1
|
Kiran M, Haq F, Ullah M, Ullah N, Chinnam S, Ashique S, Mishra N, Wani AW, Farid A. Starch-based bio-membrane for water purification, biomedical waste, and environmental remediation. Int J Biol Macromol 2024:137033. [PMID: 39488302 DOI: 10.1016/j.ijbiomac.2024.137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 10/12/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
This review article explores the utilization of starch-based materials as smart materials for the removal of dyes and heavy metals from wastewater, highlighting their cost-effectiveness, biodegradability, and biocompatibility. It addresses the critical need for clean water, emphasizing the contamination caused by industrial activities, such as printing, textile, cosmetic, and leather tanning industries. Starch and its derivatives demonstrate significant potential in water purification technology, effectively removing toxicants through hydrogen bonding, electrostatic interactions, and complexation. The review also discusses the application of starch-based materials in the biomedical field, particularly as drug carriers. Starch-based microspheres, hydrogels, nano-spheres, and nano-composites exhibit sustained drug-release properties and are effective in transporting various drugs, including DOX, quercetin, 5-Fluorouracil, glycyrrhizic acid, paclitaxel, tetracycline hydrochloride, amoxicillin, ciprofloxacin, and moxifloxacin. These materials show good antimicrobial activity against a range of pathogens, including C. albicans, E. coli, S. aureus, C. neoformance, B. subtilis, A. niger, A. fumigatus, and A. terreus. While highlighting the significant achievements of starch-based materials, the review also discusses current limitations and areas for future development. Key weaknesses include the need for enhanced adsorption capacities and the challenge of scaling up production for industrial applications. The review concludes by identifying development directions, such as improving functionalization techniques and exploring new applications in water purification and drug delivery systems. This article aims to assist researchers in advancing the field of starch-based materials for environmental and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Kiran
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I. Khan 29050, Pakistan
| | - Midrar Ullah
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - Naveed Ullah
- Faculty of Agriculture, Gomal University, D. I. Khan 29050, Pakistan
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Techno-logical University, Belgaum), Bengaluru, Karnataka 560054, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Ab Waheed Wani
- Department of Horticulture, Lovely Professional University, Punjab 144411, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan 29050, Pakistan.
| |
Collapse
|
2
|
Konwar S, Siyahjani Gultekin S, Gultekin B, Kumar S, Punetha VD, Yahya MZAB, Diantoro M, Latif FA, Mohd Noor IS, Singh PK. Stable Efficient Solid-State Supercapacitors and Dye-Sensitized Solar Cells Using Ionic Liquid-Doped Solid Biopolymer Electrolyte. ACS OMEGA 2024; 9:39696-39702. [PMID: 39346854 PMCID: PMC11425618 DOI: 10.1021/acsomega.4c04815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
As synthetic and nonbiodegradable compounds are becoming a great challenge for the environment, developing polymer electrolytes using naturally occurring biodegradable polymers has drawn considerable research interest to replace traditional aqueous electrolytes and synthetic polymer-based polymer electrolytes. This study shows the development of a highly conducting ionic liquid (1-hexyl-3-methylimidazolium iodide)-doped corn starch-based polymer electrolyte. A simple solution cast method is used to prepare biopolymer-based polymer electrolytes and characterized using different electrical, structural, and photoelectrochemical studies. Prepared polymer electrolytes are optimized based on ionic conductivity, which shows an ionic conductivity as high as 1.90 × 10-3 S/cm. Fourier transform infrared spectroscopy (FTIR) confirms the complexation and composite nature, while X-ray diffraction (XRD) and polarized optical microscopy (POM) affirm the reduction of crystallinity in biopolymer electrolytes after doping with ionic liquid (IL). Thermal and photoelectrochemical studies further affirm that synthesized material is well stable above 200 °C and shows a wide electrochemical window of 3.91 V. The ionic transference number measurement (t ion) confirms the predominance of ionic charge carriers in the present system. An electric double-layer capacitor (EDLC) and a dye-sensitized solar cell (DSSC) were fabricated by using the highest conducting corn starch polymer electrolyte. The fabricated EDLC and DSSC delivered an average specific capacitance of 130 F/g and an efficiency of 1.73% in one sun condition, respectively.
Collapse
Affiliation(s)
- Subhrajit Konwar
- Center
for Solar Cells & Renewable Energy, Department of Physics, Sharda University, Greater Noida 201310, India
- Department
of Physics, Noida Institute of Engineering
and Technology, Greater Noida 201306, India
| | - Sirin Siyahjani Gultekin
- Faculty
of Engineering, Department of Chemical Engineering Canakkale, Onsekiz Mart University, Canakkale 17100, Turkey
- Solar
Energy Institute, Ege University, Bornova, Izmir 35100, Turkey
| | - Burak Gultekin
- Solar
Energy Institute, Ege University, Bornova, Izmir 35100, Turkey
| | - Sushant Kumar
- Center
for Solar Cells & Renewable Energy, Department of Physics, Sharda University, Greater Noida 201310, India
| | - Vinay Deep Punetha
- Centre
of Excellence for Research, P P Savani University, NH 8, GETCO, Kosamba 394125, India
| | - Muhd Zu Azhan Bin Yahya
- Faculty of
Defence Science and Technology, Universiti
Pertahanan Nasional Malaysia (UPNM), 57000 Kuala Lumpur, Malaysia
| | - Markus Diantoro
- Department
of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, J1, Semarang 5, Malang 65145, Indonesia
| | - Famiza Abdul Latif
- Faculty
of Applied Sciences, Universiti Teknologi
MARA, 40450 Shah Alam, Malaysia
| | - Ikhwan Syafiq Mohd Noor
- Physics
Division, Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor Darul Ehsan Malaysia
| | - Pramod K. Singh
- Center
for Solar Cells & Renewable Energy, Department of Physics, Sharda University, Greater Noida 201310, India
| |
Collapse
|
3
|
Das S, Basak S, Baite H, Bhowmick M, Debnath S, Roy AN. Jute fibre reinforced biodegradable composites using starch as a biological macromolecule: Fabrication and performance evaluation. Int J Biol Macromol 2024; 273:132641. [PMID: 38797294 DOI: 10.1016/j.ijbiomac.2024.132641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/02/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
The aim of this study is to develop environment friendly packaging and life style materials for replacing conventionally explored hazardous synthetic materials. The study carried out by using raw jute fibre reinforced thermoplastic corn starch (TPCS) is to develop biodegradable flexible composite materials. Flexible composites are prepared by maintaining with different fibre content (30 %, 40 % and 50 wt%). A thin coating of polyurethane based formulation is applied on one side of the developed composite to make it water resistant. Composite samples are examined in terms of their tensile properties, tear resistance, folding endurance, water absorbency, capillary action etc. The results show that flexible composites, having 50 % fibre content have tensile strength of 12.8 MPa and 12 MPa at cross and machine direction respectively compared to 3.1 MPa for the TPCS film. The Water drop test on the coated side of the developed material concluded that there is no water penetration even after 60 min of wetting. The interaction between two hydrophilic components is established with FTIR analysis. The XRD analysis was carried out to find the crystallinity of TPCS, Jute fibre and composite samples. Surface morphology and fibre/matrix interaction is observed by SEM. The detail chemical mechanism involved of fibre matrix interaction also been postulated. The scientific finding shows that the developed flexible material can be suitable for making packaging and life style items.
Collapse
Affiliation(s)
- S Das
- ICAR-National Institute of Natural Fibre Engineering and Technology, Kolkata, 700040, West Bengal, India.
| | - S Basak
- ICAR-National Institute of Natural Fibre Engineering and Technology, Kolkata, 700040, West Bengal, India
| | - H Baite
- ICAR-National Institute of Natural Fibre Engineering and Technology, Kolkata, 700040, West Bengal, India
| | - M Bhowmick
- ICAR-National Institute of Natural Fibre Engineering and Technology, Kolkata, 700040, West Bengal, India
| | - S Debnath
- ICAR-National Institute of Natural Fibre Engineering and Technology, Kolkata, 700040, West Bengal, India
| | - A N Roy
- ICAR-National Institute of Natural Fibre Engineering and Technology, Kolkata, 700040, West Bengal, India
| |
Collapse
|
4
|
Yang YC, Lin HS, Chen HX, Wang PK, Zheng BD, Huang YY, Zhang N, Zhang XQ, Ye J, Xiao MT. Plant polysaccharide-derived edible film packaging for instant food: Rapid dissolution in hot water coupled with exceptional mechanical and barrier characteristics. Int J Biol Macromol 2024; 270:132066. [PMID: 38705323 DOI: 10.1016/j.ijbiomac.2024.132066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
A comprehensive multiscale analysis was conducted to explore the effects of different ratios of these materials on its properties. The results show that KC played a crucial role in controlling solution viscosity and gel and sol temperatures. The dissolution time at high water temperatures primarily decreased with an increase in SA content. Higher KC and CS content increased tensile strength (TS) and elongation at break (ε), while also exhibiting better thermal stability. Water vapor transmission (WVT) and permeability (PV) initially decreased, then increased with the increase of SA and CS contents. Finally, an SA:KC:CS ratio of 1:3:2 showed optimal comprehensive properties, with a dissolution time of about 60.0 ± 3.8 s, TS of 23.80 ± 0.29 MPa, ε of 18.61 ± 0.34 %, WVT of 21.74 ± 0.62 g/m2·24h, and PV of 5.39 ± 0.17 meq/kg. Meanwhile, the SA:KC:CS edible food packaging only introduced minimal effects on food after dissolution, and the total bacterial count met regulatory standards.
Collapse
Affiliation(s)
- Yu-Cheng Yang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Hai-Sang Lin
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Hai-Xin Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Peng-Kai Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Ya-Yan Huang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Na Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xue-Qin Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Jing Ye
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China
| |
Collapse
|
5
|
Wawrzyńczak A, Chudzińska J, Feliczak-Guzik A. Metal and Metal Oxides Nanoparticles as Nanofillers for Biodegradable Polymers. Chemphyschem 2024; 25:e202300823. [PMID: 38353297 DOI: 10.1002/cphc.202300823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/13/2024] [Indexed: 03/06/2024]
Abstract
Polymeric materials, despite their many undeniable advantages, nowadays are a major environmental challenge. Thus, in recent years biodegradable polymer matrices have been widely used in various sectors, including the medicinal, chemical, and packaging industry. Their widespread use is due to the properties of biodegradable polymer matrices, among which are their adjustable physicochemical and mechanical properties, as well as lower environmental impact. The properties of biodegradable polymers can be modified with various types of nanofillers, among which clays, organic and inorganic nanoparticles, and carbon nanostructures are most commonly used. The performance of the final product depends on the size and uniformity of the used nanofillers, as well as on their distribution and dispersion in the polymer matrix. This literature review aims to highlight new research results on advances and improvements in the synthesis, physicochemical properties and applications of biodegradable polymer matrices modified with metal nanoparticles and metal oxides.
Collapse
Affiliation(s)
- Agata Wawrzyńczak
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| | - Jagoda Chudzińska
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| | - Agnieszka Feliczak-Guzik
- Department of Chemistry, Adam Mickiewicz University, Poznań University 8, 61-614, Poznań, Poland
| |
Collapse
|
6
|
Gonçalves LFFF, Reis RL, Fernandes EM. Forefront Research of Foaming Strategies on Biodegradable Polymers and Their Composites by Thermal or Melt-Based Processing Technologies: Advances and Perspectives. Polymers (Basel) 2024; 16:1286. [PMID: 38732755 PMCID: PMC11085284 DOI: 10.3390/polym16091286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The last few decades have witnessed significant advances in the development of polymeric-based foam materials. These materials find several practical applications in our daily lives due to their characteristic properties such as low density, thermal insulation, and porosity, which are important in packaging, in building construction, and in biomedical applications, respectively. The first foams with practical applications used polymeric materials of petrochemical origin. However, due to growing environmental concerns, considerable efforts have been made to replace some of these materials with biodegradable polymers. Foam processing has evolved greatly in recent years due to improvements in existing techniques, such as the use of supercritical fluids in extrusion foaming and foam injection moulding, as well as the advent or adaptation of existing techniques to produce foams, as in the case of the combination between additive manufacturing and foam technology. The use of supercritical CO2 is especially advantageous in the production of porous structures for biomedical applications, as CO2 is chemically inert and non-toxic; in addition, it allows for an easy tailoring of the pore structure through processing conditions. Biodegradable polymeric materials, despite their enormous advantages over petroleum-based materials, present some difficulties regarding their potential use in foaming, such as poor melt strength, slow crystallization rate, poor processability, low service temperature, low toughness, and high brittleness, which limits their field of application. Several strategies were developed to improve the melt strength, including the change in monomer composition and the use of chemical modifiers and chain extenders to extend the chain length or create a branched molecular structure, to increase the molecular weight and the viscosity of the polymer. The use of additives or fillers is also commonly used, as fillers can improve crystallization kinetics by acting as crystal-nucleating agents. Alternatively, biodegradable polymers can be blended with other biodegradable polymers to combine certain properties and to counteract certain limitations. This work therefore aims to provide the latest advances regarding the foaming of biodegradable polymers. It covers the main foaming techniques and their advances and reviews the uses of biodegradable polymers in foaming, focusing on the chemical changes of polymers that improve their foaming ability. Finally, the challenges as well as the main opportunities presented reinforce the market potential of the biodegradable polymer foam materials.
Collapse
Affiliation(s)
- Luis F. F. F. Gonçalves
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| | - Emanuel M. Fernandes
- 3B’s Research Group, I3Bs–Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
7
|
Gómez-Bachar L, Vilcovsky M, González-Seligra P, Famá L. Effects of PVA and yerba mate extract on extruded films of carboxymethyl cassava starch/PVA blends for antioxidant and mechanically resistant food packaging. Int J Biol Macromol 2024; 268:131464. [PMID: 38702248 DOI: 10.1016/j.ijbiomac.2024.131464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 05/06/2024]
Abstract
Global concerns over environmental damage caused by non-biodegradable single-use packaging have sparked interest in developing biomaterials. The food packaging industry is a major contributor to non-degradable plastic waste. This study investigates the impact of incorporating different concentrations of polyvinyl alcohol (PVA) and yerba mate extract as a natural antioxidant into carboxymethyl cassava starch films to possibly use as active degradable packaging to enhance food shelf life. Films with starch and PVA blends (SP) at different ratios (SP radios of 100:0, 90:10, 80:20 and 70:30) with and without yerba mate extract (Y) were successfully produced through extrusion and thermoforming. The incorporation of up to 20 wt% PVA improved starch extrusion processing and enhanced film transparency. PVA played a crucial role in improving the hydrophobicity, tensile strength and flexibility of the starch films but led to a slight deceleration in their degradation in compost. In contrast, yerba mate extract contributed to better compost degradation of the blend films. Additionally, it provided antioxidant activity, particularly in hydrophilic and lipophilic food simulants, suggesting its potential to extend the shelf life of food products. Starch-PVA blend films with yerba mate extract emerged as a promising alternative for mechanically resistant and active food packaging.
Collapse
Affiliation(s)
- Luca Gómez-Bachar
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina
| | - Maia Vilcovsky
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina
| | - Paula González-Seligra
- Instituto de Ingenierías y Nuevas Tecnologías, Universidad Nacional del Oeste, San Antonio de Padua, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Lucía Famá
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Lee JY, Kamel J, Yadav CJ, Yadav U, Afrin S, Son YM, Won SY, Han SS, Park KM. Production of Plant-Based, Film-Type Scaffolds Using Alginate and Corn Starch for the Culture of Bovine Myoblasts. Foods 2024; 13:1358. [PMID: 38731729 PMCID: PMC11083433 DOI: 10.3390/foods13091358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Natural scaffolds have been the cornerstone of tissue engineering for decades, providing ideal environments for cell growth within extracellular matrices. Previous studies have favored animal-derived materials, including collagen, gelatin, and laminin, owing to their superior effects in promoting cell attachment, proliferation, and differentiation compared to non-animal scaffolds, and used immortalized cell lines. However, for cultured meat production, non-animal-derived scaffolds with edible cells are preferred. Our study represents the first research to describe plant-derived, film-type scaffolds to overcome limitations associated with previously reported thick, gel-type scaffolds completely devoid of animal-derived materials. This approach has been employed to address the difficulties of fostering bovine muscle cell survival, migration, and differentiation in three-dimensional co-cultures. Primary bovine myoblasts from Bos Taurus Coreanae were harvested and seeded on alginate (Algi) or corn-derived alginate (AlgiC) scaffolds. Scaffold functionalities, including biocompatibility and the promotion of cell proliferation and differentiation, were evaluated using cell viability assays, immunofluorescence staining, and reverse transcription-quantitative polymerase chain reaction. Our results reveal a statistically significant 71.7% decrease in production time using film-type scaffolds relative to that for gel-type scaffolds, which can be maintained for up to 7 days. Film-type scaffolds enhanced initial cell attachment owing to their flatness and thinness relative to gel-type scaffolds. Algi and AlgiC film-type scaffolds both demonstrated low cytotoxicity over seven days of cell culture. Our findings indicated that PAX7 expression increased 16.5-fold in alginate scaffolds and 22.8-fold in AlgiC from day 1 to day 3. Moreover, at the differentiation stage on day 7, MHC expression was elevated 41.8-fold (Algi) and 32.7-fold (AlgiC), providing initial confirmation of the differentiation potential of bovine muscle cells. These findings suggest that both Algi and AlgiC film scaffolds are advantageous for cultured meat production.
Collapse
Affiliation(s)
- Jun-Yeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| | - Jihad Kamel
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| | - Chandra-Jit Yadav
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| | - Usha Yadav
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| | - Sadia Afrin
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| | - Yu-Mi Son
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Sung-Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
- Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Kyung-Mee Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (J.-Y.L.)
| |
Collapse
|
9
|
Bumbac M, Nicolescu CM, Zaharescu T, Gurgu IV, Bumbac C, Manea EE, Ionescu IA, Serban BC, Buiu O, Dumitrescu C. Biodegradation Study of Styrene-Butadiene Composites with Incorporated Arthrospira platensis Biomass. Polymers (Basel) 2024; 16:1218. [PMID: 38732687 PMCID: PMC11085408 DOI: 10.3390/polym16091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The preparation of polymer composites that incorporate material of a biogenic nature in the polymer matrices may lead to a reduction in fossil polymer consumption and a potentially higher biodegradability. Furthermore, microalgae biomass as biogenic filler has the advantage of fast growth and high tolerance to different types of culture media with higher production yields than those provided by the biomass of terrestrial crops. On the other hand, algal biomass can be a secondary product in wastewater treatment processes. For the present study, an SBS polymer composite (SBSC) containing 25% (w/w) copolymer SBS1 (linear copolymer: 30% styrene and 70% butadiene), 50% (w/w) copolymer SBS2 (linear copolymer: 40% styrene and 60% butadiene), and 25% (w/w) paraffin oil was prepared. Arthrospira platensis biomass (moisture content 6.0 ± 0.5%) was incorporated into the SBSC in 5, 10, 20, and 30% (w/w) ratios to obtain polymer composites with spirulina biomass. For the biodegradation studies, the ISO 14855-1:2012(E) standard was applied, with slight changes, as per the specificity of our experiments. The degradation of the studied materials was followed by quantitatively monitoring the CO2 resulting from the degradation process and captured by absorption in NaOH solution 0.5 mol/L. The structural and morphological changes induced by the industrial composting test on the materials were followed by physical-mechanical, FTIR, SEM, and DSC analysis. The obtained results were compared to create a picture of the material transformation during the composting period. Thus, the collected data indicate two biodegradation processes, of the polymer and the biomass, which take place at the same time at different rates, which influence each other. On the other hand, it is found that the material becomes less ordered, with a sponge-like morphology; the increase in the percentage of biomass leads to an advanced degree of degradation of the material. The FTIR analysis data suggest the possibility of the formation of peptide bonds between the aromatic nuclei in the styrene block and the molecular residues resulting from biomass biodegradation. It seems that in industrial composting conditions, the area of the polystyrene blocks from the SBS-based composite is preferentially transformed in the process.
Collapse
Affiliation(s)
- Marius Bumbac
- Faculty of Science and Arts, Valahia University of Targoviste, 13 Aleea Sinaia, 130004 Targoviste, Dambovita, Romania; (M.B.); (C.D.)
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Aleea Sinaia, 130004 Targoviste, Dambovita, Romania; (T.Z.); (I.V.G.)
| | - Cristina Mihaela Nicolescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Aleea Sinaia, 130004 Targoviste, Dambovita, Romania; (T.Z.); (I.V.G.)
| | - Traian Zaharescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Aleea Sinaia, 130004 Targoviste, Dambovita, Romania; (T.Z.); (I.V.G.)
- National Institute for Electrical Engineering, Advanced Research (INCDIE ICPE CA), 313 Splaiul Unirii, 030138 Bucharest, Ilfov, Romania
| | - Ion Valentin Gurgu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 13 Aleea Sinaia, 130004 Targoviste, Dambovita, Romania; (T.Z.); (I.V.G.)
| | - Costel Bumbac
- National Research and Development Institute for Industrial Ecology-ECOIND, 57-73 Drumul Podu Dambovitei, District 6, 060652 Bucharest, Ilfov, Romania; (C.B.); (E.E.M.); (I.A.I.)
| | - Elena Elisabeta Manea
- National Research and Development Institute for Industrial Ecology-ECOIND, 57-73 Drumul Podu Dambovitei, District 6, 060652 Bucharest, Ilfov, Romania; (C.B.); (E.E.M.); (I.A.I.)
| | - Ioana Alexandra Ionescu
- National Research and Development Institute for Industrial Ecology-ECOIND, 57-73 Drumul Podu Dambovitei, District 6, 060652 Bucharest, Ilfov, Romania; (C.B.); (E.E.M.); (I.A.I.)
| | - Bogdan-Catalin Serban
- IMT Bucharest, National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae, 077190 Voluntari, Ilfov, Romania;
| | - Octavian Buiu
- IMT Bucharest, National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae, 077190 Voluntari, Ilfov, Romania;
| | - Crinela Dumitrescu
- Faculty of Science and Arts, Valahia University of Targoviste, 13 Aleea Sinaia, 130004 Targoviste, Dambovita, Romania; (M.B.); (C.D.)
| |
Collapse
|
10
|
Lipatova IM, Losev NV. The influence of the combined impact of shear stress and cavitation on the structure and properties of starch-natural rubber composite. Carbohydr Polym 2024; 330:121852. [PMID: 38368078 DOI: 10.1016/j.carbpol.2024.121852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/27/2023] [Accepted: 01/19/2024] [Indexed: 02/19/2024]
Abstract
In this article, we examined a high-performance, environmentally friendly method for producing composite films based on starch and natural rubber latex (NR). To increase the compatibility of the components, the casting dispersions were subjected to short-term (10 s) mechanical activation in a rotor-stator device. Using the rotational viscosimetry method, it was found that mechanical activation reduces the structuring degree and the effective viscosity of the casting dispersions. The composite films with the NR content of 0-30 % were characterized using optical and SEM microscopy, X-ray diffraction, tensile, and moisture resistance testing data. When the NR content increases from 0 to 30 %, the elongation at break increased by 570 % and 950 % for films obtained using mechanical activation and without it, respectively. The extremely high increase in film tensile strength (on average by 155 %) and the decrease in the NR extractability with toluene due to the use of mechanical activation indicate the possibility of mechanically induced formation of an in situ copolymer at the starch-NR interface. The developed method can be recommended for large-scale production of composite starch-based materials.
Collapse
Affiliation(s)
- I M Lipatova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia.
| | - N V Losev
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russia
| |
Collapse
|
11
|
Pei J, Yan Y, Jayaraman S, Rajagopal P, Natarajan PM, Umapathy VR, Gopathy S, Roy JR, Sadagopan JC, Thalamati D, Palanisamy CP, Mironescu M. A review on advancements in the application of starch-based nanomaterials in biomedicine: Precision drug delivery and cancer therapy. Int J Biol Macromol 2024; 265:130746. [PMID: 38467219 DOI: 10.1016/j.ijbiomac.2024.130746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/01/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
The burgeoning field of starch-based nanomaterials in biomedical applications has perceived notable progressions, with a particular emphasis on their pivotal role in precision drug delivery and the inhibition of tumor growth. The complicated challenges in current biomedical research require innovative approaches for improved therapeutic outcomes, prompting an exploration into the possible of starch-based nanomaterials. The conceptualization of this review emerged from recognizing the need for a comprehensive examination of the structural attributes, versatile properties, and mechanisms underlying the efficiency of starch-based nanomaterials in inhibiting tumor growth and enabling targeted drug delivery. This review delineates the substantial growth in utilizing starch-based nanomaterials, elucidating their small size, high surface-volume ratio, and biocompatibility, predominantly emphasizing their possible to actively recognize cancer cells, deliver anticancer drugs, and combat tumors efficiently. The investigation of these nanomaterials encompasses to improving biocompatibility and targeting specific tissues, thereby contributing to the evolving landscape of precision medicine. The review accomplishes by highlighting the auspicious strategies and modern developments in the field, envisioning a future where starch-based nanomaterials play a transformative role in molecular nanomaterials, evolving biomedical sciences. The translation of these advancements into clinical applications holds the potential to revolutionize targeted drug delivery and expand therapeutic outcomes in the realm of precision medicine.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Yuqiang Yan
- Department of anaesthesia, Xi'an Central Hospital, No. 161, West 5th Road, Xincheng District, Xi'an 710003, China
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai-600 095, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Chennai-600107, India
| | - Sridevi Gopathy
- Department of Physiology, SRM Dental College, Ramapuram campus, Chennai 600089, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600 073, India
| | - Janaki Coimbatore Sadagopan
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600 073, India
| | | | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Sibiu 550024, Romania.
| |
Collapse
|
12
|
Baniasadi H, Madani Z, Mohan M, Vaara M, Lipponen S, Vapaavuori J, Seppälä JV. Heat-Induced Actuator Fibers: Starch-Containing Biopolyamide Composites for Functional Textiles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48584-48600. [PMID: 37787649 PMCID: PMC10591286 DOI: 10.1021/acsami.3c08774] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
This study introduces the development of a thermally responsive shape-morphing fabric using low-melting-point polyamide shape memory actuators. To facilitate the blending of biomaterials, we report the synthesis and characterization of a biopolyamide with a relatively low melting point. Additionally, we present a straightforward and solvent-free method for the compatibilization of starch particles with the synthesized biopolyamide, aiming to enhance the sustainability of polyamide and customize the actuation temperature. Subsequently, homogeneous dispersion of up to 70 wt % compatibilized starch particles into the matrix is achieved. The resulting composites exhibit excellent mechanical properties comparable to those reported for soft and tough materials, making them well suited for textile integration. Furthermore, cyclic thermomechanical tests were conducted to evaluate the shape memory and shape recovery of both plain polyamide and composites. The results confirmed their remarkable shape recovery properties. To demonstrate the potential application of biocomposites in textiles, a heat-responsive fabric was created using thermoresponsive shape memory polymer actuators composed of a biocomposite containing 50 wt % compatibilized starch. This fabric demonstrates the ability to repeatedly undergo significant heat-induced deformations by opening and closing pores, thereby exposing hidden functionalities through heat stimulation. This innovative approach provides a convenient pathway for designing heat-responsive textiles, adding value to state-of-the-art smart textiles.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Polymer
Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Zahra Madani
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Mithila Mohan
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Maija Vaara
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Sami Lipponen
- Polymer
Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Jaana Vapaavuori
- Department
of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Jukka V. Seppälä
- Polymer
Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
13
|
Tahir M, Sionkowska A. Effect of Polydopamine and Curcumin on Physicochemical and Mechanical Properties of Polymeric Blends. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5758. [PMID: 37687451 PMCID: PMC10488858 DOI: 10.3390/ma16175758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
In this study, we prepared composites made from polyvinyl alcohol (PVA), sodium alginate (SA), curcumin (Cur), and polydopamine (PD). The film-forming properties of the composites were researched for potential wound-healing applications. The structures of the polymer blends and composites were studied by FTIR spectroscopy and microscopic observations (AFM and SEM). The mechanical properties were measured using a Zwick Roell testing machine. It was observed that the formation of a polymeric film based on the blend of polyvinyl alcohol and sodium alginate led to the generation of pores. The presence of curcumin in the composite resulted in the alteration of the blend properties. After solvent evaporation, the polymeric blend of PVA, SA, and curcumin formed a stable polymeric film, but the film showed poor mechanical properties. The addition of polydopamine led to an improvement in the mechanical strength of the film and an increase in its surface roughness. A polymeric film of sodium alginate presented the highest surface roughness value among all the studied specimens (66.6 nm), whereas polyvinyl alcohol showed the lowest value (1.60 nm). The roughness of the composites made of PVA/SA/Cur and PVA/SA/Cur/PD showed a value of about 25 nm. Sodium alginate showed the highest values of Young's modulus (4.10 GPa), stress (32.73 N), and tensile strength (98.48 MPa). The addition of PD to PVA/SA/Cur led to an improvement in the mechanical properties. Improved mechanical properties and appropriate surface roughness may suggest that prepared blends can be used for the preparation of wound-healing materials.
Collapse
Affiliation(s)
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| |
Collapse
|
14
|
Li W, Liu Z, Tang F, Jiang H, Zhou Z, Hao X, Zhang JM. Application of 3D Bioprinting in Liver Diseases. MICROMACHINES 2023; 14:1648. [PMID: 37630184 PMCID: PMC10457767 DOI: 10.3390/mi14081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Liver diseases are the primary reason for morbidity and mortality in the world. Owing to a shortage of organ donors and postoperative immune rejection, patients routinely suffer from liver failure. Unlike 2D cell models, animal models, and organoids, 3D bioprinting can be successfully employed to print living tissues and organs that contain blood vessels, bone, and kidney, heart, and liver tissues and so on. 3D bioprinting is mainly classified into four types: inkjet 3D bioprinting, extrusion-based 3D bioprinting, laser-assisted bioprinting (LAB), and vat photopolymerization. Bioinks for 3D bioprinting are composed of hydrogels and cells. For liver 3D bioprinting, hepatic parenchymal cells (hepatocytes) and liver nonparenchymal cells (hepatic stellate cells, hepatic sinusoidal endothelial cells, and Kupffer cells) are commonly used. Compared to conventional scaffold-based approaches, marked by limited functionality and complexity, 3D bioprinting can achieve accurate cell settlement, a high resolution, and more efficient usage of biomaterials, better mimicking the complex microstructures of native tissues. This method will make contributions to disease modeling, drug discovery, and even regenerative medicine. However, the limitations and challenges of this method cannot be ignored. Limitation include the requirement of diverse fabrication technologies, observation of drug dynamic response under perfusion culture, the resolution to reproduce complex hepatic microenvironment, and so on. Despite this, 3D bioprinting is still a promising and innovative biofabrication strategy for the creation of artificial multi-cellular tissues/organs.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Radiology, Yancheng Third People’s Hospital, Affiliated Hospital 6 of Nantong University, Yancheng 224000, China
| | - Zhaoyue Liu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Fengwei Tang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Hao Jiang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Zhengyuan Zhou
- Nanjing Hangdian Intelligent Manufacturing Technology Co., Ltd., Nanjing 210014, China
| | - Xiuqing Hao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Jia Ming Zhang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
- Nanjing Hangdian Intelligent Manufacturing Technology Co., Ltd., Nanjing 210014, China
- Yangtze River Delta Intelligent Manufacturing Innovation Center, Nanjing 210014, China
| |
Collapse
|
15
|
Konwar S, Singh D, Strzałkowski K, Masri MNB, Yahya MZA, Diantoro M, Savilov SV, Singh PK. Stable and Efficient Dye-Sensitized Solar Cells and Supercapacitors Developed Using Ionic-Liquid-Doped Biopolymer Electrolytes. Molecules 2023; 28:5099. [PMID: 37446761 DOI: 10.3390/molecules28135099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
An ionic liquid (IL) 1-ethyl, 2-methyl imidazolium thiocyanate incorporated biopolymer system is reported in this communication for applications in dual energy devices, i.e., electric double-layer capacitors (EDLCs) and dye-sensitized solar cells (DSSCs). The solution caste method has been used to synthesize ionic-liquid-incorporated biopolymer electrolyte films. The IL mixed biopolymer electrolytes achieve high ionic conductivity up to the order of 10-3 S/cm with good thermal stability above 250 °C. Electrical, structural, and optical studies of these IL-doped biopolymer electrolyte films are presented in detail. The performance of EDLCs was evaluated using low-frequency electrochemical impedance spectroscopy, cyclic voltammetry, and constant current charge-discharge, while that of DSSCs was assessed using J-V characteristics. The EDLC cells exhibited a high specific capacitance of 200 F/gram, while DSSCs delivered 1.53% efficiency under sun conditions.
Collapse
Affiliation(s)
- Subhrajit Konwar
- Center for Solar Cells & Renewable Energy, Department of Physics, Sharda University, Greater Noida 201310, India
| | - Diksha Singh
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Karol Strzałkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Mohamad Najmi Bin Masri
- Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Kota Bharu 16100, Malaysia
| | - Muhd Zu Azhan Yahya
- Faculty of Defence Science and Technology, Universiti Pertahanan Nasional Malaysia (UPNM), Kuala Lumpur 57000, Malaysia
| | - Markus Diantoro
- Department of Physics, Faculty of Mathematics and Natural Science, Universitas Negeri Malang, Semarang 5, Malang 65145, Indonesia
| | - Serguei V Savilov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, 119991 Moscow, Russia
| | - Pramod K Singh
- Center for Solar Cells & Renewable Energy, Department of Physics, Sharda University, Greater Noida 201310, India
| |
Collapse
|
16
|
Attia MS, Radwan MF, Ibrahim TS, Ibrahim TM. Development of Carvedilol-Loaded Albumin-Based Nanoparticles with Factorial Design to Optimize In Vitro and In Vivo Performance. Pharmaceutics 2023; 15:pharmaceutics15051425. [PMID: 37242667 DOI: 10.3390/pharmaceutics15051425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Carvedilol, an anti-hypertensive medication commonly prescribed by healthcare providers, falls under the BCS class II category due to its low-solubility and high-permeability characteristics, resulting in limited dissolution and low absorption when taken orally. Herein, carvedilol was entrapped into bovine serum albumin (BSA)-based nanoparticles using the desolvation method to obtain a controlled release profile. Carvedilol-BSA nanoparticles were prepared and optimized using 32 factorial design. The nanoparticles were characterized for their particle size (Y1), entrapment efficiency (Y2), and time to release 50% of carvedilol (Y3). The optimized formulation was assessed for its in vitro and in vivo performance by solid-state, microscopical, and pharmacokinetic evaluations. The factorial design showed that an increment of BSA concentration demonstrated a significant positive effect on Y1 and Y2 responses with a negative effect on Y3 response. Meanwhile, the carvedilol percentage in BSA nanoparticles represented its obvious positive impact on both Y1 and Y3 responses, along with a negative impact on Y2 response. The optimized nanoformulation entailed BSA at a concentration of 0.5%, whereas the carvedilol percentage was 6%. The DSC thermograms indicated the amorphization of carvedilol inside the nanoparticles, which confirmed its entrapment into the BSA structure. The plasma concentrations of carvedilol released were observable from optimized nanoparticles up to 72 h subsequent to their injection into rats, revealing their longer in vivo circulation time compared to pure carvedilol suspension. This study offers new insight into the significance of BSA-based nanoparticles in sustaining the release of carvedilol and presents a potential value-added in the remediation of hypertension.
Collapse
Affiliation(s)
- Mohamed S Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed F Radwan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek M Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
17
|
Wang K, Ni M, Dundas AA, Dimitrakis G, Irvine DJ. Ring opening polymerisation of ɛ-caprolactone with novel microwave magnetic heating and cyto-compatible catalyst. Front Bioeng Biotechnol 2023; 11:1123477. [PMID: 36860884 PMCID: PMC9968877 DOI: 10.3389/fbioe.2023.1123477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
We report on the ring-opening polymerization of ɛ-caprolactone incorporated with a magnetic susceptible catalyst, FeCl3, via the use of microwave magnetic heating (HH) which primarily heats the bulk with a magnetic field (H-field) from an electromagnetic field (EMF). Such a process was compared to more commonly used heating methods, such as conventional heating (CH), i.e., oil bath, and microwave electric heating (EH), which is also referred to as microwave heating that primarily heats the bulk with an electric field (E-field). We identified that the catalyst is susceptible to both the E-field and H-field heating, and promoted the heating of the bulk. Which, we noticed such promotion was a lot more significant in the HH heating experiment. Further investigating the impact of such observed effects in the ROP of ɛ-caprolactone, we found that the HH experiments showed a more significant improvement in both the product Mwt and yield as the input power increased. However, when the catalyst concentration was reduced from 400:1 to 1600:1 (Monomer:Catalyst molar ratio), the observed differentiation in the Mwt and yield between the EH and the HH heating methods diminished, which we hypothesized to be due to the limited species available that were susceptible to microwave magnetic heating. But comparable product results between the HH and EH heating methods suggest that the HH heating method along with a magnetic susceptible catalyst could be an alternative solution to overcome the penetration depth problem associated with the EH heating methods. The cytotoxicity of the produced polymer was investigated to identify its potential application as biomaterials.
Collapse
Affiliation(s)
- Kaiyang Wang
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| | - Ming Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Adam A. Dundas
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Georgios Dimitrakis
- George Green Institute for Electromagnetics Research, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Derek J. Irvine
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
18
|
Wang B, Zhang G, Yan S, Xu X, Wang D, Cui B, Abd El-Aty AM. Correlation between chain structures of corn starch and properties of its film prepared at different degrees of disorganization. Int J Biol Macromol 2023; 226:580-587. [PMID: 36526058 DOI: 10.1016/j.ijbiomac.2022.12.084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
This study investigated the relationship between the chain structure of corn starch and the properties of corn starch-based films formed with starch pastes with different degrees of disorganization (70, 80, and 90 °C). The degree of gelatinization, chain length distribution, amylose content, and molecular weight of the corn starch were determined by the water absorption index, ion chromatography, spectrophotometry, and gel chromatography, respectively. The thickness, surface roughness, solubility, water content, water vapor permeability, mechanical properties, and maximum thermal degradation rate of corn starch-based films formed with starch pastes with different degrees of disorganization were evaluated. The moisture content, thickness and surface roughness of films formed with the starch pastes decreased. At the same time, the solubility, elongation at break, water vapor permeability, and molecular weight distribution increased with increasing heat treatment temperature. The maximum thermal degradation rate and tensile strength of the corn starch-based films formed with the starch pastes decreased with increasing heat treatment temperature. The gradual decrease in the amylose content of corn starch-based films formed with starch paste with increasing heat treatment temperature led to a change in the performance of the corn starch-based films.
Collapse
Affiliation(s)
- Bin Wang
- Department of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Guixin Zhang
- Zibo Institute for Food and Drug Control,Zibo 255086, China
| | - Shouxin Yan
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xin Xu
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Deyin Wang
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
19
|
Güllich LMD, Rosseto M, Rigueto CVT, Biduski B, Gutkoski LC, Dettmer A. Film properties of wheat starch modified by annealing and oxidation. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04690-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Ardjoum N, Chibani N, Shankar S, Salmieri S, Djidjelli H, Lacroix M. Incorporation of Thymus vulgaris essential oil and ethanolic extract of propolis improved the antibacterial, barrier and mechanical properties of corn starch-based films. Int J Biol Macromol 2023; 224:578-583. [PMID: 36270401 DOI: 10.1016/j.ijbiomac.2022.10.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Nadjat Ardjoum
- Laboratoire des Matériaux Polymères Avancés (LMPA), Département Génie des Procédés, Faculté de Technologie, Université de Bejaia, Route de Targa Ouzemour 06000, Algeria
| | - Nacera Chibani
- Laboratoire des Matériaux Polymères Avancés (LMPA), Département Génie des Procédés, Faculté de Technologie, Université de Bejaia, Route de Targa Ouzemour 06000, Algeria
| | - Shiv Shankar
- Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and qUality, INRS-Armand-Frappier Health Biotechnology Research Centre, 531 des Prairies Blvd, Laval, QC H7V 1B7, Canada
| | - Stephane Salmieri
- Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and qUality, INRS-Armand-Frappier Health Biotechnology Research Centre, 531 des Prairies Blvd, Laval, QC H7V 1B7, Canada
| | - Hocine Djidjelli
- Laboratoire des Matériaux Polymères Avancés (LMPA), Département Génie des Procédés, Faculté de Technologie, Université de Bejaia, Route de Targa Ouzemour 06000, Algeria
| | - Monique Lacroix
- Research Laboratories in Sciences, Applied to Food (RESALA), Canadian Irradiation Centre (CIC), MAPAQ Research Chair in Food Safety and qUality, INRS-Armand-Frappier Health Biotechnology Research Centre, 531 des Prairies Blvd, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
21
|
Waraczewski R, Muszyński S, Sołowiej BG. An Analysis of the Plant- and Animal-Based Hydrocolloids as Byproducts of the Food Industry. Molecules 2022; 27:8686. [PMID: 36557824 PMCID: PMC9782133 DOI: 10.3390/molecules27248686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Hydrocolloids are naturally occurring polysaccharides or proteins, which are used to gelatinize, modify texture, and thicken food products, and are also utilized in edible films and drug capsule production. Moreover, several hydrocolloids are known to have a positive impact on human health, including prebiotics rich in bioactive compounds. In this paper, plant-derived hydrocolloids from arrowroot (Maranta arundinacea), kuzu (Pueraria montana var lobata), Sassafras tree (Sassafras albidum) leaves, sugarcane, acorn, and animal-derived gelatin have been reviewed. Hydrocolloid processing, utilization, physicochemical activities, composition, and health benefits have been described. The food industry generates waste such as plant parts, fibers, residue, scales, bones, fins, feathers, or skin, which are often discarded back into the environment, polluting it or into landfills, where they provide no use and generate transport and storage costs. Food industry waste frequently contains useful compounds, which can yield additional income if acquired, thus decreasing the environmental pollution. Despite conventional manufacturing, the aforementioned hydrocolloids can be recycled as byproducts, which not only minimizes waste, lowers transportation and storage expenses, and boosts revenue, but also enables the production of novel, functional, and healthy food additives for the food industry worldwide.
Collapse
Affiliation(s)
- Robert Waraczewski
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Bartosz G. Sołowiej
- Department of Dairy Technology and Functional Foods, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
| |
Collapse
|
22
|
Zaib S, Saeed Shah H, Usman F, Shahzadi K, Mazhar Asjad H, Khan R, Dera AA, Adel Pashameah R, Alzahrani E, Farouk A, Khan I. Green Synthesis of Gelatin‐Lipid Nanocarriers Incorporating
Berberis aristata
Extract for Cancer Therapy; Physical Characterization, Pharmacological and Molecular Modeling Analysis. ChemistrySelect 2022. [DOI: 10.1002/slct.202203430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry Faculty of Science and Technology University of Central Punjab Lahore 54590 Pakistan
| | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences University of Veterinary and Animal Sciences Lahore 54000 Pakistan
| | - Faisal Usman
- Department of Pharmaceutics Faculty of Pharmacy Bahauddin Zakariya University Multan 66000 Pakistan
| | - Kiran Shahzadi
- Department of Basic and Applied Chemistry Faculty of Science and Technology University of Central Punjab Lahore 54590 Pakistan
| | - Hafiz Mazhar Asjad
- Department of Pharmacy Forman Christian College (A Chartered University) Lahore Pakistan
| | - Riffat Khan
- College of Pharmacy University of Sargodha Sargodha Pakistan
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences College of Applied Medical Sciences King Khalid University Abha Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry Faculty of Applied Science Umm Al-Qura University Makkah 24230 Saudi Arabia
| | - Eman Alzahrani
- Department of Chemistry College of Science Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Abd‐ElAziem Farouk
- Department of Biotechnology College of Science Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | - Imtiaz Khan
- Manchester Institute of Biotechnology The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| |
Collapse
|
23
|
Akhir MAM, Zubir SA, Mariatti J. Effect of different starch contents on physical, morphological, mechanical, barrier, and biodegradation properties of tapioca starch and poly(butylene adipate‐co‐terephthalate) blend film. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maisara A. M. Akhir
- School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Penang Malaysia
- Fakulti Teknologi Kejuruteraan Kimia Universiti Malaysia Perlis (UniMAP) Perlis Malaysia
| | - Syazana A. Zubir
- School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Penang Malaysia
| | - Jaafar Mariatti
- School of Materials and Mineral Resources Engineering Universiti Sains Malaysia Penang Malaysia
| |
Collapse
|
24
|
Recent developments of nanomedicine delivery systems for the treatment of pancreatic cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Mechanical, thermal, and tribological characterization of bio-polymeric composites: A comprehensive review. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The current review extensively discusses the effects of various natural fillers on mechanical, thermal, and tribological characteristics of polypropylene, polyethylene, poly(vinyl chloride), and polyester resin matrices. The discussion has considered all of the tensile, flexural, and impact properties along with the wear rate and thermogravimetric analysis of a wide range of natural reinforcements. Detailed comparative studies about the factors that influence the fillers’ performance in the polymeric composites were also conducted to give the reader a comprehensive understanding to enable a better selection of the optimized characteristics to develop a more sustainable design. This systematic review indicates that the majority of green fillers had an adverse effect on the tensile strength of the considered matrices, but generally improved the tensile modulus. Moreover, the studied fillers enhanced the flexural modulus property for all mentioned matrices. The impact strength was dramatically influenced by the intrinsic characteristic of the filler type.
Collapse
|
26
|
Gadomska M, Musiał K, Bełdowski P, Sionkowska A. New Materials Based on Molecular Interaction between Hyaluronic Acid and Bovine Albumin. Molecules 2022; 27:molecules27154956. [PMID: 35956906 PMCID: PMC9370313 DOI: 10.3390/molecules27154956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
In this work, the interactions between hyaluronic acid and bovine serum albumin were investigated. The film-forming properties of the mixture were proven, and the mechanical and surface properties of the films were measured. The results showed the interactions between hyaluronic acid and albumin, mainly by hydrogen bonds. Molecular docking was used for the visualization of the interactions. The films obtained from the mixture of hyaluronic acid possessed different properties to films obtained from the single component. The addition of bovine serum albumin to hyaluronic acid led to a decrease in the mechanical properties, and to an increase in the surface roughness of the film. The new materials that have been obtained by blending can form a new group of materials for biomedicine and cosmetology.
Collapse
Affiliation(s)
- Magdalena Gadomska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland
| | - Katarzyna Musiał
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland
| | - Piotr Bełdowski
- Institute of Mathematics and Physics, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Technology J.J. Śniadeckich, 85-796 Bydgoszcz, Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland
- Correspondence:
| |
Collapse
|
27
|
Fang K, Deng L, Yin J, Yang T, Li J, He W. Recent advances in starch-based magnetic adsorbents for the removal of contaminants from wastewater: A review. Int J Biol Macromol 2022; 218:909-929. [PMID: 35914554 DOI: 10.1016/j.ijbiomac.2022.07.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/03/2022] [Accepted: 07/22/2022] [Indexed: 02/09/2023]
Abstract
Considerable concern exists regarding water contamination by various pollutants, such as conventional pollutants (e.g., heavy metals and organics) and emerging micropollutants (e.g., consumer care products and interfering endocrine-related compounds). Currently, academics are continuously exploring sustainability-related materials and technologies to remove contaminants from wastewater. Magnetic starch-based adsorbents (MSAs) can combine the advantages of starch and magnetic nanoparticles, which exhibit unique critical features such as availability, cost-effectiveness, size, shape, crystallinity, magnetic properties, stability, adsorption properties, and excellent surface properties. However, limited reviews on MSAs' preparations, characterizations, applications, and adsorption mechanisms could be available nowadays. Hence, this review not only focuses on their activation and preparation methods, including physical (e.g., mechanical activation treatment, microwave radiation treatment, sonication, and extrusion), chemical (e.g., grafting, cross-linking, oxidation and esterification), and enzymatic modifications to enhance their adsorption properties, but also offers an all-round state-of-the-art analysis of the full range of its characterization methods, the adsorption of various contaminants, and the underlying adsorption mechanisms. Eventually, this review focuses on the recycling and reclamation performance and highlights the main gaps in the areas where further studies are warranted. We hope that this review will spark an interdisciplinary discussion and bring about a revolution in the applications of MSAs.
Collapse
Affiliation(s)
- Kun Fang
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China; College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Ligao Deng
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Jiangyu Yin
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China
| | - Tonghan Yang
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China
| | - Jianbin Li
- College of Light Industry and Food Engineering, the Collaborative Innovation Center for Guangxi Sugar Industry, Nanning 530004, Guangxi, China.
| | - Wei He
- School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
28
|
Effect of biodegradation conditions on morphology of ternary compositions of low density polyethylene with poly(lactic acid) and starch. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Baldassa MA, Dias RV, Oliveira LC, Feitosa E. Aqueous mixtures of cornstarch and Pluronic® F127 studied by experimental and computational techniques. Food Res Int 2022; 158:111515. [DOI: 10.1016/j.foodres.2022.111515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022]
|
30
|
Din MI, Siddique N, Hussain Z, Khalid R. Facile synthesis of biodegradable corn starch-based plastic composite film reinforced with zinc oxide nanoparticles for packaging applications. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Nida Siddique
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Zaib Hussain
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Rida Khalid
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
31
|
Effect on the Properties of Edible Starch-Based Films by the Incorporation of Additives: A Review. Polymers (Basel) 2022; 14:polym14101987. [PMID: 35631869 PMCID: PMC9147565 DOI: 10.3390/polym14101987] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
At present, people more actively pursuing biodegradable-based food packaging to lower the environmental problems of plastic-based packaging. Starch could become a promising alternative to plastic because of its properties (easily available, nontoxic, tasteless, biodegradable, ecofriendly, and edible). This review article is focused mainly on the impact of the properties of starch-based biodegradable films, such as their thickness, morphology, and optical, water-barrier, mechanical, oxygen-barrier, antioxidant, and antimicrobial properties, after the incorporation of additives, and how such films fulfill the demands of the manufacturing of biodegradable and edible food-based film with preferable performance. The incorporation of additives in starch-based films is largely explained by its functioning as a filler, as shown via a reduction in water and oxygen permeability, increased thickness, and better mechanical properties. Additives also showed antimicrobial and antioxidant properties in the films/coatings, which would positively impact the shelf life of coated or wrapped food material.
Collapse
|
32
|
Finely Modulated LDPE/PS Blends via Synergistic Compatibilization with SEBS-g-MAH and OMMT. Symmetry (Basel) 2022. [DOI: 10.3390/sym14050974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Melt blending is an effective way to prepare new composite materials, but most polymers are incompatible. In order to reduce the interfacial tension and obtain fine and stable morphology with internal symmetric micro-textures, suitable compatibilizers should be added to the blend. The two immiscible polymers, low-density polyethylene (LDPE) and polystyrene (PS), were compatibilized by styrene/ethylene/butylene/styrene block copolymers grafted with maleic anhydride (SEBS-g-MAH) and organomontmorillonite (OMMT). The scanning electron microscope results indicated that the size of the PS phase decreased with increasing the content of SEBS-g-MAH. By introducing OMMT into LDPE/PS/SEBS-g-MAH composites, the compatibility of composites was further improved. The rheological analysis and Cole–Cole plot analysis indicated that the addition of SEBS-g-MAH and OMMT increased the interaction between the two phases. The tensile strength, elongation at break, and impact strength of the LDPE/PS/SEBS-g-MAH (70/30/7, wt%) composite increased by 64%, 255%, and 380%, respectively, compared with the LDPE/PS (70/30, wt%) composite. A small amount of OMMT could synergistically compatibilize the LDPE/PS composite with SEBS-g-MAH. After adding 0.3% OMMT into the LDPE/PS/SEBS-g-MAH system, the tensile strength, elongation at break, and impact strength of the composite were further increased to 18.57 MPa, 71.87%, and 33.28 kJ/m2, respectively.
Collapse
|
33
|
Liu W, Zhang Y, Xu Z, Pan W, Shen M, Han J, Sun X, Zhang Y, Xie J, Zhang X, Yu L(L. Cross-linked corn bran arabinoxylan improves the pasting, rheological, gelling properties of corn starch and reduces its in vitro digestibility. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Polymeric Coatings and Antimicrobial Peptides as Efficient Systems for Treating Implantable Medical Devices Associated-Infections. Polymers (Basel) 2022; 14:polym14081611. [PMID: 35458361 PMCID: PMC9024559 DOI: 10.3390/polym14081611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Many infections are associated with the use of implantable medical devices. The excessive utilization of antibiotic treatment has resulted in the development of antimicrobial resistance. Consequently, scientists have recently focused on conceiving new ways for treating infections with a longer duration of action and minimum environmental toxicity. One approach in infection control is based on the development of antimicrobial coatings based on polymers and antimicrobial peptides, also termed as “natural antibiotics”.
Collapse
|
35
|
Metallic Nanoparticle Integrated Ternary Polymer Blend of PVA/Starch/Glycerol: A Promising Antimicrobial Food Packaging Material. Polymers (Basel) 2022; 14:polym14071379. [PMID: 35406254 PMCID: PMC9002704 DOI: 10.3390/polym14071379] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
Advances in food processing and food packaging play a major role in keeping food safe, increasing the shelf life, and maintaining the food supply chain. Good packaging materials that enable the safe travel of food are often non-degradable and tend to persist in the environment, thereby posing a hazard. One alternative is to synthesize biodegradable polymers with an antimicrobial property while maintaining their mechanical and thermal properties. In the present study, biodegradable composites of PVA–starch–glycerol (PSG) incorporated with CuO and ZnO nanoparticles (NPs) were prepared as PSG, PSG–Cu, PSG–Zn, and PSG–CuZn films. Scanning electron microscopy, energy dispersive x-ray analysis, and thermogravimetric analysis were performed to study and characterize these films. The water barrier properties of the films improved significantly as the hydrophobicity of the PSG–CuZn film increased by 32.9% while the water absorptivity and solubility decreased by 51.49% and 60% compared to the PSG film. The Young’s modulus of the films incorporated with CuO and ZnO nanoparticles was lower than that reported for PVA, suggesting that the film possessed higher flexibility. The thermogravimetric analysis demonstrated high thermal stability for films. Biosynthesized CuO and ZnO nanoparticles exhibited antifungal activity against vegetable and fruit spoilage fungi, and hence the fabricated polymers incorporated with nanoparticles were anticipated to demonstrate an antifungal activity. The nanoparticle incorporated films exhibited fungicidal and bactericidal activity, suggesting their role in extending the shelf life of packaged food. The result of ICP-OES studies demonstrated the steady release of ions from the polymer films, however, EDX analysis demonstrated no leaching of CuO and ZnO nanoparticles from the films, thus ruling out the possibility of nanoparticles entering the packaged food. The strawberries wrapped with the fabricated films incorporated with nanoparticles demonstrated improved shelf life and retained the nutritional quality of the fruit. Among the four films, PSG–CuZn was the most promising for food wrapping since it exhibited better water-resistance, antimicrobial, thermal, and mechanical properties.
Collapse
|
36
|
Tuwalska A, Grabska-Zielińska S, Sionkowska A. Chitosan/Silk Fibroin Materials for Biomedical Applications-A Review. Polymers (Basel) 2022; 14:polym14071343. [PMID: 35406217 PMCID: PMC9003105 DOI: 10.3390/polym14071343] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 01/21/2023] Open
Abstract
This review provides a report on recent advances in the field of chitosan (CTS) and silk fibroin (SF) biopolymer blends as new biomaterials. Chitosan and silk fibroin are widely used to obtain biomaterials. However, the materials based on the blends of these two biopolymers have not been summarized in a review paper yet. As these materials can attract both academic and industrial attention, we propose this review paper to showcase the latest achievements in this area. In this review, the latest literature regarding the preparation and properties of chitosan and silk fibroin and their blends has been reviewed.
Collapse
Affiliation(s)
- Anna Tuwalska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland;
| | - Sylwia Grabska-Zielińska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland;
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100 Toruń, Poland;
- Correspondence:
| |
Collapse
|
37
|
Zhu Y, Mei L, Yin L, Lin L, Du X, Guo L. Complex plasticizer of PEG/water on the gelatinization of corn starch. STARCH-STARKE 2022. [DOI: 10.1002/star.202100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Zhu
- Anhui Engineering Laboratory of Agro‐products Processing Anhui Agricultural University Hefei 230036 China
| | - Liping Mei
- Anhui Engineering Laboratory of Agro‐products Processing Anhui Agricultural University Hefei 230036 China
| | - Liwei Yin
- The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest College of Life Science Anqing Normal University Anqing Anhui 246133 China
| | - Li Lin
- Anhui Engineering Laboratory of Agro‐products Processing Anhui Agricultural University Hefei 230036 China
| | - Xianfeng Du
- Anhui Engineering Laboratory of Agro‐products Processing Anhui Agricultural University Hefei 230036 China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking School of Food Sciences and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan China
| |
Collapse
|
38
|
A review of recent advances in starch-based materials: Bionanocomposites, pH sensitive films, aerogels and carbon dots. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
39
|
Abstract
The food packaging sector generates large volumes of plastic waste due to the high demand for packaged products with a short shelf-life. Biopolymers such as starch-based materials are a promising alternative to non-renewable resins, offering a sustainable and environmentally friendly food packaging alternative for single-use products. This article provides a chronology of the development of starch-based materials for food packaging. Particular emphasis is placed on the challenges faced in processing these materials using conventional processing techniques for thermoplastics and other emerging techniques such as electrospinning and 3D printing. The improvement of the performance of starch-based materials by blending with other biopolymers, use of micro- and nano-sized reinforcements, and chemical modification of starch is discussed. Finally, an overview of recent developments of these materials in smart food packaging is given.
Collapse
|
40
|
Huang Y, Zhan L, Du B, Li P, Lin Q, Zheng J, Chen P. Effects of Inca peanut seed albumin fraction on rheological, thermal and microstructural properties of native corn starch. Int J Biol Macromol 2022; 194:626-631. [PMID: 34822826 DOI: 10.1016/j.ijbiomac.2021.11.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
In this work, the effect of Inca peanut seed albumin fraction (IPA) on the rheological, thermal and microstructural properties of native corn starch (NCS) was firstly studied. Compared to the NCS, IPA addition could obviously decrease the transparency of NCS, and the transparency of NCS and NCS-IPA suspensions decreased during the storage time. The textural paraments of NCS pastes with or without IPA reached to the maximum at a concentration of 5%. Steady shear rheological tests showed that all systems were non-Newtonian fluid, and the consistency coefficient (K) values reached to the maximum at 5% IPA concentration. The storage and loss modulus values of NCS-IPA pastes were higher than those of NCS pastes, and curves of loss angle (tan δ) indicated that all pastes were typical weak gel. With the increasing addition of IPA, DSC analysis showed that the thermal properties (To, Tp and Tc) of NCS were significantly changed, whereas, there was no distinct difference in the enthalpy. Microscopy illustrated that there were some wrinkle shrinkage and severe folds on the NCS-IPA granules. Fourier-transform infrared (FT-IR) spectroscopy showed that the hydrogen bonding was primarily interaction forces between IPA and NCS molecules.
Collapse
Affiliation(s)
- Yanxia Huang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lei Zhan
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Expert Research Station of Bing Du, Pu'er City, Yunnan 665000, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qiumin Lin
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jingshao Zheng
- Xinxing County Weifeng Agricultural Science and Technology Co. Ltd, Yunfu, Guangdong 510642, China
| | - Pei Chen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
41
|
Liu Y, Zhang S, Chen S, Zhu J, Li L. Controlling plasticizer migration based on crystal structure and micromorphology in propionylated starch-based food packaging nanocomposites. Carbohydr Polym 2021; 273:118621. [PMID: 34561016 DOI: 10.1016/j.carbpol.2021.118621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Migration of additives is an important issue for proper application in food packaging. In this work, propionylated waxy and normal starch-based nanocomposites (PW-N and PN-N) with two different amylopectin content were immersed in distilled water, and structural changes and migration mechanism of plasticizer (triacetin) were discussed in detail. Results showed that when immersion time was prolonged to 150 h, small crystals of PN-N disappeared, and amorphous structures formed gradually in PW-N and PN-N. Exfoliated structures still remained in PW-N with prolonged immersion time, while exfoliated structures gradually formed from intercalated ones in PN-N, and the peak representing d001 (d-spacing) at q = 1.70 nm-1 faded. The migration mechanism of triacetin obeyed the first-order kinetic model and Fick's law; furthermore, in comparison with PW-N, PN-N showed a larger diffusion coefficient (D2 = 12.13 μm2·h-1). These results contributed to expanding the application of starch-based nanocomposites in future environmentally friendly food packaging.
Collapse
Affiliation(s)
- Yujia Liu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Shuyan Zhang
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Siqian Chen
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Jie Zhu
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Lin Li
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
42
|
Nagar CK, Dash SK, Rayaguru K, Pal US, Nedunchezhiyan M. Isolation, characterization, modification and uses of taro starch: A review. Int J Biol Macromol 2021; 192:574-589. [PMID: 34653440 DOI: 10.1016/j.ijbiomac.2021.10.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
Taro is a major root crop utilized widely for diverse food and non-food applications. Taro corms are processed into various forms before consumption, which makes them digestible and palatable, extends the shelf life and reduces post-harvest losses. Taro corm contains starch as the major carbohydrate, accounting up to 70-80% of the whole dry matter. The starches obtained from different cultivars and sources significantly differ in physical, chemical, thermal, morphological, and functional properties, which can be explored for varied applications. Starch quality also controls the end-quality of food and industrial products. Several starch modification methods have been studied to improve its positive attributes and to eliminate deficiencies in its native characteristics. These modification methods, which can be categorised into physical, chemical and enzymatic, have proved to improve the characteristics and applications of starch. This review aims to compile the information about the chemical composition, characterization, isolation and modification methods, with an objective of its increased use in food or non-food industries. In addition, challenges and issues in the small-scale processing of taro are discussed. The information available in this review may help in a better understanding and utilization of taro starch.
Collapse
Affiliation(s)
- Chetan Kumar Nagar
- Department of Agricultural Processing & Food Engineering, College of Agricultural Engineering and Technology, OUAT, Bhubaneswar 751 003, India.
| | - Sanjaya Kumar Dash
- Department of Agricultural Processing & Food Engineering, College of Agricultural Engineering and Technology, OUAT, Bhubaneswar 751 003, India
| | - Kalpana Rayaguru
- Department of Agricultural Processing & Food Engineering, College of Agricultural Engineering and Technology, OUAT, Bhubaneswar 751 003, India
| | - Uma Sankar Pal
- Department of Agricultural Processing & Food Engineering, College of Agricultural Engineering and Technology, OUAT, Bhubaneswar 751 003, India
| | - Maniyam Nedunchezhiyan
- Regional Centre of ICAR-Central Tuber Crops Research Institute, Bhubaneswar 751 019, India
| |
Collapse
|
43
|
|
44
|
Horue M, Rivero Berti I, Cacicedo ML, Castro GR. Microbial production and recovery of hybrid biopolymers from wastes for industrial applications- a review. BIORESOURCE TECHNOLOGY 2021; 340:125671. [PMID: 34333348 DOI: 10.1016/j.biortech.2021.125671] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Agro-industrial wastes to be a global concern since agriculture and industrial processes are growing exponentially with the fast increase of the world population. Biopolymers are complex molecules produced by living organisms, but also found in many wastes or derived from wastes. The main drawbacks for the use of polymers are the high costs of the polymer purification processes from waste and the scale-up in the case of biopolymer production by microorganisms. However, the use of biopolymers at industrial scale for the development of products with high added value, such as food or biomedical products, not only can compensate the primary costs of biopolymer production, but also improve local economies and environmental sustainability. The present review describes some of the most relevant aspects related to the synthesis of hybrid materials and nanocomposites based on biopolymers for the development of products with high-added value.
Collapse
Affiliation(s)
- Manuel Horue
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG). Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| |
Collapse
|
45
|
Liu C, Yang H, Shen NA, Li J, Chen Y, Wang JY. Improvement of mechanical properties of zein porous scaffold by quenching/electrospun fiber reinforcement. Biomed Mater 2021; 16. [PMID: 34517347 DOI: 10.1088/1748-605x/ac265d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/13/2021] [Indexed: 11/11/2022]
Abstract
As a novel bone substitute material, zein-based scaffolds (ZS) should have suitable mechanical properties and porosity. ZS has shown good compressive properties matching cancellous bone, but there is still a demand to improve its mechanical properties, especially tensile and bending properties without adding plasticizers. The present study explored two simple and environment-friendly factors for this purpose: fiber reinforcement and quenching. Addition of electrospun zein fibers enhanced all mechanical properties significantly including compressive, tensile, and bending moduli; compressive and bending strengths of ZS with both higher (70-80%) and lower (50-60%) porosities, no matter whether heating treated or not treated. Especially, all these parameters were further enhanced significantly by addition of heating treated fibers. AFM provided evidence that high temperature modification could significantly alter the micro-elastic properties of zein electrospun fibers, i.e., increased stiffness of fibers. Quenching treatment also enhanced compressive, tensile, and bending strengths significantly. Finally, quenching treated ZS were implanted into critical-sized bone defects (15 mm) of the rabbit model to compare the repair efficacy with a commercial β-tricalcium phosphate product. The results demonstrated that there were no remarkable differences in bone reconstructions between these two materials.
Collapse
Affiliation(s)
- Chang Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, 86-21-34205822
| | - Hui Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, 86-21-34205822
| | - Nai-An Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, 86-21-34205822
| | - Juehong Li
- Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 201306, China
| | - Yunsu Chen
- Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 201306, China
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, 86-21-34205822.,Jiaxing Yaojiao Medical Device Co. Ltd, 321 Jiachuang Road, Jiaxing 314032, China
| |
Collapse
|
46
|
Sallak N, Motallebi Moghanjoughi A, Ataee M, Anvar A, Golestan L. Antimicrobial biodegradable film based on corn starch/ Satureja khuzestanicaessential oil/Ag-TiO 2nanocomposites. NANOTECHNOLOGY 2021; 32:405703. [PMID: 34111851 DOI: 10.1088/1361-6528/ac0a15] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Biosynthesis of nanoparticles (NPs) using plant extract is an eco-friendly method, in which natural materials are used and is a simple, non-toxic, and environmentally friendly green synthesis. In this study, corn starch (CS) film containingSatureja khuzestanicaessential oil (SEO) and Ag-TiO2nanocomposites (size: nearly 30-60 nm) were prepared and its antimicrobial, morphological, physical, and mechanical characteristics were investigated. Ag-TiO2nanocomposites with different molar percentages were synthesized byS. khuzestanicaextract and based on the best antibacterial results against Gram-negative bacteria (Escherichia coliATCC 25922 andSalmonella typhimuriumATCC 14028) and Gram-positive bacteria (Staphylococcus aureusATCC 25923), were chosen to prepare the films. Four types of biodegradable films were provided: simple CS film, the film incorporated with SEO (essence film), the film incorporated with Ag-TiO2nanocomposites (nanofilm), and nano/essence film. The scanning electron microscopy (SEM) was employed for investigating the morphology of the films. The combined energy-dispersive x-ray spectroscopy with SEM was applied to analyze the near-surface elements. Physical characteristics of the films containing water vapor permeability (%) and their moisture content, mechanical tests, and antibacterial properties were examined. Antimicrobial evaluation of the films revealed a 3-4 log and 6-7 log (CFU ml-1) reduction inS. aureusandE. colispecies respectively, compared to the control group. The bio-polymer film incorporated with extracted essential oil ofS. khuzestanicaand Ag-TiO2nanocomposites are effective to package foods and can delay chemical, physical, and microbial spoilage.
Collapse
Affiliation(s)
- Neda Sallak
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Maryam Ataee
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirali Anvar
- Department of Food Hygiene, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Golestan
- Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| |
Collapse
|
47
|
Micronutrients encapsulation by starch as an enhanced efficiency fertilizer. Carbohydr Polym 2021; 271:118419. [PMID: 34364560 DOI: 10.1016/j.carbpol.2021.118419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/23/2021] [Accepted: 07/06/2021] [Indexed: 01/12/2023]
Abstract
Developing different paths to achieve sustainable agriculture is no longer an option; it is a necessity. EEF materials are alternatives to improve the efficacy of the agrochemicals in the soil and plant, reducing wasting and environmental contamination. The present work aims to develop EEF materials based on starch and micronutrients, considering few works address EEFs materials with micronutrients. Monoelementary dispersions of gelatinized starch with micronutrients (Fe, Cu, Mn) were spray-dried and thermally, structurally, and morphologically characterized. We evaluated water-medium nutrient release, release kinetics, and the swelling degree. Different micronutrients affect morphology, size distribution, swelling degree, release, kinetics, and interaction between polymer-nutrient. Bigger particle sizes achieved a higher swelling degree, which led to decreased micronutrient release in the water. The Peppas-Sahlin model mainly ruled the release kinetics (fitted to all the materials). This result confirmed our hypothesis that a swelling starch delays the release.
Collapse
|
48
|
Juanga-Labayen JP, Yuan Q. Making Biodegradable Seedling Pots from Textile and Paper Waste-Part A: Factors Affecting Tensile Strength. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136964. [PMID: 34209756 PMCID: PMC8296919 DOI: 10.3390/ijerph18136964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 11/17/2022]
Abstract
This study investigates the efficacy of using discarded textile (cotton and polycotton) and paper waste (newspaper and corrugated cardboard) as substrates to form sheets with optimum tensile strength. The effect of alkali treatment (sodium hydroxide (NaOH) and sodium bicarbonate (NaHCO3)), compressive loads (200 N and 500 N), and the use of binding agents (blackstrap molasses, sodium alginate, and cornstarch) were studied to optimize the tensile strength of homogeneous sheets. The alkali treatment using 5% NaOH for 5 h of soaking demonstrated the highest increase in tensile strength of 21% and 19% for cotton and newspaper, respectively. Increasing compressive load from 200 N to 500 N showed the highest increase in tensile strength of 37% and 42% for cotton and newspaper, respectively. Remarkably, among the binders, cornstarch at 20% concentration obtained an increase in tensile strength of 395%, 320%, 310%, and 185% for cotton, polycotton, corrugated cardboard, and newspaper sheets, respectively. The optimum results obtained from this study will be utilized to develop biodegradable seedling pots using discarded textile and paper waste.
Collapse
|
49
|
Alvarado N, Abarca RL, Linares-Flores C. Two Fascinating Polysaccharides: Chitosan and Starch. Some Prominent Characterizations for Applying as Eco-Friendly Food Packaging and Pollutant Remover in Aqueous Medium. Progress in Recent Years: A Review. Polymers (Basel) 2021; 13:1737. [PMID: 34073343 PMCID: PMC8198307 DOI: 10.3390/polym13111737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
The call to use biodegradable, eco-friendly materials is urgent. The use of biopolymers as a replacement for the classic petroleum-based materials is increasing. Chitosan and starch have been widely studied with this purpose: to be part of this replacement. The importance of proper physical characterization of these biopolymers is essential for the intended application. This review focuses on characterizations of chitosan and starch, approximately from 2017 to date, in one of their most-used applications: food packaging for chitosan and as an adsorbent agent of pollutants in aqueous medium for starch.
Collapse
Affiliation(s)
- Nancy Alvarado
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel 8900000, Chile
| | - Romina L. Abarca
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile;
| | - Cristian Linares-Flores
- Grupo de Investigación en Energía y Procesos Sustentables, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel 8900000, Chile;
| |
Collapse
|
50
|
Montilla‐Buitrago CE, Gómez‐López RA, Solanilla‐Duque JF, Serna‐Cock L, Villada‐Castillo HS. Effect of Plasticizers on Properties, Retrogradation, and Processing of Extrusion‐Obtained Thermoplastic Starch: A Review. STARCH-STARKE 2021. [DOI: 10.1002/star.202100060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Camilo E. Montilla‐Buitrago
- Research Group in Science and Technology of Agroindustrial Interest – CYTBIA, Department of Agroindustrial Engineering, Faculty of Agrarian Sciences Universidad del Cauca Cauca 190002 Colombia
| | - Rudy A. Gómez‐López
- Research Group in Science and Technology of Agroindustrial Interest – CYTBIA, Department of Agroindustrial Engineering, Faculty of Agrarian Sciences Universidad del Cauca Cauca 190002 Colombia
- Faculty of Engineering and Administration Universidad Nacional de Colombia Sede Palmira Valle del Cauca 763533 Colombia
| | - José F. Solanilla‐Duque
- Research Group in Science and Technology of Agroindustrial Interest – CYTBIA, Department of Agroindustrial Engineering, Faculty of Agrarian Sciences Universidad del Cauca Cauca 190002 Colombia
| | - Liliana Serna‐Cock
- Faculty of Engineering and Administration Universidad Nacional de Colombia Sede Palmira Valle del Cauca 763533 Colombia
| | - Héctor S. Villada‐Castillo
- Research Group in Science and Technology of Agroindustrial Interest – CYTBIA, Department of Agroindustrial Engineering, Faculty of Agrarian Sciences Universidad del Cauca Cauca 190002 Colombia
| |
Collapse
|