive manufacturing technology. To this end, how microfluidic-based technologies and 3D printing can be combined with aerogel-based materials for biomedical applications is discussed. Furthermore, previously reported examples of aerogels for regenerative medicine and biomedical applications are thoroughly reviewed. A wide range of applications with aerogels including wound healing, drug delivery, tissue engineering, and diagnostics are demonstrated. Finally, the prospects for aerogel-based biomedical applications are presented. The understanding of the fabrication, modification, and applicability of aerogels through this study is expected to shed light on the biomedical utilization of aerogels.
Collapse
Affiliation(s)
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | | | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Elham Davoodi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Fatemeh Nasrollahi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los Angeles (UCLA)Los AngelesCA90095USA
| | - Ahmet Erdem
- Department of Biomedical EngineeringKocaeli UniversityUmuttepe CampusKocaeli41001Turkey
| | - Heemin Kang
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Junmin Lee
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Hajar Maleki
- Institute of Inorganic ChemistryDepartment of ChemistryUniversity of CologneGreinstraße 650939CologneGermany
- Center for Molecular Medicine CologneCMMC Research CenterRobert‐Koch‐Str. 2150931CologneGermany
| | | | - Han‐Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- College of PharmacyKorea UniversitySejong30019Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| |
Collapse
|
11
|
Study on the Influence of the Preparation Method of Konjac Glucomannan-Silica Aerogels on the Microstructure, Thermal Insulation, and Flame-Retardant Properties. Molecules 2023; 28:molecules28041691. [PMID: 36838679 PMCID: PMC9967830 DOI: 10.3390/molecules28041691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Natural polysaccharides with high viscosity, good thermal stability, and biocompatibility can improve the mechanical properties of inorganic silica aerogels and enhance their application safety. However, the effects of the preparation methods of polysaccharide-silica aerogels on their microstructure and application properties have not been systematically studied. To better investigate the effect of the microstructure on the properties of aerogel materials, two aerogels with different structures were prepared using Konjac glucomannan (KGM) and tetraethoxysilane (TEOS) via physical blending (KTB) and co-precursor methods (KTC), respectively. The structural differences between the KTB and KTC aerogels were characterized, and the thermal insulation and fire-retardant properties were further investigated. The compressive strength of the KTC aerogels with a cross-linked interpenetrating network (IPN) structure was three times higher than that of the KTB aerogels, while their thermal conductivity was 1/3 of that of the KTB aerogels. The maximum limiting oxygen index (LOI) of the KTC aerogels was 1.4 times, the low peak heat release rate (PHRR) was reduced by 61.45%, and the lowest total heat release (THR) was reduced by 41.35% compared with the KTB aerogels. The results showed that the KTC aerogels with the IPN have better mechanical properties, thermal insulation, and fire-retardant properties than the simple physically blending KTB aerogels. This may be due to the stronger hydrogen-bonding interactions between KGM and silica molecules in the KTC aerogels under the unique forcing effect of the IPN, thus enhancing their structural stability and achieving complementary properties. This work will provide new ideas for the microstructure design of aerogels and the research of new thermal insulation and fire-retardant aerogels.
Collapse
|
12
|
Liu Q, Liu Y, Feng Q, Chen C, Xu Z. Preparation of antifouling and highly hydrophobic cellulose nanofibers/alginate aerogels by bidirectional freeze-drying for water-oil separation in the ocean environment. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129965. [PMID: 36122524 DOI: 10.1016/j.jhazmat.2022.129965] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/27/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Oil spills frequently occur in the ocean, and adsorption is one of the effective ways to deal with oil spills. Compared with other adsorbent materials, biomass aerogel has superior selective adsorption capacity. CNF/SA aerogels with good mechanical properties (340 kPa at 90 % strain) and high adsorption capacity (88.91 g/g) were prepared by mixing cellulose nanofibers (CNF) with sodium alginate (SA) through bidirectional freeze-drying, ionic crosslinking, and surface modification to effectively solve the ocean oil spill problem. The bidirectional freeze-drying technology is a green and efficient technique for preparing layered microstructured composite aerogels. The prepared aerogels have a three-dimensional interpenetrating lamellar structure, low density (24.2 mg/cm3), high porosity (97.85 %), and high hydrophobicity (WCA = 144.5°), can be calibrated and used repeatedly. It has potential applications in water-oil separation and can be used as an absorbent for effectively treating oil spills in the ocean environment.
Collapse
Affiliation(s)
- Qiuyan Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanquan Liu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qian Feng
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - ChuChu Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaoyang Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Shi Y, Zheng Y, Li B, Yang X, Guo Q, Liu A. Prevention of quality characteristic decline in freeze-thawed cultured large yellow croaker ( Larimichthys crocea) using flammulina velutipes polysaccharide. Food Sci Nutr 2023; 11:181-190. [PMID: 36655079 PMCID: PMC9834881 DOI: 10.1002/fsn3.3051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023] Open
Abstract
To investigate the cryoprotective effect of flammulina velutipes polysaccharide (FVP) on the quality characteristics in freeze-thawed cultured large yellow croaker, 0.050%, 0.075%, and 0.100% FVP was used before freezing and the quality after thawing was compared with water soaking (WS) and commercial cryoprotectant (CC) treatment. Quality attributes were comprehensively determined instrumentally and organoleptically after thawing at 4°C. Results showed that FVP effectively reduces the quality deterioration of body color and water-holding capacity, while no obvious effects were observed in texture and flavor. As for body color, both FVP and CC treatment could maintain the b* value to a large extent. Among them, 0.075% FVP shows the highest value in two sample points, with 55.2% and 21.0% increases seen in the values in WS. FVP-dose-dependent trends were found in water-holding capacity, where a reduction of 28.26% and 14.38% in thawing loss and cooking loss was observed in the 0.100% FVP group. Low-field nuclear magnetic resonance (LF-NMR) also revealed that immobilized water and free water were more tightly retained in the muscle tissue with FVP addition. The results of the sensory evaluation are essentially in line with the above observations. These findings indicate that FVP has the potential to partially replace commercial cryoprotectants in aquatic products during frozen storage.
Collapse
Affiliation(s)
- Yuzhuo Shi
- Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesShanghaiChina
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Yao Zheng
- Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesShanghaiChina
| | - Baoguo Li
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Xu Yang
- Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesShanghaiChina
| | - Quanyou Guo
- Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesShanghaiChina
| | - Anqi Liu
- Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research InstituteChinese Academy of Fishery SciencesShanghaiChina
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
| |
Collapse
|
14
|
Sun G, Zeng G, Hu C, Wang M. Research progress on the application of tristate water in preparation of starch‐based foaming materials. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gang Sun
- National and Local Joint Engineering Research Center for Advanced Packaging Material and Technology Hunan University of Technology Zhuzhou People's Republic of China
- Hunan Key Laboratory of Biomass Fiber Functional Materials Hunan University of Technology Zhuzhou People's Republic of China
| | - Guangsheng Zeng
- Hunan Key Laboratory of Biomass Fiber Functional Materials Hunan University of Technology Zhuzhou People's Republic of China
- College of Electromechanical Engineering Changsha University Changsha People's Republic of China
| | - Can Hu
- Hunan Key Laboratory of Biomass Fiber Functional Materials Hunan University of Technology Zhuzhou People's Republic of China
| | - Mengli Wang
- National and Local Joint Engineering Research Center for Advanced Packaging Material and Technology Hunan University of Technology Zhuzhou People's Republic of China
| |
Collapse
|
15
|
Chen J, Yang X, Xia X, Wang L, Wu S, Pang J. Low temperature and freezing pretreatment for konjac glucomannan powder to improve gel strength. Int J Biol Macromol 2022; 222:1578-1588. [DOI: 10.1016/j.ijbiomac.2022.09.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
16
|
Elvitigala KCML, Mubarok W, Sakai S. Human Umbilical Vein Endothelial Cells Form a Network on a Hyaluronic Acid/Gelatin Composite Hydrogel Moderately Crosslinked and Degraded by Hydrogen Peroxide. Polymers (Basel) 2022; 14:polym14225034. [PMID: 36433161 PMCID: PMC9696239 DOI: 10.3390/polym14225034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
The study of the capillary-like network formation of human umbilical vein endothelial cells (HUVECs) in vitro is important for understanding the factors that promote or inhibit angiogenesis. Here, we report the behavior of HUVECs on the composite hydrogels containing hyaluronic acid (HA) and gelatin with different degrees of degradation, inducing the different physicochemical properties of the hydrogels. The hydrogels were obtained through horseradish peroxidase (HRP)-catalyzed hydrogelation consuming hydrogen peroxide (H2O2, 16 ppm) supplied from the air, and the degradation degree was tuned by altering the exposure time to the air. The HUVECs on the composite hydrogel with intermediate stiffness (1.2 kPa) obtained through 120 min of the exposure were more elongated than those on the soft (0.4 kPa) and the stiff (2.4 kPa) composite hydrogels obtained through 15 min and 60 min of the exposure, respectively. In addition, HUVECs formed a capillary-like network only on the stiff composite hydrogel although those on the hydrogels with comparable stiffness but containing gelatin alone or alginate instead of HA did not form the network. These results show that the HA/gelatin composite hydrogels obtained through the H2O2-mediated crosslinking and degradation could be a tool for studies using HUVECs to understand the promotion and inhibition of angiogenesis.
Collapse
|
17
|
Jiang J, Zongo AWS, Geng F, Li J, Li B. Effect of Ethanol on Preparation of Konjac Emulgel-Based Fat Analogue by Freeze-Thaw Treatment. Foods 2022. [PMCID: PMC9601312 DOI: 10.3390/foods11203173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the current study, a method using ethanol to modulate the texture properties of konjac gel during freeze-thaw process was used to prepare konjac emulgel-based fat analogue. A certain amount of ethanol was added to konjac emulsion, heated to form a konjac emulgel, then frozen at −18 °C for 24 h, and finally thawed to obtain konjac emulgel-based fat analogue. The effects of different ethanol contents on the properties of frozen konjac emulgel were explored, and data was analyzed by one-way analysis of variance (ANOVA). The emulgels were compared with pork backfat in terms of hardness, chewiness, tenderness, gel strength, pH, and color. The results showed that the konjac emulgel with 6% ethanol had similar mechanical and physicochemical properties to pork backfat after freeze-thaw treatment. The results of syneresis rate and SEM showed that adding 6% ethanol could not only reduce the syneresis rate, but also effectively weaken the damage to the network structure caused by freeze-thaw treatment. The pH value of konjac emulgel-based fat analogue was between 8.35–8.76, and the L* value was similar to that of pork backfat. The addition of ethanol provided a new idea for the preparation of fat analogues.
Collapse
Affiliation(s)
- Jie Jiang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Abel Wend-Soo Zongo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
18
|
Selvasekaran P, Chidambaram R. Bioaerogels as food materials: A state-of-the-art on production and application in micronutrient fortification and active packaging of foods. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Ice-templated additive-free porous starches with tuned morphology and properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Zhao Y, Yan M, Xue S, Zhang T, Shen X. Influence of ultrasound and enzymatic cross-linking on freeze-thaw stability and release properties of whey protein isolate hydrogel. J Dairy Sci 2022; 105:7253-7265. [PMID: 35863927 DOI: 10.3168/jds.2021-21605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
This study investigated the effect of ultrasound and enzymatic cross-linking on the freeze-thaw (FT) stability and release properties of whey protein isolate hydrogels. We evaluated the FT stability by the changes in the microstructure, riboflavin retention, syneresis, water holding capacity (WHC), and texture of gels subjected to 3 FT cycles. High-intensity ultrasound (HUS) and transglutaminase (TGase)-mediated cross-linking improved the FT stability of whey protein isolate hydrogels loaded with riboflavin (WPISAR), as demonstrated by a more uniform and denser porous structure, significantly higher riboflavin retention, WHC, and textural properties, and lower syneresis after 3 FT cycles than those of untreated hydrogels. Furthermore, HUS- and TGase-mediated cross-linking decreased protein erosion and swelling ratio of WPISAR in simulated gastrointestinal fluids (SGIF) and reduced the riboflavin release rate in SGIF both with and without the addition of digestive enzymes. After 3 FT cycles, faster riboflavin release occurred due to a more porous structure induced by ice crystal formation compared with their unfrozen counterparts as detected by confocal laser scanning microscopy. High-intensity ultrasound- and TGase-mediated cross-linking alleviated the FT-induced faster riboflavin release rate in SGIF. High-intensity ultrasound- and TGase-treated gel samples showed that both diffusion and network erosion were responsible for riboflavin release regardless of FT. These results suggest that HUS- and TGase-mediated cross-linking improved the FT stability of WPISAR with a high riboflavin retention, and might be a good candidate as a controlled-release vehicle for riboflavin delivery to overcome undesired FT processing.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Mi Yan
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Shiqi Xue
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
21
|
De la Cruz LG, Abt T, León N, Wang L, Sánchez-Soto M. Ice-Template Crosslinked PVA Aerogels Modified with Tannic Acid and Sodium Alginate. Gels 2022; 8:gels8070419. [PMID: 35877504 PMCID: PMC9321210 DOI: 10.3390/gels8070419] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 12/24/2022] Open
Abstract
With the commitment to reducing environmental impact, bio-based and biodegradable aerogels may be one approach when looking for greener solutions with similar attributes to current foam-like materials. This study aimed to enhance the mechanical, thermal, and flame-retardant behavior of poly(vinyl alcohol) (PVA) aerogels by adding sodium alginate (SA) and tannic acid (TA). Aerogels were obtained by freeze-drying and post-ion crosslinking through calcium chloride (CaCl2) and boric acid (H3BO3) solutions. The incorporation of TA and SA enhanced the PVA aerogel’s mechanical properties, as shown by their high compressive specific moduli, reaching up to a six-fold increase after crosslinking and drying. The PVA/TA/SA aerogels presented a thermal conductivity of 0.043 to 0.046 W/m·K, while crosslinked ones showed higher values (0.049 to 0.060 W/m·K). Under TGA pyrolytic conditions, char layer formation reduced the thermal degradation rate of samples. After crosslinking, a seven-fold decrease in the thermal degradation rate was observed, confirming the high thermal stability of the formed foams. Regarding flammability, aerogels were tested through cone calorimetry. PVA/TA/SA aerogels showed a significant drop in the main parameters, such as the heat release rate (HRR) and the fire growth (FIGRA). The ion crosslinking resulted in a further reduction, confirming the improvement in the fire resistance of the modified compositions.
Collapse
Affiliation(s)
- Lucía G. De la Cruz
- Centre Català del Plàstic, Universitat Politècnica de Catalunya Barcelona Tech (EEBE-UPC), Av. d’Eduard Maristany, 16, 08019 Barcelona, Spain; (L.G.D.l.C.); (T.A.); (N.L.)
| | - Tobias Abt
- Centre Català del Plàstic, Universitat Politècnica de Catalunya Barcelona Tech (EEBE-UPC), Av. d’Eduard Maristany, 16, 08019 Barcelona, Spain; (L.G.D.l.C.); (T.A.); (N.L.)
| | - Noel León
- Centre Català del Plàstic, Universitat Politècnica de Catalunya Barcelona Tech (EEBE-UPC), Av. d’Eduard Maristany, 16, 08019 Barcelona, Spain; (L.G.D.l.C.); (T.A.); (N.L.)
| | - Liang Wang
- Key Laboratory of Advanced Textiles Composites of Ministry of Education, Tiangong University, Binshui West Road 399, Xiqing District, Tianjin 300387, China;
| | - Miguel Sánchez-Soto
- Centre Català del Plàstic, Universitat Politècnica de Catalunya Barcelona Tech (EEBE-UPC), Av. d’Eduard Maristany, 16, 08019 Barcelona, Spain; (L.G.D.l.C.); (T.A.); (N.L.)
- Correspondence: ; Tel.:+34-937398140
| |
Collapse
|
22
|
Aerogel: Functional Emerging Material for Potential Application in Food: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Preparation of konjac glucomannan/xanthan gum/sodium alginate composite gel by freezing combining moisture regulation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Švermickaitė G, Eisinaitė V, Vinauskienė R, Jasutienė I, Leskauskaitė D. Characterisation of hydrogels and aerogels as carriers for sea buckthorn pomace extract. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Greta Švermickaitė
- Department of Food Science and Technology Kaunas University of Technology Radvilenu pl 19 Kaunas LT‐50254 Lithuania
| | - Viktorija Eisinaitė
- Department of Food Science and Technology Kaunas University of Technology Radvilenu pl 19 Kaunas LT‐50254 Lithuania
| | - Rimantė Vinauskienė
- Department of Food Science and Technology Kaunas University of Technology Radvilenu pl 19 Kaunas LT‐50254 Lithuania
| | - Ina Jasutienė
- Department of Food Science and Technology Kaunas University of Technology Radvilenu pl 19 Kaunas LT‐50254 Lithuania
| | - Daiva Leskauskaitė
- Department of Food Science and Technology Kaunas University of Technology Radvilenu pl 19 Kaunas LT‐50254 Lithuania
| |
Collapse
|
25
|
Liu T, Zhang Y, Sun M, Jin M, Xia W, Yang H, Wang T. Effect of Freezing Process on the Microstructure of Gelatin Methacryloyl Hydrogels. Front Bioeng Biotechnol 2022; 9:810155. [PMID: 34976995 PMCID: PMC8717941 DOI: 10.3389/fbioe.2021.810155] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/29/2021] [Indexed: 01/16/2023] Open
Abstract
Gelatin methacryloyl (GelMA) hydrogels have aroused considerable interests in the field of tissue engineering due to tunable physical properties and cell response parameters. A number of works have studied the impact of GelMA concentration, photo-initiator concentration, methacrylic anhydride (MA) concentration, cooling rate and temperature gradient on GelMA hydrogel generation, but little attention has been paid to the effect of the freezing temperatures and freezing time of GelMA prepolymer solution during preparation. In this study, GelMA hydrogels were synthesized with different freezing temperatures and time. It was found that the lower freezing temperatures and longer freezing time caused smaller pore sizes that realized higher cell viability and proliferation of MC3T3-E1 cells. The results showed that tunable microstructure of GelMA could be achieved by regulating the freezing conditions of GelMA, which provided a broad prospect for the applications of GelMA hydrogels in tissue engineering.
Collapse
Affiliation(s)
- Taotao Liu
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | | | - Mingyue Sun
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Wei Xia
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Tianlin Wang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| |
Collapse
|
26
|
Dezotti RS, Furtado LM, Yee M, Valera TS, Balaji K, Ando RA, Petri DFS. Tuning the Mechanical and Thermal Properties of Hydroxypropyl Methylcellulose Cryogels with the Aid of Surfactants. Gels 2021; 7:gels7030118. [PMID: 34449619 PMCID: PMC8396048 DOI: 10.3390/gels7030118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
The mechanical and thermal properties of cryogels depend on their microstructure. In this study, the microstructure of hydroxypropyl methylcellulose (HPMC) cryogels was modified by the addition of ionic (bis (2-ethylhexyl) sodium sulfosuccinate, AOT) and non-ionic (Kolliphor® EL) surfactants to the precursor hydrogels (30 g/L). The surfactant concentrations varied from 0.2 mmol/L to 3.0 mmol/L. All of the hydrogels presented viscous behavior (G″ > G′). Hydrogels containing AOT (c > 2.0 mmol/L) led to cryogels with the lowest compressive modulus (13 ± 1 kPa), the highest specific surface area (2.31 m2/g), the lowest thermal conductivity (0.030 W/(m·°C)), and less hygroscopic walls. The addition of Kolliphor® EL to the hydrogels yielded the stiffest cryogels (320 ± 32 kPa) with the lowest specific surface area (1.11 m2/g) and the highest thermal conductivity (0.055 W/(m·°C)). Density functional theory (DFT) calculations indicated an interaction energy of −31.8 kcal/mol due to the interaction between the AOT sulfonate group and the HPMC hydroxyl group and the hydrogen bond between the AOT carbonyl group and the HPMC hydroxyl group. The interaction energy between the HPMC hydroxyl group and the Kolliphor® EL hydroxyl group was calculated as −7.91 kcal/mol. A model was proposed to describe the effects of AOT or Kolliphor® EL on the microstructures and the mechanical/thermal properties of HPMC cryogels.
Collapse
Affiliation(s)
- Rafael S. Dezotti
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Lineu Prestes 748, São Paulo 05508-000, SP, Brazil; (R.S.D.); (L.M.F.); (R.A.A.)
| | - Laíse M. Furtado
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Lineu Prestes 748, São Paulo 05508-000, SP, Brazil; (R.S.D.); (L.M.F.); (R.A.A.)
| | - Márcio Yee
- Marine Science Department, Federal University of São Paulo, Carvalho de Mendonça 144, Santos 11070-100, SP, Brazil;
- Metallurgical and Materials Engineering Department, Polytechnic School, University of São Paulo, Mello Moraes 2463, São Paulo 05508-030, SP, Brazil;
| | - Ticiane S. Valera
- Metallurgical and Materials Engineering Department, Polytechnic School, University of São Paulo, Mello Moraes 2463, São Paulo 05508-030, SP, Brazil;
| | - Krishnasamy Balaji
- Polymer Engineering Laboratory, PSG Institute of Technology and Applied Research, Neelambur, Coimbatore 641062, India;
| | - Rômulo A. Ando
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Lineu Prestes 748, São Paulo 05508-000, SP, Brazil; (R.S.D.); (L.M.F.); (R.A.A.)
| | - Denise F. S. Petri
- Fundamental Chemistry Department, Institute of Chemistry, University of São Paulo, Lineu Prestes 748, São Paulo 05508-000, SP, Brazil; (R.S.D.); (L.M.F.); (R.A.A.)
- Correspondence: ; Tel.: +55-1130919154
| |
Collapse
|
27
|
Hu X, Wang Y, Zhang L, Xu M. Simple ultrasonic-assisted approach to prepare polysaccharide-based aerogel for cell research and histocompatibility study. Int J Biol Macromol 2021; 188:411-420. [PMID: 34375664 DOI: 10.1016/j.ijbiomac.2021.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/23/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
Salecan, a water-soluble microbial polysaccharide with attractive biocompatible characteristics, is very suitable for aerogel fabrication. However, the practical application of salecan-based aerogels for cell culture was limited by complicated preparation method, lack of cell anchorage signals, and the ability to modulate this properly. Here, a smart aerogel was designed by ultrasonic-assisted self-assembly of salecan and cationic starch (CAS) without any organic and toxic crosslinkers. The ultrasound waves generated a marked impact on self-assemble process by means of ultrasonic cavitation. Aerogel network was produced by strong electrostatic attractions between the polysaccharides. Especially, salecan/CAS ratio can be precisely modulated to tailor the hydrophilicity, mechanical stiffness, and morphologic property. The specific surface area of the aerogels gradually increased with the increase in salecan/CAS ratio. These aerogels were non-cytotoxic, and the incorporation of salecan into them promoted cell-matrix interactions by directionally supporting cell adhesion and proliferation. Most strikingly, in vivo experiment revealed that the histological features in the main organs of the mice were similar to those observed in the PBS-treated control group, and no sign of the histopathological abnormality or tissue destruction was observed, indicating the excellent histocompatibility of the aerogels. This study offered a new and powerful avenue to fabricate functional biomaterial.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing 100091, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province, Nanjing 210042, China; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Beijing 100714, China; National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, China.
| | - Yongmei Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Liangliang Zhang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| | - Man Xu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China
| |
Collapse
|
28
|
Lai R, Liu Y, Liu J. Properties of the konjac glucomannan and zein composite gel with or without freeze-thaw treatment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106700] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Matsushima K, Ono K, Yanagi R, Shioura N, Segi T, Ueno T. Elastic Recovery Properties of Ultralight Carbon Nanotube/Carboxymethyl Cellulose Composites. MATERIALS 2021; 14:ma14144059. [PMID: 34300978 PMCID: PMC8306045 DOI: 10.3390/ma14144059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022]
Abstract
Ultralight materials exhibit superelastic behavior depending on the selection, blending, and carbonization of the materials. Recently, ultimate low-density materials of 5 mg/cm3 or less have attracted attention for applications such as sensors, electrodes, and absorbing materials. In this study, we fabricated an ultralight material composed of single-walled carbon nanotubes (CNT) and sodium carboxymethyl cellulose (CMC), and we investigated the effect of density, composition, and weight average molecular weight of CMC on elastic recovery properties of ultralight CNT/CMC composites. Our results showed that the elastic recovery properties can be improved by reducing the density of the composite, lowering the mass ratio of CNTs, and using CMC with small molecular weight.
Collapse
|
30
|
Food-grade aerogels obtained from polysaccharides, proteins, and seed mucilages: Role as a carrier matrix of functional food ingredients. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
Shang L, Wu C, Wang S, Wei X, Li B, Li J. The influence of amylose and amylopectin on water retention capacity and texture properties of frozen-thawed konjac glucomannan gel. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106521] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Alvarado-Hidalgo F, Ramírez-Sánchez K, Starbird-Perez R. Smart Porous Multi-Stimulus Polysaccharide-Based Biomaterials for Tissue Engineering. Molecules 2020; 25:E5286. [PMID: 33202707 PMCID: PMC7697121 DOI: 10.3390/molecules25225286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
Recently, tissue engineering and regenerative medicine studies have evaluated smart biomaterials as implantable scaffolds and their interaction with cells for biomedical applications. Porous materials have been used in tissue engineering as synthetic extracellular matrices, promoting the attachment and migration of host cells to induce the in vitro regeneration of different tissues. Biomimetic 3D scaffold systems allow control over biophysical and biochemical cues, modulating the extracellular environment through mechanical, electrical, and biochemical stimulation of cells, driving their molecular reprogramming. In this review, first we outline the main advantages of using polysaccharides as raw materials for porous scaffolds, as well as the most common processing pathways to obtain the adequate textural properties, allowing the integration and attachment of cells. The second approach focuses on the tunable characteristics of the synthetic matrix, emphasizing the effect of their mechanical properties and the modification with conducting polymers in the cell response. The use and influence of polysaccharide-based porous materials as drug delivery systems for biochemical stimulation of cells is also described. Overall, engineered biomaterials are proposed as an effective strategy to improve in vitro tissue regeneration and future research directions of modified polysaccharide-based materials in the biomedical field are suggested.
Collapse
Affiliation(s)
- Fernando Alvarado-Hidalgo
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Master Program in Medical Devices Engineering, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Karla Ramírez-Sánchez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Centro de Investigación en Enfermedades Tropicales, CIET, Facultad de Microbiología, Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Ricardo Starbird-Perez
- Centro de Investigación en Servicios Químicos y Microbiológicos, CEQIATEC, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| |
Collapse
|
33
|
Wu K, Fang Y, Wu H, Wan Y, Qian H, Jiang F, Chen S. Improving konjac glucomannan-based aerogels filtration properties by combining aerogel pieces in series with different pore size distributions. Int J Biol Macromol 2020; 166:1499-1507. [PMID: 33181223 DOI: 10.1016/j.ijbiomac.2020.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/01/2022]
Abstract
The pore size distribution of konjac glucomannan (KGM)-based aerogels seriously impacted the air filtration efficiency and filtration resistance. This study aimed to investigate the pore size distribution control of KGM-based aerogels through total solid concentration of the sol and to improve the filtration performance by preparing aerogel stacks, which were made by combining KGM-based aerogels with different pore size distribution (range: 0-180 μm). Results indicated that with increased total solid concentration from 50% to 100% of the origin formulae, aerogel pore size became smaller and the porosity was decreased for all the three sample formulae. Meanwhile, the aerogel mechanical property and filtration efficiency were both strengthened with increased total solid concentration, but the air resistance became significantly higher. The changing extent and rule were influenced by the sample components (KGM, starch, gelatin, wheat straw). The aerogel stacks prepared by in series combining the aerogel pieces with different pore size distribution (from large size to small size) was found to improve filtration efficiency (e.g. from 70% to 80% for K1G2S4WS2) and significantly lower the air resistance (e.g. from 270 Pa to 190 Pa for K1G2S4WS2). This study could guide the filtration performance improvement of aerogels.
Collapse
Affiliation(s)
- Kao Wu
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Ying Fang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Huaxin Wu
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Yi Wan
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Hong Qian
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China
| | - Fatang Jiang
- Glyn O. Philips Hydrocolloid Research Centre at HUT, Hubei University of Technology, Wuhan 430068, China; Department of Architecture and Built Environment, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Sheng Chen
- Yellow Crane Tower Science and Technology Park (Group) Co., Ltd., Wuhan 430040, Hubei, China.
| |
Collapse
|
34
|
Ding X, Dai R, Chen H, Shan Z. Gelatin as green adhesive for the preparation of a multifunctional biobased cryogel derived from bamboo industrial waste. Carbohydr Polym 2020; 255:117340. [PMID: 33436183 DOI: 10.1016/j.carbpol.2020.117340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/05/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022]
Abstract
The effective utilization of bamboo industrial waste to produce value-added products is an important subject. In this paper, a multifunctional biobased cryogel derived from bamboo industrial waste was successfully developed. Bamboo fibres were first extracted from bamboo industrial waste and then dispersed in the gelatin solution to produce bamboo fibres/gelatin cryogels (BFs/G cryogels) by a freeze-drying process. The hydrophobicities of BFs/G cryogels were further improved by modification with methyltrichlorosilane. The prepared BFs/G cryogels possessed low density (23.9-29.5 mg/cm3), high porosity (90.41-95.85%), low thermal conductivity (0.031‒0.047 W/m·K) and excellent sound-insulating performance. The presence of rigid bamboo fibres improved the mechanical performance of the BFs/G cryogel. Furthermore, the BFs/G cryogels exhibited high oil absorption capacities of 23-66 times that of their dry weights. The successful development of this cryogel provides a path for the efficient utilization of bamboo industrial waste as a renewable biomass resource.
Collapse
Affiliation(s)
- Xiaoliang Ding
- The Key Laboratory of Leather Chemistry and Engineering of the Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Rui Dai
- The Key Laboratory of Leather Chemistry and Engineering of the Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Hui Chen
- The Key Laboratory of Leather Chemistry and Engineering of the Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Zhihua Shan
- The Key Laboratory of Leather Chemistry and Engineering of the Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
35
|
|
36
|
El-Naggar ME, Othman SI, Allam AA, Morsy OM. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int J Biol Macromol 2020; 145:1115-1128. [DOI: 10.1016/j.ijbiomac.2019.10.037] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
|
37
|
Nešić A, Cabrera-Barjas G, Dimitrijević-Branković S, Davidović S, Radovanović N, Delattre C. Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules 2019; 25:E135. [PMID: 31905753 PMCID: PMC6983128 DOI: 10.3390/molecules25010135] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/22/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022] Open
Abstract
The use of polysaccharide-based materials presents an eco-friendly technological solution, by reducing dependence on fossil resources while reducing a product's carbon footprint, when compared to conventional plastic packaging materials. This review discusses the potential of polysaccharides as a raw material to produce multifunctional materials for food packaging applications. The covered areas include the recent innovations and properties of the polysaccharide-based materials. Emphasis is given to hemicelluloses, marine polysaccharides, and bacterial exopolysaccharides and their potential application in the latest trends of food packaging materials, including edible coatings, intelligent films, and thermo-insulated aerogel packaging.
Collapse
Affiliation(s)
- Aleksandra Nešić
- Vinca Institute for Nuclear Sciences, University of Belgrade, Mike Petrovica-Alasa 12-14, 11000 Belgrade, Serbia;
- Unidad de Desarrollo Tecnológico, Universidad de Concepcion, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4190000, Chile;
| | - Gustavo Cabrera-Barjas
- Unidad de Desarrollo Tecnológico, Universidad de Concepcion, Avda. Cordillera No. 2634, Parque Industrial Coronel, Coronel 4190000, Chile;
| | | | - Sladjana Davidović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Neda Radovanović
- Inovation Centre of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia;
| | - Cédric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
- Institute Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
38
|
Chen S, Wu P, Yu Z, Zou H, Liu P. Fabrication and properties of anisotropic polyimide aerogels with aligned tube‐like pore structure. J Appl Polym Sci 2019. [DOI: 10.1002/app.48769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shaokang Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research InstituteSichuan University Chengdu 610065 China
| | - Peng Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research InstituteSichuan University Chengdu 610065 China
| | - Zhi Yu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research InstituteSichuan University Chengdu 610065 China
| | - Huawei Zou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research InstituteSichuan University Chengdu 610065 China
| | - Pengbo Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research InstituteSichuan University Chengdu 610065 China
| |
Collapse
|
39
|
The advances of polysaccharide-based aerogels: Preparation and potential application. Carbohydr Polym 2019; 226:115242. [DOI: 10.1016/j.carbpol.2019.115242] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022]
|
40
|
Fabrication and characterization of a novel konjac glucomannan-based air filtration aerogels strengthened by wheat straw and okara. Carbohydr Polym 2019; 224:115129. [DOI: 10.1016/j.carbpol.2019.115129] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 11/17/2022]
|
41
|
Feng Y, Li X, Zhang Q, Yan S, Guo Y, Li M, You R. Mechanically robust and flexible silk protein/polysaccharide composite sponges for wound dressing. Carbohydr Polym 2019; 216:17-24. [DOI: 10.1016/j.carbpol.2019.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/05/2023]
|
42
|
Freezing influence on physical properties of glucomannan hydrogels. Int J Biol Macromol 2019; 128:401-405. [DOI: 10.1016/j.ijbiomac.2019.01.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/21/2018] [Accepted: 01/22/2019] [Indexed: 01/21/2023]
|
43
|
Zhu J, Hu J, Jiang C, Liu S, Li Y. Ultralight, hydrophobic, monolithic konjac glucomannan-silica composite aerogel with thermal insulation and mechanical properties. Carbohydr Polym 2019; 207:246-255. [DOI: 10.1016/j.carbpol.2018.11.073] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/04/2018] [Accepted: 11/22/2018] [Indexed: 02/08/2023]
|
44
|
Wu P, Zhang B, Yu Z, Zou H, Liu P. Anisotropic polyimide aerogels fabricated by directional freezing. J Appl Polym Sci 2018. [DOI: 10.1002/app.47179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Peng Wu
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Bin Zhang
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Zhi Yu
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Huawei Zou
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| | - Pengbo Liu
- State Key Laboratory of Polymer Materials Engineering; Polymer Research Institute of Sichuan University; Chengdu 610065 China
| |
Collapse
|
45
|
Rasoulianboroujeni M, Kiaie N, Tabatabaei FS, Yadegari A, Fahimipour F, Khoshroo K, Tayebi L. Dual Porosity Protein-based Scaffolds with Enhanced Cell Infiltration and Proliferation. Sci Rep 2018; 8:14889. [PMID: 30291271 PMCID: PMC6173780 DOI: 10.1038/s41598-018-33245-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/20/2018] [Indexed: 11/09/2022] Open
Abstract
3D dual porosity protein-based scaffolds have been developed using the combination of foaming and freeze-drying. The suggested approach leads to the production of large, highly porous scaffolds with negligible shrinkage and deformation compared to the conventional freeze-drying method. Scanning electron microscopy, standard histological processing and mercury intrusion porosimetry confirmed the formation of a dual network in the form of big primary pores (243 ± 14 µm) embracing smaller secondary pores (42 ± 3 µm) opened onto their surface, resembling a vascular network. High interconnectivity of the pores, confirmed by micro-CT, is shown to improve diffusion kinetics and support a relatively uniform distribution of isolated human dental pulp stem cells within the scaffold compared to conventional scaffolds. Dual network scaffolds indicate more than three times as high cell proliferation capability as conventional scaffolds in 14 days.
Collapse
Affiliation(s)
- Morteza Rasoulianboroujeni
- Marquette University School of Dentistry, Milwaukee, WI, USA.
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| | - Nasim Kiaie
- Department of Tissue Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fahimeh Sadat Tabatabaei
- Marquette University School of Dentistry, Milwaukee, WI, USA
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Yadegari
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | | | - Kimia Khoshroo
- Marquette University School of Dentistry, Milwaukee, WI, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, USA.
| |
Collapse
|
46
|
Thermal conductivity, structure and mechanical properties of konjac glucomannan/starch based aerogel strengthened by wheat straw. Carbohydr Polym 2018; 197:284-291. [DOI: 10.1016/j.carbpol.2018.06.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/20/2018] [Accepted: 06/02/2018] [Indexed: 11/23/2022]
|
47
|
Effects of konjac glucomannan on the structure, properties, and drug release characteristics of agarose hydrogels. Carbohydr Polym 2018; 190:196-203. [DOI: 10.1016/j.carbpol.2018.02.049] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 12/11/2022]
|
48
|
Lafarge C, Cayot N. Potential Use of Mixed Gels from Konjac Glucomannan and Native Starch for Encapsulation and Delivery of Aroma Compounds: A Review. STARCH-STARKE 2017. [DOI: 10.1002/star.201700159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Céline Lafarge
- Univ. Bourgogne Franche‐Comté, AgroSup DijonPAM UMR A 02.102F‐21000 DijonFrance
| | - Nathalie Cayot
- Univ. Bourgogne Franche‐Comté, AgroSup DijonPAM UMR A 02.102F‐21000 DijonFrance
| |
Collapse
|
49
|
Parikka K, Nikkilä I, Pitkänen L, Ghafar A, Sontag-Strohm T, Tenkanen M. Laccase/TEMPO oxidation in the production of mechanically strong arabinoxylan and glucomannan aerogels. Carbohydr Polym 2017; 175:377-386. [DOI: 10.1016/j.carbpol.2017.07.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
|
50
|
Yang D, Yuan Y, Wang L, Wang X, Mu R, Pang J, Xiao J, Zheng Y. A Review on Konjac Glucomannan Gels: Microstructure and Application. Int J Mol Sci 2017; 18:E2250. [PMID: 29076996 PMCID: PMC5713220 DOI: 10.3390/ijms18112250] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/02/2017] [Accepted: 10/12/2017] [Indexed: 02/05/2023] Open
Abstract
Konjac glucomannan (KGM) has attracted extensive attention because of its biodegradable, non-toxic, harmless, and biocompatible features. Its gelation performance is one of its most significant characteristics and enables wide applications of KGM gels in food, chemical, pharmaceutical, materials, and other fields. Herein, different preparation methods of KGM gels and their microstructures were reviewed. In addition, KGM applications have been theoretically modeled for future uses.
Collapse
Affiliation(s)
- Dan Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yi Yuan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoshan Wang
- College of Materials and Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Macau 999078, China.
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|