1
|
Chen Y, He Y, Pan Y, Wen Y, Zhu L, Gao J, Chen W, Jiang D. Involvement of the Metallothionein gene OsMT2b in Drought and Cadmium Ions Stress in Rice. RICE (NEW YORK, N.Y.) 2024; 17:63. [PMID: 39294464 PMCID: PMC11411049 DOI: 10.1186/s12284-024-00740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024]
Abstract
Abiotic stress is one of the major factors restricting the production of rice (Oryza sativa L.). Developing rice varieties with dual abiotic stress tolerance is essential to ensure sustained rice production, which is necessary to illustrate the regulation mechanisms underlying dual stress tolerance. At present, only a few genes that regulate dual abiotic stress tolerance have been reported. In this study, we determined that the expression of OsMT2b was induced by both drought and Cd2+ stress. After stress treatment, OsMT2b-overexpression lines exhibited enhanced drought tolerance and better physiological performance in terms of relative water content and electrolyte leakage compared with wild-type (WT). Further analysis indicated that ROS levels were lower in OsMT2b-overexpression lines than in WT following stress treatment, suggesting that OsMT2b-overexpression lines had a stronger ability to scavenge ROS under stress. Reverse transcription-quantitative PCR (RT-qPCR) results demonstrated that under drought stress, OsMT2b influenced the expression of genes involved in ROS scavenging to enhance drought tolerance in rice. In addition, OsMT2b-overexpression plants displayed increased tolerance to Cd2+ stress, and physiological assessment results were consistent with the observed phenotypic improvements. Thus, enhancing ROS scavenging ability through OsMT2b overexpression is a novel strategy to boost rice tolerance to both drought and Cd2+ stress, offering a promising approach for developing rice germplasm with enhanced resistance to the abiotic stressors.
Collapse
Affiliation(s)
- Yanxin Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ying He
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Pan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lili Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jieer Gao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Weiting Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dagang Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Sharma S, Kumar M, Sircar D, Prasad R. Metabolic profiling and biomarkers identification in cluster bean under drought stress using GC-MS technique. Metabolomics 2024; 20:80. [PMID: 39066988 DOI: 10.1007/s11306-024-02143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION The Cluster bean is an economically significant annual legume, widely known as guar. Plant productivity is frequently constrained by drought conditions. OBJECTIVE In this work, we have identified the untargeted drought stress-responsive metabolites in mature leaves of cluster beans under drought and control condition. METHODS To analyse the untargeted metabolites, gas chromatography-mass spectrometry (GC-MS) technique was used. Supervised partial least-squares discriminate analysis and heat map were used to identify the most significant metabolites for drought tolerance. RESULTS The mature leaves of drought-treated C. tetragonoloba cv. 'HG-365' which is a drought-tolerant cultivar, showed various types of amino acids, fatty acids, sugar alcohols and sugars as the major classes of metabolites recognized by GC-MS metabolome analysis. Metabolite profiling of guar leaves showed 23 altered metabolites. Eight metabolites (proline, valine, D-pinitol, palmitic acid, dodecanoic acid, threonine, glucose, and glycerol monostearate) with VIP score greater than one were considered as biomarkers and three metabolite biomarkers (D-pinitol, valine, and glycerol monostearate) were found for the first time in guar under drought stress. In this work, four amino acids (alanine, valine, serine and aspartic acid) were also studied, which played a significant role in drought-tolerant pathway in guar. CONCLUSION This study provides information on the first-ever GC-MS metabolic profiling of guar. This work gives in-depth details on guar's untargeted drought-responsive metabolites and biomarkers, which can plausibly be used for further identification of biochemical pathways, enzymes, and the location of various genes under drought stress.
Collapse
Affiliation(s)
- Shipra Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Mukund Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
3
|
Yadav P, Sharma K, Tiwari N, Saxena G, Asif MH, Singh S, Kumar M. Comprehensive transcriptome analyses of Fusarium-infected root xylem tissues to decipher genes involved in chickpea wilt resistance. 3 Biotech 2023; 13:390. [PMID: 37942053 PMCID: PMC10630269 DOI: 10.1007/s13205-023-03803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Fusarium wilt is the most destructive soil-borne disease that poses a major threat to chickpea production. To comprehensively understand the interaction between chickpea and Fusarium oxysporum, the xylem-specific transcriptome analysis of wilt-resistant (WR315) and wilt-susceptible (JG62) genotypes at an early timepoint (4DPI) was investigated. Differential expression analysis showed that 1368 and 348 DEGs responded to pathogen infection in resistant and susceptible genotypes, respectively. Both genotypes showed transcriptional reprogramming in response to Foc2, but the responses in WR315 were more severe than in JG62. Results of the KEGG pathway analysis revealed that most of the DEGS in both genotypes with enrichment in metabolic pathways, secondary metabolite biosynthesis, plant hormone signal transduction, and carbon metabolism. Genes associated with defense-related metabolites synthesis such as thaumatin-like protein 1b, cysteine-rich receptor-like protein kinases, MLP-like proteins, polygalacturonase inhibitor 2-like, ethylene-responsive transcription factors, glycine-rich cell wall structural protein-like, beta-galactosidase-like, subtilisin-like protease, thioredoxin-like protein, chitin elicitor receptor kinase-like, proline transporter-like, non-specific lipid transfer protein and sugar transporter were mostly up-regulated in resistant as compared to susceptible genotypes. The results of this study provide disease resistance genes, which would be helpful in understanding the Foc resistance mechanism in chickpea. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03803-9.
Collapse
Affiliation(s)
- Pooja Yadav
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Kritika Sharma
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Nikita Tiwari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Garima Saxena
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Mehar H. Asif
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Swati Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Manoj Kumar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
4
|
Garstecka Z, Antoszewski M, Mierek-Adamska A, Krauklis D, Niedojadło K, Kaliska B, Hrynkiewicz K, Dąbrowska GB. Trichoderma viride Colonizes the Roots of Brassica napus L., Alters the Expression of Stress-Responsive Genes, and Increases the Yield of Canola under Field Conditions during Drought. Int J Mol Sci 2023; 24:15349. [PMID: 37895028 PMCID: PMC10607854 DOI: 10.3390/ijms242015349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In this work, we present the results of the inoculation of canola seeds (Brassica napus L.) with Trichoderma viride strains that promote the growth of plants. Seven morphologically different strains of T. viride (TvI-VII) were shown to be capable of synthesizing auxins and exhibited cellulolytic and pectinolytic activities. To gain a deeper insight into the molecular mechanisms underlying canola-T. viride interactions, we analyzed the canola stress genes metallothioneins (BnMT1-3) and stringent response genes (BnRSH1-3 and BnCRSH). We demonstrated the presence of cis-regulatory elements responsive to fungal elicitors in the promoter regions of B. napus MT and RSH genes and observed changes in the levels of the transcripts of the above-mentioned genes in response to root colonization by the tested fungal strains. Of the seven tested strains, under laboratory conditions, T. viride VII stimulated the formation of roots and the growth of canola seedlings to the greatest extent. An experiment conducted under field conditions during drought showed that the inoculation of canola seeds with a suspension of T. viride VII spores increased yield by 16.7%. There was also a positive effect of the fungus on the height and branching of the plants, the number of siliques, and the mass of a thousand seeds. We suggest that the T. viride strain TvVII can be used in modern sustainable agriculture as a bioinoculant and seed coating to protect B. napus from drought.
Collapse
Affiliation(s)
- Zuzanna Garstecka
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| | - Marcel Antoszewski
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| | - Daniel Krauklis
- Research Centre for Cultivar Testing in Słupia Wielka, Chrząstowo 8, 89-100 Nakło nad Notecią, Poland
| | - Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - Beata Kaliska
- Research Centre for Cultivar Testing in Słupia Wielka, Chrząstowo 8, 89-100 Nakło nad Notecią, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
| | - Grażyna B. Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland; (Z.G.); (M.A.); (A.M.-A.)
| |
Collapse
|
5
|
Sharma S, Gupta DN, Kushwah AS, Sharma AK, Prasad R. Identification and characterization of the Cyamopsis tetragonoloba transcription factor MYC (CtMYC) under drought stress. Gene 2023; 882:147654. [PMID: 37479095 DOI: 10.1016/j.gene.2023.147654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
The MYC transcription factor (TF) has a variety of roles in abiotic stress responses of plants. In the present work, MYC TF named CtMYC (Cymopsis tetragonoloba) from guar plant, which is induced by drought stress, was identified. The mature leaves of guar were employed to detect the full-length CtMYC TF on the 8th day of drought stress. The CtMYC gene showed tissue-specific expression and up regulated under drought stress conditions as compared to the control and maximum expression was observed in mature leaves. Additionally, CtMYC TF was cloned and expressed in E. coli Rosetta cells and CtMYC protein was purified. The circular dichroism (CD) analysis revealed the presence of helical content and beta sheets and in the presence of genomic DNA the conformational changes were observed in secondary structure, which showed DNA binding potential of CtMYC. These results were analyzed by CD and fluorescence studies. In silico studies reveal the presence of conserved bHLH domain and DNA-binding amino acid residues His, Glu and Arg in CtMYC. This is first report on CtMYC TF with DNA binding potential that is responsive to drought. This study provides the structure and characterization of CtMYC TF and DNA binding ability in drought tolerance mechanism in guar.
Collapse
Affiliation(s)
- Shipra Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Deena Nath Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ankita Singh Kushwah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ashwani Kumar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ramasare Prasad
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India.
| |
Collapse
|
6
|
Gautam N, Tiwari M, Kidwai M, Dutta P, Chakrabarty D. Functional characterization of rice metallothionein OsMT-I-Id: Insights into metal binding and heavy metal tolerance mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131815. [DOI: https:/doi.org/10.1016/j.jhazmat.2023.131815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
7
|
Gautam N, Tiwari M, Kidwai M, Dutta P, Chakrabarty D. Functional characterization of rice metallothionein OsMT-I-Id: Insights into metal binding and heavy metal tolerance mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131815. [PMID: 37336105 DOI: 10.1016/j.jhazmat.2023.131815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Metallothioneins (MTs) are cysteine-rich proteins known for their strong metal-binding capabilities, making them effective in detoxifying heavy metals (HMs). This study focuses on characterizing the functional properties of OsMT-I-Id, a type-I Metallothionein found in rice. Using a HM-responsive yeast cup1Δ (DTY4), ycf1∆ (for cadmium), and acr3∆ mutants (for trivalent arsenic), we assessed the impact of OsMT-I-Id on metal accumulation and cellular resilience. Our results demonstrated that yeast cells expressing OsMT-I-Id showed increased tolerance and accumulated higher levels of copper (Cu), arsenic (As), and cadmium (Cd), compared to control cells. This can be attributed to the protein's ability to chelate and bind HMs. Site-directed mutagenesis was employed to investigate the specific contributions of cysteine residues. The study revealed that yeast cells with a mutated C-domain displayed heightened HM sensitivity, while cells with a mutated N-domain exhibited reduced sensitivity. This underscores the critical role of C-cysteine-rich domains in metal binding and tolerance of type-I rice MTs. Furthermore, the study identified the significance of the 12th cysteine position at the N-domain and the 68th and 72nd cysteine positions at the C-domain in influencing OsMT-I-Id metal-binding capacity. This research provides novel insights into the structure-function relationship and metal binding properties of type-I plant MTs.
Collapse
Affiliation(s)
- Neelam Gautam
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Madhu Tiwari
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Maria Kidwai
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Prasanna Dutta
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Konieczna W, Warchoł M, Mierek-Adamska A, Skrzypek E, Waligórski P, Piernik A, Dąbrowska GB. Changes in physio-biochemical parameters and expression of metallothioneins in Avena sativa L. in response to drought. Sci Rep 2023; 13:2486. [PMID: 36775830 PMCID: PMC9922688 DOI: 10.1038/s41598-023-29394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
Drought is one of the major threats to food security. Among several mechanisms involved in plant stress tolerance, one protein family-the plant metallothioneins (MTs)-shows great promise for enhancing drought resistance. Plant metallothioneins in oat (Avena sativa L.) have not yet been deeply analysed, and the literature lacks a comprehensive study of the whole family of plant MTs in response to drought. In this study, we showed that the number and nature of cis-elements linked with stress response in promoters of AsMTs1-3 differed depending on the MT type. Drought stress in oat plants caused an increase in the expression of AsMT2 and AsMT3 and a decrease in the expression of AsMT1 compared to well-watered plants. Moreover, the low values of relative water content, water use efficiency, net photosynthesis (PN), transpiration (E), stomatal conductance (gs), chlorophyll a, and carotenoid were accompanied by high levels of electrolyte leakage, internal CO2 concentration (Ci) and abscisic acid content, and high activity of antioxidants enzymes in plants under drought stress. The present study puts forward the idea that AsMTs are crucial for oat response to drought stress not only by regulating antioxidant activity but also by changing the plant water regime and photosynthesis. Our results support the hypothesis that structural differences among types of plant MTs reflect their diversified physiological roles.
Collapse
Affiliation(s)
- Wiktoria Konieczna
- Department of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Marzena Warchoł
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100, Toruń, Poland
| | - Edyta Skrzypek
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Piotr Waligórski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Agnieszka Piernik
- Department of Geobotany and Landscape Planning, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Grażyna B Dąbrowska
- Department of Genetics, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland.
| |
Collapse
|
9
|
Zhou Y, Liu J, Liu S, Jiang L, Hu L. Identification of the metallothionein gene family from cucumber and functional characterization of CsMT4 in Escherichia coli under salinity and osmotic stress. 3 Biotech 2019; 9:394. [PMID: 31656732 PMCID: PMC6789051 DOI: 10.1007/s13205-019-1929-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/29/2019] [Indexed: 12/17/2022] Open
Abstract
Metallothionein (MT) proteins are low-molecular-weight, cysteine-rich and metal-binding proteins that play important roles in the maintenance of metal homeostasis and detoxification, but their roles in abiotic stress tolerance remain largely unknown. In this study, three MT family genes (CsMT2, CsMT3 and CsMT4) were identified in the cucumber genome. CsMT2, CsMT3 and CsMT4 possessed 14, 10, and 18 Cys residues, which were clustered into 2, 2, and 3 Cys-rich regions, respectively. Phylogenetic analysis of MTs from cucumber, Arabidopsis and soybean revealed that these MTs were clustered into four groups in accordance with the MT types (types 1-4). An analysis of the cis-acting regulatory elements revealed that a series of hormone-, stress-, and development-related cis-elements were present in the promoter regions of CsMT genes. Expression pattern analysis by RT-PCR showed that the CsMT genes exhibited different tissue expression patterns. CsMT2 showed relatively higher expression in stem, leaf, and flower; CsMT3 was mainly expressed in leaf, flower, and fruit, while CsMT4 was highly expressed in fruit and leaf. The qRT-PCR results showed that the CsMT genes were induced by various stress treatments including NaCl, PEG, and ABA, while CsMT4 displayed much higher expression levels in response to these stresses than CsMT2 and CsMT3. Escherichia coli cells expressing CsMT4 exhibited higher salinity and osmotic tolerance compared with control cells, indicating the significant function of CsMT4 to confer tolerance to these stresses. These results lay a foundation for further research on the function of MT family genes in plant stress responses.
Collapse
Affiliation(s)
- Yong Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Science, Jiangxi Agricultural University, Nanchang, 330045 China
- Institute of Biotechnology and Physical Agricultural Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Jialin Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Shiqiang Liu
- College of Science, Jiangxi Agricultural University, Nanchang, 330045 China
- Institute of Biotechnology and Physical Agricultural Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Lunwei Jiang
- Institute of Biotechnology and Physical Agricultural Engineering, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
- College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045 China
| |
Collapse
|
10
|
Zamora-Briseño JA, Pereira-Santana A, Reyes-Hernández SJ, Castaño E, Rodríguez-Zapata LC. Global Dynamics in Protein Disorder during Maize Seed Development. Genes (Basel) 2019; 10:genes10070502. [PMID: 31262071 PMCID: PMC6678312 DOI: 10.3390/genes10070502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/31/2023] Open
Abstract
Intrinsic protein disorder is a physicochemical attribute of some proteins lacking tridimensional structure and is collectively known as intrinsically disordered proteins (IDPs). Interestingly, several IDPs have been associated with protective functions in plants and with their response to external stimuli. To correlate the modulation of the IDPs content with the developmental progression in seed, we describe the expression of transcripts according to the disorder content of the proteins that they codify during seed development, from the early embryogenesis to the beginning of the desiccation tolerance acquisition stage. We found that the total expression profile of transcripts encoding for structured proteins is highly increased during middle phase. However, the relative content of protein disorder is increased as seed development progresses. We identified several intrinsically disordered transcription factors that seem to play important roles throughout seed development. On the other hand, we detected a gene cluster encoding for IDPs at the end of the late phase, which coincides with the beginning of the acquisition of desiccation tolerance. In conclusion, the expression pattern of IDPs is highly dependent on the developmental stage, and there is a general reduction in the expression of transcripts encoding for structured proteins as seed development progresses. We proposed maize seeds as a model to study the regulation of protein disorder in plant development and its involvement in the acquisition of desiccation tolerance in plants.
Collapse
Affiliation(s)
- Jesús Alejandro Zamora-Briseño
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43, número 130, Chuburná de Hidalgo, CP 97205, Mérida, Yucatán, México
| | - Alejandro Pereira-Santana
- Centro de Investigación y Asistencia en Tecnología y Diseño del estado de Jalisco. División de Biotecnología Industrial. Camino Arenero 1227, El Bajío, Zapopan, Jalisco. C.P. 45019
| | - Sandi Julissa Reyes-Hernández
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43, número 130, Chuburná de Hidalgo, CP 97205, Mérida, Yucatán, México
| | - Enrique Castaño
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, número 130, Chuburná de Hidalgo, CP 97205, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43, número 130, Chuburná de Hidalgo, CP 97205, Mérida, Yucatán, México.
| |
Collapse
|