1
|
Zeng H, Miao J, Liao J, Sui Z, Hou M, Hang S. Palm Kernel Cake Extracts Obtained from the Combination of Bacterial Fermentation and Enzymic Hydrolysis Promote Swine Small Intestine IPEC-J2 Cell Proliferation and Alleviate LPS-Induced Inflammation In Vitro. Antioxidants (Basel) 2024; 13:682. [PMID: 38929121 PMCID: PMC11200965 DOI: 10.3390/antiox13060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Co-fermentation with bacteria and enzymes can reduce sugar content in palm kernel cake (PKC); however, the chemical changes and their effects on cell functionality are unclear. This study investigated the active components in pre-treated PKC extracts and their effects on pig small intestine IPEC-J2 cell proliferation and LPS-induced inflammation. The extracts contained 60.75% sugar, 36.80% mannose, 1.75% polyphenols and 0.59% flavone, as determined by chemical analyses, suggesting that the extracts were palm kernel cake oligosaccharides (PKCOS). Then, we found that 1000 µg/mL PKCOS counteracted the decrease in cell viability (CCK8 kit) caused by LPS induction by 5 µg/mL LPS (p < 0.05). Mechanistic studies conducted by RNA-seq and qPCR analyses suggested PKCOS promoted cell proliferation through the upregulation of TNF-α, PI3KAP1, MAP3K5 and Fos in the PI3K/MAPK signalling pathway; alleviated inflammation caused by LPS via the downregulation of the target genes Casp3 and TNF-α in association with apoptosis; and regulated the expression of the antioxidant genes SOD1, SOD2 and GPX4 to exert positive antioxidant effects (p < 0.05). Furthermore, PKCOS upregulated SLC5A1 (encoding SLGT1), HK and MPI in the glycolytic pathway (p < 0.05), suggesting cell survival. In summary, PKCOS has positive effects on promoting swine intestine cell proliferation against inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Suqin Hang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (J.M.); (J.L.); (Z.S.); (M.H.)
| |
Collapse
|
2
|
Pei W, Li M, Wu J, Huang M, Sun B, Liang H, Wu Z. Preparation, Structural Analysis, and Intestinal Probiotic Properties of a Novel Oligosaccharide from Enzymatic Degradation of Huangshui Polysaccharide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:313-325. [PMID: 38126348 DOI: 10.1021/acs.jafc.3c05666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Huangshui polysaccharide (HSP) has attracted more and more interest due to its potential health benefits. Despite being an excellent source for the preparation of oligosaccharides, there are currently no relevant research reports on HSP. In the present study, a novel oligosaccharide (HSO) with a molecular weight of 1791 Da and a degree of polymerization of 11 was prepared through enzymatic degradation of crude HSP (cHSP). Methylation and NMR analyses revealed that the main chain of HSO was (1 → 4)-α-d-glucose with two O-6-linked branched chains. Morphological observations indicated that HSO exhibited smooth surface with lamellar and filamentary structure, and the glycan size ranged from 0.03 to 0.20 μm. Notably, HSO significantly promoted the proliferation of Bifidobacterium, Bacteroides, and Phascolarctobacterium, thereby making positive alterations in intestinal microbiota composition. Moreover, HSO markedly increased the content of short-chain fatty acids during in vitro fermentation. Metabolomics analysis illustrated the important metabolic pathways primarily involving glucose metabolism, amino acid metabolism, and fatty acid metabolism.
Collapse
Affiliation(s)
- Wenhao Pei
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Mei Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Haiyan Liang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ziyan Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Mall UP, Patel VH. Effect of in vitro Digestion on the Bioaccessibility of Polyphenols and Potential Prebiotic Properties of Potato Peel. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:228-240. [PMID: 38318834 DOI: 10.2174/012772574x287665240118053142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Potato peel is a byproduct of the potato processing industry and a potential source of functional ingredients such as dietary fiber, polyphenols, and prebiotics. However, the bioaccessibility of polyphenols and antioxidants during in vitro digestion as well as prebiotic potential after in vitro digestion of potato peel flour has not been reported. OBJECTIVE The study was designed to assess the bioaccessibility of polyphenols and the prebiotic potential of potato peel flour. METHODS In this study, the changes in polyphenol content and antioxidant capacity during different phases of in vitro digestion, including salivary, gastric and intestinal phases were studied. Additionally, an investigation was conducted to evaluate the prebiotic properties of potato peel flour by in vitro fermentation with Lactobacillus acidophilus. RESULTS The findings revealed a significant increase in the recovery index for total phenolic content during both gastric (106.90%) and intestinal (102.71%) digestive phases. Furthermore, polyphenols in potato peel flour exhibited high residual intestinal digestibility index values (>90%). The antioxidant capacity increased by >50% during various phases of in vitro digestion. Regarding prebiotic properties, potato peel flour significantly increased L. acidophilus counts and promoted the production of short-chain fatty acids, specifically propionate and butyrate. CONCLUSION This study suggests that potato peel flour has the potential to serve as a functional ingredient or nutraceutical that can enhance health and may help in reducing environmental problems.
Collapse
Affiliation(s)
- Urvashi P Mall
- Laboratory of Foods and Nutrition, P. G. Department of Home Science, Sardar Patel University, Vallabh Vidyanagar- 388120, Gujarat, India
| | - Vinayak H Patel
- Laboratory of Foods and Nutrition, P. G. Department of Home Science, Sardar Patel University, Vallabh Vidyanagar- 388120, Gujarat, India
| |
Collapse
|
4
|
Hu TG, Tan FX, Li L, An KJ, Zou B, Wen J, Wu JJ, Xiao GS, Yu YS, Xu YJ. Structural elucidation and physicochemical properties of litchi polysaccharide with the promoting effect on exopolysaccharide production by Weissella confusa. Int J Biol Macromol 2023; 253:126944. [PMID: 37722646 DOI: 10.1016/j.ijbiomac.2023.126944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Exopolysaccharide (EPS), as a secondary metabolite of microorganisms, has been commonly used in the dairy industry to replace the traditional stabilizers. However, the EPS production by microorganism is generally low, which limits its application. A litchi polysaccharide (Lzp2-2) with the promoting effect on EPS production by Weissella confusa was purified. The SEM and FT-IR analysis indicated that Lzp2-2 displayed a compact netlike structure and typical bands of carbohydrates. The structure of Lzp2-2 was further elucidated, which was comprised of a major backbone structure [→3)-β-D-Galp-(1→6)-β-D-Galp-(1 → 6)-β-D-Galp-(1 → 3)-β-D-Glcp-(1 → 6)-α-D-Glcp-(1 → 3)-α-D-Glcp-(1→] linked with two side chains [α-L-Araf-(1 → 5)-α-L-Araf-(1→, and β-D-Glcp-(1 → or α-L-Araf-(1→] at the O-3 and O-6) of β-D-Galp-(1→, respectively. Finally, Lzp2-2 was applied as an additive to the medium of yoghurt fermented by W. confusa. The results indicated Lzp2-2 not only promoted the EPS production to improve the viscosity, texture and mouthfeel of yoghurt, but also facilitated the generation of other secondary metabolites (volatile organic compounds), thus elevating the flavor of yoghurt.
Collapse
Affiliation(s)
- Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| | - Feng-Xiang Tan
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China
| | - Lu Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China
| | - Ke-Jing An
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China
| | - Bo Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China
| | - Jing Wen
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China
| | - Ji-Jun Wu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China
| | | | - Yuan-Shan Yu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China.
| | - Yu-Juan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, China.
| |
Collapse
|
5
|
Anti-glycation level of pectic oligosaccharide in orange peel and its stability in accelerated storage temperature. Food Chem 2023; 398:133886. [DOI: 10.1016/j.foodchem.2022.133886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Mohdaly AAA, Roby MHH, Sultan SAR, Groß E, Smetanska I. Potential of Low Cost Agro-Industrial Wastes as a Natural Antioxidant on Carcinogenic Acrylamide Formation in Potato Fried Chips. Molecules 2022; 27:7516. [PMID: 36364343 PMCID: PMC9659110 DOI: 10.3390/molecules27217516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 12/24/2023] Open
Abstract
Acrylamide is classified as a toxic and a prospective carcinogen to humans, and it is formed during thermal process via Maillard reaction. In order to find innovative ways to diminish acrylamide formation in potato chips, several extracts of agricultural wastes including potato peels, olive leaves, lemon peels and pomegranate peels extracts were examined as a soaking pre-treatment before frying step. Total phenolic, total flavonoids, antioxidant activity, and the reduction in sugar and asparagine contents were additionally performed. Proximate composition of these wastes was found to be markedly higher in fat, carbohydrate and ash contents. Lemon peels and potato peels showed almost similar phenolic content (162 ± 0.93 and 157 ± 0.88 mg GAE /g, respectively) and exhibited strong ABTS and DPPH radical scavenging activities than the other wastes. The reduction percentage of reducing sugars and asparagine after soaking treatment ranged from 28.70 to 39.57% and from 22.71 to 29.55%, respectively. HPLC results showed higher level of acrylamide formation in control sample (104.94 mg/kg) and by using the wastes extracts of lemon peels, potato peels, olive leaves, and pomegranate peels succeeded to mitigate acrylamide level by 86.11%, 69.66%, 34.03%, and 11.08%, respectively. Thus, it can be concluded that the soaking of potato slices in the tested wastes extracts as antioxidant as pre-treatment before frying reduces the formation of acrylamide and in this way, the risks connected to acrylamide consumption could be regulated and managed.
Collapse
Affiliation(s)
- Adel Abdelrazek Abdelazim Mohdaly
- Department of Food Science and Technology, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
- Department of Plant Food Processing, Agricultural Faculty, University of Applied Sciences Weihenstephan-Triesdorf, Markgrafenstr 16, 91746 Weidenbach, Germany
| | - Mohamed H. H. Roby
- Department of Food Science and Technology, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Seham Ahmed Rabea Sultan
- Department of Food Science and Technology, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Eberhard Groß
- Department of Plant Food Processing, Agricultural Faculty, University of Applied Sciences Weihenstephan-Triesdorf, Markgrafenstr 16, 91746 Weidenbach, Germany
| | - Iryna Smetanska
- Department of Plant Food Processing, Agricultural Faculty, University of Applied Sciences Weihenstephan-Triesdorf, Markgrafenstr 16, 91746 Weidenbach, Germany
| |
Collapse
|
8
|
Structural Characterization and In Vitro Antioxidant Activity of Metallothionein from Oratosquilla oratoria. Molecules 2022; 27:molecules27072320. [PMID: 35408719 PMCID: PMC9000697 DOI: 10.3390/molecules27072320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
We report here the purification of a novel metal-binding protein from Oratosquilla oratoria (O. oratoria MT-1) by gel and ion-exchange chromatography. SDS-PAGE and MALDI-TOF analyses demonstrated that isolated O. oratoria MT-1 was of high purity with a molecular weight of 12.4 kDa. The fluorescence response to SBD-F derivatives revealed that O. oratoria MT-1 contained a large number of sulfhydryl groups, which is a general property of metallothioneins. Zn and Cu metal stoichiometries for O. oratoria MT-1 were 3.97:1 and 0.55:1, respectively. The proportion of cysteine (Cys) residues in the amino acid composition was 32.69%, and aromatic amino acids were absent. The peptide sequence coverage with Macrobrachium rosenbergii calmodulin (accession AOA3S8FSK5) was 60%. Infrared spectroscopy of O. oratoria MT-1 revealed two obvious peaks at absorption frequencies for the amide I band and the amide II band. CD spectra revealed that the secondary structure was mainly composed of random coil (57.6%) and β-sheet (39.9%). An evaluation of in vitro antioxidant activity revealed that isolated O. oratoria MT-1 has strong reducing activities, exhibiting scavenging rates for DPPH and OH of 77.8% and 75.8%, respectively (IC50 values 0.57 mg/mL and 1.1 mg/mL). O. oratoria MT-1 may be used as a functional additive in cosmetics, health foods, and medical products, as well as a reference material for quantitative analysis of metallothionein in such products.
Collapse
|
9
|
Identification and Recovery of Valuable Bioactive Compounds from Potato Peels: A Comprehensive Review. Antioxidants (Basel) 2021; 10:antiox10101630. [PMID: 34679764 PMCID: PMC8533085 DOI: 10.3390/antiox10101630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/02/2022] Open
Abstract
Nowadays, the potato is one of the most cultivated and consumed food crops in the world and, in recent years, its production has experienced a sharp increase. Its industrial processing generates several by-products that are wasted and cause economic and environmental problems. Among them, potato peel stands out, representing up to 10% of the total potato residues obtained in the processing. On the other hand, these wastes, in addition to presenting antioxidant compounds, are rich in interesting chemical compounds of great value in a biorefinery model. This review summarizes the main compounds present in potato skins as well as the most used and innovative extraction methods employed for their isolation, with special emphasis on the fractions with biological activities. In addition, a sustainable biorefinery proposal focused on obtaining high added-value products with potential applications in the pharmaceutical, food, nutraceutical, or cosmetic industries is included.
Collapse
|
10
|
Phenolic composition and cell-based biological activities of ten coloured potato peels (Solanum tuberosum L.). Food Chem 2021; 363:130360. [PMID: 34153675 DOI: 10.1016/j.foodchem.2021.130360] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/26/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023]
Abstract
The present study provides an in-depth characterisation of the non-anthocyanin and anthocyanin phenolic compounds of potato peels from ten coloured potato varieties. Furthermore, the underexplored bioactive potential (antioxidant, cytotoxic and anti-inflammatory capacities) of the studied peels is comprehensively analysed. Among non-anthocyanin phenolics, caffeic and a caffeoylquinic acid were found in the highest concentrations in all samples, which also showed the presence of O-glycosylated flavonol derivatives and polyamine derivatives. Acylated anthocyanins were identified in red and purple varieties, being pelargonidin, peonidin, and malvidin the most prominent aglycones. All samples revealed antioxidant and antitumor activities, and no toxic effect. The extract of the Rosemary variety presented the best antioxidant and antitumor outcomes and was the only sample to reveal anti-inflammatory activity. These results are valuable for the food-industry by adding value to an important bio-residue, particularly concerning its potential as natural ingredients in novel food and pharmaceutical formulations.
Collapse
|
11
|
|
12
|
Improving the nutritional performance of gluten-free pasta with potato peel autohydrolysis extract. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Jana UK, Kango N. Characteristics and bioactive properties of mannooligosaccharides derived from agro-waste mannans. Int J Biol Macromol 2020; 149:931-940. [PMID: 32014482 DOI: 10.1016/j.ijbiomac.2020.01.304] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Mannooligosaccharides (MOS) were derived using Aspergillus oryzae β-mannanase (ManAo) from different mannan-rich agro-wastes, palm kernel cake (PKC), guar gum and copra meal (CM). Guar gum (GG) released higher amount of MOS (56.31% w/w) from which purification of mannobiose (0.68 mg) and mannotriose (1.26 mg) was demonstrated using size-exclusion chromatography. FTIR analysis of mannan hydrolysates showed characteristic peaks in 1200-900 cm-1 region indicating the presence of MOS. 1H &13C NMR spectra showed presence of anomeric sugar forms of MOS in different mannan hydrolysates. MOS from locust bean gum and guar gum had both α- and β-anomers while PKC and CM had only α-anomer. Growth promotional activities of different MOS were demonstrated using two probiotic Lactobacilli. Besides, enzymatically derived MOS also showed metal (Fe2+) chelating and anti-oxidant activities, wherein best anti-glycating agent was evaluated as MOS from PKC. PKC derived MOS showed highest cytotoxicity (74.19%) against human colon adenocarcinoma cell line (Caco-2). This study demonstrated the prebiotic potential of agro-waste derived MOS and possibility of their utilization as a functional food ingredient.
Collapse
Affiliation(s)
- Uttam Kumar Jana
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India.
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, Madhya Pradesh, India.
| |
Collapse
|
14
|
|
15
|
Xu GY, Liao AM, Huang JH, Zhang JG, Thakur K, Wei ZJ. The rheological properties of differentially extracted polysaccharides from potatoes peels. Int J Biol Macromol 2019; 137:1-7. [DOI: 10.1016/j.ijbiomac.2019.06.175] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/16/2019] [Accepted: 06/24/2019] [Indexed: 11/26/2022]
|
16
|
Affiliation(s)
- María D Torres
- Department of Chemical Engineering, Faculty of Sciences University of Vigo Edificio Politécnico, As Lagoas s/n Ourense 32004Spain
| | - Herminia Domínguez
- Department of Chemical Engineering, Faculty of Sciences University of Vigo Edificio Politécnico, As Lagoas s/n Ourense 32004Spain
| |
Collapse
|
17
|
Xu GY, Liao AM, Huang JH, Zhang JG, Thakur K, Wei ZJ. Evaluation of structural, functional, and anti-oxidant potential of differentially extracted polysaccharides from potatoes peels. Int J Biol Macromol 2019; 129:778-785. [PMID: 30771399 DOI: 10.1016/j.ijbiomac.2019.02.074] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/02/2019] [Accepted: 02/12/2019] [Indexed: 12/28/2022]
Abstract
Potato peel was used for the extraction of three types of polysaccharides (PW, PAL, and PAC) using water, alkaline, and acid treatments, respectively. The structure of the PP polysaccharides was examined by means of Fourier transform infrared spectroscopy (FT-IR) analysis and Gas chromatography-mass spectrometry (GC-MS). The results suggest that the extracted polysaccharides constituted essentially three functional groups: CO, CH, and OH. The polysaccharides were comprised of low proportions of proteins, 17-23% uronic acids, and approximately 70% carbohydrates. PAL, PW, and PAC with molecular weights of 2.25 × 103, 2.18 × 103, and 1.92 × 103 kDa, respectively, were composed of rhamnose, xylose, mannose, arabinose, glucose, and galactose. Functional properties (solubility, oil holding capacity, foaming, and emulsion properties) of these polysaccharides were evaluated. Among three, PAL showed the highest fat-binding capacity which was 7.50 g/g with the solubility of 95.06%. The three polysaccharides possessed appreciable in vitro anti-oxidant (scavenging DPPH and ABTS+ radicals, chelating ferrous ions, and reducing power) potential. PAL exhibited the strongest reducing power, scavenging activity on DPPH radicals and chelating capability on ferrous ions. PP polysaccharides can be used as promising natural antioxidants in food, pharmaceutical, and cosmetic preparations.
Collapse
Affiliation(s)
- Guan-Yi Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Ai-Mei Liao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China.
| | - Ji-Hong Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China; Henan Cooperation Science and Technology Institute, Zhengzhou 450001, People's Republic of China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China; Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang seasoning Food Co., Ltd., Jieshou 236500, People's Republic of China.
| |
Collapse
|
18
|
Jin W, Ren L, Liu B, Zhang Q, Zhong W. Structural Features of Sulfated Glucuronomannan Oligosaccharides and Their Antioxidant Activity. Mar Drugs 2018; 16:E291. [PMID: 30134603 PMCID: PMC6165275 DOI: 10.3390/md16090291] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Glucuronomannan oligosaccharides (Gs) were derived from fucoidan, which was extracted from the brown alga Sargassum thunbergii. Sulfated glucuronomannan oligosaccharides (SGs) were obtained by the sulfation of Gs. NMR techniques were used to reveal that the order of sulfation was Man-C6 > Man-C4 > Man-C1R > GlcA-C3 > Man-C3 > GlcA-C2. Finally, the antioxidant activities (hydroxyl radical scavenging activity, superoxide radical scavenging activity, reducing power and DPPH radical scavenging activity) of Gs and SGs were determined. The findings showed that the higher the degree of polymerization, the better the activity, except for the hydroxyl radical scavenging activity. In addition, the higher the sulfate content, the lower the activities for the reducing power and DPPH radical scavenging activity. Opposite results were found for the superoxide radical scavenging activity. Finally, compared with fucoidan, most Gs and SGs had higher antioxidant activity, suggesting that they might be good candidates for antioxidants.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Langlang Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Bing Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310023, China.
| | - Quanbin Zhang
- Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266000, China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310023, China.
| |
Collapse
|