1
|
Shahi DK, Awasthi GP, Rajendra Bahadur GC, Panthi KP, Chand AB, Shin M, Kalauni SK, Bhattarai N, Bhatt LR, Yu C, Joshi MK. Rhododendron arboreum Sm. anthocyanin-infused starch, chitosan, and polyvinyl alcohol based composite films: Comparative analysis of physical, UV barrier, antioxidant and intelligent behavior. Int J Biol Macromol 2025; 302:140532. [PMID: 39892533 DOI: 10.1016/j.ijbiomac.2025.140532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 01/13/2025] [Accepted: 01/30/2025] [Indexed: 02/03/2025]
Abstract
Rhododendron arboreum Sm. is found abundantly in the Himalayan region of Nepal and other Asian countries, and anthocyanins extracted from its flower were utilized to develop intelligent food packaging films. The films were synthesized by blending chitosan (CS) with starch (ST), CS with polyvinyl alcohol (PVA), and ST with PVA, incorporating anthocyanin from R. arboreum. A comparative analysis was conducted to evaluate their potential applications in food packaging. Analytical techniques like FESEM, IR spectroscopy, XRD, and TGA confirmed strong interactions between the polymer matrix and anthocyanins through hydrogen bonding and electrostatic attraction. All samples containing anthocyanins exhibited effective UV light barrier properties, with the PVA/ST/ACNs films showing UV blocking up to 450 nm and exhibiting superior antioxidant properties. The pH sensing ability, antioxidant properties, and ammonia sensitivity depend both on anthocyanin and the composition of the polymer matrix. Ammonia sensitivity was highest for PVA/ST/ACNs (70.1 %), followed by PVA/CS/ACNs (47.8 %) and CS/ST/ACNs (5.6 %). Chicken meat packaged with PVA/ST/ACNs films for 48 h showed TVB-N at 46.39 mg/100 g, pH 8.6, and film color changed from reddish pink to greenish-yellow, signifying spoilage. These findings suggest potential for the film as intelligent packaging to monitor meat freshness, correlating TVB-N, pH, and film color.
Collapse
Affiliation(s)
- Dikpal Kumar Shahi
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Ganesh Prasad Awasthi
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| | - G C Rajendra Bahadur
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Khim Prasad Panthi
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Anand Bahadur Chand
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Miyeon Shin
- Department of Energy Storage/Conversion Engineering of Graduate School, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Surya Kant Kalauni
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal.
| | - Narayan Bhattarai
- Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Lok Ranjan Bhatt
- Biological Resources Unit, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal.
| | - Changho Yu
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Energy Storage/Conversion Engineering of Graduate School, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| | - Mahesh Kumar Joshi
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal; Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC 27411, USA; School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
| |
Collapse
|
2
|
Sahara FA, Sultana MS, Amin MK, Shamim Al Mamun M, Dhar PK, Dutta SK. One-Pot Synthesis and Characterization of Magnetic α-Fe 2O 3/CuO/CuFe 2O 4 Nanocomposite for Multifunctional Therapeutic Applications. ChemistryOpen 2025; 14:e202400277. [PMID: 39473328 PMCID: PMC11808263 DOI: 10.1002/open.202400277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Indexed: 02/11/2025] Open
Abstract
This study demonstrates a novel nanostructured drug delivery system utilizing α-Fe2O3/CuO/CuFe2O4 ternary nanocomposite for effective drug transport in sick tissues. Centella Asiatica plant extract was employed to synthesize the Fe2O3/CuO/CuFe2O4 nanocomposite via sol-gel auto combustion technique. The structural and morphological characteristics of the nanocomposite were investigated by XRD, FT-IR, SEM, EDX, and VSM for magnetic properties. The XRD analysis demonstrates the successful synthesis of Fe2O3/CuO/CuFe2O4 nanocomposite with an average crystallite size of 18.393 nm. The antioxidant and antifungal capabilities of this nanocomposite were assessed for its biological activity. A notable inhibitory zone was observed when tested against the Alternaria spp. and Bipolaris sorokiniana fungi. An IC50 value of 109.88 μg/ml was found in the DPPH test, indicating that the nanocomposite exhibited remarkable antioxidant characteristics. Subsequently, metronidazole was encapsulated with a success rate of 55.53 % at pH 1.2, while at pH 7.4 it gained 57.83 %. The drug release of nanocomposite at pH 1.2 after 330 min was 43.41 % and at pH 7.4 after 300 min it was 52.3 %. The results indicate its potential as an excellent candidate for drug delivery. Furthermore, pH was found to be an effective catalyst in the drug loading and release processes.
Collapse
|
3
|
Faisal AAH, Mokif LA, Hassan WH, AlZubaidi R, Al Marri S, Hashim K, Khan MA, Al-Sareji OJ. Continuous and funnel-gate configurations of a permeable reactive barrier for reclamation of groundwater laden with tetracycline: experimental and simulation approaches. Sci Rep 2024; 14:22907. [PMID: 39358388 PMCID: PMC11447163 DOI: 10.1038/s41598-024-73295-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
The current study investigates removing tetracycline from water using batch, column, and tank experiments with statistical modelling using ANN for continuous tests. An artificial neural network (ANN) using the Levenberg-Marquardt back-propagation (LMA) training algorithm is constructed to compare the effectiveness of Tetracycline removal from aqueous solution using the sorption technique with prepared adsorbent. Several characterization analyses XRD, FT-IR, and SEM are employed for prepared Brownmillerite (Ca2Fe2O5)-Na alginate beads. The operating conditions of batch tests involved, contact time (0.1-3 h), initial of tetracycline (Co) of (100-250 mg/L), pH (3-12), agitation speed (50-250) rpm and dosage of adsorbent (0.2-1.2 g/50 mL). The outcomes of experiments have demonstrated that the optimum conditions for the batch test to achieve the maximum adsorbent capacity (qmax =7.845 mg/g) are achieved at pH 7, contact time 1.5 h, adsorbent dose 1.2 g/50 mL, agitation speed of 200 rpm, and initial concentration of TC 100 mg/L. Minimum mean square error (MSE) values of 7.09E-04 for 30 hidden neurons and 0.0029 for 59 hidden neurons in the 1D and 2D systems are accomplished, respectively. The artificial neural network model has exhibited excellent performance with correlation coefficients exceeding 0.980 for the operating variables, demonstrating its accuracy and effectiveness in predicting the experimental outcomes. According to sensitivity analysis, the influential parameter in the column test (1D) is the flow rate (mL/min), with a relative importance of 32.769%. However, in the tank test (2D), time (day) is signified as an influential parameter with a relative importance of 31.207%.
Collapse
Affiliation(s)
- Ayad A H Faisal
- Department of Environmental Engineering, College of Engineering, University of Baghdad, Baghdad, 10001, Iraq.
| | | | - Waqed H Hassan
- College of Engineering, University of Warith Al-Anbiyaa, Kerbala, Iraq
- Department of Civil Engineering, College of Engineering, University of Kerbala, Kerbala, 56001, Iraq
| | - Radhi AlZubaidi
- Civil and Environmental Engineering, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Saeed Al Marri
- Qatar Environment & Energy Research Institute, Al Rayyan, Qatar
| | - Khalid Hashim
- Environmental Research and Studies Center, University of Babylon, Al-Hillah, Iraq.
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool, UK.
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering, Knowledge Park 11, Greater Noida, 201310, India
| | - Osamah J Al-Sareji
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, Veszprém, 8200, Hungary.
| |
Collapse
|
4
|
Singh R, Singh A, Srivastava D, Fatima Z, Prasad R. Crisaborole-Enthused Glycerosomal Gel for an Augmented Skin Permeation. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:120-130. [PMID: 38659269 DOI: 10.2174/0126673878283299240418112318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Crisaborole (CB), a boron-based compound, is the first topical PDE4 inhibitor to be approved by the US Food and Drug Administration (2016) for the treatment of Atopic Dermatitis. It is marketed as a 2% ointment (Eucrisa, Pfizer). However, CB is insoluble in water; therfore, CB glycersomes were formulated to enhance its permeation flux across the skin. OBJECTIVE We developed a glycerosomal gel of CB and compared its in vitro release and permeation flux with the 2% conventional ointment. METHODS Glycerosomes were prepared using thin film hydration method employing CB, soya phosphatidylcholine, and cholesterol. The formed film was further hydrated employing a mixture of phosphate buffer pH 7.4 /glycerin solution containing varying percentages (20,30, 40, and 50 %) of glycerol. The glycerosomes obtained were characterized by their size, polydispersity index (PDI), and Zeta potential. The entrapment efficiency of the optimized formulation (F1) was determined. The in vitro release of F1 was compared with its 2% conventional ointment. F1 was further incorporated into carbopol 934 P gel. The gel was characterized by pH, viscosity, spreadability, and drug content. The permeability flux of the glycerosomal gel was compared with its 2% conventional ointment. RESULTS The optimized CB glycerosomes had a vesicle size of 137.5 ± 50.58 nm, PDI 0.342, and zeta potential -65.4 ± 6.75 mV. CB glycerosomal gel demonstrated a 2.13-fold enhancement in the permeation flux. CONCLUSION It can thereby be concluded that glycerosomes can be an effective delivery system to enhance the penetration of CB across the skin.
Collapse
Affiliation(s)
- Ragini Singh
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Anshu Singh
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Dipti Srivastava
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Sector 125, Noida, 201313, India
- Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Zeeshan Fatima
- Amity Institute of Pharmacy, Amity University, Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Rammani Prasad
- Central Instrumentation Facility, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
5
|
Zhang J, Liu S, Xie C, Wang C, Zhong Y, Fan K. Recent advances in pH-sensitive indicator films based on natural colorants for smart monitoring of food freshness: a review. Crit Rev Food Sci Nutr 2023; 64:12800-12819. [PMID: 37702748 DOI: 10.1080/10408398.2023.2257327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
As a new type of packaging method, natural pigment-based pH-sensitive indicator film packaging can be used to intelligently monitor food freshness, provide consumers with intuitive food freshness information, and own the advantages of small size, low cost and intuitive accuracy. Based on the introduction of the principle of natural pigment in pH-sensitive indicator film intelligent packaging, this paper reviews the types of natural pigment indicators (such as anthocyanins, curcumin) and film-forming matrix materials, and systematically discusses the research progress of their application in freshness monitoring in various foods, and points out the limitations of this intelligent packaging in practical applications. In order to provide natural pigment in the application and promotion of pH-sensitive indicator film packaging for monitoring food freshness, further research and development works are required to overcome the current limitations. The needs for further research and developments are outlined.
Collapse
Affiliation(s)
- Jinfeng Zhang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Shengmao Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Chenxue Xie
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Chengyang Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yi Zhong
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Kai Fan
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
- Institute of Food Science and Technology, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
6
|
Yesilay G, Dos Santos OAL, A BR, Hazeem LJ, Backx BP, J JV, Kamel AH, Bououdina M. Impact of pathogenic bacterial communities present in wastewater on aquatic organisms: Application of nanomaterials for the removal of these pathogens. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106620. [PMID: 37399782 DOI: 10.1016/j.aquatox.2023.106620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
Contaminated wastewater (WW) can cause severe hazards to numerous delicate ecosystems and associated life forms. In addition, human health is negatively impacted by the presence of microorganisms in water. Multiple pathogenic microorganisms in contaminated water, including bacteria, fungi, yeast, and viruses, are vectors for several contagious diseases. To avoid the negative impact of these pathogens, WW must be free from pathogens before being released into stream water or used for other reasons. In this review article, we have focused on pathogenic bacteria in WW and summarized the impact of the different types of pathogenic bacteria on marine organisms. Moreover, we presented a variety of physical and chemical techniques that have been developed to provide a pathogen-free aquatic environment. Among the techniques, membrane-based techniques for trapping hazardous biological contaminants are gaining popularity around the world. Besides, novel and recent advancements in nanotechnological science and engineering suggest that many waterborne pathogens could be inactivated using nano catalysts, bioactive nanoparticles, nanostructured catalytic membranes, nanosized photocatalytic structures, and electrospun nanofibers and processes have been thoroughly examined.
Collapse
Affiliation(s)
- Gamze Yesilay
- Molecular Biology and Genetics Department, Hamidiye Institute of Health Sciences, University of Health Sciences-Türkiye, Istanbul 34668, Türkiye; Experimental Medicine Application & Research Center, University of Health Sciences, Validebag Research Park, Uskudar, Istanbul 34662, Türkiye
| | | | - Bevin Roger A
- Department of Chemistry, Catalysis and Nanomaterials Research Laboratory, Loyola College, Chennai 600 034, India
| | - Layla J Hazeem
- Department of Biology, College of Science, University of Bahrain, 32038, Bahrain
| | | | - Judith Vijaya J
- Department of Chemistry, Catalysis and Nanomaterials Research Laboratory, Loyola College, Chennai 600 034, India
| | - Ayman H Kamel
- Department of Chemistry, College of Science, University of Bahrain, 32038, Bahrain; Department of Chemistry, Faculty of Science, Ain Shams University, Abbasia, Cairo 11566, Egypt
| | - Mohamed Bououdina
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia.
| |
Collapse
|
7
|
Pacheco ARF, Cardoso BD, Pires A, Pereira AM, Araújo JP, Carvalho VM, Rodrigues RO, Coutinho PJG, Castelo-Grande T, Augusto PA, Barbosa D, Lima RA, Teixeira SFCF, Rodrigues ARO, Castanheira EMS. Development of pH-Sensitive Magnetoliposomes Containing Shape Anisotropic Nanoparticles for Potential Application in Combined Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1051. [PMID: 36985945 PMCID: PMC10054438 DOI: 10.3390/nano13061051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Late diagnosis and systemic toxicity associated with conventional treatments make oncological therapy significantly difficult. In this context, nanomedicine emerges as a new approach in the prevention, diagnosis and treatment of cancer. In this work, pH-sensitive solid magnetoliposomes (SMLs) were developed for controlled release of the chemotherapeutic drug doxorubicin (DOX). Shape anisotropic magnetic nanoparticles of magnesium ferrite with partial substitution by calcium (Mg0.75Ca0.25Fe2O4) were synthesized, with and without calcination, and their structural, morphological and magnetic properties were investigated. Their superparamagnetic properties were evaluated and heating capabilities proven, either by exposure to an alternating magnetic field (AMF) (magnetic hyperthermia) or by irradiation with near-infrared (NIR) light (photothermia). The Mg0.75Ca0.25Fe2O4 calcined nanoparticles were selected to integrate the SMLs, surrounded by a lipid bilayer of DOPE:Ch:CHEMS (45:45:10). DOX was encapsulated in the nanosystems with an efficiency above 98%. DOX release assays showed a much more efficient release of the drug at pH = 5 compared to the release kinetics at physiological pH. By subjecting tumor cells to DOX-loaded SMLs, cell viability was significantly reduced, confirming that they can release the encapsulated drug. These results point to the development of efficient pH-sensitive nanocarriers, suitable for a synergistic action in cancer therapy with magnetic targeting, stimulus-controlled drug delivery and dual hyperthermia (magnetic and plasmonic) therapy.
Collapse
Affiliation(s)
- Ana Rita F. Pacheco
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, 4710-057 Braga, Portugal
| | - Beatriz D. Cardoso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, 4710-057 Braga, Portugal
| | - Ana Pires
- Associate Laboratory LaPMET, 4169-007 Porto, Portugal
- IFIMUP—Instituto de Física dos Materiais, University of Porto, R. Campo Alegre, 4169-007 Porto, Portugal
| | - André M. Pereira
- Associate Laboratory LaPMET, 4169-007 Porto, Portugal
- IFIMUP—Instituto de Física dos Materiais, University of Porto, R. Campo Alegre, 4169-007 Porto, Portugal
| | - João P. Araújo
- Associate Laboratory LaPMET, 4169-007 Porto, Portugal
- IFIMUP—Instituto de Física dos Materiais, University of Porto, R. Campo Alegre, 4169-007 Porto, Portugal
| | - Violeta M. Carvalho
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- ALGORITMI Center, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Raquel O. Rodrigues
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Paulo J. G. Coutinho
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, 4710-057 Braga, Portugal
| | - Teresa Castelo-Grande
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paulo A. Augusto
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Domingos Barbosa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Rui A. Lima
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
- CEFT—Transport Phenomena Research Center, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | | | - Ana Rita O. Rodrigues
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, 4710-057 Braga, Portugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Associate Laboratory LaPMET, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Potangale CN, Pardeshi SK. Effect of Ni2+ substitution on structural, magnetic and electrical traits of Ba1-xNixFe2O4. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
9
|
pH-sensitive self-assembled nanofibers based on electrostatic interaction and Schiff base bonding for controlled release of curcumin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Photoelectrochemical study of the spinel CaFe2O4 nanostructure: application to Basic Blue 41 oxidation under solar light. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04952-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Photocatalytic degradation of cefazoline antibiotic using zeolite-supported CdS/CaFe2O4 Z-scheme photocatalyst: Optimization and modeling of process by RSM and ANN. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Purushothaman BK, Maheswari P U, Sheriffa Begum K M M. pH
and magnetic field responsive protein‐inorganic nanohybrid conjugated with biotin: A biocompatible carrier system targeting lung cancer cells. J Appl Polym Sci 2021. [DOI: 10.1002/app.49949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Uma Maheswari P
- Department of Chemical Engineering National Institute of Technology Tiruchirappalli India
| | | |
Collapse
|
13
|
Velusamy P, Su CH, Kannan K, Kumar GV, Anbu P, Gopinath SCB. Surface engineered iron oxide nanoparticles as efficient materials for antibiofilm application. Biotechnol Appl Biochem 2021; 69:714-725. [PMID: 33751641 DOI: 10.1002/bab.2146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/04/2021] [Indexed: 01/07/2023]
Abstract
Overuse of antibiotics has led to the development of multi drug resistant strains. Antibiotic resistance is a major drawback in the biomedical field since medical implants are prone to infection by biofilms of antibiotic resistant strains of bacteria. With increasing prevalence of antibiotic resistant pathogenic bacteria, the search for alternative method is utmost importance. In this regard, magnetic nanoparticles are commonly used as a substitute for antibiotics that can circumvent the problem of biofilms growth on the surface of biomedical implants. Iron oxide nanoparticles (IONPs) have unique magnetic properties that can be exploited in various ways in the biomedical applications. IONPs are engineered employing different methods to induce surface functionalization that include the use of polyethyleneimine and oleic acid. IONPs have a mechanical effect on biofilms when in presence of an external magnet. In this review, a detailed description of surface engineered magnetic nanoparticles as ideal antibacterial agents is provided, accompanied by various methods of literature review. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Palaniyandi Velusamy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, 603 203, Chengalpattu District, Kattankulathur, Tamil Nadu, India
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, Taishan, 24301, Taiwan
| | - Kiruba Kannan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai, Tamil Nadu, 600 025, India
| | - Govindarajan Venkat Kumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, 603 203, Chengalpattu District, Kattankulathur, Tamil Nadu, India
| | - Periasmy Anbu
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Kangar, Perlis, 01000, Malaysia
| |
Collapse
|
14
|
Sheet-on-sheet like calcium ferrite and graphene nanoplatelets nanocomposite: A multifunctional nanocomposite for high-performance supercapacitor and visible light driven photocatalysis. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121646] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Lotocki V, Yazdani H, Zhang Q, Gran ER, Nyrko A, Maysinger D, Kakkar A. Miktoarm Star Polymers with Environment-Selective ROS/GSH Responsive Locations: From Modular Synthesis to Tuned Drug Release through Micellar Partial Corona Shedding and/or Core Disassembly. Macromol Biosci 2020; 21:e2000305. [PMID: 33620748 DOI: 10.1002/mabi.202000305] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Branched architectures with asymmetric polymeric arms provide an advantageous platform for the construction of tailored nanocarriers for therapeutic interventions. Simple and adaptable synthetic methodologies to amphiphilic miktoarm star polymers have been developed in which spatial location of reactive oxygen species (ROS) and glutathione (GSH) responsive entities is articulated to be on the corona shell surface or inside the core. The design of such architectures is facilitated through versatile building blocks and selected combinations of ring-opening polymerization, Steglich esterification, and alkyne-azide click reactions. Soft nanoparticles from aqueous self-assembly of these stimuli responsive miktoarm stars have low critical micelle concentrations and high drug loading efficiencies. Partial corona shedding upon response to ROS is accompanied by an increase in drug release, without significant changes to overall micelle morphology. The location of the GSH responsive unit at the core leads to micelle disassembly and complete drug release. Curcumin loaded soft nanoparticles show higher efficiencies in preventing ROS generation in extracellular and cellular environments, and in ROS scavenging in human glioblastoma cells. The ease in synthetic elaboration and an understanding of structure-property relationships in stimuli responsive nanoparticles offer a facile venue for well-controlled drug delivery, based on the extra- and intracellular concentrations of ROS and GSH.
Collapse
Affiliation(s)
- Victor Lotocki
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Hossein Yazdani
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.,Department of Chemistry, Shahid Beheshti University G.C., Tehran, 1983963113, Iran
| | - Qiaochu Zhang
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.,Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Evan Rizzel Gran
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Anastasiia Nyrko
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
16
|
Shahabadi N, Razlansari M, Khorshidi A, Zhaleh H. Investigation of controlled release properties and anticancer effect of folic acid conjugated magnetic core–shell nanoparticles as a dual responsive drug delivery system on A-549 and A-431 cancer cell lines. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-020-04205-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Magnetic casein-CaFe2O4 nanohybrid carrier conjugated with progesterone for enhanced cytotoxicity of citrus peel derived hesperidin drug towards breast and ovarian cancer. Int J Biol Macromol 2020; 151:293-304. [DOI: 10.1016/j.ijbiomac.2020.02.172] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
|
18
|
Gupta S, Ameta C, Punjabi PB. Greener route for microwave enhanced syntheses of bioactive 1,5‐benzodiazepines using heterogeneous calcium ferrite/graphene oxide nanocomposite as a novel and sustainable catalyst. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Sharoni Gupta
- Microwave Synthesis Laboratory, Department of ChemistryUniversity College of Science, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Chetna Ameta
- Microwave Synthesis Laboratory, Department of ChemistryUniversity College of Science, Mohanlal Sukhadia University Udaipur Rajasthan India
| | - Pinki Bala Punjabi
- Microwave Synthesis Laboratory, Department of ChemistryUniversity College of Science, Mohanlal Sukhadia University Udaipur Rajasthan India
| |
Collapse
|
19
|
Polypyrrole-Chitosan-CaFe2O4 Layer Sensor for Detection of Anionic and Cationic Dye Using Surface Plasmon Resonance. INT J POLYM SCI 2020. [DOI: 10.1155/2020/3489509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A polypyrrole-chitosan-calcium ferrite nanocomposite was prepared using the electrodeposition method. The prepared layer was characterized by using Fourier transform infrared spectroscopy, the X-ray diffraction technique, and field emission electron microscopy. The thickness of the thin layers was in the range of 2.8 nm to 59.5 nm, and the refractive index of the composite layer was in the range of 1.66131+0.156i to 1.62734+0.167i. Detection and removal of cationic and anionic dyes, such as methylene blue and methylene orange, are subject of great interest for protecting environmental water. The layer composite was used to detect methylene orange and methylene blue using the surface plasmon resonance technique. Consequently, the polypyrrole-chitosan-calcium-ferrite composite layer interacted with the anionic and cationic dyes. The resonance angle shift for the detection of the cationic dye was larger than the resonance angle shift for the anionic dye. The sensor limit was achieved from a sensogram at about 0.01 ppm.
Collapse
|
20
|
George D, Maheswari PU, Sheriffa Begum KMM, Arthanareeswaran G. Biomass-Derived Dialdehyde Cellulose Cross-linked Chitosan-Based Nanocomposite Hydrogel with Phytosynthesized Zinc Oxide Nanoparticles for Enhanced Curcumin Delivery and Bioactivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10880-10890. [PMID: 31508956 DOI: 10.1021/acs.jafc.9b01933] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A sustainable biomass-based nanocomposite hydrogel was formulated, characterized, and applied for curcumin delivery. Phytosynthesized zinc oxide nanoparticles (ZnO NPs) employing musk melon (Cucumis melo) seed extract was embedded in the hydrogel matrices and cross-linked using Dialdehyde cellulose prepared from sugarcane (Saccharum officinarum) bagasse (SCB). Nanoparticle incorporation enhanced the hydrogel's swelling degree to 4048% at pH 4.0. Also, an improved tensile strength of 14.1 ± 0.32 MPa was exhibited by the nanocomposite hydrogel compared to 9.79 ± 0.76 MPa for the pure chitosan cellulose hydrogel. A curcumin loading efficiency of 89.68% with around 30% increased loading was exhibited for the nanocomposite hydrogel. A Fickian diffusion-controlled curcumin release mechanism with maximum release at pH 7.4 was obtained. The synergistic effect on the antimicrobial activity was exhibited against Staphylococcus aureus and Trichophyton rubrum. The in vitro cytotoxicity studies employing L929 cells and A431 cells demonstrated good biocompatibility and enhanced anticancer activity of the curcumin-loaded green nanocomposite hydrogel compared to pure curcumin.
Collapse
Affiliation(s)
- Dhanya George
- Department of Chemical Engineering , National Institute of Technology , Tiruchirapalli 620015 , Tamilnadu , India
| | - Palanisamy Uma Maheswari
- Department of Chemical Engineering , National Institute of Technology , Tiruchirapalli 620015 , Tamilnadu , India
| | | | - Gangasalam Arthanareeswaran
- Department of Chemical Engineering , National Institute of Technology , Tiruchirapalli 620015 , Tamilnadu , India
| |
Collapse
|
21
|
Allafchian A, Hosseini SS. Antibacterial magnetic nanoparticles for therapeutics: a review. IET Nanobiotechnol 2019; 13:786-799. [PMID: 31625518 PMCID: PMC8676097 DOI: 10.1049/iet-nbt.2019.0146] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/24/2019] [Accepted: 07/10/2019] [Indexed: 07/29/2023] Open
Abstract
Along with the extensive range of exotic nanoparticle (NPs) applications, investigation of magnetic NPs (MNPs) in vitro has ushered modern antibacterial studies into an increasingly attractive research area. A great number of microorganisms exist in the size scales from nanometre to micrometre regions. The enormous potential of engineered MNPs in therapeutic procedures against various drug-resistant bacteria has declined the menace of fatal bacterial infections. Many biocompatible MNPs have been introduced that possess remarkable impacts on various bacterial strains. Conventional synthesis methods such as co-precipitation or hydrothermal techniques have been widely adopted in the production of MNPs. The MNPs for antibacterial applications are mainly required to be superparamagnetic, recyclable and biocompatible. To implement novel strategies in developing new generation antimicrobial magnetic nanomaterials, it is essential to obtain a comprehensive preview of recent achievements in synthesis, proposed antibacterial mechanisms and characterisation techniques of these nanomaterials. This review highlights notable aspects of antibacterial activity in engineered MNPs and nanocomposites including their particle properties (size, shape and saturation magnetisation), antibacterial mechanisms, synthesis methods, testing methods, surface modifications and minimum inhibitory concentrations.
Collapse
Affiliation(s)
- Alireza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Seyed Sajjad Hosseini
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
22
|
K. Purushothaman B, Harsha S M, Maheswari PU, Sheriffa Begum KM. Magnetic assisted curcumin drug delivery using folate receptor targeted hybrid casein-calcium ferrite nanocarrier. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
George D, Maheswari PU, Begum KMS. Synergic formulation of onion peel quercetin loaded chitosan-cellulose hydrogel with green zinc oxide nanoparticles towards controlled release, biocompatibility, antimicrobial and anticancer activity. Int J Biol Macromol 2019; 132:784-794. [DOI: 10.1016/j.ijbiomac.2019.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/23/2019] [Accepted: 04/02/2019] [Indexed: 10/27/2022]
|
24
|
Ye S, Jiang L, Su C, Zhu Z, Wen Y, Shao W. Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings. Int J Biol Macromol 2019; 133:148-155. [PMID: 30991065 DOI: 10.1016/j.ijbiomac.2019.04.095] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/01/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
A novel BG composite sponge comprising of bacterial cellulose (BC) and gelatin has been synthesized using glutaraldehyde as the cross-linker by a facile method. The morphology, chemical composition and structures of the novel sponges were characterized by SEM, EDS and FTIR spectroscopy. The fabricated BG sponges have regular honeycomb-like structure with uniform pore distribution and large surface area. They have very high porosity of 94%-95% and great swelling property ranging from 3000 to 3150%. Moreover, the released rate of the model drug ampicillin (AP) from the composite sponges depends on the initial addition of AP that the diffusional constant (n) determined using Korsmeyer-Peppas model lies between 0.45 and 0.89, indicating the AP release from BG composite sponges follows non-Fickian diffusion. More interestingly, antibacterial activity of BG sponges was investigated by diffusion disk method against E.coli, C. albicans and S. aureus. The results demonstrated that the obtained BG sponges exhibit excellent antibacterial activity, thus making them have great potentials in various antibacterial applications, especially in the wound dressings.
Collapse
Affiliation(s)
- Shan Ye
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Lei Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chen Su
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhongjie Zhu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yanyi Wen
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Wei Shao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China; Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, PR China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
25
|
Zhang J, Zou X, Zhai X, Huang X, Jiang C, Holmes M. Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food Chem 2019; 272:306-312. [DOI: 10.1016/j.foodchem.2018.08.041] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 02/07/2023]
|
26
|
Kamaraj S, Palanisamy UM, Kadhar Mohamed MSB, Gangasalam A, Maria GA, Kandasamy R. Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier. Eur J Pharm Sci 2018; 116:48-60. [DOI: 10.1016/j.ejps.2018.01.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 01/09/2018] [Accepted: 01/10/2018] [Indexed: 12/12/2022]
|
27
|
Sharma G, Naushad M, Thakur B, Kumar A, Negi P, Saini R, Chahal A, Kumar A, Stadler FJ, Aqil UMH. Sodium Dodecyl Sulphate-Supported Nanocomposite as Drug Carrier System for Controlled Delivery of Ondansetron. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15030414. [PMID: 29495530 PMCID: PMC5876959 DOI: 10.3390/ijerph15030414] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 12/17/2022]
Abstract
Sodium dodecyl sulphate-supported iron silicophosphate (SDS/FeSP) nanocomposite was successfully fabricated by the co-precipitation method. The SDS/FeSP nanocomposite was investigated as a drug carrier for ondansetron. The cumulative drug release of ondansetron was observed at various pH values for different time intervals, i.e., from 20 min to 48 h. A ranking of the drug release was observed at different pHs; pH 2.2 > saline (pH 5.5) > pH 7.4 > pH 9.4 > distilled water. Maximum release of encapsulated drug was found to be about 45.38% at pH 2.2. The cell viability tests of SDS/FeSP nanocomposite concluded that SDS/FeSP nanocomposite was non-cytotoxic in nature.
Collapse
Affiliation(s)
- Gaurav Sharma
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
- School of Chemistry, Shoolini University, Solan 173212, India.
| | - Mu Naushad
- Department of Chemistry, College of Science, Bld.#5, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Bharti Thakur
- School of Chemistry, Shoolini University, Solan 173212, India.
| | - Amit Kumar
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
- School of Chemistry, Shoolini University, Solan 173212, India.
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University, Solan 173212, India.
| | - Reena Saini
- School of Applied Science and Biotechnology, Shoolini University, Solan 173212, India.
| | - Anterpreet Chahal
- School of Applied Science and Biotechnology, Shoolini University, Solan 173212, India.
| | - Ashok Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan 173234, India.
| | - Florian J Stadler
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.
| | - U M H Aqil
- School of Public Health, 3rd Floor, SRM Medical College and Research, Centre, Kattankulathur 603211, India.
| |
Collapse
|