1
|
Wang YZ, Wang ZX, Jiang HJ, Ni LH, Ju H, Wu YC, Li HJ. Advances in the use of nanotechnology for treating gout. Nanomedicine (Lond) 2025:1-15. [PMID: 39873132 DOI: 10.1080/17435889.2025.2457315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Gout is a commonly occurring form of inflammatory arthritis caused by persistently elevated levels of uric acid. Its incidence rate rises with the increases of living standards and poor dietary habits, which has a considerable impact on the quality of life of the patients. Although there is a wide assortment of drugs available for the management of gout, the effectiveness and security of these drugs are limited by their poor chemical stability and insufficient targeting. Therefore, development of effective nanomedicine systems to overcome these problems and treat gout becomes a high priority. This review provides a detailed introduction research progress on developing advanced nanomedicines using polymers, hydrogel, nanocapsules, lipids, bionic vesicles, inorganic artificial organelles and electronically controlled conveyor systems carriers to improve gout therapy.
Collapse
Affiliation(s)
- Yi-Zhen Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Zi-Xuan Wang
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | | | - Li-Hui Ni
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Hao Ju
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, Harbin Institute of Technology, Weihai, P. R. China
| |
Collapse
|
2
|
Sabale V, Belokar V, Jiwankar M, Sabale P. Nanostructured Lipid Carrier-loaded In Situ Gel for Ophthalmic Drug Delivery: Preparation and In Vitro Characterization Studies. Pharm Nanotechnol 2025; 13:171-183. [PMID: 38213174 DOI: 10.2174/0122117385266639231029192409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Nanostructured lipid carriers (NLCs) are explored as vehicles for ophthalmic drug delivery owing to their better drug loading, good permeation, and satisfactory safety profile. OBJECTIVES The purpose of the study was to fabricate and characterize an in situ ocular gel of loratadine as a model drug based on NLCs to enhance the drug residence time. METHODS NLCs were fabricated using the microemulsion method in which solid lipid as Compritol 888 ATO, lipid as oleic acid, surfactant as Tween 80, and isopropyl alcohol as co-surfactant as alcohol were used. Based on the evaluation of formulation batches of NLCs, the optimized batch was selected and further utilized for the formulation of in situ gel containing Carbopol 934 and HPMC K15M as gelling agents, and characterized Results: The optimized NLCs of loratadine exhibited entrapment efficiency of 83.13 ± 0.13% and an average particle size of 18.98 ± 1.22 nm. Drug content and drug release were found to be 98.67 and 92.48%, respectively. Excellent rheology and mucoadhesion were demonstrated by the loratadine NLC-loaded in situ gel to enhance its attachment to the mucosa. NLC-based in situ ocular gel showed the desired results for topical administration. The prepared gel was observed to be non-irritating to the eye. CONCLUSION The optimized NLC-based in situ gel formulation presented better corneal retention and it was found to be stable, offering sustained release of the drug. Thus, the joined system of sol-gel was found promising for ophthalmic drug delivery.
Collapse
Affiliation(s)
- Vidya Sabale
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, 440 037, Maharashtra, India
| | - Vaishnavi Belokar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, 440 037, Maharashtra, India
| | - Manasi Jiwankar
- Dadasaheb Balpande College of Pharmacy, Besa, Nagpur, 440 037, Maharashtra, India
| | - Prafulla Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Mahatma Jyotiba Fuley Shaikshanik Parisar, Nagpur, 440 033, Maharashtra, India
| |
Collapse
|
3
|
Chen Z, Wang A, Qin Y, Chen X, Feng X, He G, Zhu X, Xiao Y, Yu X, Zhong T, Zhang K. Preparation of a thermosensitive and antibacterial in situ gel using poloxamer-quaternized chitosan for sustained ocular delivery of Levofloxacin hydrochloride. Int J Biol Macromol 2024; 283:137479. [PMID: 39537073 DOI: 10.1016/j.ijbiomac.2024.137479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
In this study, a thermosensitive in situ gel with porous structure was developed using poloxamer (Po) and N-(2-hydroxy-3-trimethyl ammonium) propyl chitosan chloride (HTCC). The poloxamer-quaternized chitosan (Po-HTCC) in situ gel exhibited superior rheological property, water absorption capacity and antibacterial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes, making it well-suited for ocular applications. Scanning electron microscope revealed a macroporous architecture with pore sizes ranging from 1 to 2 μm, suggesting that the gel has desirable breathability, corneal adhesion capability, and overall conformability. In vitro drug release assay was conducted with levofloxacin hydrochloride, demonstrating that sustained release over 48 h could be achieved at 34 °C, with approximately 80 % of the drug released within this timeframe. Computational simulations revealed substantial binding affinity between the material and the Escherichia coli outer membrane lipopolysaccharide-associated protein and corneal mucin. The protein showing the strongest binding energy to N-(2-hydroxy-3-trimethyl ammonium) propyl chitosan chloride (HTCC), as calculated by the Molecular Mechanics Generalized Born Surface Area Method (MM-GBSA), was LptD-LptE, with a binding energy of -61.14 ± 4.72 kcal/mol. These results underscore the potential of this system for effective and convenient ocular delivery with sustained drug release.
Collapse
Affiliation(s)
- Zihan Chen
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau
| | - Anyu Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau
| | - Yiming Qin
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau
| | - Xu Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Guangyun He
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoming Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau.
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau.
| | - Kang Zhang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long Taipa, Macau
| |
Collapse
|
4
|
Moon SH, Park SJ, Lee YW, Yang YJ. LCST/UCST behavior of polysaccharides for hydrogel fabrication. RSC Adv 2024; 14:35754-35768. [PMID: 39529738 PMCID: PMC11551713 DOI: 10.1039/d4ra06240j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Hydrogel-based scaffolds play a crucial role in widespread biotechnological applications by providing physicochemical stability to loaded cells or therapeutic agents, interacting with organismal microenvironments, and controlling cargo release. Polysaccharides are regarded as attractive candidates among substrate materials because of their high water-retaining capacity, reactive functional groups, ease of gelation, low immunogenicity, biodegradability, and biocompatibility. However, employing polysaccharide-based hydrogel scaffolds for practical use in response to ongoing physiological and pathological changes within the human body, such as insufficient mechanical strength, uncertain degradation, and uncontrollable release patterns, is challenging. Several physically noncovalent or chemically covalent crosslinking strategies have been utilized to modify the physicochemical properties and biofunctionality of polysaccharide-based hydrogels. Among them, thermo-responsive gelation systems have been considered a promising approach for fabricating advanced scaffolds, referred to as 'stimuli-responsive' or 'smart' hydrogels. This is because of the sol-gel transition with a single trigger, requiring no further environmental or chemical intervention, and in situ and reversible gelation under ambient physiological temperature changes in a minimally invasive manner. This review highlights the classification, reaction mechanisms, characteristics, and advanced studies on thermo-responsive polysaccharides exploited in various biomedical fields.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University Incheon 22212 Republic of Korea
| | - Sol Ji Park
- Department of Biological Sciences and Bioengineering, Inha University Incheon 22212 Republic of Korea
| | - Ye Won Lee
- Department of Biological Sciences and Bioengineering, Inha University Incheon 22212 Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University Incheon 22212 Republic of Korea
- Inha University Hospital Incheon 22332 Republic of Korea
| |
Collapse
|
5
|
Dmour I. Absorption enhancement strategies in chitosan-based nanosystems and hydrogels intended for ocular delivery: Latest advances for optimization of drug permeation. Carbohydr Polym 2024; 343:122486. [PMID: 39174104 DOI: 10.1016/j.carbpol.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/24/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Ophthalmic diseases can be presented as acute diseases like allergies, ocular infections, etc., or chronic ones that can be manifested as a result of systemic disorders, like diabetes mellitus, thyroid, rheumatic disorders, and others. Chitosan (CS) and its derivatives have been widely investigated as nanocarriers in the delivery of drugs, genes, and many biological products. The biocompatibility and biodegradability of CS made it a good candidate for ocular delivery of many ingredients, including immunomodulating agents, antibiotics, ocular hypertension medications, etc. CS-based nanosystems have been successfully reported to modulate ocular diseases by penetrating biological ocular barriers and targeting and controlling drug release. This review provides guidance to drug delivery formulators on the most recently published strategies that can enhance drug permeation to the ocular tissues in CS-based nanosystems, thus improving therapeutic effects through enhancing drug bioavailability. This review will highlight the main ocular barriers to drug delivery observed in the nano-delivery system. In addition, the CS physicochemical properties that contribute to formulation aspects are discussed. It also categorized the permeation enhancement strategies that can be optimized in CS-based nanosystems into four aspects: CS-related physicochemical properties, formulation components, fabrication conditions, and adopting a novel delivery system like implants, inserts, etc. as described in the published literature within the last ten years. Finally, challenges encountered in CS-based nanosystems and future perspectives are mentioned.
Collapse
Affiliation(s)
- Isra Dmour
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| |
Collapse
|
6
|
Adiguzel S, Karamese M, Kugu S, Kacar EA, Esen MF, Erdogan H, Tasoglu S, Bacanli MG, Altuntas S. Doxorubicin-loaded liposome-like particles embedded in chitosan/hyaluronic acid-based hydrogels as a controlled drug release model for local treatment of glioblastoma. Int J Biol Macromol 2024; 278:135054. [PMID: 39187114 DOI: 10.1016/j.ijbiomac.2024.135054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Glioblastoma (GBM) resection and medication treatment are limited, and local drug therapies are required. This study aims to create a hybrid system comprising liposome-like particles (LLP-DOX) encapsulated in chitosan/hyaluronic acid/polyethyleneimine (CHI/HA/PEI) hydrogels, enabling controlled local delivery of doxorubicin (DOX) into the resection cavity for treating GBM. CHI/HA/PEI hydrogels were characterized morphologically, physically, chemically, mechanically, and thermally. Findings revealed a high network and compact micro-network structure, along with enhanced physical and thermal stability compared to CHI/HA hydrogels. Simultaneously, drug release from CHI/HA/PEI/LLP-DOX hydrogels was assessed, revealing continuous and controlled release up to the 148th hour, with no significant burst release. Cell studies showed that CHI/HA/PEI hydrogels are biocompatible with low genotoxicity. Additionally, LLP-DOX-loaded CHI/HA/PEI hydrogels significantly decreased cell viability and gene expression levels compared to LLP-DOX alone. It was also observed that the viability of GBM spheroids decreased over time when interacting with CHI/HA/PEI/LLP-DOX hydrogels, accompanied by a reduction in total surface area and an increase in apoptotic tendencies. In this study, we hypothesized that creating a hybrid drug delivery system by encapsulating DOX-loaded LLPs within a CHI/HA/PEI hydrogel matrix could achieve sustained drug release, improve anticancer efficacy via localized treatment, and effectively mitigate GBM progression for 3D microtissues.
Collapse
Affiliation(s)
- Seyfure Adiguzel
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Molecular Biology and Genetics, Department of Molecular Biology and Genetics, University of Health Sciences, Istanbul 34668, Turkiye
| | - Miray Karamese
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye
| | - Senanur Kugu
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye
| | - Elif Ayse Kacar
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Graduate Programme of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye
| | - Muhammed Fevzi Esen
- Department of Health Information Systems, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye.
| | - Hakan Erdogan
- Department of Analytical Chemistry, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Turkiye.
| | - Savas Tasoglu
- Department of Mechanical Engineering, Faculty of Science, Koc University, Istanbul, Turkiye.
| | - Merve Güdül Bacanli
- Department of Pharmaceutical Toxicology, Gülhane Faculty of Pharmacy, University of Health Sciences Turkey, Ankara 06018, Turkiye.
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey, Istanbul 34662, Turkiye; Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey, Istanbul 34668, Turkiye.
| |
Collapse
|
7
|
Mosallaei N, Malaekeh-Nikouei A, Sarraf Shirazi S, Behmadi J, Malaekeh-Nikouei B. A comprehensive review on alpha-lipoic acid delivery by nanoparticles. BIOIMPACTS : BI 2024; 14:30136. [PMID: 39493899 PMCID: PMC11530970 DOI: 10.34172/bi.2024.30136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 11/05/2024]
Abstract
Alpha-lipoic acid (ALA) has garnered significant attention for its potential therapeutic benefits across a wide spectrum of health conditions. Despite its remarkable antioxidant properties, ALA is hindered by challenges such as low bioavailability, short half-life, and unpleasant odor. To overcome these limitations and enhance ALA's therapeutic efficacy, various nanoparticulate drug delivery systems have been explored. This comprehensive review evaluates the application of different nanoparticulate carriers, including lipid-based nanoparticles (solid lipid nanoparticles, niosomes, liposomes, nanostructured lipid carriers (NLCs), and micelles), nanoemulsions, polymeric nanoparticles (nanocapsules, PEGylated nanoparticles, and polycaprolactone nanoparticles), films, nanofibers, and gold nanoparticles, for ALA delivery. Each nanoparticulate system offers unique advantages, such as improved stability, sustained release, enhanced bioavailability, and targeted delivery. For example, ALA-loaded SLNs demonstrated benefits for skin care products and skin rejuvenation. ALA encapsulated in niosomes showed potential for treating cerebral ischemia, a condition largely linked to stroke. ALA-loaded cationic nanoemulsions showed promise for ophthalmic applications, reducing vascular injuries, and corneal disorders. Coating liposomes with chitosan further enhanced stability and performance, promoting drug absorption through the skin. This review provides a comprehensive overview of the advancements in nanoparticulate delivery systems for ALA, highlighting their potential to overcome the limitations of ALA administration and significantly enhance its therapeutic effectiveness. These innovative approaches hold promise for the development of improved ALA-based treatments across a broad spectrum of health conditions.
Collapse
Affiliation(s)
- Navid Mosallaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Setayesh Sarraf Shirazi
- Student research committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behmadi
- Student research committee, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bizhan Malaekeh-Nikouei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Peng X, Li X, Xie B, Lai Y, Sosnik A, Boucetta H, Chen Z, He W. Gout therapeutics and drug delivery. J Control Release 2023; 362:728-754. [PMID: 37690697 DOI: 10.1016/j.jconrel.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Gout is a common inflammatory arthritis caused by persistently elevated uric acid levels. With the improvement of people's living standards, the consumption of processed food and the widespread use of drugs that induce elevated uric acid, gout rates are increasing, seriously affecting the human quality of life, and becoming a burden to health systems worldwide. Since the pathological mechanism of gout has been elucidated, there are relatively effective drug treatments in clinical practice. However, due to (bio)pharmaceutical shortcomings of these drugs, such as poor chemical stability and limited ability to target the pathophysiological pathways, traditional drug treatment strategies show low efficacy and safety. In this scenario, drug delivery systems (DDS) design that overcome these drawbacks is urgently called for. In this review, we initially describe the pathological features, the therapeutic targets, and the drugs currently in clinical use and under investigation to treat gout. We also comprehensively summarize recent research efforts utilizing lipid, polymeric and inorganic carriers to develop advanced DDS for improved gout management and therapy.
Collapse
Affiliation(s)
- Xiuju Peng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Xiaotong Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Alejandro Sosnik
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
9
|
Tsung TH, Tsai YC, Lee HP, Chen YH, Lu DW. Biodegradable Polymer-Based Drug-Delivery Systems for Ocular Diseases. Int J Mol Sci 2023; 24:12976. [PMID: 37629157 PMCID: PMC10455181 DOI: 10.3390/ijms241612976] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular drug delivery is a challenging field due to the unique anatomical and physiological barriers of the eye. Biodegradable polymers have emerged as promising tools for efficient and controlled drug delivery in ocular diseases. This review provides an overview of biodegradable polymer-based drug-delivery systems for ocular diseases with emphasis on the potential for biodegradable polymers to overcome the limitations of conventional methods, allowing for sustained drug release, improved bioavailability, and targeted therapy. Natural and synthetic polymers are both discussed, highlighting their biodegradability and biocompatibility. Various formulation strategies, such as nanoparticles, hydrogels, and microemulsions, among others, are investigated, detailing preparation methods, drug encapsulation, and clinical applications. The focus is on anterior and posterior segment drug delivery, covering glaucoma, corneal disorders, ocular inflammation, retinal diseases, age-related macular degeneration, and diabetic retinopathy. Safety considerations, such as biocompatibility evaluations, in vivo toxicity studies, and clinical safety, are addressed. Future perspectives encompass advancements, regulatory considerations, and clinical translation challenges. In conclusion, biodegradable polymers offer potential for efficient and targeted ocular drug delivery, improving therapeutic outcomes while reducing side effects. Further research is needed to optimize formulation strategies and address regulatory requirements for successful clinical implementation.
Collapse
Affiliation(s)
- Ta-Hsin Tsung
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yu-Chien Tsai
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
- Department of Ophthalmology, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
| | - Hsin-Pei Lee
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Yi-Hao Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (T.-H.T.); (Y.-C.T.); (H.-P.L.); (Y.-H.C.)
| |
Collapse
|
10
|
Mostafa M, Al Fatease A, Alany RG, Abdelkader H. Recent Advances of Ocular Drug Delivery Systems: Prominence of Ocular Implants for Chronic Eye Diseases. Pharmaceutics 2023; 15:1746. [PMID: 37376194 PMCID: PMC10302848 DOI: 10.3390/pharmaceutics15061746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic ocular diseases can seriously impact the eyes and could potentially result in blindness or serious vision loss. According to the most recent data from the WHO, there are more than 2 billion visually impaired people in the world. Therefore, it is pivotal to develop more sophisticated, long-acting drug delivery systems/devices to treat chronic eye conditions. This review covers several drug delivery nanocarriers that can control chronic eye disorders non-invasively. However, most of the developed nanocarriers are still in preclinical or clinical stages. Long-acting drug delivery systems, such as inserts and implants, constitute the majority of the clinically used methods for the treatment of chronic eye diseases due to their steady state release, persistent therapeutic activity, and ability to bypass most ocular barriers. However, implants are considered invasive drug delivery technologies, especially those that are nonbiodegradable. Furthermore, in vitro characterization approaches, although useful, are limited in mimicking or truly representing the in vivo environment. This review focuses on long-acting drug delivery systems (LADDS), particularly implantable drug delivery systems (IDDS), their formulation, methods of characterization, and clinical application for the treatment of eye diseases.
Collapse
Affiliation(s)
- Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minya 61519, Egypt;
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| | - Raid G. Alany
- School of Pharmacy, Kingston University London, Kingston Upon Tames KT1 2EE, UK;
- School of Pharmacy, The University of Auckland, Auckland 1010, New Zealand
| | - Hamdy Abdelkader
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia;
| |
Collapse
|
11
|
Nasal administration of a temozolomide-loaded thermoresponsive nanoemulsion reduces tumor growth in a preclinical glioblastoma model. J Control Release 2023; 355:343-357. [PMID: 36731799 DOI: 10.1016/j.jconrel.2023.01.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Glioblastoma (GB) is the worst and most common primary brain tumor. Temozolomide (TMZ), an alkylating agent, is widely used for treating primary and recurrent high-grade gliomas. However, at least 50% of TMZ treated patients do not respond to TMZ and the development of chemoresistance is a major problem. Here, we designed a lipid nanoemulsion containing a thermoresponsive polymer (poloxamer 407) aiming to improve TMZ release into the brain via nasal delivery. Increasing amounts of poloxamer 407 were added to preformed nanoemulsions (250 nm-range) obtained by spontaneous emulsification. The influence of the polymer concentration (from 2.5% to 12.5%) and temperature on viscosity was clearly evidenced. Such effect was also noticed on the mucoadhesiveness of formulations, as well as TMZ release rate and retention/permeation through nasal porcine mucosa using Franz-type diffusion cells. From these results, a formulation containing 10% of poloxamer (NTMZ-P10) was selected for further experiments by nasal route. A significantly higher TMZ amount was observed in the brain of rats from NTMZ-P10 in comparison with controls. Finally, our results show that formulation reduced significantly tumor growth by three-fold: 103.88 ± 43.67 mm3 (for NTMZ-P10) and 303.28 ± 95.27 mm3 (control). Overall, these results suggest the potential of the thermoresponsive formulation, administered by the non-invasive nasal route, as a future effective glioblastoma treatment.
Collapse
|
12
|
Xiang W, Cao H, Tao H, Jin L, Luo Y, Tao F, Jiang T. Applications of chitosan-based biomaterials: From preparation to spinal cord injury neuroprosthetic treatment. Int J Biol Macromol 2023; 230:123447. [PMID: 36708903 DOI: 10.1016/j.ijbiomac.2023.123447] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/04/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Spinal cord injury (SCI)-related disabilities are a serious problem in the modern society. Further, the treatment of SCI is highly challenging and is urgently required in clinical practice. Research on nerve tissue engineering is an emerging approach for improving the treatment outcomes of SCI. Chitosan (CS) is a cationic polysaccharide derived from natural biomaterials. Chitosan has been found to exhibit excellent biological properties, such as nontoxicity, biocompatibility, biodegradation, and antibacterial activity. Recently, chitosan-based biomaterials have attracted significant attention for SCI repair in nerve tissue engineering applications. These studies revealed that chitosan-based biomaterials have various functions and mechanisms to promote SCI repair, such as promoting neural cell growth, guiding nerve tissue regeneration, delivering nerve growth factors, and as a vector for gene therapy. Chitosan-based biomaterials have proven to have excellent potential for the treatment of SCI. This review aims to introduce the recent advances in chitosan-based biomaterials for SCI treatment and to highlight the prospects for further application.
Collapse
Affiliation(s)
- Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Lin Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Yue Luo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China.
| | - Ting Jiang
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
13
|
Yang J, Chen Y, Zhao L, Zhang J, Luo H. Constructions and Properties of Physically Cross-Linked Hydrogels Based on Natural Polymers. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2137525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Jueying Yang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Yu Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
- Sports & Medicine Integration Research Center (SMIRC), Capital University of Physical Education and Sports, Beijing, China
| | - Lin Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Jinghua Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Hang Luo
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
14
|
Hu Z, Li J, Wei X, Wang C, Cao Y, Gao Z, Han J, Li Y. Enhancing Strain-Sensing Properties of the Conductive Hydrogel by Introducing PVDF-TrFE. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45853-45868. [PMID: 36170495 DOI: 10.1021/acsami.2c13074] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conductive hydrogels have attracted attention because of their wide application in wearable devices. However, it is still a challenge to achieve conductive hydrogels with high sensitivity and wide frequency band response for smart wearable strain sensors. Here, we report a composite hydrogel with piezoresistive and piezoelectric sensing for flexible strain sensors. The composite hydrogel consists of cross-linked chitosan quaternary ammonium salt (CHACC) as the hydrogel matrix, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT: PSS) as the conductive filler, and poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) as the piezoelectric filler. A one-pot thermoforming and solution exchange method was used to synthesize the CHACC/PEDOT: PSS/PVDF-TrFE hydrogel. The hydrogel-based strain sensor exhibits very high sensitivity (GF: 19.3), fast response (response time: 63.2 ms), and wide frequency range (response frequency: 5-25 Hz), while maintaining excellent mechanical properties (elongation at break up to 293%). It can be concluded that enhanced strain-sensing properties of the hydrogel are contributed to both greater change in the relative resistance under stress and wider response to dynamic and static stimulus by adding PVDF-TrFE. This has a broad application in monitoring human motion, detecting subtle movements, and identifying object contours and a hydrogel-based array sensor. This work provides an insight into the design of composite hydrogels based on piezoelectric and piezoresistive sensing with applications for wearable sensors.
Collapse
Affiliation(s)
- Zhirui Hu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Jie Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Xiaotong Wei
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Chen Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Yang Cao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Zhiqiang Gao
- School of Mechatronic Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Jing Han
- School of Mechatronic Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Yingchun Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, P. R. China
| |
Collapse
|
15
|
Fatimah SF, Lukitaningsih E, Martien R, Nugroho AK. Bibliometric analysis of articles on nanoemulsion and/or in-situ gel for ocular drug delivery system published during the 2011–2021 period. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e82847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The bibliometric data were extracted from the Scopus database to investigate the conceptual framework of ocular nanoemulsion and/or in-situ gel drug delivery system using “ocular” AND “nanoemulsion” OR “in-situ gel” keywords. The data were evaluated with RStudio and VOSviewer program.
The results reveal that the publication trends tend to increase continually. India is the most impactful country, and the most constructive institution is Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University. International Journal of Pharmaceutics is the top influential source. Ali A is the most prolific author. The title of the most impactful article was In-situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery”. “Controlled release” is the most popular keyword.
These results provide insights for stimulating research collaborations and revealing open issues of controlled-release ocular preparation to overcome an ocular barrier and enhance patient compliance.
Collapse
|
16
|
Mura P, Maestrelli F, Cirri M, Mennini N. Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Mar Drugs 2022; 20:335. [PMID: 35621986 PMCID: PMC9146108 DOI: 10.3390/md20050335] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (M.C.); (N.M.)
| | | | | | | |
Collapse
|
17
|
Madamsetty VS, Mohammadinejad R, Uzieliene I, Nabavi N, Dehshahri A, García-Couce J, Tavakol S, Moghassemi S, Dadashzadeh A, Makvandi P, Pardakhty A, Aghaei Afshar A, Seyfoddin A. Dexamethasone: Insights into Pharmacological Aspects, Therapeutic Mechanisms, and Delivery Systems. ACS Biomater Sci Eng 2022; 8:1763-1790. [PMID: 35439408 PMCID: PMC9045676 DOI: 10.1021/acsbiomaterials.2c00026] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dexamethasone (DEX) has been widely used to treat a variety of diseases, including autoimmune diseases, allergies, ocular disorders, cancer, and, more recently, COVID-19. However, DEX usage is often restricted in the clinic due to its poor water solubility. When administered through a systemic route, it can elicit severe side effects, such as hypertension, peptic ulcers, hyperglycemia, and hydro-electrolytic disorders. There is currently much interest in developing efficient DEX-loaded nanoformulations that ameliorate adverse disease effects inhibiting advancements in scientific research. Various nanoparticles have been developed to selectively deliver drugs without destroying healthy cells or organs in recent years. In the present review, we have summarized some of the most attractive applications of DEX-loaded delivery systems, including liposomes, polymers, hydrogels, nanofibers, silica, calcium phosphate, and hydroxyapatite. This review provides our readers with a broad spectrum of nanomedicine approaches to deliver DEX safely.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Noushin Nabavi
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, British Columbia, Canada V6H 3Z6
| | - Ali Dehshahri
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Jomarien García-Couce
- Department of Radiology, Division of Translational Nanobiomaterials and Imaging, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Department of Polymeric Biomaterials, Biomaterials Center (BIOMAT), University of Havana, Havana 10600, Cuba
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1417755469, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7618866748, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7618866749, Iran
| | - Ali Seyfoddin
- Drug Delivery Research Group, Auckland University of Technology (AUT), School of Science, Auckland 1010, New Zealand
| |
Collapse
|
18
|
Recent progress in colloidal nanocarriers loaded in situ gel in ocular therapeutics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Gyarmati B, Dargó G, Aron Szilagyi B, Vincze A, Facskó R, Budai-Szűcs M, Kiss EL, Szente L, Szilagyi A, Balogh GT. Synthesis, complex formation and corneal permeation of cyclodextrin-modified, thiolated poly(aspartic acid) as self-gelling formulation of dexamethasone. Eur J Pharm Biopharm 2022; 174:1-9. [PMID: 35341942 DOI: 10.1016/j.ejpb.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
Abstract
The present study aimed at developing a potential in situ gellable dexamethasone (DXM) eye drop. Poly(aspartic acid) (PASP) derivatives were synthesized with dual functionality to improve the solubility of DXM, and to achieve in situ gelation. First, amine-modified β-cyclodextrin (CD) was attached to polysuccinimide (PSI), second, thiol functionalities were added by the reaction of cysteamine and succinimide rings. Finally, the PSI derivatives were hydrolysed to the corresponding PASP derivatives to get water-soluble polymers. Phase-solubility studies confirmed the complexation ability of CD-containing PASP derivatives. In situ gelation and the effect of the CD immobilization on this behaviour were characterized by rheological measurements. The solubilizing effect of CD was confirmed by kinetic solubility measurements, whereas in vitro corneal permeability assay (corneal-PAMPA) measurements were performed to determine in vitro permeability and flux values. The effect of the PASP derivatives on permeation strongly depended on chemical composition and polymer concentration.
Collapse
Affiliation(s)
- Benjámin Gyarmati
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Gergő Dargó
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rakpart 3., H-1111 Budapest, Hungary
| | - Barnabas Aron Szilagyi
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Anna Vincze
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rakpart 3., H-1111 Budapest, Hungary
| | - Réka Facskó
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rakpart 3., H-1111 Budapest, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., H-6720 Szeged, Hungary
| | - Eszter L Kiss
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., H-6720 Szeged, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R. and D. Laboratory, Ltd, H-1070 Budapest, Illatos út 7. Hungary
| | - Andras Szilagyi
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - György T Balogh
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rakpart 3., H-1111 Budapest, Hungary; Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös utca 6., H-6720 Szeged, Hungary.
| |
Collapse
|
20
|
Jacob S, Nair AB, Shah J, Gupta S, Boddu SHS, Sreeharsha N, Joseph A, Shinu P, Morsy MA. Lipid Nanoparticles as a Promising Drug Delivery Carrier for Topical Ocular Therapy-An Overview on Recent Advances. Pharmaceutics 2022; 14:533. [PMID: 35335909 PMCID: PMC8955373 DOI: 10.3390/pharmaceutics14030533] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
Due to complicated anatomical and physical properties, targeted drug delivery to ocular tissues continues to be a key challenge for formulation scientists. Various attempts are currently being made to improve the in vivo performance of therapeutic molecules by encapsulating them in various nanocarrier systems or devices and administering them via invasive/non-invasive or minimally invasive drug administration methods. Biocompatible and biodegradable lipid nanoparticles have emerged as a potential alternative to conventional ocular drug delivery systems to overcome various ocular barriers. Lipid-based nanocarrier systems led to major technological advancements and therapeutic advantages during the last few decades of ocular therapy, such as high precorneal residence time, sustained drug release profile, minimum dosing frequency, decreased drug toxicity, targeted site delivery, and, therefore, an improvement in ocular bioavailability. In addition, such formulations can be given as fine dispersion in patient-friendly droppable preparation without causing blurred vision and ocular sensitivity reactions. The unique advantages of lipid nanoparticles, namely, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions, and liposomes in intraocular targeted administration of various therapeutic drugs are extensively discussed. Ongoing and completed clinical trials of various liposome-based formulations and various characterization techniques designed for nanoemulsion in ocular delivery are tabulated. This review also describes diverse solid lipid nanoparticle preparation methods, procedures, advantages, and limitations. Functionalization approaches to overcome the drawbacks of lipid nanoparticles, as well as the exploration of new functional additives with the potential to improve the penetration of macromolecular pharmaceuticals, would quickly progress the challenging field of ocular drug delivery systems.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana 133203, India;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (A.B.N.); (N.S.); (M.A.M.)
- Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
21
|
Hydrogels in Burn Wound Management-A Review. Gels 2022; 8:gels8020122. [PMID: 35200503 PMCID: PMC8872485 DOI: 10.3390/gels8020122] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Inert hydrogels are of a great importance in burn first aid. Hydrogel dressings may be an alternative to cooling burn wounds with streaming water, especially in cases of mass casualty events, lack of clean water, hypothermia, or large extent of burns. Hydrogels that contain mostly water evacuate the heat cumulating in the skin by evaporation. They not only cool the burn wound, but also reduce pain and protect the wound area from contamination and further injuries. Hydrogels are ideally used during the first hours after injury, but as they do not have antimicrobial properties per se, they might not prevent wound infection. The hydrogel matrix enables incorporating active substances into the dressing. The active forms may contain ammonium salts, nanocrystal silver, zinc, growth factor, cytokines, or cells, as well as natural agents, such as honey or herbs. Active dressings may have antimicrobial activity or stimulate wound healing. Numerous experiments on animal models proved their safety and efficiency. Hydrogels are a new dressing type that are still in development.
Collapse
|
22
|
Ow V, Loh XJ. Recent developments of temperature‐responsive polymers for ophthalmic applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Valerie Ow
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| |
Collapse
|
23
|
Syed Azhar SNA, Ashari SE, Zainuddin N, Hassan M. Nanostructured Lipid Carriers-Hydrogels System for Drug Delivery: Nanohybrid Technology Perspective. Molecules 2022; 27:289. [PMID: 35011520 PMCID: PMC8746478 DOI: 10.3390/molecules27010289] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 01/08/2023] Open
Abstract
Advanced hybrid component development in nanotechnology provides superior functionality in the application of scientific knowledge for the drug delivery industry. The purpose of this paper is to review important nanohybrid perspectives in drug delivery between nanostructured lipid carriers (NLC) and hydrogel systems. The hybrid system may result in the enhancement of each component's synergistic properties in the mechanical strength of the hydrogel and concomitantly decrease aggregation of the NLC. The significant progress in nanostructured lipid carriers-hydrogels is reviewed here, with an emphasis on their preparation, potential applications, advantages, and underlying issues associated with these exciting materials.
Collapse
Affiliation(s)
- Sharifah Nurfadhlin Afifah Syed Azhar
- Integrated Chemical BioPhysics Research Centre (iCheBP), Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Siti Efliza Ashari
- Integrated Chemical BioPhysics Research Centre (iCheBP), Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Centre of Foundation Studies for Agricultural Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Norhazlin Zainuddin
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Masriana Hassan
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
24
|
Kagkelaris K, Panayiotakopoulos G, Georgakopoulos CD. Nanotechnology-based formulations to amplify intraocular bioavailability. Ther Adv Ophthalmol 2022; 14:25158414221112356. [PMID: 35873277 PMCID: PMC9301101 DOI: 10.1177/25158414221112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
Conventional drug delivery formulations, such as eye drops and ointments, are
mainly administered by topical instillation. The topical delivery of ophthalmic
drugs is a challenging endeavor despite the eye is easily accessible. Unique and
complex barriers, serving as protection against extrinsic harmful factors,
hamper therapeutic intraocular drug concentrations. Bioavailability for deeper
ocular tissues of the anterior segment of the eye is exceptionally low. As the
bioavailability of the active substance is the major hurdle to overcome, dosing
is increased, so the side effects do. Both provoke patient poor compliance,
confining the desired therapeutic outcome. The incidence and severity of adverse
reactions amplify evenly in the case of chronic treatments. Current research
focuses on the development of innovative delivery strategies to address low
ocular bioavailability and provide safe and convenient dosing schemes. The main
objective of this review is to explore and present the latest developments in
ocular drug delivery formulations for the treatment of the pathology of the
anterior segment of the eye. Nanotechnology-based formulations, that is, organic
nanoparticles (liposomes, niosomes/discosomes, dendrimers, nanoemulsions,
nanosuspensions, nanoparticles/nanospheres) and inorganic nanoparticles,
nanoparticle-laden therapeutic contact lenses, in situ gelling
systems, and ocular inserts, are summarized and presented accordingly.
Collapse
Affiliation(s)
- Konstantinos Kagkelaris
- Department of Ophthalmology, School of Medicine, University of Patras, 26500 Patras, Greece
- Department of General Pharmacology, School of Medicine, University of Patras, Patras, Greece
| | | | | |
Collapse
|
25
|
Khallaf AM, El-Moslemany RM, Ahmed MF, Morsi MH, Khalafallah NM. Exploring a Novel Fasudil-Phospholipid Complex Formulated as Liposomal Thermosensitive in situ Gel for Glaucoma. Int J Nanomedicine 2022; 17:163-181. [PMID: 35046652 PMCID: PMC8760977 DOI: 10.2147/ijn.s342975] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Aya M Khallaf
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Correspondence: Riham M El-Moslemany Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1, Khartoum Square, Azarita, Alexandria, 21521, EgyptTel +20 1006020405 Email
| | - Mahmoud F Ahmed
- Managing Director at Ultimate Pharma Company, Alexandria, Egypt
| | - Mahmoud H Morsi
- Department of Ophthalmology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nawal M Khalafallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
26
|
Li Q, Gong S, Yao W, Yu Y, Liu C, Wang R, Pan H, Wei M. PEG-interpenetrated genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier compound formulation for topical drug administration. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:345-353. [PMID: 33784224 DOI: 10.1080/21691401.2021.1879104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/17/2021] [Indexed: 02/08/2023]
Abstract
PEG-interpenetrated dual-sensitive hydrogels that load nano lipid carrier (NLC) were researched and developed for topical drug administration. Natural antioxidant α-lipoic acid (ALA) was selected as our model drug. The α-lipoic acid (ALA) nano lipid carrier was successfully prepared by hot melt emulsification and ultrasonic dispersion method, and the physicochemical properties of the nano lipid carrier were investigated, including morphology, particle distribution, polydispersity coefficient, zeta potential and encapsulation efficiency. Carboxymethyl chitosan and poloxamer 407 contributed to pH- and temperature-sensitive properties in the hydrogel, respectively. Natural non-toxic cross-linking agent genipin reacted with carboxymethyl chitosan to form the hydrogel. Poly ethylene glycol (PEG), a polymer compound with good water solubility and biocompatibility, interpenetrated the hydrogel and influenced the mechanical strength and drug release behaviour. FI-IR test verified the successful synthesis of the hydrogel. The rheological parameters indicated that the mechanical strength of the hydrogel was positively correlated with the amount of PEG, and the in vitro dissolution profiles demonstrated that the increasement of PEG could accelerate the drug release rate. The compatibility of the drug delivery system was verified with cells and mice model. Topical delivery of ALA in solution, NLC and NLC-gel was investigated in-vitro.
Collapse
Affiliation(s)
- Qijun Li
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Shiqiang Gong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yibin Yu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Chao Liu
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, China
| | - Renjun Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
27
|
Vaneev A, Tikhomirova V, Chesnokova N, Popova E, Beznos O, Kost O, Klyachko N. Nanotechnology for Topical Drug Delivery to the Anterior Segment of the Eye. Int J Mol Sci 2021; 22:12368. [PMID: 34830247 PMCID: PMC8621153 DOI: 10.3390/ijms222212368] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023] Open
Abstract
Topical drug delivery is one of the most challenging aspects of eye therapy. Eye drops are the most prevalent drug form, especially for widely distributed anterior segment eye diseases (cataracts, glaucoma, dry eye syndrome, inflammatory diseases, etc.), because they are convenient and easy to apply by patients. However, conventional drug formulations are usually characterized by short retention time in the tear film, insufficient contact with epithelium, fast elimination, and difficulties in overcoming ocular tissue barriers. Not more than 5% of the total drug dose administered in eye drops reaches the interior ocular tissues. To overcome the ocular drug delivery barriers and improve drug bioavailability, various conventional and novel drug delivery systems have been developed. Among these, nanosize carriers are the most attractive. The review is focused on the different drug carriers, such as synthetic and natural polymers, as well as inorganic carriers, with special attention to nanoparticles and nanomicelles. Studies in vitro and in vivo have demonstrated that new formulations could help to improve the bioavailability of the drugs, provide sustained drug release, enhance and prolong their therapeutic action. Promising results were obtained with drug-loaded nanoparticles included in in situ gel.
Collapse
Affiliation(s)
- Alexander Vaneev
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
- Research Laboratory of Biophysics, National University of Science and Technology “MISIS”, 119991 Moscow, Russia
| | - Victoria Tikhomirova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Natalia Chesnokova
- Department of Pathophysiology and Biochemistry, Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (N.C.); (O.B.)
| | - Ekaterina Popova
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Olga Beznos
- Department of Pathophysiology and Biochemistry, Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia; (N.C.); (O.B.)
| | - Olga Kost
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
| | - Natalia Klyachko
- Chemistry Faculty, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.); (V.T.); (E.P.); (O.K.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Research Institute “Nanotechnology and Nanomaterials”, G.R. Derzhavin Tambov State University, 392000 Tambov, Russia
| |
Collapse
|
28
|
Enhanced topical corticosteroids delivery to the eye: A trade-off in strategy choice. J Control Release 2021; 339:91-113. [PMID: 34560157 DOI: 10.1016/j.jconrel.2021.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022]
Abstract
Topical corticosteroids are the primary treatment of ocular inflammation caused by surgery, injury, or other conditions. Drug pre-corneal residence time, drug water solubility, and drug corneal permeability coefficient are the major factors that determine the ocular drug bioavailability after topical administration. Although growing research successfully enhanced local delivery of corticosteroids utilizing various strategies, rational and dynamic approaches to strategy selection are still lacking. Within this review, an overview of the various strategies as well as their performance in retention, solubility, and permeability coefficient of corticosteroids are provided. On this basis, the tradeoff of strategy selection is discussed, which may shed light on the rational choice and application of ophthalmic delivery enhancement strategies.
Collapse
|
29
|
Abbas H, Refai H, El Sayed N, Rashed LA, Mousa MR, Zewail M. Superparamagnetic iron oxide loaded chitosan coated bilosomes for magnetic nose to brain targeting of resveratrol. Int J Pharm 2021; 610:121244. [PMID: 34737114 DOI: 10.1016/j.ijpharm.2021.121244] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 01/16/2023]
Abstract
The objective of this study was to improve effectiveness of resveratrol (RES) through brain targeting by the intranasal olfactory mucosa for the treatment Alzheimer's disease (AD). To attain this, chitosan coated bilosomes (non ionic surfactant vesicles stabilized by bile salts, loaded with RES and superparamagnetic iron oxide nanoparticles (SPIONs) were prepared and incorporated into sodium alginate/PVP wafers. In vitro characterization of bilosomes including colloidal characteristics, entrapment efficiency and in vitro release was carried out. Hydration capacity, porosity percentage, morphology and in vitro release for selected wafer formulation were also investigated. Particle size of selected bilosomes, CS coated bilosome and SPION bilosomes was 208, 238 and 243 nm, respectively and they provided sustained RES release for 24 h. Both formulations were loaded in wafers and intra-nasally administered in mice with lipopolysaccharide induced AD model. Neurobehavioral tests, AD markers analysis, RT-PCR, western blotting and histopathological evaluation of the dissected brains were carried out. Results revealed the superiority of SPION bilosomes over conventional bilosomes and RES suspension in improving cognitive and memory functions, reduction of pro-inflammatory markers levels and down regulation of expression of NF-κB and P38. This may be attributed to enhanced RES therapeutic effects upon nanoencapsulation, loading into wafers, nasal administration and enhanced targeting the application of an external magnetic field.
Collapse
Affiliation(s)
- Haidy Abbas
- Department of Pharmaceutics, Damanhour University, Damanhour, Egypt.
| | - Hanan Refai
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th October City, Egypt.
| | - Nesrine El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine Cairo University, Egypt
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mariam Zewail
- Department of Pharmaceutics, Damanhour University, Damanhour, Egypt
| |
Collapse
|
30
|
Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm 2021; 606:120873. [PMID: 34246741 DOI: 10.1016/j.ijpharm.2021.120873] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Over the last years, the scientific interest about topical ocular delivery targeting the posterior segment of the eye has been increasing. This is probably due to the fact that this is a non-invasive administration route, well tolerated by patients and with fewer local and systemic side effects. However, it is a challenging task due to the external ocular barriers, tear film clearance, blood flow in the conjunctiva and choriocapillaris and due to the blood-retinal barriers, amongst other features. An enhanced intraocular bioavailability of drugs can be achieved by either improving corneal permeability or by improving precorneal retention time. Regarding this last option, increasing residence time in the precorneal area can be achieved using mucoadhesive polymers such as xyloglucan, poly(acrylate), hyaluronic acid, chitosan, and carbomers. On the other hand, colloidal particles can interact with the ocular mucosa and enhance corneal and conjunctival permeability. These nanosystems are able to deliver a wide range of drugs, including macromolecules, providing stability and improving ocular bioavailability. New pharmaceutical approaches based on nanotechnology associated to bioadhesive compounds have emerged as strategies for a more efficient treatment of ocular diseases. Bearing this in mind, this review provides an overview of the current mucoadhesive colloidal nanosystems developed for ocular topical administration, focusing on their advantages and limitations.
Collapse
Affiliation(s)
- Beatriz Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Berta São Braz
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Esmeralda Delgado
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
31
|
Zewail M, Nafee N, Boraie N. Intra-Articular Dual Drug Delivery for Synergistic Rheumatoid Arthritis Treatment. J Pharm Sci 2021; 110:2808-2822. [PMID: 33848528 DOI: 10.1016/j.xphs.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
Systemic rheumatoid arthritis (RA) regimens fail to attain effective drug level at the affected joints and are associated with serious side effects. Herein, an attempt made to improve therapeutic outcomes of both leflunomide (LEF) which is a disease modifying antirheumatic and dexamethasone (Dex) through local delivery of combination therapy by intra-articular route. LEF and Dex were encapsulated in nanostructured lipid carriers (NLCs) and PLGA nanoparticles (NPs), respectively. Both nanocarriers were loaded into chitosan/β glycerophosphate (CS/βGP) thermo-sensitive hydrogels and injected intra-articularly in adjuvant induced RA rat model. Particle size of LEF NLCs and selected Dex NPs formulations were 200 and 119 nm, respectively. Dex NPs and LEF NLCs showed a sustained release profile for up to 58 and 17 days, respectively. After 14 days of treatment remarkable joint healing was observed for groups treated with Dex NPs in combination with either free LEF or LEF NLCs in CS/βGP hydrogel. Joint diameter measurements, TNF α levels and histopathological examination of dissected joints showed comparable values to the negative control group. This might be attributed to the synergistic effect of drug combination besides the ability of nanocarriers loaded hydrogel to prolong joint residence time and enhance joint healing potential.
Collapse
Affiliation(s)
- Mariam Zewail
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, El Gomhoria Street, Damanhour, Egypt.
| | - Noha Nafee
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Kuwait
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
32
|
Thermosensitive quaternized chitosan hydrogel scaffolds promote neural differentiation in bone marrow mesenchymal stem cells and functional recovery in a rat spinal cord injury model. Cell Tissue Res 2021; 385:65-85. [PMID: 33760948 DOI: 10.1007/s00441-021-03430-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022]
Abstract
A thermosensitive quaternary ammonium chloride chitosan/β-glycerophosphate (HACC/β-GP) hydrogel scaffold combined with bone marrow mesenchymal stem cells (BMSCs) transfected with an adenovirus containing the glial cell-derived neurotrophic factor (GDNF) gene (Ad-rGDNF) was applied to spinal cord injury (SCI) repair. The BMSCs from rats were transfected with Ad-rGDNF, resulting in the expression of GDNF mRNA in the BMSCs increasing and their spontaneous differentiation into neural-like cells expressing neural markers such as NF-200 and GFAP. After incubation with HACC/β-GP hydrogel scaffolds for 2 weeks, neuronal differentiation of the BMSCs was confirmed using immunofluorescence (IF), and the expression of GDNF by the BMSCs was detected by Western blot at different time points. MTT assay and scanning electron microscopy confirmed that the HACC scaffold provides a non-cytotoxic microenvironment that supports cell adhesion and growth. Rats with SCI were treated with BMSCs, BMSCs carried by the HACC/β-GP hydrogel (HACC/BMSCs), Ad-rGDNF-BMSCs, or Ad-rGDNF-BMSCs carried by the hydrogel (HACC/GDNF-BMSCs). Animals were sacrificed at 2, 4, and 6 weeks of treatment. IF staining and Western blot were performed to detect the expression of NeuN, NF-200, GFAP, CS56, and Bax in the lesion sites of the injured spinal cord. Upon treatment with HACC/BMSCs, NF200 and GFAP were upregulated but CS56 and Bax were downregulated in the SCI lesion site. Furthermore, transplantation of HACC/GDNF-BMSCs into an SCI rat model significantly improved BBB scores and regeneration of the spinal cord. Thus, HACC/β-GP hydrogel scaffolds show promise for functional recovery in spinal cord injury patients.
Collapse
|
33
|
Torres-Luna C, Fan X, Domszy R, Hu N, Wang NS, Yang A. Hydrogel-based ocular drug delivery systems for hydrophobic drugs. Eur J Pharm Sci 2020; 154:105503. [DOI: 10.1016/j.ejps.2020.105503] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/18/2020] [Accepted: 07/31/2020] [Indexed: 01/07/2023]
|
34
|
Andreica BI, Cheng X, Marin L. Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent Advances in the Development of In Situ Gelling Drug Delivery Systems for Non-Parenteral Administration Routes. Pharmaceutics 2020; 12:pharmaceutics12090859. [PMID: 32927595 PMCID: PMC7559482 DOI: 10.3390/pharmaceutics12090859] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/25/2020] [Accepted: 09/02/2020] [Indexed: 12/27/2022] Open
Abstract
In situ gelling drug delivery systems have gained enormous attention over the last decade. They are in a sol-state before administration, and they are capable of forming gels in response to different endogenous stimuli, such as temperature increase, pH change and the presence of ions. Such systems can be administered through different routes, to achieve local or systemic drug delivery and can also be successfully used as vehicles for drug-loaded nano- and microparticles. Natural, synthetic and/or semi-synthetic polymers with in situ gelling behavior can be used alone, or in combination, for the preparation of such systems; the association with mucoadhesive polymers is highly desirable in order to further prolong the residence time at the site of action/absorption. In situ gelling systems include also solid polymeric formulations, generally obtained by freeze-drying, which, after contact with biological fluids, undergo a fast hydration with the formation of a gel able to release the drug loaded in a controlled manner. This review provides an overview of the in situ gelling drug delivery systems developed in the last 10 years for non-parenteral administration routes, such as ocular, nasal, buccal, gastrointestinal, vaginal and intravesical ones, with a special focus on formulation composition, polymer gelation mechanism and in vitro release studies.
Collapse
|
36
|
Zamboulis A, Nanaki S, Michailidou G, Koumentakou I, Lazaridou M, Ainali NM, Xanthopoulou E, Bikiaris DN. Chitosan and its Derivatives for Ocular Delivery Formulations: Recent Advances and Developments. Polymers (Basel) 2020; 12:E1519. [PMID: 32650536 PMCID: PMC7407599 DOI: 10.3390/polym12071519] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Chitosan (CS) is a hemi-synthetic cationic linear polysaccharide produced by the deacetylation of chitin. CS is non-toxic, highly biocompatible, and biodegradable, and it has a low immunogenicity. Additionally, CS has inherent antibacterial properties and a mucoadhesive character and can disrupt epithelial tight junctions, thus acting as a permeability enhancer. As such, CS and its derivatives are well-suited for the challenging field of ocular drug delivery. In the present review article, we will discuss the properties of CS that contribute to its successful application in ocular delivery before reviewing the latest advances in the use of CS for the development of novel ophthalmic delivery systems. Colloidal nanocarriers (nanoparticles, micelles, liposomes) will be presented, followed by CS gels and lenses and ocular inserts. Finally, instances of CS coatings, aiming at conferring mucoadhesiveness to other matrixes, will be presented.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| | | | | | | | | | | | | | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry & Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.N.); (G.M.); (I.K.); (M.L.); (N.M.A.); (E.X.)
| |
Collapse
|
37
|
Recent developments in regenerative ophthalmology. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1450-1490. [PMID: 32621058 DOI: 10.1007/s11427-019-1684-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
Regenerative medicine (RM) is one of the most promising disciplines for advancements in modern medicine, and regenerative ophthalmology (RO) is one of the most active fields of regenerative medicine. This review aims to provide an overview of regenerative ophthalmology, including the range of tools and materials being used, and to describe its application in ophthalmologic subspecialties, with the exception of surgical implantation of artificial tissues or organs (e.g., contact lens, artificial cornea, intraocular lens, artificial retina, and bionic eyes) due to space limitations. In addition, current challenges and limitations of regenerative ophthalmology are discussed and future directions are highlighted.
Collapse
|
38
|
Corzo C, Meindl C, Lochmann D, Reyer S, Salar-Behzadi S. Novel approach for overcoming the stability challenges of lipid-based excipients. Part 3: Application of polyglycerol esters of fatty acids for the next generation of solid lipid nanoparticles. Eur J Pharm Biopharm 2020; 152:44-55. [DOI: 10.1016/j.ejpb.2020.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/17/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
|
39
|
Karava A, Lazaridou M, Nanaki S, Michailidou G, Christodoulou E, Kostoglou M, Iatrou H, Bikiaris DN. Chitosan Derivatives with Mucoadhesive and Antimicrobial Properties for Simultaneous Nanoencapsulation and Extended Ocular Release Formulations of Dexamethasone and Chloramphenicol Drugs. Pharmaceutics 2020; 12:pharmaceutics12060594. [PMID: 32604758 PMCID: PMC7356116 DOI: 10.3390/pharmaceutics12060594] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/31/2023] Open
Abstract
The aim of this work was to evaluate the effectiveness of neat chitosan (CS) and its derivatives with 2-acrylamido-2-methyl-1-propanesulfonic acid (AAMPS) and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (MEDSP) as appropriate nanocarriers for the simultaneous ocular administration of dexamethasone sodium phosphate (DxP) and chloramphenicol (CHL). The derivatives CS-AAMPS and CS-MEDSP have been synthesized by free-radical polymerization and their structure has been proved by Fourier-Transformed Infrared Spectroscopy (FT-IR) spectroscopy. Both derivatives exhibited low cytotoxicity, enhanced mucoadhesive properties and antimicrobial activity against Staphylococcus aureus (S.aureus) and Escherichia coli (E. coli). Encapsulation was performed via ionic crosslinking gelation using sodium tripolyphosphate (TPP) as the crosslinking agent. Dynamic light scattering measurements (DLS) showed that the prepared nanoparticles had bimodal distribution and sizes ranging from 50–200 nm and 300–800 nm. Drugs were encapsulated in their crystalline (CHL) or amorphous (DexSP) form inside nanoparticles and their release rate was dependent on the used polymer. The CHL dissolution rate was substantially enhanced compared to the neat drug and the release time was extended up to 7 days. The release rate of DexSP was much faster than that of CHL and was prolonged up to 3 days. Drug release modeling unveiled that diffusion is the main release mechanism for both drugs. Both prepared derivatives and their drug-loaded nanoparticles could be used for extended and simultaneous ocular release formulations of DexSP and CHL drugs.
Collapse
Affiliation(s)
- Aikaterini Karava
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece;
| | - Maria Lazaridou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Stavroula Nanaki
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Georgia Michailidou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Evi Christodoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
| | - Margaritis Kostoglou
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Hermis Iatrou
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece;
- Correspondence: (H.I.); (D.N.B.); Tel.: +30-210-7274056 (H.I.); +30-2310-997812 (D.N.B.)
| | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece; (M.L.); (S.N.); (G.M.); (E.C.)
- Correspondence: (H.I.); (D.N.B.); Tel.: +30-210-7274056 (H.I.); +30-2310-997812 (D.N.B.)
| |
Collapse
|
40
|
Polysaccharide as renewable responsive biopolymer for in situ gel in the delivery of drug through ocular route. Int J Biol Macromol 2020; 150:559-572. [DOI: 10.1016/j.ijbiomac.2020.02.097] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023]
|
41
|
Zhou M, Qu W, Sun Y, Liang L, Jin Z, Cui S, Zhao K. Water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan enhanced the immunogenicity of inactivated porcine parvovirus vaccine vaccination on sows against porcine parvovirus infection. Immunol Lett 2020; 223:26-32. [PMID: 32333964 DOI: 10.1016/j.imlet.2020.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023]
Abstract
Porcine parvovirus (PPV) is one of the most common and important virus causes of infectious infertility in swine throughout the world. Inactivated PPV vaccine is broadly used, however, there is no appropriate immunomodulatory adjuvant for enhancing present vaccines and developing new ones. Therefore, in this study, the water-soluble N-2-Hydroxypropyl trimethyl ammonium chloride chitosan (N-2-HACC) was synthesized, the adjuvant potential of chitosan derivative was evaluated in inactivated PPV vaccine. Twenty adult healthy sows were assigned to four groups and vaccinated with synthesized PPV/N-2-HACC, commercial inactivated vaccine, N-2-HACC adjuvant and PBS. After insemination, all sows were challenged with the homologous PPV-H strain. In vivo immunization showed that sows immunized with the PPV/N-2-HACC induced more long-lasting HI antibodies and strong immune responses. Importantly, immunization of PPV/N-2-HACC significantly protected sows from homologous PPV-H strain infection. However, immunization of PPV/N-2-HACC didn't change the level of IL-2, IL-4 and IFN-γ and the production of CD4+, CD8 + T lymphocyte. The results indicated that PPV/N-2-HACC protect PPV infection mainly through enhancing the humoral immunity rather than cellular immunity. In addition, the mummified fetuses were observed from the control groups, but neither of the two vaccine groups. In conclusion, these results suggest that N-2-HACC can be exploited as an effective adjuvant for vaccine development, and the PPV/N-2-HACC are potent immunization candidates against PPV infection.
Collapse
Affiliation(s)
- Mo Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbinm, 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China
| | - Wanying Qu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbinm, 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China
| | - Yanwei Sun
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China
| | - Lin Liang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Beijing Scientific Observing and Experiment Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture, Beijing, 100193, China
| | - Zheng Jin
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, College of Chemistry and Material Sciences, Heilongjiang University, Harbin, 150080, China
| | - Shangjin Cui
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Beijing Scientific Observing and Experiment Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture, Beijing, 100193, China.
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbinm, 150080, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
42
|
Enhanced In Vitro Antimicrobial Activity of Polymyxin B–Coated Nanostructured Lipid Carrier Containing Dexamethasone Acetate. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09427-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Qureshi D, Nayak SK, Maji S, Anis A, Kim D, Pal K. Environment sensitive hydrogels for drug delivery applications. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109220] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Croisfelt FM, Tundisi LL, Ataide JA, Silveira E, Tambourgi EB, Jozala AF, Souto EMB, Mazzola PG. Modified-release topical hydrogels: a ten-year review. JOURNAL OF MATERIALS SCIENCE 2019; 54:10963-10983. [DOI: 10.1007/s10853-019-03557-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/20/2019] [Indexed: 01/06/2025]
|
45
|
Sapino S, Chirio D, Peira E, Abellán Rubio E, Brunella V, Jadhav SA, Chindamo G, Gallarate M. Ocular Drug Delivery: A Special Focus on the Thermosensitive Approach. NANOMATERIALS 2019; 9:nano9060884. [PMID: 31207951 PMCID: PMC6630567 DOI: 10.3390/nano9060884] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
The bioavailability of ophthalmic therapeutics is reduced because of the presence of physiological barriers whose primary function is to hinder the entry of exogenous agents, therefore also decreasing the bioavailability of locally administered drugs. Consequently, repeated ocular administrations are required. Hence, the development of drug delivery systems that ensure suitable drug concentration for prolonged times in different ocular tissues is certainly of great importance. This objective can be partially achieved using thermosensitive drug delivery systems that, owing to their ability of changing their state in response to temperature variations, from room to body temperature, may increase drug bioavailability. In the case of topical instillation, in situ forming gels increase pre-corneal drug residence time as a consequence of their enhanced adhesion to the corneal surface. Otherwise, in the case of intraocular and periocular, i.e., subconjunctival, retrobulbar, peribulbar administration, among others, they have the undoubted advantage of being easily injectable and, owing to their sudden thickening at body temperature, have the ability to form an in situ drug reservoir. As a result, the frequency of administration can be reduced, also favoring the patient’s adhesion to therapy. In the main section of this review, we discuss some of the most common treatment options for ocular diseases, with a special focus on posterior segment treatments, and summarize the most recent improvement deriving from thermosensitive drug delivery strategies. Aside from this, an additional section describes the most widespread in vitro models employed to evaluate the functionality of novel ophthalmic drug delivery systems.
Collapse
Affiliation(s)
- Simona Sapino
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
| | - Daniela Chirio
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
| | - Elena Peira
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
| | | | - Valentina Brunella
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
- Department of Chemistry, University of Turin, 10125 Turin, Italy.
| | - Sushilkumar A Jadhav
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
- School of Nanoscience and Technology, Shivaji University Kolhapur, Maharashtra 416004, India.
| | - Giulia Chindamo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Marina Gallarate
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
- NIS Research Centre, University of Turin, 10125 Turin, Italy.
| |
Collapse
|
46
|
Tavakoli N, Taymouri S, Saeidi A, Akbari V. Thermosensitive hydrogel containing sertaconazole loaded nanostructured lipid carriers for potential treatment of fungal keratitis. Pharm Dev Technol 2019; 24:891-901. [DOI: 10.1080/10837450.2019.1616755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Naser Tavakoli
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Somayeh Taymouri
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anahita Saeidi
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
47
|
Updates on thermosensitive hydrogel for nasal, ocular and cutaneous delivery. Int J Pharm 2019; 559:86-101. [PMID: 30677480 DOI: 10.1016/j.ijpharm.2019.01.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Thermosensitive hydrogels are in situ gelling systems composed of hydrophilic homopolymers or block copolymers which remain as solutions at room temperature and form gels after administration into the body. Its application in advanced drug delivery has gained significant attention in recent years. The tunable characteristics of thermosensitive hydrogels make them versatile and capable of incorporating both hydrophilic and lipophilic compounds and macromolecules. The drug molecules can be included as free molecules or preformulated into nano- or micro-particles or liposomes. Although there were several reviews on the materials of thermosensitive hydrogels, the compatibility between the drug and thermosensitive material as well as its in vitro release mechanisms and in vivo performance have barely been investigated. The current review is proposed aiming to not only provide an update on the recent development in thermosensitive hydrogel formulations for nasal, ocular and cutaneous deliveries, but also identify the relationship between the drug characteristics and the loading strategies, and their impacts on the release mechanisms and the in vivo performance. Our current update for the first time highlights the essential features for successful development of in situ thermosensitive hydrogels to facilitate nasal, ocular or cutaneous drug deliveries.
Collapse
|
48
|
Lipid Nanoparticles and Their Hydrogel Composites for Drug Delivery: A Review. Pharmaceuticals (Basel) 2018; 11:ph11040118. [PMID: 30388738 PMCID: PMC6315535 DOI: 10.3390/ph11040118] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 11/16/2022] Open
Abstract
Several drug delivery systems already exist for the encapsulation and subsequent release of lipophilic drugs that are well described in the scientific literature. Among these, lipid nanoparticles (LNP) have specifically come up for dermal, transdermal, mucosal, intramuscular and ocular drug administration routes in the last twenty years. However, for some of them (especially dermal, transdermal, mucosal), the LNP aqueous dispersions display unsuitable rheological properties. They therefore need to be processed as semi-solid formulations such as LNP-hydrogel composites to turn into versatile drug delivery systems able to provide precise spatial and temporal control of active ingredient release. In the present review, recent developments in the formulation of lipid nanoparticle-hydrogel composites are highlighted, including examples of successful encapsulation and release of lipophilic drugs through the skin, the eyes and by intramuscular injections. In relation to lipid nanoparticles, a specific emphasis has been put on the LNP key properties and how they influence their inclusion in the hydrogel. Polymer matrices include synthetic polymers such as poly(acrylic acid)-based materials, environment responsive (especially thermo-sensitive) polymers, and innovative polysaccharide-based hydrogels. The composite materials constitute smart, tunable drug delivery systems with a wide range of features, suitable for dermal, transdermal, and intramuscular controlled drug release.
Collapse
|
49
|
Wen Y, Ban J, Mo Z, Zhang Y, An P, Liu L, Xie Q, Du Y, Xie B, Zhan X, Tan L, Chen Y, Lu Z. A potential nanoparticle-loaded in situ gel for enhanced and sustained ophthalmic delivery of dexamethasone. NANOTECHNOLOGY 2018; 29:425101. [PMID: 30074486 DOI: 10.1088/1361-6528/aad7da] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Increasing the permeability of drugs across the cornea is key to improving drug absorption by the eye. This study presents a newly developed in situ gel loaded with nanoparticles, which could achieve controlled drug release and high ocular drug bioavailability by avoiding rapid precorneal clearance. The physicochemical parameters of the formulation were investigated and showed uniform size, physical stability, and favorable rheological and gelling properties. Ex vivo permeation studies revealed significantly higher drug release from the in situ gel loaded with nanoparticles compared to the conventional poloxamer in situ gel and the drug solution. When compared with a marketed formulation, the in situ gel loaded with nanoparticles provided slower controlled release and higher ocular bioavailability of dexamethasone. In conclusion, the developed nanoparticle-loaded in situ gel can successfully increase drug ocular bioavailability by enhancing contact time with the ocular surface and permeation through the cornea.
Collapse
Affiliation(s)
- Yifeng Wen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China. Guangdong Provincial Engineering Center of Topical Precise Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China. R&D Team for Formulation Innovation, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Karimi AR, Rostaminejad B, Rahimi L, Khodadadi A, Khanmohammadi H, Shahriari A. Chitosan hydrogels cross-linked with tris(2-(2-formylphenoxy)ethyl)amine: Swelling and drug delivery. Int J Biol Macromol 2018; 118:1863-1870. [DOI: 10.1016/j.ijbiomac.2018.07.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 11/26/2022]
|