1
|
DSouza GC, Chio C, Venkatesh A, Wang H, Ray MB, Prakash A, Qin W, Xu C. Microbially degradable phenolic foams based on depolymerized Kraft lignin for hydrophilic applications. BIORESOURCE TECHNOLOGY 2025; 419:132082. [PMID: 39824324 DOI: 10.1016/j.biortech.2025.132082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Hydrophilic phenol-formaldehyde (PF) foams, widely used in floral and hydroponic applications, are produced using phenol typically derived from non-renewable petroleum-based resources. This study examines the potential of depolymerized Kraft lignin (DKL) as a sustainable substitute for phenol in the synthesis of hydrophilic biobased foams. At 50 % DKL substitution, the foams demonstrated excellent water absorption capacities (up to 2557 %), relatively low densities (∼62 kg/m3), and nearly 100 % open-cell content. Its compressive strength (20.64 kPa at 10 % deformation) is comparable to commercially available floral and hydroponic foams. Additionally, foams with 10 % phenol substitution by DKL exhibited better thermal stability compared to neat phenolic foams. After 15 days of incubation with Laccase-producing bacterium Bacillus sp., 30 % and 50 % DKL foams exhibited the highest weight loss of 39.03 % and 38.9 %, respectively. Qualitative degree of biodegradation was further assessed using scanning electron microscopy and FT-IR analysis of the degraded samples.
Collapse
Affiliation(s)
- Glen Cletus DSouza
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada.
| | - Chonlong Chio
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Aditya Venkatesh
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Haoyu Wang
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Madhumita B Ray
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada.
| | - Anand Prakash
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada.
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Chunbao Xu
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Latif NHA, Brosse N, Ziegler-Devin I, Chrusiel L, Trache D, Hashim R, Hussin MH. Development and structural comparison of alkaline and organosolv coconut husks lignin as an eco-friendly lignin-phenol-glyoxal (LPG) wood adhesives. Int J Biol Macromol 2024; 290:139088. [PMID: 39716698 DOI: 10.1016/j.ijbiomac.2024.139088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/27/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
The development of eco-friendly wood adhesives have gained more interest among adhesives industries due to the concerns about using carcinogenic formaldehyde and petroleum-based phenol in commercially available adhesives. Therefore, many studies have been done by using lignin to partially replace phenol and completely substitute formaldehyde with non-toxic glyoxal in a wood adhesive formulation. This study focused on using different percentages of lignin substitution (10 %, 30 % and 50 wt%) of alkaline and organosolv coconut husk lignin into soda lignin-phenol-glyoxal (SLPG), Kraft lignin-phenol-glyoxal (KLPG) and organosolv lignin-phenol-glyoxal (OLPG) adhesives. The adhesives were further characterized using various analyses and it showed that 50 % lignin substitution was the optimum rate percentage with 50 % SLPG adhesive giving the highest solid content, shorter gel time and more viscosity compared to control (PF and PG), KLPG and OLPG adhesives. Mechanical properties revealed that 50 % SLPG adhesive showed an improvement performance of tensile strength (TS: 68.98 ± 0.19 MPa), internal bonding (IB: 17.01 ± 1.07 Nmm-2), and cross-linking density panels (775.51 ± 8.15 kg m-3) due to the higher amount of molecular weight (Mw) as well as higher phenolic-OH that improved the cross-linking reaction between phenol-glyoxal with G-type unit in lignin structure.
Collapse
Affiliation(s)
- Nur Hanis Abd Latif
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Isabelle Ziegler-Devin
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Laurent Chrusiel
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Djalal Trache
- Energetic Materials Laboratory, Teaching and Research Unit of Energetic Processes, Ecole Militaire Polytechnique, BP 17, Bordj El-Bahri, Algiers 16046, Algeria
| | - Rokiah Hashim
- School of Technology Industrial, Universiti Sains Malaysia, 11800 Minden, Malaysia
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Malaysia.
| |
Collapse
|
3
|
Makowska S, Miedzińska K, Kairytė A, Šeputytė-Jucikė J, Strzelec K. Flame Retardancy and Thermal Stability of Rigid Polyurethane Foams Filled with Walnut Shells and Mineral Fillers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4629. [PMID: 39336370 PMCID: PMC11433397 DOI: 10.3390/ma17184629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Recently, the influence of the concept of environmental sustainability has increased, which includes environmentally friendly measures related to reducing the consumption of petrochemical fuels and converting post-production feedstocks into raw materials for the synthesis of polymeric materials, the addition of which would improve the performance of the final product. In this regard, the development of bio-based polyurethane foams can be carried out by, among other things, modifying polyurethane foams with vegetable or waste fillers. This paper investigates the possibility of using walnut shells (WS) and the mineral fillers vermiculite (V) and perlite (P) as a flame retardant to increase fire safety and thermal stability at higher temperatures. The effects of the fillers in amounts of 10 wt.% on selected properties of the polyurethane composites, such as rheological properties (dynamic viscosity and processing times), mechanical properties (compressive strength, flexural strength, and hardness), insulating properties (thermal conductivity), and flame retardant properties (e.g., ignition time, limiting oxygen index, and peak heat release) were investigated. It has been shown that polyurethane foams containing fillers have better performance properties compared to unmodified polyurethane foams.
Collapse
Affiliation(s)
- Sylwia Makowska
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland
- Civil Engineering Research Centre, Vilnius Gediminas Technical University, Saulėtekio Av. 11, 10223 Vilnius, Lithuania
| | - Karolina Miedzińska
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland
| | - Agnė Kairytė
- Civil Engineering Research Centre, Vilnius Gediminas Technical University, Saulėtekio Av. 11, 10223 Vilnius, Lithuania
- Laboratory of Thermal Insulating Materials and Acoustics, Faculty of Civil Engineering, Institute of Building Materials, Vilnius Gediminas Technical University, Linkmenu St. 28, LT-08217 Vilnius, Lithuania
| | - Jurga Šeputytė-Jucikė
- Laboratory of Thermal Insulating Materials and Acoustics, Faculty of Civil Engineering, Institute of Building Materials, Vilnius Gediminas Technical University, Linkmenu St. 28, LT-08217 Vilnius, Lithuania
| | - Krzysztof Strzelec
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland
| |
Collapse
|
4
|
Vevere L, Yakushin V, Sture-Skela B, Andersons J, Cabulis U. Cryogenic Insulation-Towards Environmentally Friendly Polyurethane Foams. Polymers (Basel) 2024; 16:2406. [PMID: 39274039 PMCID: PMC11396960 DOI: 10.3390/polym16172406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Cryogenics is the science and technology of very low temperatures, typically below 120 K. The most common applications are liquified natural gas carriers, ground-based tanks, and propellant tanks for space launchers. A crucial aspect of cryogenic technology is effective insulation to minimise boil-off from storage tanks and prevent frost build-up. Rigid closed-cell foams are prominent in various applications, including cryogenic insulation, due to their balance between thermal and mechanical properties. Polyurethane (PU) foam is widely used for internal insulation in cryogenic tanks, providing durability under thermal shocks and operational loads. External insulation, used in liquified natural gas carriers and ground-based tanks, generally demands less compressive strength and can utilise lower-density foams. The evolution of cryogenic insulation materials has seen the incorporation of environmentally friendly blowing agents and bio-based polyols to enhance sustainability. Fourth-generation physical blowing agents, such as HFO-1233zd(E) and HFO-1336mzz(Z), offer low global warming potential and improved thermal conductivity. Additionally, bio-based polyols from renewable resources like different natural oils and recycled polyethylene terephthalate (PET) are being integrated into rigid PU foams, showing promising properties for cryogenic applications. Research continues to optimise these materials for better mechanical performance and environmental impact.
Collapse
Affiliation(s)
- Laima Vevere
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Str., LV-1006 Riga, Latvia
| | - Vladimir Yakushin
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Str., LV-1006 Riga, Latvia
| | - Beatrise Sture-Skela
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Str., LV-1006 Riga, Latvia
| | - Janis Andersons
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Str., LV-1006 Riga, Latvia
| | - Ugis Cabulis
- Latvian State Institute of Wood Chemistry, 27 Dzerbenes Str., LV-1006 Riga, Latvia
| |
Collapse
|
5
|
Kim HJ, Jin X, Choi JW. Investigation of bio-based rigid polyurethane foams synthesized with lignin and castor oil. Sci Rep 2024; 14:13490. [PMID: 38866939 PMCID: PMC11169680 DOI: 10.1038/s41598-024-64318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
In this study, polyurethane (PU) foams were manufactured using kraft lignin and castor oil as bio-based polyols by replacing 5-20 wt% and 10-100 wt% of conventional polyol, respectively. To investigate the effects of unmodified bio-based polyols on PU foam production, reactivity and morphology within PU composites was analyzed as well as mechanical and thermal properties of the resulting foams. Bio-based PU foam production was carried out after characterizing the reagents used in the foaming process (including hydroxyl group content, molecular weight distribution, and viscosity). To compare the resulting bio-based PU foams, control foam were produced without any bio-based polyol under the same experimental conditions. For lignin-incorporated PU foams, two types, LPU and lpu, were manufactured with index ratio of 1.01 and 1.3, respectively. The compressive strength of LPU foams increased with lignin content from 5 wt% (LPU5: 147 kPa) to 20 wt% (LPU20: 207 kPa), although it remained lower than that of the control foam (PU0: 326 kPa). Similarly, the compressive strength of lpu foams was lower than that of the control foam (pu0: 441 kPa), with values of 164 kPa (lpu5), 163 kPa (lpu10), 167 kPa (lpu15), and 147 kPa (lpu20). At 10 wt% lignin content, both foams (LPU10 and lpu10) exhibited the smallest and most homogenous pore sizes and structures. For castor oil-incorporated PU foams with an index of 1.01, denoted as CPU, increasing castor oil content resulted in larger cell sizes and void fractions, transitioning to an open-cell structure and decreasing the compressive strength of the foams from 284 kPa (CPU10) to 23 kPa (CPU100). Fourier transform infrared (FT-IR) results indicated the formation of characteristic urethane linkages in PU foams and confirmed that bio-based polyols were less reactive with isocyanate compared to traditional polyol. Thermogravimetric analysis (TGA) showed that incorporating lignin and castor oil affected the thermal decomposition behavior. The thermal stability of lignin-incorporated PU foams improved as the lignin content increased with char yields increasing from 11.5 wt% (LPU5) to 15.8 wt% (LPU20) and from 12.4 wt% (lpu5) to 17.5 wt% (lpu20). Conversely, the addition of castor oil resulted in decreased thermal stability, with char yields decreasing from 10.6 wt% (CPU10) to 4.2 wt% (CPU100). This research provides a comprehensive understanding of PU foams incorporating unmodified biomass-derived polyols (lignin and castor oil), suggesting their potential for value-added utilization as bio-based products.
Collapse
Affiliation(s)
- Hyeon Jeong Kim
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Xuanjun Jin
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Joon Weon Choi
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
| |
Collapse
|
6
|
Fan X, Wang H, Kong L, Huang J. Advanced ethylene-absorbing and cushioning depending on the 3D porous-structured fruit packaging: Toward polyurethane foam manipulation using zein and soybean oil polyol substrates. Food Res Int 2024; 186:114340. [PMID: 38729695 DOI: 10.1016/j.foodres.2024.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Fruits are essential sources of nutrients in our daily diet; however, their spoilage is often intensified by mechanical damage and the ethylene phytohormone, resulting in significant economic losses and exacerbating hunger issues. To address these challenges, this study presented a straightforward in situ synthesis protocol for producing Z/SOPPU foam, a 3D porous-structured fruit packaging. This innovative packaging material offered advanced ethylene-adsorbing and cushioning capabilities achieved through stirring, heating, and standing treatments. The results demonstrated that the Z/SOPPU foam, with its porous structure, served as an excellent packaging material for fruits, maintaining the intact appearance of tomatoes even after being thrown 72 times from a height of 1.5 m. Additionally, it exhibited desirable hydrophobicity (contact angle of 114.31 ± 0.82°), degradability (2.73 ± 0.88 % per 4 weeks), and efficient ethylene adsorption (adsorption rate of 13.2 ± 1.7 mg/m3/h). These remarkable characteristics could be attributed to the unique 3D micron-porous configuration, consisting of soybean oil polyol polyurethane foam for mechanical strain cushioning and zein for enhanced ethylene adsorption efficiency. Overall, this research offers an effective and original approach to the rational design and fabrication of advanced bio-based fruit packaging.
Collapse
Affiliation(s)
- Xin Fan
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China; Shaanxi Research Institute of Agricultural Products Technology, Xi'an 710021, China.
| | - Huan Wang
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China
| | - Lushi Kong
- Tubular Goods Research Institute, China National Petroleum Corporation, Xi'an 710077, China
| | - Junrong Huang
- Natural Food Macromolecule Research Center, School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi' an 710021, China
| |
Collapse
|
7
|
Dingcong R, Ahalajal MAN, Mendija LCC, Ruda-Bayor RJG, Maravillas FP, Cavero AI, Cea EJC, Pantaleon KJM, Tejas KJGD, Limbaga EA, Dumancas GG, Malaluan RM, Lubguban AA. Valorization of Agricultural Rice Straw as a Sustainable Feedstock for Rigid Polyurethane/Polyisocyanurate Foam Production. ACS OMEGA 2024; 9:13100-13111. [PMID: 38524426 PMCID: PMC10956088 DOI: 10.1021/acsomega.3c09583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024]
Abstract
Agricultural rice straw (RS), often discarded as waste in farmlands, represents a vast and underutilized resource. This study explores the valorization of RS as a potential feedstock for rigid polyurethane/polyisocyanurate foam (RPUF) production. The process begins with the liquefaction of RS to create an RS-based polyol, which is then used in a modified foam formulation to prepare RPUFs. The resulting RPUF samples were comprehensively characterized according to their physical, mechanical, and thermal properties. The results demonstrated that up to 50% by weight of petroleum-based polyol can be substituted with RS-based polyol to produce a highly functional RPUF. The obtained foams exhibited a notably low apparent density of 18-24 kg/m3, exceptional thermal conductivity ranging from 0.031-0.041 W/m-K, and a high compressive strength exceeding 250 kPa. This study underlines the potential of the undervalued agricultural RS as a green alternative to petroleum-based feedstocks to produce a high-value RPUF. Additionally, the findings contribute to the sustainable utilization of abundant agricultural waste while offering an eco-friendly option for various applications, including construction materials and insulation.
Collapse
Affiliation(s)
- Roger
G. Dingcong
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Mary Ann N. Ahalajal
- Department
of Civil Engineering and Technology, Mindanao
State University − Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Leanne Christie C. Mendija
- Department
of Materials Resources Engineering and Technology, Mindanao State University− Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Rosal Jane G. Ruda-Bayor
- Department
of Materials Resources Engineering and Technology, Mindanao State University− Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Felrose P. Maravillas
- Department
of Civil Engineering and Technology, Mindanao
State University − Iligan Institute of Technology, Iligan City 9200, Philippines
- College
of Engineering, Capitol University, Cagayan de Oro City 9000, Philippines
| | - Applegen I. Cavero
- Department
of Civil Engineering and Technology, Mindanao
State University − Iligan Institute of Technology, Iligan City 9200, Philippines
- AC
Joyo Design and Technical Services, Davao City 8000, Philippines
| | - Evalyn Joy C. Cea
- Department
of Civil Engineering and Technology, Mindanao
State University − Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Kaye Junelle M. Pantaleon
- Department
of Materials Resources Engineering and Technology, Mindanao State University− Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Kassandra Jayza Gift D. Tejas
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Edison A. Limbaga
- Department
of Materials Resources Engineering and Technology, Mindanao State University− Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Gerard G. Dumancas
- Department
of Chemistry, The University of Scranton, Scranton, Pennsylvania 18510, United States
| | - Roberto M. Malaluan
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, Iligan City 9200, Philippines
- Department
of Chemical Engineering and Technology, Mindanao State University − Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Arnold A. Lubguban
- Center
for Sustainable Polymers, Mindanao State
University − Iligan Institute of Technology, Iligan City 9200, Philippines
- Department
of Chemical Engineering and Technology, Mindanao State University − Iligan Institute of Technology, Iligan City 9200, Philippines
| |
Collapse
|
8
|
Pęczek E, Pamuła R, Białowiec A. Recycled Waste as Polyurethane Additives or Fillers: Mini-Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1013. [PMID: 38473487 DOI: 10.3390/ma17051013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
The intensive development of the polyurethanes industry and limited resources (also due to the current geopolitical situation) of the raw materials used so far force the search for new solutions to maintain high economic development. Implementing the principles of a circular economy is an approach aimed at reducing the consumption of natural resources in PU production. This is understood as a method of recovery, including recycling, in which waste is processed into PU, and then re-used and placed on the market in the form of finished sustainable products. The effective use of waste is one of the attributes of the modern economy. Around the world, new ways to process or use recycled materials for polyurethane production are investigated. That is why innovative research is so important, in which development may change the existing thinking about the form of waste recovery. The paper presents the possibilities of recycling waste (such as biochar, bagasse, waste lignin, residual algal cellulose, residual pineapple cellulose, walnut shells, silanized walnut shells, basalt waste, eggshells, chicken feathers, turkey feathers, fiber, fly ash, wood flour, buffing dust, thermoplastic elastomers, thermoplastic polyurethane, ground corncake, Tetra Pak®, coffee grounds, pine seed shells, yerba mate, the bark of Western Red Cedar, coconut husk ash, cuttlebone, glass fibers and mussel shell) as additives or fillers in the formulation of polyurethanes, which can partially or completely replace petrochemical raw materials. Numerous examples of waste applications of one-component polyurethanes have been given. A new unexplored niche for the research on waste recycling for the production of two components has been identified.
Collapse
Affiliation(s)
- Edyta Pęczek
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland
- Selena Industrial Technologies Sp. z o.o., Pieszycka 3, 58-200 Dzierżoniów, Poland
| | - Renata Pamuła
- Selena Industrial Technologies Sp. z o.o., Pieszycka 3, 58-200 Dzierżoniów, Poland
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland
| |
Collapse
|
9
|
Latif NHA, Brosse N, Ziegler-Devin I, Chrusiel L, Hashim R, Hussin MH. Structural characterization of modified coconut husk lignin via steam explosion pretreatment as a renewable phenol substitutes. Int J Biol Macromol 2023; 253:127210. [PMID: 37797852 DOI: 10.1016/j.ijbiomac.2023.127210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/10/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
The effects of steam explosion (SE) pretreatment on the structural properties of lignin isolated from coconut husk (CH) biomass via soda pulping were investigated in this work. The isolated SE lignin was classified as dilute acid impregnation SE lignin (ASEL), water impregnation SE lignin (WSEL), and 2-naphthol impregnation SE lignin (NSEL). The various types of functional groups isolated from SE lignin were characterized and compared using a variety of complementary analyses: FTIR spectroscopy, NMR spectroscopy, GPC chromatography, HPAEC-PAD chromatography and thermal analyses. It was revealed that ASEL has the highest solid recovery with 55.89 % yield as well as the highest sugars content compared to WSEL (45.66 % yield) and NSEL (49.37 % yield). Besides, all isolated SE lignin contain a significant quantity of non-condensed G-type and S-type units but less amount of H-type units as supported by previous research. The SE lignin produced lignin with higher molecular weight (Mw ASEL: 72725 g mol-1 > Mw WSEL: 13112 g mol-1 > Mw NSEL: 6891 g mol-1) seems to influence the success of the synthesis reaction of phenolic resins. Because of the large variances in the physicochemical properties of SE lignin polymers, their structural properties were increased toward numerous alternative techniques in lignin-based applications.
Collapse
Affiliation(s)
- Nur Hanis Abd Latif
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Malaysia
| | - Nicolas Brosse
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Isabelle Ziegler-Devin
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Laurent Chrusiel
- Laboratoire d'Etude et de Recherche sur le MAteriau Bois (LERMAB), Faculte des Sciences et Technologies, Universite de Lorraine, Vandoeuvre-les-Nancy, France
| | - Rokiah Hashim
- School of Technology Industrial, Universiti Sains Malaysia, 11800 Minden, Malaysia
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Malaysia.
| |
Collapse
|
10
|
Antonino L, Sumerskii I, Potthast A, Rosenau T, Felisberti MI, dos Santos DJ. Lignin-Based Polyurethanes from the Blocked Isocyanate Approach: Synthesis and Characterization. ACS OMEGA 2023; 8:27621-27633. [PMID: 37546644 PMCID: PMC10398858 DOI: 10.1021/acsomega.3c03422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Lignin, the world's second most abundant biopolymer, has been investigated as a precursor of polyurethanes due to its high availability and large amount of hydroxyls present in its structure. Lignin-based polyurethanes (LPUs) are usually synthesized from the reaction between lignin, previously modified or not, and diisocyanates. In the present work, LPUs were prepared, for the first time, using the blocked isocyanate approach. For that, unmodified and hydroxypropylated Kraft lignins were reacted with 4,4'-methylene diphenyl diisocyanate in the presence of diisopropylamine (blocking agent). Castor oil was employed as a second polyol. The chemical modification was confirmed by 31P nuclear magnetic resonance (31P NMR) analysis, and the structure of both lignins was elucidated by a bidimensional NMR technique. The LPUs' prepolymerization kinetics was investigated by temperature-modulated optical refractometry and Fourier-transform infrared spectroscopy. The positive effect of hydroxypropylation on the reactivity of the Kraft lignin was verified. The structure of LPU prepolymers was accessed by bidimensional NMR. The formation of hindered urea-terminated LPU prepolymers was confirmed. From the results, the feasibility of the blocked isocyanate approach to obtain LPUs was proven. Lastly, single-lap shear tests were performed and revealed the potential of LPU prepolymers as monocomponent adhesives.
Collapse
Affiliation(s)
- Leonardo
D. Antonino
- Nanoscience
and Advanced Materials Graduate Program (PPG-nano), Federal University of ABC (UFABC), Santo André 09210-580, Brazil
| | - Ivan Sumerskii
- Department
of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | - Antje Potthast
- Department
of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | - Thomas Rosenau
- Department
of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences
Vienna (BOKU), Konrad-Lorenz-Strasse 24, 3430 Tulln an der Donau, Austria
| | - Maria Isabel Felisberti
- Institute
of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas 13083-970, Brazil
| | - Demetrio J. dos Santos
- Nanoscience
and Advanced Materials Graduate Program (PPG-nano), Federal University of ABC (UFABC), Santo André 09210-580, Brazil
- Center
of Engineering, Modeling and Applied Social Sciences, Federal University of ABC (UFABC), Santo André 09210-580, Brazil
| |
Collapse
|
11
|
Cheng S, Pang X, Jiang G, Pang J. Studies of polyurethane foams prepared with hybrid silicon and hydroxymethylated lignin. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Shijin Cheng
- Key Laboratory of Wood Material Science and Engineering Beihua University Jilin City China
| | - Xufu Pang
- Key Laboratory of Wood Material Science and Engineering Beihua University Jilin City China
| | - Guiquan Jiang
- Key Laboratory of Wood Material Science and Engineering Beihua University Jilin City China
| | - Jiuyin Pang
- Key Laboratory of Wood Material Science and Engineering Beihua University Jilin City China
| |
Collapse
|
12
|
Quinsaat JEQ, Feghali E, van de Pas DJ, Vendamme R, Torr KM. Preparation of Biobased Nonisocyanate Polyurethane/Epoxy Thermoset Materials Using Depolymerized Native Lignin. Biomacromolecules 2022; 23:4562-4573. [PMID: 36224101 DOI: 10.1021/acs.biomac.2c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polyurethane polymers are found in a wide range of material applications. However, the toxic nature of isocyanates used in their formulation is a major concern; hence, more environmentally friendly alternatives are of high interest in the search for new sustainable polymer materials. In this work, we present the preparation of isocyanate-free polyurethane/epoxy hybrid thermosets with a high biobased content (85-90 wt %). The isocyanate-free polyurethanes were based on polyhydroxyurethanes (PHUs) prepared from depolymerized native lignin, which we refer to as lignin hydrogenolysis oil (LHO). The LHO was functionalized with epichlorohydrin to yield the epoxidized structure (LHO-GE), which was in turn reacted with CO2 to form the cyclocarbonated species (LHO-CC). Blends of the LHO-CC and glycerol diglycidyl ether (GDGE) were cured to produce hybrid PHU/epoxy (LHO-CC/GDGE) thermosets. Thermosetting materials with flexural moduli of 4.5 GPa and flexural strengths of 160 MPa were produced by optimizing the mass ratio of the two main components and the triamine hardener. These novel biobased hybrid materials outperformed the corresponding epoxy-only thermosets and comparable hybrid PHU/epoxy materials produced from petrochemicals.
Collapse
Affiliation(s)
| | - Elias Feghali
- Scion, 49 Sala Street, Private Bag 3020, Rotorua3046, New Zealand.,Chemical Engineering Program, Notre Dame University-Louaize, Zouk Mosbeh1211, Lebanon.,Sustainable Polymer Technologies (SPOT) Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, Mol2400, Belgium
| | | | - Richard Vendamme
- Sustainable Polymer Technologies (SPOT) Team, Flemish Institute for Technological Research (Vito N.V.), Boeretang 200, Mol2400, Belgium.,Department of Materials and Chemistry, Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2, BrusselsB-1050, Belgium
| | - Kirk M Torr
- Scion, 49 Sala Street, Private Bag 3020, Rotorua3046, New Zealand
| |
Collapse
|
13
|
Than KT, Yu LJ, Chen RS, Tarawneh MA, Lai NYG. Density, water, and swelling characteristics of cellular palm kernel oil bio‐polyol modified polyurethane toward more sustainable growing media application. J Appl Polym Sci 2022. [DOI: 10.1002/app.52879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kok Tiong Than
- Faculty of Engineering, Technology and Built Environment UCSI University Kuala Lumpur Malaysia
| | - Lih Jiun Yu
- Faculty of Engineering, Technology and Built Environment UCSI University Kuala Lumpur Malaysia
- UCSI‐Cheras Low Carbon Innovation Hub Research Consortium Kuala Lumpur Malaysia
| | - Ruey Shan Chen
- Department of Applied Physics, Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi Malaysia
| | - Mou'ad A. Tarawneh
- Department of Physics, College of Science Al‐Hussein Bin Talal University Ma'an Jordan
| | - Nai Yeen Gavin Lai
- Faculty of Science and Engineering University of Nottingham Ningbo China Ningbo China
| |
Collapse
|
14
|
Antonino LD, Garcia GES, Gouveia JR, Santos ANB, da Silva Bisneto MP, dos Santos DJ. Polyurethane adhesives from castor oil and modified lignin via reaction with propylene carbonate. J Appl Polym Sci 2022. [DOI: 10.1002/app.52477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Leonardo Dalseno Antonino
- Nanoscience and Advanced Materials Graduate Program (PPG‐nano) Federal University of ABC (UFABC) Santo André Brazil
| | | | - Julia Rocha Gouveia
- Materials Engineering Graduate Program (PPG‐nano) Federal University of ABC (UFABC) Santo André Brazil
| | | | | | - Demetrio Jackson dos Santos
- Nanoscience and Advanced Materials Graduate Program (PPG‐nano) Federal University of ABC (UFABC) Santo André Brazil
- Materials Engineering Graduate Program (PPG‐nano) Federal University of ABC (UFABC) Santo André Brazil
| |
Collapse
|
15
|
Studying the Suitability of Nineteen Lignins as Partial Polyol Replacement in Rigid Polyurethane/Polyisocyanurate Foam. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082535. [PMID: 35458731 PMCID: PMC9030922 DOI: 10.3390/molecules27082535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 11/20/2022]
Abstract
In this study, nineteen unmodified lignins from various sources (hardwood, softwood, wheat straw, and corn stover) and isolation processes (kraft, soda, organosolv, sulfite, and enzymatic hydrolysis) were used to replace 30 wt.% of petroleum-based polyol in rigid polyurethane/polyisocyanurate (PUR/PIR) foam formulations. Lignin samples were characterized by measuring their ash content, hydroxyl content (Phosphorus Nuclear Magnetic Resonance Spectroscopy), impurities (Inductively Coupled Plasma), and pH. After foam formulation, properties of lignin-based foams were evaluated and compared with a control foam (with no lignin) via cell morphology, closed-cell content, compression strength, apparent density, thermal conductivity, and color analysis. Lignin-based foams passed all measured standard specifications required by ASTM International C1029-15 for type 1 rigid insulation foams, except for three foams. These three foams had poor compressive strengths, significantly larger cell sizes, darker color, lower closed-cell contents, and slower foaming times. The foam made with corn stover enzymatic hydrolysis lignin showed no significant difference from the control foam in terms of compressive strength and outperformed all other lignin-based foams due to its higher aliphatic and p-hydroxyphenyl hydroxyl contents. Lignin-based foams that passed all required performance testing were made with lignins having higher pH, potassium, sodium, calcium, magnesium, and aliphatic/p-hydroxyphenyl hydroxyl group contents than those that failed.
Collapse
|
16
|
Ma Y, Xiao Y, Zhao Y, Bei Y, Hu L, Zhou Y, Jia P. Biomass based polyols and biomass based polyurethane materials as a route towards sustainability. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Zhao J, Yu Z, Tian H, Liu S, Luo X. Effect of bagasse content on low frequency acoustic performance of soy oil‐based biodegradable foams filled with bagasse and regulation mechanism analysis. J Appl Polym Sci 2021. [DOI: 10.1002/app.51457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jin Zhao
- Hubei Light Industry Technology Institute Wuhan China
| | - Zengcheng Yu
- School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan China
| | - Huafeng Tian
- Key laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry council Beijing Technology and Business University Beijing China
| | - Shilin Liu
- College of Food Science & Technology Huazhong Agricultural University Wuhan China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou City China
| | - Xiaogang Luo
- Hubei Light Industry Technology Institute Wuhan China
- School of Chemical Engineering and Pharmacy Wuhan Institute of Technology Wuhan China
- School of Materials Science and Engineering Zhengzhou University Zhengzhou City China
| |
Collapse
|
18
|
Bio-Based Rigid Polyurethane Foam Composites Reinforced with Bleached Curauá Fiber. Int J Mol Sci 2021; 22:ijms222011203. [PMID: 34681863 PMCID: PMC8538972 DOI: 10.3390/ijms222011203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 12/03/2022] Open
Abstract
This study aims to evaluate the influence of using a bleached Curauá fiber (CF) as filler in a novel rigid polyurethane foam (RPUF) composite. The influence of 0.1, 0.5 and 1 wt.% of the reinforcements on the processing characteristics, cellular structure, mechanical, dynamic-mechanical, thermal, and flame behaviors were assessed and discussed for RPUF freely expanded. The results showed that the use of 0.5 wt.% of CF resulted in RPUF with smoother cell structure with low differences on the processing times and viscosity for the filled pre-polyol. These morphological features were responsible for the gains in mechanical properties, in both parallel and perpendicular rise directions, and better viscoelastic characteristics. Despite the gains, higher thermal conductivity and lower flammability were reported for the developed RPUF composites, related to the high content of cellulose and hemicellulose on the bleached CF chemical composition. This work shows the possibility of using a Brazilian vegetable fiber, with low exploration for the manufacturing of composite materials with improved properties. The developed RPUF presents high applicability as enhanced cores for the manufacturing of structural sandwich panels, mainly used in civil, aircraft, and marine industries.
Collapse
|
19
|
Uram K, Kurańska M, Andrzejewski J, Prociak A. Rigid Polyurethane Foams Modified with Biochar. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5616. [PMID: 34640011 PMCID: PMC8510147 DOI: 10.3390/ma14195616] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022]
Abstract
This paper presents results of research on the preparation of biochar-modified rigid polyurethane foams that could be successfully used as thermal insulation materials. The biochar was introduced into polyurethane systems in an amount of up to 20 wt.%. As a result, foam cells became elongated in the direction of foam growth and their cross-sectional areas decreased. The filler-containing systems exhibited a reduction in their apparent densities of up to 20% compared to the unfilled system while maintaining a thermal conductivity of 25 mW/m·K. Biochar in rigid polyurethane foams improved their dimensional and thermal stability.
Collapse
Affiliation(s)
- Katarzyna Uram
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (K.U.); (A.P.)
| | - Maria Kurańska
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (K.U.); (A.P.)
| | - Jacek Andrzejewski
- Polymer Processing Division, Faculty of Mechanical Engineering, Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland;
| | - Aleksander Prociak
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (K.U.); (A.P.)
| |
Collapse
|
20
|
Jędrzejczak P, Collins MN, Jesionowski T, Klapiszewski Ł. The role of lignin and lignin-based materials in sustainable construction - A comprehensive review. Int J Biol Macromol 2021; 187:624-650. [PMID: 34302869 DOI: 10.1016/j.ijbiomac.2021.07.125] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023]
Abstract
The construction industry in the 21st century faces numerous global challenges associated with growing concerns for the environment. Therefore, this review focuses on the role of lignin and its derivatives in sustainable construction. Lignin's properties are defined in terms of their structure/property relationships and how structural differences arising from lignin extraction methods influence its application within the construction sector. Lignin and lignin composites allow the partial replacement of petroleum products, making the final materials and the entire construction sector more sustainable. The latest technological developments associated with cement composites, rigid polyurethane foams, paints and coatings, phenolic or epoxy resins, and bitumen replacements are discussed in terms of key engineering parameters. The application of life cycle assessment in construction, which is important from the point of view of estimating the environmental impact of various solutions and materials, is also discussed.
Collapse
Affiliation(s)
- Patryk Jędrzejczak
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, PL-60965 Poznan, Poland
| | - Maurice N Collins
- School of Engineering and Bernal Institute, University of Limerick, Ireland; Advanced Materials and BioEngineering Research Centre (AMBER), University of Limerick, Ireland
| | - Teofil Jesionowski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, PL-60965 Poznan, Poland
| | - Łukasz Klapiszewski
- Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, PL-60965 Poznan, Poland.
| |
Collapse
|
21
|
High concentration acid-induced discoloration polymeric dyes fabricated with UV-curable azobenzene-lignin-based waterborne polyurethane. Int J Biol Macromol 2021; 182:1953-1965. [PMID: 34062162 DOI: 10.1016/j.ijbiomac.2021.05.173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
A durable and reversible acid-induced discoloration azobenzene UV-curable lignin-based waterborne polyurethane polymeric dye (EDA-ULPD) is prepared from lignin, azobenzene and pentaerythritol triacrylate(PETA) by chemical modification of waterborne polyurethane. Lignin and PETA are chemically bonded to the polyurethane chain to improve thermal stability, UV resistance and color fastness, while also endow the polymeric dye with UV curing performance, which is a green and environmentally friendly fixing way. The acid-induced discoloration property of EDA-ULPD with azobenzene chromophore side chain is comparable to those of 4-ethyl-4-2,2'-dihydroxy diethylamine azobenzene (EDA). As the pH value decreases from 7 to 1, the maximum absorption peak of EDA-ULPD from 420 nm to 530 nm, and the color change from yellow to pink due to the transformation of EDA molecular structure from diazo to hydrazone. Interestingly, when EDA-ULPD is fixed to the fabric in the way of UV curing, its printed fabric exhibits the performance of high concentration acid-induced discoloration (1 mol·L-1 HCl) due to the cross-linked structure formed by EDA-ULPD. The acid-induced discoloration property of EDA-ULPD printed fabrics also presents outstanding repetitious stability. The stimulus response printed fabric with reversible high concentration acid discoloration possesses a broad application prospect in smart textiles.
Collapse
|
22
|
Maillard D, Osso E, Faye A, Li H, Ton‐That M, Stoeffler K. Influence of lignin's
pH
on polyurethane flexible foam formation and how to control it. J Appl Polym Sci 2021. [DOI: 10.1002/app.50319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Damien Maillard
- Polymer Bioproducts Research Team, Automotive and Surface Transportation research Center National Research Council of Canada Boucherville Canada
| | - Esthel Osso
- Polymer Bioproducts Research Team, Automotive and Surface Transportation research Center National Research Council of Canada Boucherville Canada
| | - Adrien Faye
- Polymer Bioproducts Research Team, Automotive and Surface Transportation research Center National Research Council of Canada Boucherville Canada
| | - Hongbo Li
- Polymer Bioproducts Research Team, Automotive and Surface Transportation research Center National Research Council of Canada Boucherville Canada
| | - Minh‐Tan Ton‐That
- Polymer Bioproducts Research Team, Automotive and Surface Transportation research Center National Research Council of Canada Boucherville Canada
| | - Karen Stoeffler
- Polymer Bioproducts Research Team, Automotive and Surface Transportation research Center National Research Council of Canada Boucherville Canada
| |
Collapse
|
23
|
Tran MH, Yu JH, Lee EY. Microwave-Assisted Two-Step Liquefaction of Acetone-Soluble Lignin of Silvergrass Saccharification Residue for Production of Biopolyol and Biopolyurethane. Polymers (Basel) 2021; 13:polym13091491. [PMID: 34066548 PMCID: PMC8124352 DOI: 10.3390/polym13091491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
The application of microwave heating facilitated efficient two-step liquefaction of acetone-soluble lignin obtained from saccharification residue of Miscanthus sacchariflorus (silvergrass), which was prepared by enzymatic hydrolysis, to produce biopolyol with a low acid number and favorable hydroxyl number. The acetone-soluble lignin was liquefied using a crude glycerol and 1,4-butanediol solvent mixture at various solvent blending ratios, biomass loadings, acid loadings, and reaction temperatures. The optimal reaction condition was determined at a solvent blending ratio of crude glycerol to 1,4-butanediol of 1:2, 20% of biomass loading, and 1% of catalyst loading at a reaction temperature of 140 °C for 10 min. Subsequently, the optimal biopolyol was directly used for the preparation of biopolyurethane foam as a value-added product. The chemical and physical properties of biopolyurethane foams derived from acetone-soluble lignin were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and high-resolution scanning electron microscopy (HR-SEM). In addition, mechanical properties of produced biopolyurethane foams, including compressive strength and density, were also characterized to suggest their appropriate applications. The results indicated that the biopolyurethane foam can be used as a green replacement for petroleum-based polyurethane foam due to its comparable thermal properties, mechanical strength, and morphological structure.
Collapse
Affiliation(s)
- My Ha Tran
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si 17104, Korea;
| | - Ju-Hyun Yu
- Bio-based Chemistry Research Center, Advanced Convergent Chemistry Division, Korea Research Institute of Chemical Technology, P.O. Box 107, 141 Gajeong-ro, Yuseong-gu, Daejeon 305-600, Korea
- Correspondence: (J.-H.Y.); (E.Y.L.); Tel.: +82-31-201-3839 (E.Y.L.)
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si 17104, Korea;
- Correspondence: (J.-H.Y.); (E.Y.L.); Tel.: +82-31-201-3839 (E.Y.L.)
| |
Collapse
|
24
|
Coir Fibers Treated with Henna as a Potential Reinforcing Filler in the Synthesis of Polyurethane Composites. MATERIALS 2021; 14:ma14051128. [PMID: 33673702 PMCID: PMC7957822 DOI: 10.3390/ma14051128] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022]
Abstract
In this study, coir fibers were successfully modified with henna (derived from the Lawsonia inermis plant) using a high-energy ball-milling process. In the next step, such developed filler was used as a reinforcing filler in the production of rigid polyurethane (PUR) foams. The impact of 1, 2, and 5 wt % of coir-fiber filler on structural and physico-mechanical properties was evaluated. Among all modified series of PUR composites, the greatest improvement in physico-mechanical performances was observed for PUR composites reinforced with 1 wt % of the coir-fiber filler. For example, on the addition of 1 wt % of coir-fiber filler, the compression strength was improved by 23%, while the flexural strength increased by 9%. Similar dependence was observed in the case of dynamic-mechanical properties—on the addition of 1 wt % of the filler, the value of glass transition temperature increased from 149 °C to 178 °C, while the value of storage modulus increased by ~80%. It was found that PUR composites reinforced with coir-fiber filler were characterized by better mechanical performances after the UV-aging.
Collapse
|
25
|
Lee JH, Kim SH, Oh KW. Bio-Based Polyurethane Foams with Castor Oil Based Multifunctional Polyols for Improved Compressive Properties. Polymers (Basel) 2021; 13:576. [PMID: 33672983 PMCID: PMC7918616 DOI: 10.3390/polym13040576] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Currently, most commercial polyols used in the production of polyurethane (PU) foam are derived from petrochemicals. To address concerns relating to environmental pollution, a sustainable resource, namely, castor oil (CO), was used in this study. To improve the production efficiency, sustainability, and compressive strength of PU foam, which is widely used as an impact-absorbing material for protective equipment, PU foam was synthesized with CO-based multifunctional polyols. CO-based polyols with high functionalities were synthesized via a facile thiol-ene click reaction method and their chemical structures were analyzed. Subsequently, a series of polyol blends of castor oil and two kinds of castor oil-based polyols with different hydroxyl values was prepared and the viscosity of the blends was analyzed. Polyurethane foams were fabricated from the polyol blends via a free-rising method. The effects of the composition of the polyol blends on the structural, morphological, mechanical, and thermal properties of the polyurethane foams were investigated. The results demonstrated that the fabrication of polyurethane foams from multifunctional polyol blends is an effective way to improve their compressive properties. We expect these findings to widen the range of applications of bio-based polyurethane foams.
Collapse
Affiliation(s)
- Joo Hyung Lee
- Department of Organic and Nano Engineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (J.H.L.); (S.H.K.)
| | - Seong Hun Kim
- Department of Organic and Nano Engineering, College of Engineering, Hanyang University, Seoul 04763, Korea; (J.H.L.); (S.H.K.)
| | - Kyung Wha Oh
- Department of Fashion, College of Arts, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
26
|
Ababsa HS, Safidine Z, Mekki A, Grohens Y, Ouadah A, Chabane H. Fire behavior of flame-retardant polyurethane semi-rigid foam in presence of nickel (II) oxide and graphene nanoplatelets additives. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02450-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Sternberg J, Sequerth O, Pilla S. Green chemistry design in polymers derived from lignin: review and perspective. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2020.101344] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Członka S, Kairytė A, Miedzińska K, Strąkowska A. Polyurethane Hybrid Composites Reinforced with Lavender Residue Functionalized with Kaolinite and Hydroxyapatite. MATERIALS (BASEL, SWITZERLAND) 2021; 14:415. [PMID: 33467655 PMCID: PMC7829896 DOI: 10.3390/ma14020415] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Polyurethane (PUR) composites were modified with 2 wt.% of lavender fillers functionalized with kaolinite (K) and hydroxyapatite (HA). The impact of lavender fillers on selected properties of PUR composites, such as rheological properties (dynamic viscosity, foaming behavior), mechanical properties (compressive strength, flexural strength, impact strength), insulation properties (thermal conductivity), thermal characteristic (temperature of thermal decomposition stages), flame retardancy (e.g., ignition time, limiting oxygen index, heat peak release) and performance properties (water uptake, contact angle) was investigated. Among all modified types of PUR composites, the greatest improvement was observed for PUR composites filled with lavender fillers functionalized with kaolinite and hydroxyapatite. For example, on the addition of functionalized lavender fillers, the compressive strength was enhanced by ~16-18%, flexural strength by ~9-12%, and impact strength by ~7%. Due to the functionalization of lavender filler with thermally stable flame retardant compounds, such modified PUR composites were characterized by higher temperatures of thermal decomposition. Most importantly, PUR composites filled with flame retardant compounds exhibited improved flame resistance characteristics-in both cases, the value of peak heat release was reduced by ~50%, while the value of total smoke release was reduced by ~30%.
Collapse
Affiliation(s)
- Sylwia Członka
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland; (K.M.); (A.S.)
| | - Agnė Kairytė
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenu st. 28, LT-08217 Vilnius, Lithuania;
| | - Karolina Miedzińska
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland; (K.M.); (A.S.)
| | - Anna Strąkowska
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland; (K.M.); (A.S.)
| |
Collapse
|
29
|
Strąkowska A, Członka S, Kairytė A. Rigid Polyurethane Foams Reinforced with POSS-Impregnated Sugar Beet Pulp Filler. MATERIALS 2020; 13:ma13235493. [PMID: 33276537 PMCID: PMC7730523 DOI: 10.3390/ma13235493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Rigid polyurethane (PUR) foams were reinforced with sugar beet pulp (BP) impregnated with Aminopropylisobutyl-polyhedral oligomeric silsesquioxanes (APIB-POSS). BP filler was incorporated into PUR at different percentages—1, 2, and 5 wt.%. The impact of BP filler on morphology features, mechanical performances, and thermal stability of PUR was examined. The results revealed that the greatest improvement in physico-mechanical properties was observed at lower concentrations (1 and 2 wt.%) of BP filler. For example, when compared with neat PUR foams, the addition of 2 wt.% of BP resulted in the formation of PUR composite foams with increased compressive strength (~12%), greater flexural strength (~12%), and better impact strength (~6%). The results of thermogravimetric analysis (TGA) revealed that, due to the good thermal stability of POSS-impregnated BP filler, the reinforced PUR composite foams were characterized by better thermal stability—for example, by increasing the content of BP filler up to 5 wt.%, the mass residue measured at 600 °C increased from 29.0 to 31.9%. Moreover, the addition of each amount of filler resulted in the improvement of fire resistance of PUR composite foams, which was determined by measuring the value of heat peak release (pHRR), total heat release (THR), total smoke release (TSR), limiting oxygen index (LOI), and the amount of carbon monoxide (CO) and carbon dioxide (CO2) released during the combustion. The greatest improvement was observed for PUR composite foams with 2 wt.% of BP filler. The results presented in the current study indicate that the addition of a proper amount of POSS-impregnated BP filler may be an effective approach to the synthesis of PUR composites with improved physico-mechanical properties. Due to the outstanding properties of PUR composite foams reinforced with POSS-impregnated BP, such developed materials may be successfully used as thermal insulation materials in the building and construction industry.
Collapse
Affiliation(s)
- Anna Strąkowska
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Sylwia Członka
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland;
- Correspondence:
| | - Agnė Kairytė
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenu st. 28, LT-08217 Vilnius, Lithuania;
| |
Collapse
|
30
|
Członka S, Strąkowska A, Kairytė A. The Impact of Hemp Shives Impregnated with Selected Plant Oils on Mechanical, Thermal, and Insulating Properties of Polyurethane Composite Foams. MATERIALS 2020; 13:ma13214709. [PMID: 33105707 PMCID: PMC7659977 DOI: 10.3390/ma13214709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023]
Abstract
Polyurethane (PUR) foams reinforced with 2 wt.% hemp shives (HS) fillers were successfully synthesized. Three different types of HS fillers were evaluated—non-treated HS, HS impregnated with sunflower oil (SO) and HS impregnated with tung oil (TO). The impact of each type of HS fillers on cellular morphology, mechanical performances, thermal stability, and flame retardancy was evaluated. It has been shown that the addition of HS fillers improved the mechanical characteristics of PUR foams. Among all modified series, the greatest improvement was observed after the incorporation of non-treated HS filler—when compared with neat foams, the value of compressive strength increased by ~13%. Moreover, the incorporation of impregnated HS fillers resulted in the improvement of thermal stability and flame retardancy of PUR foams. For example, the addition of both types of impregnated HS fillers significantly decreased the value of heat peak release (pHRR), total smoke release (TSR), and limiting oxygen index (LOI). Moreover, the PUR foams containing impregnated fillers were characterized by improved hydrophobicity and limited water uptake. The obtained results confirmed that the modification of PUR foams with non-treated and impregnated HS fillers may be a successful approach in producing polymeric composites with improved properties.
Collapse
Affiliation(s)
- Sylwia Członka
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland;
- Correspondence:
| | - Anna Strąkowska
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Agnė Kairytė
- Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenu st. 28, LT-08217 Vilnius, Lithuania;
| |
Collapse
|
31
|
Zhang G, Lin X, Zhang Q, Jiang K, Chen W, Han D. Anti-flammability, mechanical and thermal properties of bio-based rigid polyurethane foams with the addition of flame retardants. RSC Adv 2020; 10:32156-32161. [PMID: 35518161 PMCID: PMC9056552 DOI: 10.1039/d0ra06561g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/21/2020] [Indexed: 11/21/2022] Open
Abstract
Adding efficient and environmentally friendly flame retardants to polyurethane foams is the preferable way to improve their flame resistance ability. In this work, bio-based rigid polyurethane foams (RPUFs) were prepared with the addition of dicyclohexyl aluminium hypophosphate (DAH) or aluminium diethyl phosphinate (ADP) as the flame retardant. The mechanical properties, thermal degradation and flammability behavior of the obtained RPUFs were evaluated by means of compressive strength tests, thermogravimetry analysis, vertical burning test and scanning electron microscopes. The characterization results indicate that, with the same content of flame retardant, the compressive strength at the deformation of 10% for each RPUF prepared with the addition of DAH is higher than that of the foams with ADP addition, which fully meets the specifications for building insulation materials. Moreover, the average flame height of each RPUF with the addition of flame retardants is less than 250 mm, whereas the average burning time of RPUF with 15 wt% addition of DAH is only 4.4 s, far less than that (12.5 s) of the foam with the same addition amount of ADP. The RPUFs with DAH addition have the potential advantages for thermal insulation applications in various fields.
Collapse
Affiliation(s)
- Guangyu Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Xiaoqi Lin
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Qinqin Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Kaisen Jiang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Weisheng Chen
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Dezhi Han
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| |
Collapse
|
32
|
Rigid Polyurethane Foams Based on Bio-Polyol and Additionally Reinforced with Silanized and Acetylated Walnut Shells for the Synthesis of Environmentally Friendly Insulating Materials. MATERIALS 2020; 13:ma13153245. [PMID: 32707810 PMCID: PMC7435791 DOI: 10.3390/ma13153245] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/12/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022]
Abstract
Rigid polyurethane (PUR) foams produced from walnut shells-derived polyol (20 wt.%) were successfully reinforced with 2 wt.% of non-treated, acetylated, and silanized walnut shells (WS). The impact of non-treated and chemically-treated WS on the morphology, mechanical, and thermal characteristics of PUR composites was determined. The morphological analysis confirmed that the addition of WS fillers promoted a reduction in cell size, compared to pure PUR foams. Among all the modified PUR foams, the greatest improvement of mechanical characteristics was observed for PUR foams with the addition of silanized WS-the compressive, flexural, and impact strength were enhanced by 21, 16, and 13%, respectively. The addition of non-treated and chemically-treated WS improved the thermomechanical stability of PUR foams. The results of the dynamic mechanical analysis confirmed an increase in glass transition temperature and storage modulus of PUR foams after the incorporation of chemically-treated WS. The addition of non-treated and chemically-treated WS did not affect the insulating properties of PUR foams, and the thermal conductivity value did not show any significant improvement and deterioration due to the addition of WS fillers.
Collapse
|
33
|
Członka S, Strąkowska A, Kairytė A. Application of Walnut Shells-Derived Biopolyol in the Synthesis of Rigid Polyurethane Foams. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2687. [PMID: 32545580 PMCID: PMC7345166 DOI: 10.3390/ma13122687] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 01/29/2023]
Abstract
This study aimed to examine rigid polyurethane (PUR) foam properties that were synthesized from walnut shells (WS)-based polyol. The Fourier Transform Infrared Spectroscopy (FTIR) results revealed that the liquefaction of walnut shells was successfully performed. The three types of polyurethane (PUR) foams were synthesized by replacement of 10, 20, and 30 wt% of a petrochemical polyol with WS-based polyol. The impact of WS-based polyol on the cellular morphology, mechanical, thermal, and insulating characteristics of PUR foams was examined. The produced PUR foams had apparent densities from 37 to 39 kg m-3, depending on the weight ratio of WS-based polyol. PUR foams that were obtained from WS-based polyol exhibited improved mechanical characteristics when compared with PUR foams that were derived from the petrochemical polyol. PUR foams produced from WS-based polyol showed compressive strength from 255 to 310 kPa, flexural strength from 420 to 458 kPa, and impact strength from 340 to 368 kPa. The foams that were produced from WS-based polyol exhibited less uniform cell structure than foams derived from the petrochemical polyol. The thermal conductivity of the PUR foams ranged between 0.026 and 0.032 W m-1K-1, depending on the concentration of WS-based polyol. The addition of WS-based polyol had no significant influence on the thermal degradation characteristics of PUR foams. The maximum temperature of thermal decomposition was observed for PUR foams with the highest loading of WS-based polyol.
Collapse
Affiliation(s)
- Sylwia Członka
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland;
| | - Anna Strąkowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland;
| | - Agnė Kairytė
- Faculty of Civil Engineering, Institute of Building Materials, Laboratory of Thermal Insulating Materials and Acoustics, Vilnius Gediminas Technical University, Linkmenu st. 28, LT-08217 Vilnius, Lithuania;
| |
Collapse
|
34
|
|
35
|
Liu J, Sun Z, Wang F, Zhu D, Ge J, Su H. Facile Solvent-Free Preparation of Biobased Rigid Polyurethane Foam from Raw Citric Acid Fermentation Waste. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jixiang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhaonan Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fenghuan Wang
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Daihui Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiye Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
36
|
Cassales A, Ramos LA, Frollini E. Synthesis of bio-based polyurethanes from Kraft lignin and castor oil with simultaneous film formation. Int J Biol Macromol 2020; 145:28-41. [DOI: 10.1016/j.ijbiomac.2019.12.173] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
|
37
|
Hong L, Spielmeyer A, Pfeiffer J, Wegner HA. Domino lignin depolymerization and reconnection to complex molecules mediated by boryl radicals. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00558d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lignin has been demonstrated as a source of complex molecules via a boryl-mediated domino degradation/reconnection process.
Collapse
Affiliation(s)
- Longcheng Hong
- Institute of Organic Chemistry
- Justus Liebig University
- 35392 Gießen
- Germany
- Center for Materials Research (LaMa)
| | - Astrid Spielmeyer
- Institute of Food Chemistry and Food Biotechnology
- Justus Liebig University
- 35392 Gießen
- Germany
| | - Janin Pfeiffer
- Institute of Food Chemistry and Food Biotechnology
- Justus Liebig University
- 35392 Gießen
- Germany
| | - Hermann A. Wegner
- Institute of Organic Chemistry
- Justus Liebig University
- 35392 Gießen
- Germany
- Center for Materials Research (LaMa)
| |
Collapse
|
38
|
Liu H, Tian H, Yao Y, Xiang A, Qi H, Wu Q, Rajulu AV. Polyimide foams with outstanding flame resistance and mechanical properties by the incorporation of noncovalent bond modified graphene oxide. NEW J CHEM 2020. [DOI: 10.1039/d0nj01983f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PI composite foams were in situ generated by incorporating modified GO to further improve flame resistance, thermal stability and mechanical properties.
Collapse
Affiliation(s)
- Hongtao Liu
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics
- College of chemistry and materials engineering of Beijing Technology and Business University
- Beijing
- China
| | - Huafeng Tian
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics
- College of chemistry and materials engineering of Beijing Technology and Business University
- Beijing
- China
| | - Yuanyuan Yao
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics
- College of chemistry and materials engineering of Beijing Technology and Business University
- Beijing
- China
| | - Aiming Xiang
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics
- College of chemistry and materials engineering of Beijing Technology and Business University
- Beijing
- China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering
- South China University of Technology
- Guangzhou
- China
| | - Qiangxian Wu
- Green Polymer Laboratory
- College of Chemistry
- Central China Normal University
- Wuhan 430079
- China
| | - A. Varada Rajulu
- Centre for Composite Materials
- International Research Centre
- Kalasalingam University
- Krishnan Koil
- India
| |
Collapse
|
39
|
Yu Z, Xiao Y, Tian H, Liu S, Zeng J, Luo X. Bagasse as functional fillers to improve and control biodegradability of soy oil-based rigid polyurethane foams. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0349-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Wang J, Chai J, Wang G, Zhao J, Zhang D, Li B, Zhao H, Zhao G. Strong and thermally insulating polylactic acid/glass fiber composite foam fabricated by supercritical carbon dioxide foaming. Int J Biol Macromol 2019; 138:144-155. [DOI: 10.1016/j.ijbiomac.2019.07.071] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 11/30/2022]
|
41
|
Manzardo A, Marson A, Roso M, Boaretti C, Modesti M, Scipioni A, Lorenzetti A. Life Cycle Assessment Framework To Support the Design of Biobased Rigid Polyurethane Foams. ACS OMEGA 2019; 4:14114-14123. [PMID: 31497731 PMCID: PMC6714515 DOI: 10.1021/acsomega.9b02025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/31/2019] [Indexed: 05/26/2023]
Abstract
A methodological framework implementing laboratory activities and life cycle assessment is presented and applied to determine which parameters should be considered to develop biobased rigid polyurethane foams for thermal insulation with improved environmental performances when compared to their fossil counterparts. The framework was applied to six partially biobased (produced from bio-based polyols obtained from azelaic acid and/or lignin) and one fossil-based formulations. A comprehensive set of impact assessment categories was investigated including uncertainty and sensitivity analysis. Results proved that physical characteristics such as thermal conductivity and density are the most important variable to be optimized to guarantee better environmental performances of biobased polyurethane rigid foams for thermal insulation. Care should be taken with reference to ozone depletion potential, marine eutrophication, and abiotic depletion potential because of the uncertainty related to their results. The methylene diphenyl diisocyanate and foam production process were identified as the major sources of impacts. Overall environmental superiority of biobased polyurethanes cannot always be claimed with respect to their fossil counterpart.
Collapse
Affiliation(s)
- Alessandro Manzardo
- CESQA
(Quality and Environmental Research Centre), Department of
Industrial Engineering, and Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Alessandro Marson
- CESQA
(Quality and Environmental Research Centre), Department of
Industrial Engineering, and Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Martina Roso
- CESQA
(Quality and Environmental Research Centre), Department of
Industrial Engineering, and Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Carlo Boaretti
- CESQA
(Quality and Environmental Research Centre), Department of
Industrial Engineering, and Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Michele Modesti
- CESQA
(Quality and Environmental Research Centre), Department of
Industrial Engineering, and Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Antonio Scipioni
- CESQA
(Quality and Environmental Research Centre), Department of
Industrial Engineering, and Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Alessandra Lorenzetti
- CESQA
(Quality and Environmental Research Centre), Department of
Industrial Engineering, and Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| |
Collapse
|
42
|
Luo X, Yu Z, Cai Y, Wu Q, Zeng J. Facile Fabrication of Environmentally-Friendly Hydroxyl-Functionalized Multiwalled Carbon Nanotubes/Soy Oil-Based Polyurethane Nanocomposite Bioplastics with Enhanced Mechanical, Thermal, and Electrical Conductivity Properties. Polymers (Basel) 2019; 11:E763. [PMID: 31052390 PMCID: PMC6572346 DOI: 10.3390/polym11050763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 11/16/2022] Open
Abstract
It is challenging to prepare polyurethane bioplastics from renewable resources in a sustainable world. In this work, polyurethane nanocomposite bioplastics are fabricated by blending up to 80 wt % of soy-based polyol and petrochemical polyol with hydroxyl-functionalized multiwalled carbon nanotubes (MWCNTs-OH). The scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform infrared spectroscopy (FTIR) analyses reveal homogeneous dispersion of the MWCNTs-OH in the matrix, as well as interaction or reaction of MWCNTs-OH with the matrix or polymeric methylene diphenyl diisocyanate (pMDI) in forming the organic-inorganic hybrid bioplastic with a three-dimensional (3D) macromolecule network structure. Mechanical properties and electrical conductivity are remarkably enhanced with the increase of the multiwalled carbon nanotube (MWCNTs) loading. Dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA) results show that the bioplastics with MWCNTs-OH have a better thermal stability compared with the bioplastics without MWCNTs-OH. The composition of the nanocomposites, which defines the characteristics of the material and its thermal and electrical conductivity properties, can be precisely controlled by simply varying the concentration of MWCNTs-OH in the polyol mixture solution.
Collapse
Affiliation(s)
- Xiaogang Luo
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei, China.
| | - Zengcheng Yu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei, China.
| | - Yixin Cai
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, Hubei, China.
| | - Qiangxian Wu
- Green Polymer Laboratory, College of Chemistry, Central China Normal University, Luoyu Road 152, Wuhan 430079, China.
| | - Jian Zeng
- Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Provincial Key Laboratory of Sugarcane Improvement and Biorefinery, Guangzhou 510316, Guangdong, China.
| |
Collapse
|
43
|
Tribot A, Amer G, Abdou Alio M, de Baynast H, Delattre C, Pons A, Mathias JD, Callois JM, Vial C, Michaud P, Dussap CG. Wood-lignin: Supply, extraction processes and use as bio-based material. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Xie F, Zhang T, Bryant P, Kurusingal V, Colwell JM, Laycock B. Degradation and stabilization of polyurethane elastomers. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2018.12.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Fang Z, Qiu C, Ji D, Yang Z, Zhu N, Meng J, Hu X, Guo K. Development of High-Performance Biodegradable Rigid Polyurethane Foams Using Full Modified Soy-Based Polyols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2220-2226. [PMID: 30726082 DOI: 10.1021/acs.jafc.8b05342] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fossil fuel resources depletion and growing concern about environmental issues have raised the demand for newly sustainable biomaterials. To address this challenge, a new type of biodegradable and environmental rigid polyurethane foam called rigid polyurethane foams (RPUF)-M from full modified soy-based polyols have been synthesized without the addition of petroleum-based polyols. On the basis of the analysis of structure-activity relationship, a new kind of biobased polyurethane polyols called Bio-polyol-M was designed and synthesized directly from epoxidized soybean oil and a novel polyhydroxy compound in a three-step continuous microflow system. In the continuous microflow system, the epoxidation of soybean oil, the synthesis of GLPO (glycerine with styrene oxide), and the ring-opening reaction of epoxidized soybean oil were coupled. Another soy-polyol called Bio-polyol-B was synthesized in batch mode. In comparison to those of Bio-polyol-B, Bio-polyol-M had a higher hydroxyl number and a much lower viscosity. The RPUF-M also possessed a series of advantages over the rigid polyurethane foam called RPUF-B from Bio-polyol-B.
Collapse
Affiliation(s)
| | | | - Dong Ji
- Yangzi Petrochemical Company Ltd. , SINOPEC , Nanjing 210048 , P.R. China
| | - Zhao Yang
- College of Engineering , China Pharmaceutical University , Nanjing 210009 , P.R. China
| | | | | | | | - Kai Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering , Nanjing Tech University , Nanjing 210009 , P.R. China
| |
Collapse
|
46
|
Cortés-Triviño E, Valencia C, Delgado M, Franco J. Rheology of epoxidized cellulose pulp gel-like dispersions in castor oil: Influence of epoxidation degree and the epoxide chemical structure. Carbohydr Polym 2018; 199:563-571. [DOI: 10.1016/j.carbpol.2018.07.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/13/2018] [Accepted: 07/17/2018] [Indexed: 01/23/2023]
|