1
|
Khamberk S, Thammasittirong SNR, Thammasittirong A. Valorization of Sugarcane Bagasse for Co-Production of Poly(3-hydroxybutyrate) and Bacteriocin Using Bacillus cereus Strain S356. Polymers (Basel) 2024; 16:2015. [PMID: 39065332 PMCID: PMC11281070 DOI: 10.3390/polym16142015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(3-hydroxybutyrate) (P(3HB)) is an attractive biodegradable plastic alternative to petroleum-based plastic. However, the cost of microbial-based bioplastic production mainly lies in the cultivation medium. In this study, we screened the isolates capable of synthesizing P(3HB) using sugarcane bagasse (SCB) waste as a carbon source from 79 Bacillus isolates that had previously shown P(3HB) production using a commercial medium. The results revealed that isolate S356, identified as Bacillus cereus using 16S rDNA and gyrB gene analysis, had the highest P(3HB) accumulation. The highest P(3HB) yield (5.16 g/L, 85.3% of dry cell weight) was achieved by cultivating B. cereus S356 in an optimal medium with 1.5% total reducing sugar with SCB hydrolysate as the carbon source and 0.25% yeast extract as the nitrogen source. Transmission electron microscopy analysis showed the accumulation of approximately 3-5 P(3HB) granules in each B. cereus S356 cell. Proton nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy analyses confirmed that the polymer extracted from B. cereus S356 was P(3HB). Notably, during cultivation for P(3HB) plastic production, B. cereus S356 also secreted bacteriocin, which had high antibacterial activity against the same species (Bacillus cereus). Overall, this work demonstrated the possibility of co-producing eco-friendly biodegradable plastic P(3HB) and bacteriocin from renewable resources using the potential of B. cereus S356.
Collapse
Affiliation(s)
- Sunisa Khamberk
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand (S.N.-R.T.)
| | - Sutticha Na-Ranong Thammasittirong
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand (S.N.-R.T.)
- Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Anon Thammasittirong
- Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand (S.N.-R.T.)
- Microbial Biotechnology Unit, Faculty of Liberal Arts and Science, Kasetsart University, Nakhon Pathom 73140, Thailand
| |
Collapse
|
2
|
Wang J, Huang J, Liu S. The production, recovery, and valorization of polyhydroxybutyrate (PHB) based on circular bioeconomy. Biotechnol Adv 2024; 72:108340. [PMID: 38537879 DOI: 10.1016/j.biotechadv.2024.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 04/17/2024]
Abstract
As an energy-storage substance of microorganisms, polyhydroxybutyrate (PHB) is a promising alternative to petrochemical polymers. Under appropriate fermentation conditions, PHB-producing strains with metabolic diversity can efficiently synthesize PHB using various carbon sources. Carbon-rich wastes may serve as alternatives to pure sugar substrates to reduce the cost of PHB production. Genetic engineering strategies can further improve the efficiency of substrate assimilation and PHB synthesis. In the downstream link, PHB recycling strategies based on green chemistry concepts can replace PHB extraction using chlorinated solvents to enhance the economics of PHB production and reduce the potential risks of environmental pollution and health damage. To avoid carbon loss caused by biodegradation in the traditional sense, various strategies have been developed to degrade PHB waste into monomers. These monomers can serve as platform chemicals to synthesize other functional compounds or as substrates for PHB reproduction. The sustainable potential and cycling value of PHB are thus reflected. This review summarized the recent progress of strains, substrates, and fermentation approaches for microbial PHB production. Analyses of available strategies for sustainable PHB recycling were also included. Furthermore, it discussed feasible pathways for PHB waste valorization. These contents may provide insights for constructing PHB-based comprehensive biorefinery systems.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States.
| |
Collapse
|
3
|
de Siqueira EC, de Andrade Alves A, da Costa E Silva PE, de Barros MPS, Houllou LM. Polyhydroxyalkanoates and exopolysaccharides: An alternative for valuation of the co-production of microbial biopolymers. Biotechnol Prog 2024; 40:e3412. [PMID: 37985126 DOI: 10.1002/btpr.3412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPSs) belong to a class of abundant biopolymers produced by various fermenting microorganisms. These biocompounds have high value-added potential and can be produced concurrently. Co-production of PHAs and EPSs is a strategy employed by researchers to reduce costs associated with large-scale production. EPSs and PHAs are non-toxic, biocompatible, and biodegradable, making them suitable for various industrial sectors, including packaging and the medical and pharmaceutical industries. These biopolymers can be derived from agro-industrial residues, thus contributing to the bioeconomy by producing high-value-added products. This review investigates approaches for simultaneously synthesizing PHAs and EPSs using different carbon sources and microorganisms.
Collapse
Affiliation(s)
| | - Aline de Andrade Alves
- Centro de Tecnologias Estratégicas do Nordeste (CETENE), Cidade Universitária, Recife, Brazil
| | | | | | | |
Collapse
|
4
|
Anjana, Rawat S, Goswami S. In-silico analysis of a halophilic bacterial isolate-Bacillus pseudomycoides SAS-B1 and its polyhydroxybutyrate production through fed-batch approach under differential salt conditions. Int J Biol Macromol 2023; 229:372-387. [PMID: 36563813 DOI: 10.1016/j.ijbiomac.2022.12.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Polyhydroxybutyrate (PHB) is a natural biopolymer and a viable substitute for petroleum-derived polymers that possess immense potential for diverse applications. In the present study, PHB was produced by a halophilic bacteria identified as Bacillus pseudomycoides SAS-B1 by 16S rRNA gene sequencing. The bacterial genome was evaluated through complete genome sequencing, which elucidated a 5,338,308 bp genome with 34.88 % of G + C content and 5660 genes. Other genome attributes were analyzed such as functional profiling, gene ontology, and metabolic pathways. Genes involved in PHB biochemical pathway were identified such as phaA, phaB, and phaC. Furthermore, sodium-dependent transporters and other ATP-binding genes were identified in the genome that may be involved in sodium uptake during saline conditions. The PHB production by B. pseudomycoides SAS-B1 was examined under differential salt conditions. The PHB yield was increased from 3.14 ± 0.02 g/L to 6.12 ± 0.04 g/L when salinity was increased upto 20 g/L with intermittent feeding of glucose and corn steep liquor. FTIR, NMR, and GC-MS studies elucidated the presence of desired functional groups, molecular structure, and monomeric compositions of PHB respectively. Further, TGA revealed the thermal stability of the recovered PHB upto (220-230) °C and has a crystallinity index of upto 33 ± 0.5 % as confirmed by XRD analysis.
Collapse
Affiliation(s)
- Anjana
- Division of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Shristhi Rawat
- Division of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Saswata Goswami
- Division of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
5
|
Co-production of levan with other high-value bioproducts: A review. Int J Biol Macromol 2023; 235:123800. [PMID: 36828085 DOI: 10.1016/j.ijbiomac.2023.123800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/18/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Levan is a homopolysaccharide of fructose that has both scientific and industrial importance, with various applications in health, pharmaceutical, cosmetic and food industries. Despite its broad spectrum of uses, there are only a limited number of commercial levan sources due to the high costs related to its production. To make production economically viable, efforts have been concentrated on the selection of levan-producing microorganisms, the genetic manipulation of new strains, and the use of inexpensive agro-industrial byproducts as substrates. Another efficient strategy involves the concomitant synthesis of other products with high market value and as such, the successful co-production of levan was demonstrated with fructooligosaccharides, ethanol, sorbitol, poly-ε-lysine, poly-γ-glutamic acid and polyhydroxyalkanoates. This paper offers a systematic review of important aspects regarding recent strategies involving the simultaneous synthesis of levan and other bioproducts of aggregate value reported to date and discusses the challenges and opportunities for its large-scale production and applications.
Collapse
|
6
|
Oyewusi HA, Akinyede KA, Abdul Wahab R, Huyop F. In silico analysis of a putative dehalogenase from the genome of halophilic bacterium Halomonas smyrnensis AAD6T. J Biomol Struct Dyn 2023; 41:319-335. [PMID: 34854349 DOI: 10.1080/07391102.2021.2006085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microbial-assisted removal of natural or synthetic pollutants is the prevailing green, low-cost technology to treat polluted environments. However, the challenge with enzyme-assisted bioremediation is the laborious nature of dehalogenase-producing microorganisms' bioprospecting. This bottleneck could be circumvented by in-silico analysis of certain microorganisms' whole-genome sequences to predict their protein functions and enzyme versatility for improved biotechnological applications. Herein, this study performed structural analysis on a dehalogenase (DehHsAAD6) from the genome of Halomonas smyrnensis AAD6 by molecular docking and molecular dynamic (MD) simulations. Other bioinformatics tools were also employed to identify substrate preference (haloacids and haloacetates) of the DehHsAAD6. The DehHsAAD6 preferentially degraded haloacids and haloacetates (-3.2-4.8 kcal/mol) and which formed three hydrogen bonds with Tyr12, Lys46, and Asp182. MD simulations data revealed the higher stability of DehHsAAD6-haloacid- (RMSD 0.22-0.3 nm) and DehHsAAD6-haloacetates (RMSF 0.05-0.14 nm) complexes, with the DehHsAAD6-L-2CP complex being the most stable. The detail of molecular docking calculations ranked complexes with the lowest binding free energies as: DehHsAAD6-L-2CP complex (-4.8 kcal/mol) = DehHsAAD6-MCA (-4.8 kcal/mol) < DehHsAAD6-TCA (-4.5 kcal/mol) < DehHsAAD6-2,3-DCP (-4.1 kcal/mol) < DehHsAAD6-D-2CP (-3.9 kcal/mol) < DehHsAAD6-2,2-DCP (-3.5 kcal/mol) < DehHsAAD6-3CP (-3.2 kcal/mol). In a nutshell, the study findings offer valuable perceptions into the elucidation of possible reaction mechanisms of dehalogenases for extended substrate specificity and higher catalytic activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Habeebat Adekilekun Oyewusi
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Department of Science Technology, Biochemistry unit, The Federal Polytechnic P.M.B, Ado Ekiti, Ekiti State, Nigeria
| | - Kolajo Adedamola Akinyede
- Department of Science Technology, Biochemistry unit, The Federal Polytechnic P.M.B, Ado Ekiti, Ekiti State, Nigeria.,Department of Medical Bioscience, University of the Western Cape, Bellville, Cape Town, South Africa
| | - Roswanira Abdul Wahab
- Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia.,Enzyme Technology and Green Synthesis Research Group, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
7
|
Jung HJ, Kim SH, Cho DH, Kim BC, Bhatia SK, Lee J, Jeon JM, Yoon JJ, Yang YH. Finding of Novel Galactose Utilizing Halomonas sp. YK44 for Polyhydroxybutyrate (PHB) Production. Polymers (Basel) 2022; 14:polym14245407. [PMID: 36559775 PMCID: PMC9782037 DOI: 10.3390/polym14245407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable bioplastic with potential applications as an alternative to petroleum-based plastics. However, efficient PHB production remains difficult. The main cost of PHB production is attributed to carbon sources; hence, finding inexpensive sources is important. Galactose is a possible substrate for polyhydroxyalkanoate production as it is abundant in marine environments. Marine bacteria that produce PHB from galactose could be an effective resource that can be used for efficient PHB production. In this study, to identify a galactose utilizing PHB producer, we examined 16 Halomonas strains. We demonstrated that Halomonas cerina (Halomonas sp. YK44) has the highest growth and PHB production using a culture media containing 2% galactose, final 4% NaCl, and 0.1% yeast extract. These culture conditions yielded 8.98 g/L PHB (78.1% PHB content (w/w)). When galactose-containing red algae (Eucheuma spinosum) hydrolysates were used as a carbon source, 5.2 g/L PHB was produced with 1.425% galactose after treatment with activated carbon. Since high salt conditions can be used to avoid sterilization, we examined whether Halomonas sp. YK44 could produce PHB in non-sterilized conditions. Culture media in these conditions yielded 72.41% PHB content. Thus, Halomonas sp. YK44 is robust against contamination, allowing for long-term culture and economical PHB production.
Collapse
Affiliation(s)
- Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung Chan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| | - Jongbok Lee
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Research Institute of Clean Manufacturing System, Korea Institute of Industrial Technology (KITECH), Cheonan 31056, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: ; Tel.: +82-2-450-2-3936
| |
Collapse
|
8
|
Hathi ZJ, Haque MA, Priya A, Qin ZH, Huang S, Lam CH, Ladakis D, Pateraki C, Mettu S, Koutinas A, Du C, Lin CSK. Fermentative bioconversion of food waste into biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using Cupriavidus necator. ENVIRONMENTAL RESEARCH 2022; 215:114323. [PMID: 36115419 DOI: 10.1016/j.envres.2022.114323] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/20/2022] [Accepted: 09/07/2022] [Indexed: 05/27/2023]
Abstract
Dependency on plastic commodities has led to a recurrent increase in their global production every year. Conventionally, plastic products are derived from fossil fuels, leading to severe environmental concerns. The recent coronavirus disease 2019 pandemic has triggered an increase in medical waste. Conversely, it has disrupted the supply chain of personal protective equipment (PPE). Valorisation of food waste was performed to cultivate C. necator for fermentative production of biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The increase in biomass, PHBV yield and molar 3-hydroxy valerate (3HV) content was estimated after feeding volatile fatty acids. The fed-batch fermentation strategy reported in this study produced 15.65 ± 0.14 g/L of biomass with 5.32 g/L of PHBV with 50% molar 3HV content. This is a crucial finding, as molar concentration of 3HV can be modulated to suit the specification of biopolymer (film or fabric). The strategy applied in this study addresses the issue of global food waste burden and subsequently generates biopolymer PHBV, turning waste to wealth.
Collapse
Affiliation(s)
- Zubeen J Hathi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Md Ariful Haque
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shuquan Huang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Dimitris Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Srinivas Mettu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Chenyu Du
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, United Kingdom
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong.
| |
Collapse
|
9
|
Hagagy N, Saddiq AA, Tag HM, Selim S, AbdElgawad H, Martínez-Espinosa RM. Characterization of Polyhydroxybutyrate, PHB, Synthesized by Newly Isolated Haloarchaea Halolamina spp. Molecules 2022; 27:7366. [PMID: 36364191 PMCID: PMC9655102 DOI: 10.3390/molecules27217366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2023] Open
Abstract
This work aims to characterize the haloarchaeal diversity of unexplored environmental salty samples from a hypersaline environment on the southern coast of Jeddah, Saudi Arabia, looking for new isolates able to produce polyhydroxyalkanoates (PHAs). Thus, the list of PHA producers has been extended by describing two species of Halolamina; Halolamina sediminis sp. strain NRS_35 and unclassified Halolamina sp. strain NRS_38. The growth and PHA-production were investigated in the presence of different carbon sources, (glucose, sucrose, starch, carboxymethyl cellulose (CMC), and glycerol), pH values, (5-9), temperature ranges (4-65 °C), and NaCl concentrations (100-350 g L-1). Fourier-transform infra-red analysis (FT-IR) and Liquid chromatography-mass spectrometry (LC-MS) were used for qualitative identification of the biopolymer. The highest yield of PHB was 33.4% and 27.29% by NRS_35 and NRS_38, respectively, using starch as a carbon source at 37 °C, pH 7, and 25% NaCl (w/v). The FT-IR pattern indicated sharp peaks formed around 1628.98 and 1629.28 cm-1, which confirmed the presence of the carbonyl group (C=O) on amides and related to proteins, which is typical of PHB. LC-MS/MS analysis displayed peaks at retention times of 5.2, 7.3, and 8.1. This peak range indicates the occurrence of PHB and its synthetic products: Acetoacetyl-CoA and PHB synthase (PhaC). In summary, the two newly isolated Halolamina species showed a high capacity to produce PHB using different sources of carbon. Further research using other low-cost feedstocks is needed to improve both the quality and quantity of PHB production. With these results, the use of haloarchaea as cell factories to produce PHAs is reinforced, and light is shed on the global concern about replacing plastics with biodegradable polymers.
Collapse
Affiliation(s)
- Nashwa Hagagy
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Amna A. Saddiq
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Hend M. Tag
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Hamada AbdElgawad
- Botany and Microbiology Department, Faculty of Science, Beni–Suef University, Beni–Suef 62521, Egypt
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
10
|
Erkorkmaz BA, Kırtel O, Abaramak G, Nikerel E, Öner ET. UV and Chemically Induced Halomonas smyrnensis Mutants for Enhanced Levan Productivity. J Biotechnol 2022; 356:19-29. [PMID: 35914617 DOI: 10.1016/j.jbiotec.2022.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022]
Abstract
Halomonas smyrnensis AAD6T is a moderately halophilic bacterium proven to be a powerful biotechnological tool with its ability to accumulate valuable biopolymers such as levan and poly(3-hydroxybutyrate) (PHB). Levan is a fructose homopolymer with β-2,6 fructofuranosidic linkages on the polymer backbone, and its distinctive applications in various industries such as food, pharmaceutical, medical, and chemical have been well-defined. On the other hand, PHB is a promising raw material to produce biodegradable plastics. Although it was shown in our previous studies that H. smyrnensis AAD6T exhibits one of the highest conversion yields of sucrose to levan reported to date, novel strategies are required to overcome high costs of levan production. In this study, we aimed at increasing levan productivity of H. smyrnensis AAD6T cultures using random mutagenesis techniques combined (i.e., ethyl methanesulfate treatment and/or ultraviolet irradiation). After several consecutive treatments, mutant strains BAE2, BAE5 and BAE6 were selected as efficient levan producers, as BAE2 standing out as the most efficient one not only in sucrose utilization and levan production rates, but also in final PHB concentrations. The mutants' whole genome sequences were analysed to determine the mutations occurred. Several mutations in genes related to central carbon metabolism and osmoregulation were found. Our results suggest that random mutagenesis can be a facile and efficient strategy to enhance the performance of extremophiles in adverse conditions.
Collapse
Affiliation(s)
- Burak Adnan Erkorkmaz
- Industrial Biotechnology and Systems Biology Research Group-IBSB, Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey; Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Onur Kırtel
- Industrial Biotechnology and Systems Biology Research Group-IBSB, Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey
| | - Gülbahar Abaramak
- Industrial Biotechnology and Systems Biology Research Group-IBSB, Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey
| | - Emrah Nikerel
- Department of Genetics and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - Ebru Toksoy Öner
- Industrial Biotechnology and Systems Biology Research Group-IBSB, Department of Bioengineering, Marmara University, 34722 Istanbul, Turkey.
| |
Collapse
|
11
|
Scale-Up Studies for Polyhydroxyalkanoate and Halocin Production by <i>Halomonas</i> Sp. as Potential Biomedical Materials. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-yqf2wv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyhydroxyalkanoates (PHA) are the biomaterials isolated naturally from bacterial strains. These are present in granules and accumulated intracellularly for storage and energy uptake in stressed conditions. This work was based on the extraction of polyhydroxyalkanoates from haloarchaeal strains isolated from samples of a salt mine and Halocin activity screening of these isolates. For the screening of polyhydroxyalkanoates, Nile Blue and Sudan Black Staining were performed. After confirmation and theoretical determination, polyhydroxyalkanoates extraction was done by sodium hypochlorite digestion and solvent extraction by chloroform method in combination. Polyhydroxyalkanoates production was calculated along with the determination of biomass. Halocin activity of these strains was also screened at different intervals. Isolated strains were identified by 16S RNA gene sequencing. Polyhydroxyalkanoates polymer was produced in form of biofilms and brittle crystals. Halocin activity was exhibited by four strains, among which confirmed halocin activity was shown by strain K7. The remarkable results showed that polyhydroxyalkanoates can replace synthetic plastics which are not environment friendly as they cause environmental pollution – a major threat to Earth rising gradually. Therefore, by switching to the use of biodegradable bioplastics from the use of synthetic plastics, it would be beneficial to the ecosphere.
Collapse
|
12
|
Vega-Vidaurri JA, Hernández-Rosas F, Ríos-Corripio MA, Loeza-Corte JM, Rojas-López M, Hernández-Martínez R. Coproduction of polyhydroxyalkanoates and exopolysaccharide by submerged fermentation using autochthonous bacterial strains. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02046-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Levan enhanced the NF-κB suppression activity of an oral nano PLGA-curcumin formulation in breast cancer treatment. Int J Biol Macromol 2021; 189:223-231. [PMID: 34419542 DOI: 10.1016/j.ijbiomac.2021.08.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 08/15/2021] [Indexed: 11/21/2022]
Abstract
Chemoresistance (CR) is one of the reasons why chemotherapy agents like Gemcitabine (GMC) remain insufficient in healing breast cancer. Activation of Nuclear Factor-kappa B (NF-κB) during chemotherapy is known as an important factor in the development of CR. The hydrophobic polyphenol curcumin is shown to inhibit NF-κB and hence CR. The aim of this work was to increase the poor bioavailability of curcumin by loading it into the nano-micelles made of Poly (Lactide-co-Glycolide) (PLGA) and levan, where levan as a natural fructose homopolymer makes the nano-micelle more stable and increases its uptake using the fructose moieties. In this study, a PLGA-levan-curcumin formulation (PLC) was designed and characterized. The size was measured as 154.16 ± 1.45 nm with a 67.68% encapsulation efficiency (EE%). The incorporation between the components was approved. Levan made the nano-micelles stable for at least three months, increased their uptake, and led to a 10,000-fold increase in the solubility of curcumin. The enhanced bioavailability of curcumin reduced the NF-κB levels elevated by GMC, both in vitro and in vivo. The PLC showed a complete tumor treatment, while GMC only showed a rate of 52%. These point to the great potential of the PLC to be used simultaneously with chemotherapy.
Collapse
|
14
|
Kaniuk Ł, Stachewicz U. Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications. ACS Biomater Sci Eng 2021; 7:5339-5362. [PMID: 34649426 PMCID: PMC8672356 DOI: 10.1021/acsbiomaterials.1c00757] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Biodegradable polymeric
biomaterials offer a significant advantage
in disposable or fast-consuming products in medical applications.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)
is an example of a polyhydroxyalkanoate (PHA), i.e., one group of
natural polyesters that are byproducts of reactions taking place in
microorganisms in conditions with an excess carbon source. PHA polymers
are a promising material for the production of everyday materials
and biomedical applications. Due to the high number of monomers in
the group, PHAs permit modifications enabling the production of copolymers
of different compositions and with different proportions of individual
monomers. In order to change and improve the properties of polymer
fibers, PHAs are combined with either other natural and synthetic
polymers or additives of inorganic phases. Importantly, electrospun
PHBV fibers and mats showed an enormous potential in both the medical
field (tissue engineering scaffolds, plasters, wound healing, drug
delivery systems) and industrial applications (filter systems, food
packaging). This Review summarizes the current state of the art in
processing PHBV, especially by electrospinning, its degradation processes,
and biocompatibility studies, starting from a general introduction
to the PHA group of polymers.
Collapse
Affiliation(s)
- Łukasz Kaniuk
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland
| | - Urszula Stachewicz
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland
| |
Collapse
|
15
|
Romero Soto L, Thabet H, Maghembe R, Gameiro D, Van-Thuoc D, Dishisha T, Hatti-Kaul R. Metabolic potential of the moderate halophile Yangia sp. ND199 for co-production of polyhydroxyalkanoates and exopolysaccharides. Microbiologyopen 2021; 10:e1160. [PMID: 33650793 PMCID: PMC7892980 DOI: 10.1002/mbo3.1160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/02/2022] Open
Abstract
Yangia sp. ND199 is a moderately halophilic bacterium isolated from mangrove samples in Northern Vietnam, which was earlier reported to grow on several sugars and glycerol to accumulate poly(hydroxyalkanoates) (PHA). In this study, the potential of the bacterium for co‐production of exopolysaccharides (EPS) and PHA was investigated. Genome sequence analysis of the closely related Yangia sp. CCB‐M3 isolated from mangroves in Malaysia revealed genes encoding enzymes participating in different EPS biosynthetic pathways. The effects of various cultivation parameters on the production of EPS and PHA were studied. The highest level of EPS (288 mg/L) was achieved using sucrose and yeast extract with 5% NaCl and 120 mM phosphate salts but with modest PHA accumulation (32% of cell dry weight, 1.3 g/L). Growth on fructose yielded the highest PHA concentration (85% of CDW, 3.3 g/L) at 90 mM phosphate and higher molecular weight EPS at 251 mg/L yield at 120 mM phosphate concentration. Analysis of EPS showed a predominance of glucose, followed by fructose and galactose, and minor amounts of acidic sugars.
Collapse
Affiliation(s)
- Luis Romero Soto
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden.,Instituto de Investigación y Desarrollo de Procesos Químicos, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Habib Thabet
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden.,Food Science and Technology Department, Ibb University, Ibb, Yemen
| | - Reuben Maghembe
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden.,Department of Molecular Biology and Biotechnology, College of Natural and Applied Sciences, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Denise Gameiro
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| | - Doan Van-Thuoc
- Department of Biotechnology and Microbiology, Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam
| | - Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Halomonas as a chassis. Essays Biochem 2021; 65:393-403. [PMID: 33885142 PMCID: PMC8314019 DOI: 10.1042/ebc20200159] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/04/2023]
Abstract
With the rapid development of systems and synthetic biology, the non-model bacteria, Halomonas spp., have been developed recently to become a cost-competitive platform for producing a variety of products including polyesters, chemicals and proteins owing to their contamination resistance and ability of high cell density growth at alkaline pH and high salt concentration. These salt-loving microbes can partially solve the challenges of current industrial biotechnology (CIB) which requires high energy-consuming sterilization to prevent contamination as CIB is based on traditional chassis, typically, Escherichia coli, Bacillus subtilis, Pseudomonas putida and Corynebacterium glutamicum. The advantages and current status of Halomonas spp. including their molecular biology and metabolic engineering approaches as well as their applications are reviewed here. Moreover, a systematic strain engineering streamline, including product-based host development, genetic parts mining, static and dynamic optimization of modularized pathways and bioprocess-inspired cell engineering are summarized. All of these developments result in the term called next-generation industrial biotechnology (NGIB). Increasing efforts are made to develop their versatile cell factories powered by synthetic biology to demonstrate a new biomanufacturing strategy under open and continuous processes with significant cost-reduction on process complexity, energy, substrates and fresh water consumption.
Collapse
|
17
|
Amadu AA, Qiu S, Ge S, Addico GND, Ameka GK, Yu Z, Xia W, Abbew AW, Shao D, Champagne P, Wang S. A review of biopolymer (Poly-β-hydroxybutyrate) synthesis in microbes cultivated on wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143729. [PMID: 33310224 DOI: 10.1016/j.scitotenv.2020.143729] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
The large quantities of non-degradable single use plastics, production and disposal, in addition to increasing amounts of municipal and industrial wastewaters are among the major global issues known today. Biodegradable plastics from biopolymers such as Poly-β-hydroxybutyrates (PHB) produced by microorganisms are potential substitutes for non-degradable petroleum-based plastics. This paper reviews the current status of wastewater-cultivated microbes utilized in PHB production, including the various types of wastewaters suitable for either pure or mixed culture PHB production. PHB-producing strains that have the potential for commercialization are also highlighted with proposed selection criteria for choosing the appropriate PHB microbe for optimization of processes. The biosynthetic pathways involved in producing microbial PHB are also discussed to highlight the advancements in genetic engineering techniques. Additionally, the paper outlines the factors influencing PHB production while exploring other metabolic pathways and metabolites simultaneously produced along with PHB in a bio-refinery context. Furthermore, the paper explores the effects of extraction methods on PHB yield and quality to ultimately facilitate the commercial production of biodegradable plastics. This review uniquely discusses the developments in research on microbial biopolymers, specifically PHB and also gives an overview of current commercial PHB companies making strides in cutting down plastic pollution and greenhouse gases.
Collapse
Affiliation(s)
- Ayesha Algade Amadu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China.
| | - Gloria Naa Dzama Addico
- Council for Scientific and Industrial Research (CSIR) - Water Research Institute (WRI), P.O. Box AH 38, Achimota Greater Accra, Ghana
| | - Gabriel Komla Ameka
- Department of Botany, University of Ghana, P.O. Box LG55, Legon, Accra, Ghana
| | - Ziwei Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Wenhao Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Dadong Shao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, PR China
| | - Pascale Champagne
- Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Sufeng Wang
- School of Economics and Management, Anhui Jianzhu University, Hefei, Anhui 230601, PR China
| |
Collapse
|
18
|
Cheng R, Cheng L, Zhao Y, Wang L, Wang S, Zhang J. Biosynthesis and prebiotic activity of a linear levan from a new Paenibacillus isolate. Appl Microbiol Biotechnol 2021; 105:769-787. [PMID: 33404835 DOI: 10.1007/s00253-020-11088-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
Levan, a type of β (2→6)-linked fructan, is a promising biopolymer with distinct properties and extensive applications in the fields of food, pharmaceutical, cosmetics, etc. However, the commercial availability of levan is still limited due to the relatively high production costs. Here, a new Paenibacillus sp. strain FP01 was isolated and identified as an efficient fructan producer with high yield (around 89.5 g/L fructan was obtained under 180 g/L sucrose) and conversation rate (49.7%). The fructan named Plev was structurally characterized as a linear levan-type fructan with a molecular mass of 3.11 × 106 Da. Aqueous solutions of Plev exhibited a non-Newtonian behavior at concentrations 3-5%. Heating and chilling had no obvious effects on apparent viscosities of Plev solutions. Plev also had good rheological stabilities toward pH (3-11) and metal salts (Na+, K+, Ca2+, Mg2+). Microbiome and metabolome analysis showed that Plev intervention increased the abundance of beneficial bacteria and elevated the levels of short-chain fatty acids (SCFAs) in feces of mice. Taken together, Plev could be considered a potential thickener and prebiotic supplement in food industry.Key points• Paenibacillus sp. strain FP01 was identified as a high-efficient levan producer.• The levan Plev from FP01 exhibited good rheological properties and stabilities.• The in vivo prebiotic activities of linear levan were revealed.
Collapse
Affiliation(s)
- Rui Cheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Long Cheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Lei Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Shiming Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei, Nanjing, 210094, China.
| |
Collapse
|
19
|
Joulak I, Finore I, Poli A, Abid Y, Bkhairia I, Nicolaus B, Di Donato P, Dal Poggetto G, Gharsallaoui A, Attia H, Azabou S. Hetero-exopolysaccharide from the extremely halophilic Halomonas smyrnensis K2: production, characterization and functional properties in vitro. 3 Biotech 2020; 10:395. [PMID: 32832343 PMCID: PMC7431504 DOI: 10.1007/s13205-020-02356-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/23/2020] [Indexed: 12/27/2022] Open
Abstract
In this study, we firstly reported the production and the structural characterization of a novel hetero-exopolysaccharide namely EPS-K2 from the extremely halophilc Halomonas smyrnensis K2. Results revealed that EPS-K2 was mainly composed of three monosaccharides including mannose (66.69%), glucose (19.54%) and galactose (13.77%). EPS-K2 showed high thermostability with a degradation temperature around 260 °C, which could make it a suitable candidate for application in thermal processes. Moreover, EPS-K2 showed attractive functional properties. In fact, it exhibited potent antioxidant activity in a dose-dependent manner as assessed in analyses of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, iron chelating and DNA protection ability. Furthermore, EPS-K2 showed strong adhesion inhibition activity against Enterococcus faecalis (75.52 ± 3.35%) and Escherichia coli (61.95 ± 2.48%) at 1 g/l concentration, as well as a high biofilm disruption activity especially against E. coli (70.73 ± 2.78%), at 2 g/l concentration. According to its biotechnological properties, EPS-K2 could be exploited as functional ingredient in food, biomedicine, and pharmaceutical industries.
Collapse
Affiliation(s)
- Ichrak Joulak
- Laboratoire Analyse, Valorisation et Sécurité des Aliments, Université de Sfax, ENIS, Sfax, 3038 Tunisia
| | - Ilaria Finore
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Annarita Poli
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Yousra Abid
- Laboratoire Analyse, Valorisation et Sécurité des Aliments, Université de Sfax, ENIS, Sfax, 3038 Tunisia
| | - Intidhar Bkhairia
- Laboratoire de Génie Enzymatique et de Microbiologie, Université de Sfax, Ecole Nationale d’Ingénieurs de Sfax, B.P. 1173-3038 Sfax, Tunisia
| | - Barbara Nicolaus
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Paola Di Donato
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute of Biomolecular Chemistry (ICB), via Campi Flegrei 34, 80078 Pozzuoli, Italy
- Department of Science and Technology, Parthenope University of Naples, Centro Direzionale-Isola C4, 80143 Naples, Italy
| | - Giovanni Dal Poggetto
- Consiglio Nazionale delle Ricerche (C.N.R.), Institute for Polymers, Composites and Biomaterials (IPCB), via Campi Flegrei 34, 80078 Pozzuoli, Italy
| | - Adem Gharsallaoui
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France
| | - Hamadi Attia
- Laboratoire Analyse, Valorisation et Sécurité des Aliments, Université de Sfax, ENIS, Sfax, 3038 Tunisia
| | - Samia Azabou
- Laboratoire Analyse, Valorisation et Sécurité des Aliments, Université de Sfax, ENIS, Sfax, 3038 Tunisia
| |
Collapse
|
20
|
Khan SA, Zununi Vahed S, Forouhandeh H, Tarhriz V, Chaparzadeh N, Hejazi MA, Jeon CO, Hejazi MS. Halomonas urmiana sp. nov., a moderately halophilic bacterium isolated from Urmia Lake in Iran. Int J Syst Evol Microbiol 2020; 70:2254-2260. [PMID: 32039745 DOI: 10.1099/ijsem.0.004005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the course of screening halophilic bacteria in Urmia Lake in Iran, which is being threatened by dryness, a novel Gram-negative, moderately halophilic, heterotrophic and short rod-shaped bacteria was isolated and characterized. The bacterium was isolated from a water specimen and designated as TBZ3T. Colonies were found to be creamy yellow, with catalase- and oxidase-positive activities. The growth of strain TBZ3T was observed to be at 10-45 °C (optimum, 30 °C), at pH 6.0-9.0 (optimum, pH 7.0) and in the presence of 0.5-20 % (w/v) NaCl (optimum, 7.5 %). Strain TBZ3T contained C16 : 0, cyclo-C19 : 0 ω8c, summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 8 (comprising C18 : 1 ω7c and/or C18 : 1 ω6c) as major fatty acids and ubiquinone-9 as the only respiratory isoprenoid quinone. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, glycolipid, unidentified phospholipid and unidentified polar lipids were detected as the major polar lipids. Strain TBZ3T was found to be most closely related to Halomonas saccharevitans AJ275T , Halomonas denitrificans M29T and Halomonas sediminicola CPS11T with the 16S rRNA gene sequence similarities of 98.93, 98.15 and 97.60 % respectively and in phylogenetic analysis strain TBZ3T grouped with Halomonas saccharevitans AJ275T contained within a large cluster within the genus Halomonas. Based on phenotypic, chemotaxonomic and molecular properties, strain TBZ3T represents a novel species of the Halomonas genus, for which the name Halomonas urmiana sp. nov. is proposed. The type strain is TBZ3T (=DSM 22871T=LMG 25416T).
Collapse
Affiliation(s)
- Shehzad Abid Khan
- Department of Life Science, Chung Ang University, Seoul 06974, Republic of Korea
| | | | - Haleh Forouhandeh
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Chaparzadeh
- Department of Biology, Faculty of Science, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Amin Hejazi
- Branch for the Northwest and West Region, Agriculture Biotechnology Research Institute of Iran (ABRII), Tabriz, Iran
| | - Che Ok Jeon
- Department of Life Science, Chung Ang University, Seoul 06974, Republic of Korea
| | - Mohammad Saeid Hejazi
- School of Advanced Biomedical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|