1
|
Yang M, Xu X, Tian X. Chitosan-pullulan edible coating loaded with dihydromyricetin: Enhanced antioxidant activity and barrier properties to prolong Cantonese sausages' shelf-life. Int J Biol Macromol 2025; 297:139831. [PMID: 39809400 DOI: 10.1016/j.ijbiomac.2025.139831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/25/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Cantonese sausages are susceptible to oxidative deterioration during storage. Compared with synthetic antioxidants, dihydromyricetin (DMY) is a natural active substance with various functions such as antioxidant and antimicrobial. In this study, edible coating solutions loaded with DMY were prepared based on chitosan (CS) and pullulan (PUL) to prolong the shelf-life of Cantonese sausages. FT-IR and XRD results showed good compatibility between DMY and CS-PUL. It was found that 8 % DMY was physically cross-linked with CS and PUL mainly through hydrogen bonding, which enhanced the barrier and mechanical properties of the films. Meanwhile, the antioxidant property, antimicrobial efficiency and thermal stability of the films were also significantly improved (p < 0.05). The results of storage experiments of Cantonese sausages showed that the 8 % DMY-CP coating solution could effectively retard the lipid oxidation of Cantonese sausages at 25 °C, and maintain the appearance and flavour of products at storage on the 28th d. This study proved DMY's potential as a natural alternative to synthetic additives in polysaccharide-based edible coatings, providing a green and sustainable solution to combat lipid oxidation in meat products.
Collapse
Affiliation(s)
- Mingyue Yang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China
| | - Xiaoyan Xu
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Xingguo Tian
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642, China; Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Ramanauskaitė A, Mulerčikas P, Greer HF, Mujtaba M, Labidi J, Kaya M. Understanding the correlation between source and chiral, physichochemical properties of chitin nanocrystals; insights from beetle (Cetonia aurata) skeletal segments. Int J Biol Macromol 2025; 284:138042. [PMID: 39603297 DOI: 10.1016/j.ijbiomac.2024.138042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Chitin properties are known to vary depending on animal taxa, organismal source, and specific skeletal segments; However, the influence of these source-dependent variations on the physicochemical characteristics of chitin nanocrystals, particularly their Bouligand architecture, remains largely unexplored. Herein, chitin nanocrystals were isolated from seven different skeletal segments of C. aurata and characterized. Significant variation was observed in nanocrystal size, with wing-derived nanocrystals averaging 320 ± 127 nm and abdomen-derived nanocrystals 203 ± 104 nm, while surface charges ranged, with thorax-1 exhibiting the highest (45.68 ± 1.2 mV). All characteristic peaks were observed for both chitin and chitin nanocrystals, with the latter displaying sharper peaks and a slight increase in crystallinity, attributed to the removal of amorphous regions. Wing-derived chitin nanocrystals showed the highest thermal stability (372 °C), potentially due to lower surface area. Chitin nanocrystals-based films were produced to investigate the chiral behavior of isolated chitin nanocrystals. All the films displayed a unique helicoidal Bouligand structure with visible pitches, except those from thorax-1. The formation of mesophase (unclear pitch in Bouligand architecture) in thorax-1 films is likely due to nanocrystal dimensions and surface charges. This is further supported by the lower roughness and contact angle values observed in thorax-1 films.
Collapse
Affiliation(s)
- Aurelija Ramanauskaitė
- Faculty of Natural Sciences, Vytautas Magnus University, University St. 10, LT-53361 Akademia, Kaunas District. Lithuania
| | - Povilas Mulerčikas
- Academy of Agriculture, Faculty of Agronomy, Vytautas Magnus University, Studentų g. 11, LT-53361 Akademia, Kaunas District. Lithuania
| | - Heather F Greer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Muhammad Mujtaba
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland.
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain.
| | - Murat Kaya
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain; Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Türkiye.
| |
Collapse
|
3
|
Kusuma HS, Sabita A, Putri NA, Azliza N, Illiyanasafa N, Darmokoesoemo H, Amenaghawon AN, Kurniawan TA. Waste to wealth: Polyhydroxyalkanoates (PHA) production from food waste for a sustainable packaging paradigm. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100225. [PMID: 39497731 PMCID: PMC11532435 DOI: 10.1016/j.fochms.2024.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for sustainable food packaging and the increasing concerns regarding environmental pollution have driven interest in biodegradable materials. This paper presents an in-depth review of the production of Polyhydroxyalkanoates (PHA), a biodegradable polymer, from food waste. PHA-based bioplastics, particularly when derived from low-cost carbon sources such as volatile fatty acids (VFAs) and waste oils, offer a promising solution for reducing plastic waste and enhancing food packaging sustainability. Through optimization of microbial fermentation processes, PHA production can achieve significant efficiency improvements, with yields reaching up to 87 % PHA content under ideal conditions. This review highlights the technical advancements in using PHA for food packaging, emphasizing its biodegradability, biocompatibility, and potential to serve as a biodegradable alternative to petroleum-based plastics. However, challenges such as high production costs, mechanical limitations, and the need for scalability remain barriers to industrial adoption. The future of PHA in food packaging hinges on overcoming these challenges through further research and innovation in production techniques, material properties, and cost reduction strategies, along with necessary legislative support to promote widespread use.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Atna Sabita
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Najla Anira Putri
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Nadhira Azliza
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Nafisa Illiyanasafa
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| | | | | |
Collapse
|
4
|
Yu Y, Su Z, Peng Y, Zhong Y, Wang L, Xin M, Li M. Recent advances in modifications, biotechnology, and biomedical applications of chitosan-based materials: A review. Int J Biol Macromol 2024; 289:138772. [PMID: 39675610 DOI: 10.1016/j.ijbiomac.2024.138772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/28/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Chitosan, a natural polysaccharide with recognized biocompatibility, non-toxicity, and cost-effectiveness, is primarily sourced from crustacean exoskeletons. Its inherent limitations such as poor water solubility, low thermal stability, and inadequate mechanical strength have hindered its widespread application. However, through modifications, chitosan can exhibit enhanced properties such as water solubility, antibacterial and antioxidant activities, adsorption capacity, and film-forming ability, opening up avenues for diverse applications. Despite these advancements, realizing the full potential of modified chitosan remains a challenge across various fields. The purpose of this review article is to conduct a comprehensive evaluation of the chemical modification techniques of chitosan and their applications in biotechnology and biomedical fields. It aims to overcome the inherent limitations of chitosan, such as low water solubility, poor thermal stability, and inadequate mechanical strength, thereby expanding its application potential across various domains. This review is structured into two main sections. The first part delves into the latest chemical modification techniques for chitosan derivatives, encompassing quaternization, Schiff base formation, acylation, carboxylation, and alkylation reactions. The second part provides an overview of the applications of chitosan and its derivatives in biotechnology and biomedicine, spanning areas such as wastewater treatment, the textile and food industries, agriculture, antibacterial and antiviral activities, drug delivery systems, wound dressings, dental materials, and tissue engineering. Additionally, the review discusses the challenges associated with these modifications and offers insights into potential future developments in chitosan-based materials. This review is anticipated to offer theoretical insights and practical guidance to scientists engaged in biotechnology and biomedical research.
Collapse
Affiliation(s)
- Ying Yu
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Zhongwen Su
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Yonggang Peng
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Yujing Zhong
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China
| | - Lin Wang
- College of Chemistry and Environment, Ankang University, Qinba Chinese Medicine Resources R&D Center, Ankang 725000, Shaanxi, China.
| | - Meihua Xin
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China.
| | - Mingchun Li
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, Fujian, China.
| |
Collapse
|
5
|
Dang TT, Nguyen LAT, Dau DT, Nguyen QS, Le TN, Nguyen TQN. Improving properties of chitosan/polyvinyl alcohol films using cashew nut testa extract: potential applications in food packaging. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241236. [PMID: 39635155 PMCID: PMC11614527 DOI: 10.1098/rsos.241236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 12/07/2024]
Abstract
Cashew nut testa, a by-product of cashew nut processing, is abundant in phenolic compounds and exhibits strong antioxidant properties, making it a potential additive for enhancing the antioxidant properties of biodegradable films used in food packaging. This study explores the fabrication of biodegradable chitosan/polyvinyl alcohol films incorporating varying concentrations of cashew nut testa extract (CNTE; 0, 1, 2 and 3% v/v) and evaluates their physical, structural, mechanical, optical and antioxidant properties. The results demonstrate that increasing extract concentration generally increased the thickness, tensile strength, Young's modulus, thermal stability and antioxidant capacity of the films, while reducing the moisture content, swelling degree, elongation at break, and light transmittance. Specifically, the film with 3% extract showed approximately 11% lower moisture content and 31% lower swelling degree compared with the plain film. It also displayed the highest tensile strength and Young's modulus at 28.63 and 147.35 MPa, respectively. Microstructural analysis revealed that the incorporation of CNTE resulted in a smoother and slightly denser film structure. Antioxidant activity, determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay, was not detected in the plain film but increased with increasing extract concentration. The film with 3% CNTE exhibited the highest antioxidant activity of 58.93 µmol Trolox equivalents (TE) g-1 film. This study highlights the potential of CNTE as an effective edible additive for developing antioxidant and ultraviolet barrier films with improved mechanical strength and water resistance for food packaging applications.
Collapse
Affiliation(s)
- Thuy Tien Dang
- Department of Food Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City72506, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City71308, Vietnam
| | - Lam Anh Thy Nguyen
- Department of Food Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City72506, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City71308, Vietnam
| | - Duc Tien Dau
- Department of Food Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City72506, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City71308, Vietnam
| | - Quy Sinh Nguyen
- Department of Food Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City72506, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City71308, Vietnam
| | - Thao Nhien Le
- Department of Food Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City72506, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City71308, Vietnam
| | - Thi Quynh Ngoc Nguyen
- Department of Food Technology, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City72506, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc City, Ho Chi Minh City71308, Vietnam
| |
Collapse
|
6
|
Prithiviraj M, Sasidharan A, Krishna BM, Sabu S, Sunooj KV, Anoop K, George J. Characterization and qualitative evaluation of cassava starch-chitosan edible food wrap enriched with culinary leaf powders for eco-friendly food packaging applications. FOOD SCI TECHNOL INT 2024; 30:751-763. [PMID: 37264607 DOI: 10.1177/10820132231179492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cassava starch-based edible food wraps were prepared by incorporating leaf powder from Indian curry leaf and Malabar bay leaf, reinforced with different (0.2, 0.4, 0.6, 0.8) wt.% of chitosan. Eleven combinations of films were prepared and their sensory acceptability, physical properties, Fourier-transform infrared spectroscopic (FTIR) spectrum, and scanning electron microscopy (SEM) image, were evaluated. The thickness of the films ranged from 0.198 ± 0.12 to 0.372 ± 0.27 mm. Tensile strength was reported to be the highest (40.71 ± 1.21 MPa) in the curry leaf powder incorporated sample. Maximum elongation at break was reported by bay leaf powder incorporated (5.8 ± 1.59%) sample. The Young's modulus values were observed to be increasing along with the concentration of chitosan. Maximum seal strength values were reported by curry leaf powder incorporated film with 0.8% chitosan (2.93 ± 0.22 N/mm). The leaf powder incorporated samples reported a higher flavonoid content compared to the control. The color analysis (L*, a*, b*) of the films was identical to the natural leaf color. The SEM images indicated a rough texture for the leaf powder incorporated films. The FTIR evaluation confirmed the presence of the respective functional groups. The statistical evaluation done by statistical package for social sciences software showed that all the data were significantly different (P ≤ 0.05.). The study demonstrated the potential of incorporation of leaf powder and chitosan to enhance the properties of starch-based edible packaging.
Collapse
Affiliation(s)
- Mohandas Prithiviraj
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Kerala, India
| | - Abhilash Sasidharan
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Kerala, India
| | - Bindu Murali Krishna
- Sophisticated Test and Instrumentation Centre, Cochin University of Science and Technology, Kerala, India
| | - Sarsan Sabu
- School of Industrial Fisheries, Cochin University of Science and Technology, Kerala, India
| | | | - Kiliyanamkandy Anoop
- Department of Physics, Cochin University of Science and Technology, Kerala, India
| | - Johnsy George
- Food Engineering & Packaging, Defence Food Research Laboratory, Mysuru, India
| |
Collapse
|
7
|
Li S, Ren Y, Hou Y, Zhan Q, Jin P, Zheng Y, Wu Z. Polysaccharide-Based Composite Films: Promising Biodegradable Food Packaging Materials. Foods 2024; 13:3674. [PMID: 39594092 PMCID: PMC11593711 DOI: 10.3390/foods13223674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
With growing concerns about environmental protection and sustainable development, the development of new biodegradable food packaging materials has become a significant focus for the future of food packaging. Polysaccharides, such as cellulose, chitosan, and starch, are considered ideal biodegradable packaging materials due to their wide availability, good biocompatibility, and biodegradability. These materials have garnered extensive attention from researchers in food packaging, leading to considerable advancements in the application of polysaccharide-based food packaging films, coatings, aerogels, and other forms. Therefore, this review focuses on the application of polysaccharide-based packaging films in food storage and preservation and discusses their preparation methods, application progress, challenges, and future development directions. Through an in-depth analysis of the existing literature, this review aims to provide sustainable and environmentally friendly solutions for the food packaging industry.
Collapse
Affiliation(s)
- Shengzi Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China (Q.Z.)
| | - Yu Ren
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China (Q.Z.)
| | - Yujie Hou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China (Q.Z.)
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China (Q.Z.)
- College of Food Science and Engineering, South China University of Technology, Tianhe District, Guangzhou 510640, China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China (Q.Z.)
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China (Q.Z.)
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China (Q.Z.)
| |
Collapse
|
8
|
Chen H, Wang Q, Deng Y, Zhang J, Wang Y, Zhao H, Zhu Y, Zhang Y, Javed M, Zhuang L, Wang G. Experimental and theoretical studies on antioxidant and antibacterial properties of chitosan-gelatin functional composite films loaded with flavonoids. Int J Biol Macromol 2024; 282:137449. [PMID: 39522919 DOI: 10.1016/j.ijbiomac.2024.137449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Chitosan-gelatin-flavonoid functional composite films were prepared with chitosan, gelatin, and three flavonoids (Naringenin, Apigenin, and Luteolin). The effect of three flavonoids on physical, antioxidant, and antibacterial properties of functional composite film was investigated from experimental and Density functional theory (DFT) simulations. The tensile strength, thermal stability, water solubility, water vapor permeability, antioxidant activity, and antibacterial activity of chitosan-gelatin-flavonoid functional composite films were improved with flavonoid (Naringenin, Apigenin, and Luteolin) incorporation. The release behavior of Apigenin from functional composite film was much lower than that of Naringenin or Luteolin. ABTS+ radical scavenging ability values of functional composite films followed: Luteolin (69.53 %) > Naringenin (41.39 %) > Apigenin (36.13 %). The antibacterial activities of functional composite films against Staphylococcus aureus followed: Luteolin (52.03 mm) > Apigenin (49.34 mm) > Naringenin (43.15 mm). The total number, location of hydroxyl groups on ring-B, and the unsaturation degree on pyrone ring of flavonoids influenced antioxidant and antibacterial activities of functional composite films. The minimum bond dissociation enthalpy values of flavonoids followed: Luteolin < Apigenin < Naringenin. The interaction energy of Apigenin-chitobiose was stronger than that of Naringenin or Luteolin. These results will shed light on flavonoid selection for functional composite films of food packaging.
Collapse
Affiliation(s)
- Haoyuan Chen
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Qiqi Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yupei Deng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Jingchun Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Ying Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Huimin Zhao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yu Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Yilin Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Maroosha Javed
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Linghua Zhuang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Guowei Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu 211800, China.
| |
Collapse
|
9
|
Márton P, Rácz A, Szolnoki B, Madarász J, Nagy N, Fodor B, Basa P, Rohonczy J, Hórvölgyi Z. Chitosan nanocoatings N-acylated with decanoic anhydride: Hydrophobic, hygroscopic and structural properties. Carbohydr Polym 2024; 343:122480. [PMID: 39174139 DOI: 10.1016/j.carbpol.2024.122480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Thin (ca. 340 nm) chitosan coatings were deposited onto glass substrates via dip-coating, then modified with the methanol solution of decanoic anhydride (0.17-56 mM). NMR, FTIR and XPS measurements confirmed that the acylation degree increased from 18 % to 45 %, and at the highest degree, the whole layer was acylated homogeneously by the reagent molecules. The coating thickness increased (up to 60 %), and the refractive index decreased (from 1.541 to 1.532) due to the acylation, that was determined by UV-visible spectroscopy. The AFM did not reveal morphological changes, but wetting tests showed that the acylation rendered the coating hydrophobic (water contact angle increased from ca. 75° to 100°). The contact angle, however, decreased to 85° due to the development of a second molecular layer of the decanoic acid by-product at the highest (over 25 mM) reagent concentrations. XRD studies showed a self-assembling structuring of the alkyl-chains in the bulk phase, which occurred in the case of the highest degree of acylation. This also manifested itself in a significant decrease of the layer hygroscopicity: the swelling degree decreased from 40 % to 8 % in a saturated water atmosphere monitored by spectroscopic ellipsometry.
Collapse
Affiliation(s)
- Péter Márton
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Physical Chemistry and Materials Science, Centre for Colloid Chemistry, H-1111 Budapest, Műegyetem rkp. 3, Hungary.
| | - Adél Rácz
- Institute for Technical Physics and Materials Science, Centre for Energy Research, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary.
| | - Beáta Szolnoki
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Organic Chemistry and Technology, H-1111 Budapest, Műegyetem rkp. 3, Hungary.
| | - János Madarász
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Inorganic and Analytical Chemistry, H-1111 Budapest, Hungary.
| | - Norbert Nagy
- Institute for Technical Physics and Materials Science, Centre for Energy Research, H-1121 Budapest, Konkoly Thege Miklós út 29-33, Hungary.
| | - Bálint Fodor
- Semilab Semiconductor Physics Laboratory Co. Ltd., H-1117, Budapest, Prielle Kornélia utca 2, Hungary.
| | - Péter Basa
- Semilab Semiconductor Physics Laboratory Co. Ltd., H-1117, Budapest, Prielle Kornélia utca 2, Hungary.
| | - János Rohonczy
- Eötvös Loránd University, Faculty of Science, Institute of Chemistry, Department of Inorganic Chemistry, H-1117 Budapest, Hungary.
| | - Zoltán Hórvölgyi
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Physical Chemistry and Materials Science, Centre for Colloid Chemistry, H-1111 Budapest, Műegyetem rkp. 3, Hungary.
| |
Collapse
|
10
|
Eranda DHU, Chaijan M, Panpipat W, Karnjanapratum S, Cerqueira MA, Castro-Muñoz R. Gelatin-chitosan interactions in edible films and coatings doped with plant extracts for biopreservation of fresh tuna fish products: A review. Int J Biol Macromol 2024; 280:135661. [PMID: 39299417 DOI: 10.1016/j.ijbiomac.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The preservation of tuna fish products, which are extremely perishable seafood items, is a substantial challenge due to their instantaneous spoilage caused by microbial development and oxidative degradation. The current review explores the potential of employing chitosan-gelatin-based edible films and coatings, which are enriched with plant extracts, as a sustainable method to prolong the shelf life of tuna fish products. The article provides a comprehensive overview of the physicochemical properties of chitosan and gelatin, emphasizing the molecular interactions that underpin the formation and functionality of these biopolymer-based films and coatings. The synergistic effects of combining chitosan and gelatin are explored, particularly in terms of improving the mechanical strength, barrier properties, and bioactivity of the films. Furthermore, the application of botanical extracts, which include high levels of antioxidants and antibacterial compounds, is being investigated in terms of their capacity to augment the protective characteristics of the films. The study also emphasizes current advancements in utilizing these composite films and coatings for tuna fish products, with a specific focus on their effectiveness in preventing microbiological spoilage, decreasing lipid oxidation, and maintaining sensory qualities throughout storage. Moreover, the current investigation explores the molecular interactions associated with chitosan-gelatin packaging systems enriched with plant extracts, offering valuable insights for improving the design of edible films and coatings and suggesting future research directions to enhance their effectiveness in seafood preservation. Ultimately, the review underscores the potential of chitosan-gelatin-based films and coatings as a promising, eco-friendly alternative to conventional packaging methods, contributing to the sustainability of the seafood industry.
Collapse
Affiliation(s)
- Don Hettiarachchige Udana Eranda
- Doctor of Philosophy Program in Agro-Industry and Biotechnology, College of Graduate Studies, Walailak University, Nakhon Si Thammarat 80160, Thailand; Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Manat Chaijan
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Worawan Panpipat
- Food Technology and Innovation Research Center of Excellence, Division of Food Science and Innovation, Department of Food Industry, School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80161, Thailand.
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Miguel A Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal.
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
11
|
Erol I, Hazman Ö, Acar F, Khamidov G. A new methacrylate-chitosan based blend and its ZnO containing nanocomposites: Investigation of thermal and biological properties. Int J Biol Macromol 2024; 281:136441. [PMID: 39482142 DOI: 10.1016/j.ijbiomac.2024.136441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
Biobased materials are an important step towards a sustainable future. The need for these materials, which stand out in terms of their environmental and economic benefits, is increasing daily. This study includes the production of new bio based nanocomposites containing a blend of biopolymer chitosan (CS) and synthetic polymethacrylate derivative poly(2-oxo-2-(3,4,5-trifluoroanilino)ethyl-2-methylprop-2-enoate)(POTFAMA) and biosynthesized zinc oxide nanoparticles (ZnO NPs) by hydrothermal method. POTFAMA, POTFAMA-CS blend, and POTFAMA-CS/ZnO nanocomposites were characterized by FTIR, XRD, SEM, EDX, and TEM techniques. The thermal properties of the materials were determined by TGA and DSC. While POTFAMA reduced the thermal stability of CS, ZnO NPs incorporated into POTFAMA-CS blend increased the thermal stability. POTFAMA-CS blend had a single glass transition temperature (Tg) value at 116 °C. The Tg of CS, which was 93 °C, increased by 23 °C after blending with POTFAMA, and by 34 °C with the incorporation of 7 % ZnO NPs. The biological properties of the prepared materials have been meticulously investigated. The inhibition zone of CS against C. albicans was 10.66 ± 1.19 mm, while that of the POTFAMA-CS blend was 13.70 ± 1.54 mm. After standard BHT at a concentration of 120 μg/mL, the highest DPPH inhibition percentages belonged to POTFAMA (60.56 %) and POTFAMA-CS (52.99 %). It was detected that the wound closure rates of POTFAMA (17.51 ± 0.75 %) and POTFAMA-CS (15.51 ± 2.52 %) were better than the characteristics of CS wound closure (13.61 ± 2.01 %). The results suggest that POTFAMA-CS may be a good alternative as a wound-healing agent. Furthermore, nanocomposites containing 5 % and 7 % ZnO NPs can be an alternative material in healthcare due to their higher antimicrobial activity.
Collapse
Affiliation(s)
- Ibrahim Erol
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, 03200 Afyonkarahisar, Türkiye; Samarkand State University, Institute of Biochemistry, Department of Polymer Chemistry and Chemical Technology, University blvd-15, Samarkand, Uzbekistan.
| | - Ömer Hazman
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, 03200 Afyonkarahisar, Türkiye; Samarkand State University, Institute of Biochemistry, Department of Organic Synthesis and Bioorganic Chemistry, University blvd-15, Samarkand, Uzbekistan
| | - Feyza Acar
- Afyon Kocatepe University, Faculty of Science and Arts, Department of Chemistry, 03200 Afyonkarahisar, Türkiye
| | - Gofur Khamidov
- Samarkand State University, Institute of Biochemistry, Department of Organic Synthesis and Bioorganic Chemistry, University blvd-15, Samarkand, Uzbekistan
| |
Collapse
|
12
|
Liu M, Chen H, Pan F, Wu X, Zhang Y, Fang X, Li X, Tian W, Peng W. Propolis ethanol extract functionalized chitosan/Tenebrio molitor larvae protein film for sustainable active food packaging. Carbohydr Polym 2024; 343:122445. [PMID: 39174125 DOI: 10.1016/j.carbpol.2024.122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 08/24/2024]
Abstract
The application of novel insect proteins as future food resources in the food field has attracted more and more attention. In this study, a biodegradable antibacterial food packaging material with beneficial mechanical properties was developed using Tenebrio molitor larvae protein (TMP), chitosan (CS) and propolis ethanol extract (PEE) as raw materials. PEE was uniformly dispersed in the film matrix and the composite films showed excellent homogeneity and compatibility. There are strong intermolecular hydrogen bond interactions between CS, TMP, and PEE in the films, which exhibit the structure characteristics of amorphous materials. Compared with CS/TMP film, the addition of 3 % PEE significantly enhanced the elongation at break (34.23 %), water vapor barrier property (22.94 %), thermal stability (45.84 %), surface hydrophobicity (20.25 %), and biodegradability of the composite film. The composite film has strong antioxidant and antimicrobial properties, which were enhanced with the increase of PEE content. These biodegradable films offer an eco-friendly end-of-life option when buried in soil. Composite films can effectively delay the spoilage of strawberries and extend the shelf life of strawberries. Biodegradable active packaging film developed with insect protein and chitosan can be used as a substitute for petroleum-based packaging materials, and has broad application prospects in the field of fruits preservation.
Collapse
Affiliation(s)
- Mengyao Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hualei Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Fei Pan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xinning Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuan Zhang
- School of plant protection, Anhui agricultural university, Hefei 230036, China
| | - Xiaoming Fang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiangxin Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Wenli Tian
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Wenjun Peng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
13
|
Chen H, Xin K, Yu Q. Sausage Preservation Using Films Composed of Chitosan and a Pickering Emulsion of Essential Oils Stabilized with Waste-Jujube-Kernel-Derived Cellulose Nanocrystals. Foods 2024; 13:3487. [PMID: 39517271 PMCID: PMC11545354 DOI: 10.3390/foods13213487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The purpose of this study was to prepare Pickering emulsions stabilized by waste jujube kernel cellulose nanocrystals (CNC) using composite essential oils (EOs) (i.e., cinnamon essential oil [CIN] combined with clove essential oil [CL]). The Pickering emulsions were blended with chitosan (CS) to generate a composite film (CS/CNC/EOs Pickering emulsions). We evaluated the mechanical properties, barrier properties, and microstructures of CS/CNC/EOs bio-based packaging films containing different concentrations of EOs. In addition, the fresh-keeping effects of the composite membranes on beef sausages were evaluated over a 12-day storage period. Notably, the EOs exhibited good compatibility with CS. With the increase in the EOs concentration, the droplet size increased, the composite films became thicker, the elongation at break decreased, the tensile strength increased, and the water vapor permeability decreased. When the composite films were used for preserving beef sausages, the antioxidant and antibacterial activity of the membranes improved as the concentration of EOs increased, effectively prolonging the shelf life of the sausages. Composite membranes with an EOs concentration of 2% exerted the best fresh-keeping effects. Overall, owing to their antioxidant and antimicrobial properties, the bio-based composite films prepared using CS/CNC/EOs Pickering emulsions demonstrated immense potential for application in the packaging of meat products.
Collapse
Affiliation(s)
| | | | - Qunli Yu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
14
|
Wu K, Yan Z, Wu Z, Li J, Zhong W, Ding L, Zhong T, Jiang T. Recent Advances in the Preparation, Antibacterial Mechanisms, and Applications of Chitosan. J Funct Biomater 2024; 15:318. [PMID: 39590522 PMCID: PMC11595984 DOI: 10.3390/jfb15110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Chitosan, a cationic polysaccharide derived from the deacetylation of chitin, is widely distributed in nature. Its antibacterial activity, biocompatibility, biodegradability, and non-toxicity have given it extensive uses in medicine, food, and cosmetics. However, the significant impact of variations in the physicochemical properties of chitosan extracted from different sources on its application efficacy, as well as the considerable differences in its antimicrobial mechanisms under varying conditions, limit the full realization of its biological functions. Therefore, this paper provides a comprehensive review of the structural characteristics of chitosan, its preparation methods from different sources, its antimicrobial mechanisms, and the factors influencing its antimicrobial efficacy. Furthermore, we highlight the latest applications of chitosan and its derivatives across various fields. We found that the use of microbial extraction shows promise as a new method for producing high-quality chitosan. By analyzing the different physicochemical properties of chitosan from various sources and the application of chitosan-based materials (such as nanoparticles, films, sponges, and hydrogels) prepared using different methods in biomedicine, food, agriculture, and cosmetics, we expect these findings to provide theoretical support for the broader utilization of chitosan.
Collapse
Affiliation(s)
- Kunjian Wu
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Ziyuan Yan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China;
| | - Ziyang Wu
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Jiaye Li
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Wendi Zhong
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Linyu Ding
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China;
| | - Tao Jiang
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
15
|
Ma X, Kong S, Li Z, Zhen S, Sun F, Yang N. Effect of cross-linking density on the rheological behavior of ultra-soft chitosan microgels at the oil-water interface. J Colloid Interface Sci 2024; 672:574-588. [PMID: 38852358 DOI: 10.1016/j.jcis.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
In this paper, microgels with uniform particle size were prepared by physically cross-linking the hydrophobically modified chitosan (h-CS) with sodium phytate (SP). The effects of cross-linking density on the interfacial adsorption kinetics, viscoelasticity, stress relaxation, and micorheological properties of the hydrophobically modified chitosan microgels (h-CSMs) at the oil-water interface were extensively investigated by the dilatational rheology, compressional rheology, and particle tracing microrheology. The results were correlated with the particle size, morphology, and elasticity of the microgels characterized by dynamic light scattering and atomic force microscopy. It was found that with the increase of cross-linking density, the h-CSMs changed from a polymer-like state to ultra-soft fussy spheres with higher elastic modulus. The compression isotherms demonstrated multi-stage increase caused by the interaction between the shells and that between the cores of the microgels successively. As the increase of cross-linking density, the h-CSMs diffused slower to the oil-water interface, but demonstrating faster permeation adsorption and rearrangement at the oil-water interface, finally forming interfacial layers of higher viscoelastic modulus due to the core-core interaction. Both the initial tension relaxation and the microgel rearrangement after interface expansion became faster as the microgel elasticity increased. The interfacial microrheology demonstrated dynamic caging effect caused by neighboring microgels. This article provides a more comprehensive understanding of the behaviors of polysaccharide microgels at the oil-water interface.
Collapse
Affiliation(s)
- Xuxi Ma
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Songmei Kong
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Zhenzhen Li
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Shiyu Zhen
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China
| | - Fusheng Sun
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China
| | - Nan Yang
- Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, Department of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, China; Food Hydrocolloid International Science and Technology Cooperation Base of Hubei Province, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
16
|
Zhang Y, Kong Q, Niu B, Liu R, Chen H, Xiao S, Wu W, Zhang W, Gao H. The dual function of calcium ion in fruit edible coating: Regulating polymer internal crosslinking state and improving fruit postharvest quality. Food Chem 2024; 447:138952. [PMID: 38461720 DOI: 10.1016/j.foodchem.2024.138952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/24/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
The edible coating is proved to be a convenient approach for fruit preservation. Among these published explorations, naturally sourced macromolecules and green crosslinking strategies gain attention. This work centers on edible coatings containing Ca2+ as crosslinker for the first time, delving into crosslinking mechanisms, include alginate, chitosan, Aloe vera gel, gums, etc. Additionally, the crucial functions of Ca2+ in fruit's quality control are also elaborated in-depth, involving cell wall, calmodulin, antioxidant, etc. Through a comprehensive review, it becomes evident that Ca2+ plays a dual role in fruit edible coating. Specifically, Ca2+ constructs a three-dimensional dense network structure with polymers through ionic bonding. Moreover, Ca2+ acts directly with cell wall to maintain fruit firmness and serve as a second messenger to participate secondary physiological metabolism. In brief, coatings containing Ca2+ present remarkable effects in preserving fruit and this work may provide guidance for Ca2+ related fruit preservation coatings.
Collapse
Affiliation(s)
- Yiqin Zhang
- Key Laboratory of Post-Harvest Handling of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Qi Kong
- Key Laboratory of Post-Harvest Handling of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China; College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China
| | - Ben Niu
- Key Laboratory of Post-Harvest Handling of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Ruiling Liu
- Key Laboratory of Post-Harvest Handling of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Huizhi Chen
- Key Laboratory of Post-Harvest Handling of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China
| | - Shangyue Xiao
- Key Laboratory of Post-Harvest Handling of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain
| | - Weijie Wu
- Key Laboratory of Post-Harvest Handling of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China.
| | - Wanli Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Haiyan Gao
- Key Laboratory of Post-Harvest Handling of Fruits, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, PR China.
| |
Collapse
|
17
|
Xie J, Yin D, Ou J, Lu B, Liao S, Yang D, Zhang H, Shen N. A new strain of Rhodococcus indonesiensis T22.7.1 T and its functional potential for deacetylation of chitin and chitooligsaccharides. Front Microbiol 2024; 15:1427143. [PMID: 39113839 PMCID: PMC11303147 DOI: 10.3389/fmicb.2024.1427143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Chitin, abundant in marine environments, presents significant challenges in terms of transformation and utilization. A strain, T22.7.1T, with notable chitin deacetylation capabilities, was isolated from the rhizosphere of Acanthus ebracteatus in the North Sea of China. Comparative 16S rDNA sequence analysis showed that the new isolate had the highest sequence similarity (99.79%) with Rhodococcus indonesiensis CSLK01-03T, followed by R. ruber DSM 43338T, R. electrodiphilus JC435T, and R. aetherivorans 10bc312T (98.97%, 98.81%, and 98.83%, respectively). Subsequent genome sequencing and phylogenetic analysis confirmed that strain T22.7.1T belongs to the R. indonesiensis species. However, additional taxonomic characterization identified strain T22.7.1T as a novel type strain of R. indonesiensis distinct from CSLK01-03T. Methods This study refines the taxonomic description of R. indonesiensis and investigates its application in converting chitin into chitosan. The chitin deacetylase (RiCDA) activity of strain T22.7.1T was optimized, and the enzyme was isolated and purified from the fermentation products. Results Through optimization, the RiCDA activity of strain T22.7.1T reached 287.02 U/mL, which is 34.88 times greater than the original enzyme's activity (8.0 U/mL). The natural CDA enzyme was purified with a purification factor of 31.83, and the specific activity of the enzyme solution reached 1200.33 U/mg. RiCDA exhibited good pH and temperature adaptability and stability, along with a wide range of substrate adaptabilities, effectively deacetylating chitin, chitooligosaccharides, N-acetylglucosamine, and other substrates. Discussion Product analysis revealed that RiCDA treatment increased the deacetylation degree (DD) of natural chitin to 83%, surpassing that of commercial chitosan. Therefore, RiCDA demonstrates significant potential as an efficient deacetylation tool for natural chitin and chitooligosaccharides, highlighting its applicability in the biorefining of natural polysaccharides.
Collapse
Affiliation(s)
- Junjie Xie
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Doudou Yin
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Junchao Ou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Bo Lu
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Siming Liao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
18
|
Yan ZH, Dou RR, Wei F, Yang JH, Cui S, Sun MJ, Kang CY, Zhao CQ. Effects of eugenol on physicochemical properties of sturgeon skin collagen-chitosan composite membrane. J Food Sci 2024; 89:4032-4046. [PMID: 38778552 DOI: 10.1111/1750-3841.17130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
In this study, a series of collagen-chitosan-eugenol (CO-CS-Eu) flow-casting composite films were prepared using collagen from sturgeon skin, chitosan, and eugenol. The physicochemical properties, mechanical properties, microstructure, as well as antioxidant and antimicrobial activities of the composite membranes were investigated by various characterization techniques. The findings revealed that the inclusion of eugenol augmented the thickness of the film, darkened its color, reduced the transparency, and enhanced the ultraviolet light-blocking capabilities, with the physicochemical properties of the CO-CS-0.25%Eu film being notably favorable. Eugenol generates increasingly intricate matrices that disperse within the system, thereby modifying the optical properties of the material. Furthermore, the tensile strength of the film decreased from 70.97 to 20.32 MPa, indicating that eugenol enhances the fluidity and ductility of the film. Added eugenol also exhibited structural impact by loosening the film cross-section and decreasing its density. The Fourier transform infrared spectroscopy results revealed the occurrence of several intermolecular interactions among collagen, chitosan, and eugenol. Moreover, the incorporation of eugenol bolstered the antioxidant and antimicrobial capabilities of the composite film. This is primarily attributed to the abundant phenolic/hydroxyl groups present in eugenol, which can react with free radicals by forming phenoxy groups and neutralizing hydroxyl groups. Consequently, inclusion of eugenol substantially enhances the freshness retention performance of the composite film. PRACTICAL APPLICATION: ● The CO-CS-Eu film utilizes collagen from sturgeon skin, improving the use of sturgeon resources.● Different concentrations of eugenol altered its synergistic effect with chitosan.● The CO-CS-Eu film is composed of natural products with safe and edible properties.
Collapse
Affiliation(s)
- Zi-Heng Yan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Rong-Rong Dou
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Fang Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Jia-Hua Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Shan Cui
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Mei-Jun Sun
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Chun-Yu Kang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, P. R. China
| | - Chun-Qing Zhao
- Department of Continuing Education, Baoding Open University, Baoding, P. R. China
| |
Collapse
|
19
|
Jiang L, Ma Y, Tang S, Wang Y, Zhang Y, Su S, Hu X, He J. Improving chitosan-based composite membrane by introducing a novel hybrid functional nano-hydroxyapatite with carboxymethyl cellulose and phytic acid. Front Chem Sci Eng 2024; 18:61. [DOI: 10.1007/s11705-024-2418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 01/03/2025]
|
20
|
Kamel RM, Abdel-aal FA, Mohamed FA, Abdeltawab A, Abdel-Malek MO, Othman AA, Mohamed AMI. Copper @ eggshell nanocomposite/chitosan gelified carbon paste electrode as an electrochemical biosensor for l-tyrosine analysis as a biomarker in the serum of normal and liver disease patients. Microchem J 2024; 201:110703. [DOI: 10.1016/j.microc.2024.110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Chen X, Lan W, Xie J. Characterization of active films based on chitosan/polyvinyl alcohol integrated with ginger essential oil-loaded bacterial cellulose and application in sea bass (Lateolabrax japonicas) packaging. Food Chem 2024; 441:138343. [PMID: 38211477 DOI: 10.1016/j.foodchem.2023.138343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
The poor mechanical properties, low water-resistance, and limited antimicrobial activity of chitosan (CS)/polyvinyl alcohol (PVA) based film limited its application in aquatic product preservation. Herein, bacterial cellulose (BC) was used to load ginger essential oil (GEO). The effects of the addition of BC and different concentrations of GEO on the physicochemical and antimicrobial activities of films were systematically evaluated. Finally, the application of sea bass fillets was investigated. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction analysis (XRD) analysis indicated dense networks were formed, which was verified by enhanced physical properties. The mechanical properties, barrier properties, and antimicrobial activities enhanced as GEO concentration increased. CPB0.8 (0.8 % GEO) film had better tensile strength (TS) and barrier performance, improved the quality, and extended the shelf-life of sea bass for another 6 days at least. Overall, active films are potential packaging materials for aquatic products.
Collapse
Affiliation(s)
- Xuening Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
22
|
Summer M, Tahir HM, Ali S, Nawaz S, Abaidullah R, Mumtaz S, Ali A, Gormani AH. Nanobiopesticides as an Alternative and Sustainable Solution to Tackle Pest Outbreaks. JOURNAL OF THE KANSAS ENTOMOLOGICAL SOCIETY 2024; 96. [DOI: 10.2317/0022-8567-96.4.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Affiliation(s)
- Muhammad Summer
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Saira Nawaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Rimsha Abaidullah
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shumaila Mumtaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | | |
Collapse
|
23
|
Torres C, Valerio O, Mendonça RT, Pereira M. Influence of chitosan protonation degree in nanofibrillated cellulose/chitosan composite films and their morphological, mechanical, and surface properties. Int J Biol Macromol 2024; 267:131587. [PMID: 38631587 DOI: 10.1016/j.ijbiomac.2024.131587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Composite films of nanofibrillated cellulose (NFC) and chitosan (CS) were prepared by spray deposition method, and the influence of polymers ratio and protonation degree (α) of chitosan was evaluated. Films were characterized using morphological, mechanical, and surface techniques. Higher NFC content increased Young's modulus of film composites and reduced air permeability, while higher CS content increased water contact angle. Variations in the degree of protonation of chitosan from non-protonated (α = 0) to fully protonated (α = 1) in the NFC/CS composite film with a fixed composition allowed to modulate surface, mechanical, and structural properties, such as water contact angle (31.3-109.2°), Young's modulus (1.7-5.3 GPa), elongation at break (3.1-1.2 %), oxygen transmission rate (9.0-5.5 cm3/m2day) and air permeability (2074-426 s). Highly protonated chitosan composite films showed similar contact angles to pure chitosan films, while low protonated chitosan composite films presented contact angles similar to pure NFC films, suggesting a possible coating effect of NFC by CS through electrostatic interactions, evidenced by microscopy and spectroscopy analysis. By mixing both polymers and adjusting composition and protonation degree it was possible to enhance their properties, making pH adjustment a useful tool for NFC/CS composite films formation.
Collapse
Affiliation(s)
- Camilo Torres
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile; Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile
| | - Oscar Valerio
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile
| | - Regis Teixeira Mendonça
- Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile; Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Miguel Pereira
- Departamento de Ingeniería Química, Facultad de Ingeniería, Universidad de Concepción, Concepción 4030000, Chile; Unidad de Desarrollo Tecnológico (UDT), Universidad de Concepción, Coronel 4190000, Chile.
| |
Collapse
|
24
|
Jin J, Luo B, Xuan S, Shen P, Jin P, Wu Z, Zheng Y. Degradable chitosan-based bioplastic packaging: Design, preparation and applications. Int J Biol Macromol 2024; 266:131253. [PMID: 38556240 DOI: 10.1016/j.ijbiomac.2024.131253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Food packaging is an essential part of food transportation, storage and preservation. Biodegradable biopolymers are a significant direction for the future development of food packaging materials. As a natural biological polysaccharide, chitosan has been widely concerned by researchers in the field of food packaging due to its excellent film-forming property, good antibacterial property and designability. Thus, the application research of chitosan-based food packaging films, coatings and aerogels has been greatly developed. In this review, recent advances on chitosan-based food packaging materials are summarized. Firstly, the development background of chitosan-based packaging materials was described, and then chitosan itself was introduced. In addition, the design, preparation and applications of films, coatings and aerogels in chitosan-based packaging for food preservation were discussed, and the advantages and disadvantages of each research in the development of chitosan-based packaging materials were analyzed. Finally, the application prospects, challenges and suggestions for solving the problems of chitosan-based packaging are summarized and prospected.
Collapse
Affiliation(s)
- Jing Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bodan Luo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Simin Xuan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
25
|
An Q, Ren J, Jia X, Qu S, Zhang N, Li X, Fan G, Pan S, Zhang Z, Wu K. Anisotropic materials based on carbohydrate polymers: A review of fabrication strategies, properties, and applications. Carbohydr Polym 2024; 330:121801. [PMID: 38368095 DOI: 10.1016/j.carbpol.2024.121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/19/2024]
Abstract
Anisotropic structures exist in almost all living organisms to endow them with superior properties and physiological functionalities. However, conventional artificial materials possess unordered isotropic structures, resulting in limited functions and applications. The development of anisotropic structures on carbohydrates is reported to have an impact on their properties and applications. In this review, various alignment strategies for carbohydrates (i.e., cellulose, chitin and alginate) from bottom-up to top-down strategies are discussed, including the rapidly developed innovative technologies such as shear-induced orientation through extrusion-based 3D/4D printing, magnetic-assisted alignment, and electric-induced alignment. The unique properties and wide applications of anisotropic carbohydrate materials across different fields, from biomedical, biosensors, smart actuators, soft conductive materials, to thermal management are also summarized. Finally, recommendations on the selection of fabrication strategies are given. The major challenge lies in the construction of long-range hierarchical alignment with high orientation degree and precise control over complicated architectures. With the future development of hierarchical alignment strategies, alignment control techniques, and alignment mechanism elucidation, the potential of anisotropic carbohydrate materials for scalable manufacture and clinical applications will be fully realized.
Collapse
Affiliation(s)
- Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China
| | - Jingnan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China
| | - Xiao Jia
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China
| | - Shasha Qu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China
| | - Nawei Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China.
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China
| | - Zhifeng Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan 430070, China; Ningxia Huaxinda Health Technology Co., Ltd., Lingwu 751400, China
| | - Kangning Wu
- Ningxia Huaxinda Health Technology Co., Ltd., Lingwu 751400, China
| |
Collapse
|
26
|
Othman SH, Shapi'i RA, Ronzi NDA. Starch biopolymer films containing chitosan nanoparticles: A review. Carbohydr Polym 2024; 329:121735. [PMID: 38286535 DOI: 10.1016/j.carbpol.2023.121735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024]
Abstract
Starch biopolymer films incorporated with chitosan nanoparticles (CNP) or starch/CNP films are promising alternatives to non-degradable food packaging materials. The films can be utilized for active food packaging applications because CNP exhibits antimicrobial and antioxidant properties, which can improve food shelf-life. Nonetheless, knowledge of the effects of CNP inclusion on the properties of starch films is not fully elucidated. This paper reviews the influences of various concentrations of CNP, sizes of CNP, and other additives on the mechanical, thermal, barrier, antimicrobial, antioxidant, biodegradability, and cytotoxicity properties of starch/CNP films as well as the mechanisms involved in relation to food packaging applications. The usage of starch/CNP films for active food packaging can help to reduce environmental issues and contribute to food safety and security.
Collapse
Affiliation(s)
- Siti Hajar Othman
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Ruzanna Ahmad Shapi'i
- Nanomaterials Processing and Technology Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Diana Arisya Ronzi
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
27
|
Arslan D, Tuccitto N, Auditore A, Licciardello A, Marletta G, Riolo M, La Spada F, Conti Taguali S, Calpe J, Meca G, Pane A, Cacciola SO, Karakeçili A. Chitosan-based films grafted with citrus waste-derived antifungal agents: An innovative and sustainable approach to enhance post-harvest preservation of citrus fruit. Int J Biol Macromol 2024; 264:130514. [PMID: 38423440 DOI: 10.1016/j.ijbiomac.2024.130514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
This paper reports the synthesis, characterization, and properties of chitosan films (CHI) grafted with a natural antifungal agent with the aim of developing active films of natural origin to prevent post-harvest losses of citrus fruit. The antifungal agent was prepared by fermentation using lemon peel (AntiFun-LM), a citrus waste, and grafted on chitosan using different coupling agents (CHI/AntiFun-LM). Bioactive films were prepared by solvent casting. FTIR-ATR and ToF-SIMS analyses provided compelling evidence of the successful grafting process. TGA-DSC demonstrated that the films are stable after grafting. SEM studies showed the continuous and compact surface of the films. WCA measurements proved that CHI/AntiFun-LM films are more hydrophilic than CHI films. Moreover, the CHI/AntiFun-LM films showed stronger UV shielding effect when compared to CHI. The biological evaluation demonstrated that CHI/AntiFun-LM films gained considerable antifungal properties against most fungi responsible for post-harvest decay. Cytotoxicity tests showed that CHI/AntiFun-LM films did not cause any toxic effect against L929 fibroblasts. This study highlights the great potential of chemical grafting of antifungal agents produced from citrus waste to chitosan and preparation of natural-based films to act as a powerful alternative in post-harvest protection of citrus fruit in a perspective of circular economy.
Collapse
Affiliation(s)
- Deniz Arslan
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, 06100 Tandoğan, Ankara, Turkey; Graduate School of Natural and Applied Sciences, Ankara University, 06110 Dışkapı, Ankara, Turkey
| | - Nunzio Tuccitto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria n° 6, Catania, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Italy
| | - Alessandro Auditore
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Italy
| | - Antonino Licciardello
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria n° 6, Catania, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Italy
| | - Giovanni Marletta
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria n° 6, Catania, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), Italy
| | - Mario Riolo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Federico La Spada
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | | | - Jorge Calpe
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - Antonella Pane
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy
| | - Ayşe Karakeçili
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, 06100 Tandoğan, Ankara, Turkey.
| |
Collapse
|
28
|
Koirala P, Bhandari Y, Khadka A, Kumar SR, Nirmal NP. Nanochitosan from crustacean and mollusk byproduct: Extraction, characterization, and applications in the food industry. Int J Biol Macromol 2024; 262:130008. [PMID: 38331073 DOI: 10.1016/j.ijbiomac.2024.130008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Crustaceans and mollusks are widely consumed around the world due to their delicacy and nutritious value. During the processing, only 30-40 % of these shellfish are considered edible, while 70-60 % of portions are thrown away as waste or byproduct. These byproducts harbor valuable constituents, notably chitin. This chitin can be extracted from shellfish byproducts through chemical, microbial, enzymatic, and green technologies. However, chitin is insoluble in water and most of the organic solvents, hampering its wide application. Hence, chitin is de-acetylated into chitosan, which possesses various functional applications. Recently, nanotechnology has proven to improve the surface area and numerous functional properties of metals and molecules. Further, the nanotechnology principle can be extended to nanochitosan formation. Therefore, this review article centers on crustaceans and mollusks byproduct utilization for chitosan, its nano-formation, and their food industry applications. The extensive discussion has been focused on nanochitosan formation, characterization, and active site modification. Lastly, nanochitosan applications in various food industries, including biodegradable food packaging, fat replacer, bioactive compound carrier, and antimicrobial agent have been reported.
Collapse
Affiliation(s)
- Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Yash Bhandari
- Department of Nutrition and Dietetics, Central Campus of Technology, Tribhuvan University, Nepal
| | - Abhishek Khadka
- Rural Reconstruction Nepal, 288 Gairidhara Road 2, Kathmandu Metropolitan City, Bagmati, Nepal
| | - Simmi Ranjan Kumar
- Department of Biotechnology, Mahidol University, Bangkok 10400, Thailand
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
29
|
Saied M, Ward A, Hamieda SF. Effect of apricot kernel seed extract on biophysical properties of chitosan film for packaging applications. Sci Rep 2024; 14:3430. [PMID: 38341481 PMCID: PMC10858884 DOI: 10.1038/s41598-024-53397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Chitosan is a natural biodegradable biopolymer that has drawbacks in mechanical and antibacterial properties, limiting its usage in biological and medicinal fields. Chitosan is combined with other naturally occurring substances possessing biological antibacterial qualities in order to broaden its application. Ethanolic apricot kernel seed extract was prepared, analyzed, and incorporated into chitosan film with different concentrations (0.25, 0.5, and 0.75 wt%). Furthermore, the effect of AKSE and γ-radiation (20 Gy and 20 kGy) on the physical properties of the film was studied. The prepared films were characterized by Fourier transform infrared spectroscopy (FTIR), which revealed that AKSE did not cause any change in the molecular structure, whereas the γ-irradiation dose caused a decrease in the peak intensity of all concentrations except 0.75 wt%, which was the most resistant. In addition, their dielectric, optical, and antimicrobial properties were studied. Also, AKSE-enhanced optical qualities, allowed them to fully block light transmission at wavelengths of 450-600 nm. The dielectric properties, i.e., permittivity (ε'), dielectric loss (ε''), and electrical conductivity (σ), increased with increasing AKSE concentration and film irradiation. The antimicrobial studies revealed that the antimicrobial activity against Escherichia coli and Canodida albicans increased with AKSE incorporation.
Collapse
Affiliation(s)
- Mona Saied
- Microwave Physics and Dielectrics Department, National Research Centre, Cairo, Egypt.
| | - Azza Ward
- Microwave Physics and Dielectrics Department, National Research Centre, Cairo, Egypt
| | - Shimaa Farag Hamieda
- Microwave Physics and Dielectrics Department, National Research Centre, Cairo, Egypt
| |
Collapse
|
30
|
Janik W, Jakubski Ł, Kudła S, Dudek G. Modified polysaccharides for food packaging applications: A review. Int J Biol Macromol 2024; 258:128916. [PMID: 38134991 DOI: 10.1016/j.ijbiomac.2023.128916] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Development of new food packaging materials is crucial to reduce the use of single-use plastics and to limit their destructive impact on the environment. Polysaccharides provide an alternative solution to this problem. This paper summarizes and discusses recent research results on the potential of modifying polysaccharides as materials for film and coating applications. Modifications of polysaccharides significantly affect their properties, as well as their application usability. Although modifications of biopolymers for packaging applications have been widely studied, polysaccharides have attracted little attention despite being a prospective, environmentally friendly, and economically viable packaging alternative. Therefore, this paper discusses approaches to the development of biodegradable, polysaccharide-based food packaging materials and focuses on modifications of four polysaccharides, such as starch, chitosan, sodium alginate and cellulose. In addition, these modifications are presented not only in terms of the selected polysaccharide, but also in terms of specific properties, i.e. hydrophilic, barrier and mechanical properties, of polysaccharides. Such a presentation of results makes it much easier to select the modification method to improve the unsatisfactory properties of the material. Moreover, very often it happens that the applied modification improves one and worsens another property, which is also presented in this review.
Collapse
Affiliation(s)
- Weronika Janik
- Łukasiewicz Research Network - Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland; Department of Physical Chemistry and Technology of Polymers, Joint Doctoral School, Silesian University of Technology, Akademicka 2a, 44-100 Gliwice, Poland.
| | - Łukasz Jakubski
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| | - Stanisław Kudła
- Łukasiewicz Research Network - Institute of Heavy Organic Synthesis "Blachownia", Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland.
| | - Gabriela Dudek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland.
| |
Collapse
|
31
|
Mannucci A, Panariello L, Abenaim L, Coltelli MB, Ranieri A, Conti B, Santin M, Castagna A. From Food Waste to Functional Biopolymers: Characterization of Chitin and Chitosan Produced from Prepupae of Black Soldier Fly Reared with Different Food Waste-Based Diets. Foods 2024; 13:278. [PMID: 38254579 PMCID: PMC10814476 DOI: 10.3390/foods13020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The use of food waste as a rearing substrate to grow insects is an ecofriendly and sustainable alternative to food waste disposal. In the present research, Hermetia illucens prepupae were reared with a standard diet, different food waste-based diets based on vegetables, fruits, and meat, and a mixed one, where the previous three components were present equally. The demineralization and deproteination of the prepupae allowed for the obtainment of chitin that was then deacetylated to produce chitosan. Also, the bleaching of chitosan was attempted for further purification. The yield of the different reactions was investigated, and the infrared spectra of the obtained materials were analyzed to obtain information on the quantity and acetylation degree trend of the chitin and chitosan as a function of the diet. The possibility to slightly modulate the yield and acetylation degree of both biopolymers thanks to the specific diet was enlightened. Interestingly, the standard diet resulted in the highest fraction of chitin having the highest acetylation degree, and in the highest fraction of chitosan having the lowest acetylation degree.
Collapse
Affiliation(s)
- Alessia Mannucci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (L.A.); (A.R.); (B.C.); (A.C.)
| | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.P.); (M.B.C.)
| | - Linda Abenaim
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (L.A.); (A.R.); (B.C.); (A.C.)
| | - Maria Beatrice Coltelli
- Department of Civil and Industrial Engineering, University of Pisa, Via Diotisalvi 2, 56122 Pisa, Italy; (L.P.); (M.B.C.)
| | - Annamaria Ranieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (L.A.); (A.R.); (B.C.); (A.C.)
| | - Barbara Conti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (L.A.); (A.R.); (B.C.); (A.C.)
| | - Marco Santin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (L.A.); (A.R.); (B.C.); (A.C.)
| | - Antonella Castagna
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; (A.M.); (L.A.); (A.R.); (B.C.); (A.C.)
| |
Collapse
|
32
|
Fernando SS, Jo C, Mudannayake DC, Jayasena DD. An overview of the potential application of chitosan in meat and meat products. Carbohydr Polym 2024; 324:121477. [PMID: 37985042 DOI: 10.1016/j.carbpol.2023.121477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 11/22/2023]
Abstract
Chitosan is considered the second most ubiquitous polysaccharide next to cellulose. It has gained prominence in various industries including biomedicine, textile, pharmaceutical, cosmetic, and notably, the food industry over the last few decades. The polymer's continual attention within the food industry can be attributed to the increasing popularity of greener means of packaging and demand for foods incorporated with natural alternatives instead of synthetic additives. Its antioxidant, antimicrobial, and film-forming abilities reinforced by the polymer's biocompatible, biodegradable, and nontoxic nature have fostered its usage in food packaging and preservation. Microbial activity and lipid oxidation significantly influence the shelf-life of meat, resulting in unfavorable changes in nutritional and sensory properties during storage. In this review, the scientific studies published in recent years regarding potential applications of chitosan in meat products; and their effects on shelf-life extension and sensory properties are discussed. The utilization of chitosan in the form of films, coatings, and additives in meat products has supported the extension of shelf-life while inducing a positive impact on their organoleptic properties. The nature of chitosan and its compatibility with various materials make it an ideal biopolymer to be used in novel arenas of food technology.
Collapse
Affiliation(s)
- Sandithi S Fernando
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, South Korea.
| | - Deshani C Mudannayake
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| | - Dinesh D Jayasena
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka.
| |
Collapse
|
33
|
Kandile NG, Ahmed ME, Mohamed MI, Mohamed HM. Therapeutic applications of sustainable new chitosan derivatives and its nanocomposites: Fabrication and characterization. Int J Biol Macromol 2024; 254:127855. [PMID: 37939771 DOI: 10.1016/j.ijbiomac.2023.127855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Chitosan (CS) is a biologically active biopolymer used in different medical applications due to its biodegradability, biocompatibility, and nontoxicity. Nanotechnology is an exciting and quick developing field in medical applications. Nanoparticles have shown great potential in the treatment of cancer and inflammation. In the present work modification of chitosan and its (Ag, Au, or ZnO) nanocomposites by N-aminophthalimide (NAP) occurred through the reaction with epichlorohydrin (ECH) as a crosslinker in the presence or absence of glutaraldehyde (GA) under different reaction conditions using microwave irradiation to give modified chitosan derivatives CS-2, CS-6, and their nanocomposites. Modified chitosan derivatives were characterized using different tools. CS-2 and CS-6 derivatives displayed enhancement of thermal stability and crystallinity compared to chitosan. Additionally, CS-2, CS-6, and their nanocomposites exhibited improvements in antitumor activity against HeLa cancer cells and enzymatic inhibitory against trypsin and α-chymotrypsin enzymes compared to chitosan. However, CS-2 revealed the highest cell growth inhibition% toward HeLa cells (89.02 ± 1.46 %) and the enzymatic inhibitory toward α-chymotrypsin enzyme (17.13 ± 1.59 %). Furthermore, CS-Au-2 showed the highest enzymatic inhibitory against trypsin enzyme (28.14 ± 1.76 %). These results suggested that the new chitosan derivatives CS-2, CS-6, and their nanocomposites could be a platform for medical applications against HeLa cells, trypsin, and α-chymotrypsin enzymes.
Collapse
Affiliation(s)
- Nadia G Kandile
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Marwa ElS Ahmed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Mansoura I Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Hemat M Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt.
| |
Collapse
|
34
|
Flórez M, Cazón P, Vázquez M. Characterization of active films of chitosan containing nettle Urtica dioica L. extract: Spectral and water properties, microstructure, and antioxidant activity. Int J Biol Macromol 2023; 253:127318. [PMID: 37813218 DOI: 10.1016/j.ijbiomac.2023.127318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Chitosan films enriched with aqueous nettle extract (Urtica dioica L.) were evaluated by measuring their solubility, equilibrium moisture, water vapor permeability, spectral and antioxidant properties, and microstructure. Nettle extract showed a significant effect on the analyzed film properties. The addition of nettle extract manifested a sharp decrease in water vapor permeability, decreasing from 5.64 · 10-11 to 2.22 · 10-11 g/m·s·Pa. The chitosan- nettle extract films exhibited a high free-radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Incorporation of nettle extract into the chitosan matrix was successfully carried out to obtain antioxidant films. The results obtained showed that the incorporation of nettle extract allowed obtaining chitosan films with antioxidant properties, including a total phenolic content up to 1.57 mg GAE/g film. Furthermore, the films with nettle extract boast an UV shielding ability with transmittance values close to zero in the UV region and a water solubility up to 1 %. The inherent biodegradability is also a strong advantage of the developed active films.
Collapse
Affiliation(s)
- María Flórez
- Department of Analytical Chemistry, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain
| | - Patricia Cazón
- Department of Analytical Chemistry, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain.
| | - Manuel Vázquez
- Department of Analytical Chemistry, Faculty of Veterinary, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
35
|
Adhikary ND, Bains A, Sridhar K, Kaushik R, Chawla P, Sharma M. Recent advances in plant-based polysaccharide ternary complexes for biodegradable packaging. Int J Biol Macromol 2023; 253:126725. [PMID: 37678691 DOI: 10.1016/j.ijbiomac.2023.126725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Polysaccharide-based packaging has been directed toward the development of technologies for the generation of packaging with biodegradable materials that can serve as substitutes for conventional packaging. Polysaccharides are reliable sources of edible packaging materials with excellent renewability, biodegradability, and bio-compatibility as well as antioxidant and antimicrobial activities. Apart from these properties, packaging film developed from a single polysaccharide has various disadvantages due to undesirable properties. Thus, to overcome these problems, researchers focused on ternary blend-based bio-packaging instead of the primary and binary complex to improve their characteristics and properties. The review emphasizes the extraction of polysaccharides and their combination with other polymers to provide desirable characteristics and physico-mechanical properties of the biodegradable film which will upgrade the green packaging technology in the future generation This review also explores the advancement of ternary blend-based biodegradable film and their application in foods with different requirements and the future aspects for developing advanced biodegradable film. Moreover, the review concludes that cellulose, modified starch, and another plant-based polysaccharide film mostly provides good gas barrier property and better tensile strength, which can be used as a safeguard of perishable and semi-perishable foods which brings them closer to replacing commercial synthetic packaging.
Collapse
Affiliation(s)
- Nibedita Das Adhikary
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144411, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Ravinder Kaushik
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| | - Minaxi Sharma
- CARAH ASBL, Rue Paul Pastur, 11, Ath - 7800, Belgium.
| |
Collapse
|
36
|
Jin Y, Li Y, Du Q, Zhao S, Jing Z, Pi X, Wang Y, Wang D. Porous metal-organic framework-acrylamide-chitosan composite aerogels: Preparation, characterization and adsorption mechanism of azo anionic dyes adsorbed from water. Int J Biol Macromol 2023; 253:127155. [PMID: 37783255 DOI: 10.1016/j.ijbiomac.2023.127155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Micro- and nano-metal-organic frameworks with different adsorption properties were prepared by a time-modulation hydrothermal method. By comparing the adsorption properties, the most effective MIL-68(Fe)-12 was selected to be mixed with chitosan (CS), and porous metal-organic framework-acrylamide-chitosan composite aerogel (PMACA) was prepared by introducing acrylamide prior to glutaraldehyde crosslinking. The adsorption capacity of PMACA doped with acrylamide was as high as 2086.44 mg·g-1. The adsorption performance of PMACA was 1.48 times higher compared to the porous metal-organic framework-chitosan composite aerogel (PMCA) undoped with acrylamide. With the introduction of acrylamide, the stability of PMACA was improved, making it less prone to dispersion and decomposition. Structural characterization and adsorption properties were analyzed using methods such as XRD, FTIR, TGA, SEM, BET, and Zeta potential. The adsorption performance of PMACA was investigated further through batch tests with variables such as adsorbent dosage, pH, contact time, initial CR solution concentration, and temperature. The model fitting of PMACA was consistent with the pseudo-second-order model and the Sips model. The adsorption thermodynamics showed that high temperature promoted spontaneous adsorption behavior. PMACA showed a recovery rate of approximately 86 % after six cyclic adsorption tests. PMACA maintained a recovery rate of roughly 86 % after six cyclic adsorption tests. The combined effects of electrostatic attraction, hydrogen bonding, and π-π conjugation resulted in excellent adsorption performance, while pore filling also contributed to the efficient adsorption of Congo red (CR).
Collapse
Affiliation(s)
- Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Qiuju Du
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - YuQi Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Dechang Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
37
|
Wang F, Xie C, Tang H, Li H, Hou J, Zhang R, Liu Y, Jiang L. Intelligent packaging based on chitosan/fucoidan incorporated with coleus grass (Plectranthus scutellarioides) leaves anthocyanins and its application in monitoring the spoilage of salmon (Salmo salar L.). Int J Biol Macromol 2023; 252:126423. [PMID: 37604418 DOI: 10.1016/j.ijbiomac.2023.126423] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
The innovation of this study was to develop a novel biodegradable intelligent packaging based on chitosan/fucoidan combined with different amounts (1, 3 and 5 wt% on chitosan basis) of coleus grass (Plectranthus scutellarioides) leaves anthocyanins (CGL) to monitor the spoilage of salmon (Salmo salar L.). The addition of fucoidan improved the barrier and mechanical properties of the chitosan films (CS) due to hydrogen bonds and intermolecular electrostatic interactions. Moreover, the addition of CGL not only improved the physical properties but also improved the biological activity of chitosan/fucoidan film (CF). The DPPH and ABTS radical scavenging activity of CF contained 5 wt% CGL was 1.83 and 1.75 times than CF, respectively. The inhibition zone size of CF films containing 5 wt% CGL (CF-5%CGL) was approximately 2.04 (Escherichia coli) and 2.16 (Staphylococcus aureus) times higher than that of CF. Moreover, CF-CGL displayed obvious color changes in different pH environments and is highly sensitive to ammonia gas. The CF-CGL has visible color changes during the monitoring of salmon spoilage and extended the shelf life of salmon. According to our findings, CF-CGL film might be employed as a possible intelligent packaging material for monitoring and preserving salmon in the future.
Collapse
Affiliation(s)
- Fenghui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cancan Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongjie Tang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hanyu Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingjie Hou
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rui Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yingzhu Liu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Longwei Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China; Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
38
|
Jin Y, Liu F, Li Y, Du Q, Song F, Chen B, Chen K, Zhang Y, Wang M, Sun Y, Zhao S, Jing Z, Pi X, Wang Y, Wang D. Efficient adsorption of azo anionic dye Congo Red by micro-nano metal-organic framework MIL-68(Fe) and MIL-68(Fe)/chitosan composite sponge: Preparation, characterization and adsorption performance. Int J Biol Macromol 2023; 252:126198. [PMID: 37586626 DOI: 10.1016/j.ijbiomac.2023.126198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
Micro-nano metal-organic framework (MIL-68(Fe)) for efficient adsorption of azo anionic dye Congo red (CR) was successfully prepared by one-step hydrothermal method under acidic environment. And a MIL-68(Fe)/chitosan composite sponge (MIL-68(Fe)/CS) was prepared under the coating of chitosan (CS). After comparing the performance of MIL-68(Fe) and MIL-68(Fe)/CS, we focus on exploring MIL-68(Fe)/CS. It ensured the CR removal efficiency while reaching the adsorption equilibrium faster than MIL-68(Fe), and solved the defect that the powder was difficult to be stripped by water after adsorption. The physicochemical properties and surface morphology of the adsorbent were characterized by SEM, FTIR, XRD, TGA, BET, and Zeta potential. The effects of pH, contact time, adsorbent dosage, initial solution concentration and temperature on the adsorption performance of the adsorbent were systematically analyzed. The pseudo-second-order model and the Sips model were most consistent for the adsorption process, indicating that the adsorption process of MIL-68(Fe)/chitosan composite sponge on CR is a complex physicochemical process. The removal rates of CR by MIL-68(Fe) and MIL-68(Fe)/chitosan composite sponge reached the maximum values of 99.55 % and 99.51 % at 318 K, respectively. And the maximum adsorption capacity of CR by MIL-68(Fe)/chitosan composite sponge at 318 K was 1184.16 mg·g-1. After six cycles of adsorption and desorption, the removal rate of CR was still higher than 80 %. The synergistic effects of π-π stacking, electrostatic interactions, hydrogen bonding and pore filling have important effects on CR removal.
Collapse
Affiliation(s)
- Yonghui Jin
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Fan Liu
- Normal college of Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Qiuju Du
- State Key Laboratory of Bio-polysaccharide Fiber Forming and Eco-Textile, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Fengling Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Bing Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kewei Chen
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yang Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mingzhen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yaohui Sun
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Shiyong Zhao
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhenyu Jing
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - YuQi Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Dechang Wang
- College of Mechanical and Electrical Engineering, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
39
|
Atlar GC, Kutlu G, Tornuk F. Design and characterization of chitosan-based films incorporated with summer savory (Satureja hortensis L.) essential oil for active packaging. Int J Biol Macromol 2023; 254:127732. [PMID: 39492498 DOI: 10.1016/j.ijbiomac.2023.127732] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
In this study, biodegradable films were fabricated by using cross-linked chitosan nanoparticles containing different concentrations (0, 1.0, 1.2, 1.4, and 1.5 %, v/v) of Satureja hortensis essential oil (SHEO) and their physicochemical, mechanical, antimicrobial, morphological, structural and antioxidant properties were analyzed. SHEO incorporation improved antibacterial, antioxidant and thermal properties of the films. Four studied bacteria were efficiently inhibited by films loaded with SHEO. According to the FE-SEM analysis, control film had nano-sized pores while micron sized particles were present in SHEO incorporated films. Increase in color difference was well correlated with SHEO concentration. The addition of SHEO decreased elongation at break (EB) and caused an irregular fluctuation in the tensile strength (TS) values. Increase in essential oil concentration resulted in lower water solubility. The FTIR spectra of films showed evidence of interactions and molecular arrangements when SHEO was added to the polymer matrix. Overall, the findings demonstrated that SHEO incorporated chitosan-based films were successfully prepared by cross linking and film properties were remarkably affected from SHEO concentration.
Collapse
Affiliation(s)
- G Cansu Atlar
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Istanbul, Turkey
| | - Gozde Kutlu
- Ankara Medipol University, Faculty of Fine Arts, Design and Architecture, Department of Gastronomy and Culinary Arts, Ankara, Turkey
| | - Fatih Tornuk
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Food Engineering, Davutpasa Campus, Istanbul, Turkey.
| |
Collapse
|
40
|
Giannakas AE, Zaharioudakis K, Kollia E, Kopsacheili A, Avdylaj L, Georgopoulos S, Leontiou A, Karabagias VK, Kehayias G, Ragkava E, Proestos C, Salmas CE. The Development of a Novel Sodium Alginate-Based Edible Active Hydrogel Coating and Its Application on Traditional Greek Spreadable Cheese. Gels 2023; 9:807. [PMID: 37888380 PMCID: PMC10606390 DOI: 10.3390/gels9100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
The necessity of reducing the greenhouse effect by decreasing the carbon dioxide fingerprint directed the food packaging technology to use biobased raw materials. Alginates, which are derived from brown algae species, are one of the most promising biobased biopolymers for the development of edible active coatings capable of protecting food from oxidation/bacterial spoilage. In this study, sodium alginate, which was plasticized with glycerol and mixed with a biobased thymol/natural halloysite nanohybrid, was used to develop novel edible active coatings. Nanocomposite coatings were also developed in this project by mixing pure halloysite with sodium alginate/glycerol matrix and were used as reference material for comparison reasons. Instrumental analysis indicated a higher compatibility of a thymol/halloysite nanohybrid with a sodium alginate/glycerol matrix compared to pure halloysite with a sodium alginate/glycerol matrix. Increased compatibility resulted in improved tensile properties, water/oxygen barrier properties, and total antioxidant activity. These edible active coatings were applied to traditional Greek spread cheese and showed a reduction in the mesophilic microbial population over one log10 unit (cfu/g) compared to uncoated cheese. Moreover, the reduction in the mesophilic microbial population increased with the increase in halloysite and thymol content, indicating such sodium alginate/glycerol/thymol/halloysite hydrogels as promising edible active coatings for dairy products.
Collapse
Affiliation(s)
- Aris E. Giannakas
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Konstantinos Zaharioudakis
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Eleni Kollia
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (A.K.); (L.A.)
| | - Anna Kopsacheili
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (A.K.); (L.A.)
| | - Learda Avdylaj
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (A.K.); (L.A.)
| | - Stavros Georgopoulos
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Areti Leontiou
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Vassilios K. Karabagias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - George Kehayias
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Efthymia Ragkava
- Department of Food Science and Technology, University of Patras, 30100 Agrinio, Greece; (K.Z.); (S.G.); (A.L.); (V.K.K.); (G.K.); (E.R.)
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Zografou, 15771 Athens, Greece; (E.K.); (A.K.); (L.A.)
| | - Constantinos E. Salmas
- Department of Material Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
41
|
Hashem MA, Alotaibi BS, Elsayed MMA, Alosaimi ME, Hussein AK, Abduljabbar MH, Lee KT, Abdelkader H, El-Mokhtar MA, Hassan AH, Abdel-Rheem AA, Belal A, Saddik MS. Characterization and Bio-Evaluation of the Synergistic Effect of Simvastatin and Folic Acid as Wound Dressings on the Healing Process. Pharmaceutics 2023; 15:2423. [PMID: 37896183 PMCID: PMC10610475 DOI: 10.3390/pharmaceutics15102423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Wound healing is a significant healthcare problem that decreases the patient's quality of life. Hence, several agents and approaches have been widely used to help accelerate wound healing. The challenge is to search for a topical delivery system that could supply long-acting effects, accurate doses, and rapid healing activity. Topical forms of simvastatin (SMV) are beneficial in wound care. This study aimed to develop a novel topical chitosan-based platform of SMV with folic acid (FA) for wound healing. Moreover, the synergistic effect of combinations was determined in an excisional wound model in rats. The prepared SMV-FA-loaded films (SMV-FAPFs) were examined for their physicochemical characterizations and morphology. Box-Behnken Design and response surface methodology were used to evaluate the tensile strength and release characteristics of the prepared SMV-FAPFs. Additionally, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction pattern (XRD), and animal studies were also investigated. The developed SMV-FAPFs showed a contraction of up to 80% decrease in the wound size after ten days. The results of the quantitative real-time polymerase chain reaction (RT-PCR) analysis demonstrated a significant upregulation of dermal collagen type I (CoTI) expression and downregulation of the inflammatory JAK3 expression in wounds treated with SMV-FAPFs when compared to control samples and individual drug treatments. In summary, it can be concluded that the utilization of SMV-FAPFs holds great potential for facilitating efficient and expeditious wound healing, hence presenting a feasible substitute for conventional topical administration methods.
Collapse
Affiliation(s)
- Mahmoud A. Hashem
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| | - Badriyah S. Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud M. A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| | - Manal E. Alosaimi
- Department of Basic Health Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amal K. Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (A.K.H.); (H.A.)
| | - Maram H. Abduljabbar
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
- Department of Life and Biomedical and Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Hamdy Abdelkader
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt; (A.K.H.); (H.A.)
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, P.O. Box 1882, Abha 61441, Saudi Arabia
| | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt;
| | - Ahmed H.E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Amany A. Abdel-Rheem
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt;
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohammed S. Saddik
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt; (M.A.H.); (A.A.A.-R.); (M.S.S.)
| |
Collapse
|
42
|
Egorov AR, Kirichuk AA, Rubanik VV, Rubanik VV, Tskhovrebov AG, Kritchenkov AS. Chitosan and Its Derivatives: Preparation and Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6076. [PMID: 37763353 PMCID: PMC10532898 DOI: 10.3390/ma16186076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
This comprehensive review illuminates the various methods of chitosan extraction, its antibacterial properties, and its multifarious applications in diverse sectors. We delve into chemical, physical, biological, hybrid, and green extraction techniques, each of which presents unique advantages and disadvantages. The choice of method is dictated by multiple variables, including the desired properties of chitosan, resource availability, cost, and environmental footprint. We explore the intricate relationship between chitosan's antibacterial activity and its properties, such as cationic density, molecular weight, water solubility, and pH. Furthermore, we spotlight the burgeoning applications of chitosan-based materials like films, nanoparticles, nonwoven materials, and hydrogels across the food, biomedical, and agricultural sectors. The review concludes by highlighting the promising future of chitosan, underpinned by technological advancements and growing sustainability consciousness. However, the critical challenges of optimizing chitosan's production for sustainability and efficiency remain to be tackled.
Collapse
Affiliation(s)
- Anton R. Egorov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Anatoly A. Kirichuk
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Alexander G. Tskhovrebov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Andreii S. Kritchenkov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| |
Collapse
|
43
|
Bredikhin M, Sawant S, Gross C, Antonio ELS, Borodinov N, Luzinov I, Vertegel A. Highly Adhesive Antimicrobial Coatings for External Fixation Devices. Gels 2023; 9:639. [PMID: 37623093 PMCID: PMC10453896 DOI: 10.3390/gels9080639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Pin site infections arise from the use of percutaneous pinning techniques (as seen in skeletal traction, percutaneous fracture pinning, and external fixation for fracture stabilization or complex deformity reconstruction). These sites are niduses for infection because the skin barrier is disrupted, allowing for bacteria to enter a previously privileged area. After external fixation, the rate of pin site infections can reach up to 100%. Following pin site infection, the pin may loosen, causing increased pain (increasing narcotic usage) and decreasing the fixation of the fracture or deformity correction construct. More serious complications include osteomyelitis and deep tissue infections. Due to the morbidity and costs associated with its sequelae, strategies to reduce pin site infections are vital. Current strategies for preventing implant-associated infections include coatings with antibiotics, antimicrobial polymers and peptides, silver, and other antiseptics like chlorhexidine and silver-sulfadiazine. Problems facing the development of antimicrobial coatings on orthopedic implants and, specifically, on pins known as Kirschner wires (or K-wires) include poor adhesion of the drug-eluting layer, which is easily removed by shear forces during the implantation. Development of highly adhesive drug-eluting coatings could therefore lead to improved antimicrobial efficacy of these devices and ultimately reduce the burden of pin site infections. In response to this need, we developed two types of gel coatings: synthetic poly-glycidyl methacrylate-based and natural-chitosan-based. Upon drying, these gel coatings showed strong adhesion to pins and remained undamaged after the application of strong shear forces. We also demonstrated that antibiotics can be incorporated into these gels, and a K-wire with such a coating retained antimicrobial efficacy after drilling into and removal from a bone. Such a coating could be invaluable for K-wires and other orthopedic implants that experience strong shear forces during their implantation.
Collapse
Affiliation(s)
- Mikhail Bredikhin
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (M.B.); (S.S.)
| | - Sushant Sawant
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (M.B.); (S.S.)
| | - Christopher Gross
- Department of Orthopedic Surgery, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Erik L. S. Antonio
- Department of Materials Science and Enfineering, Clemson University, Clemson, SC 29634, USA; (E.L.S.A.); (N.B.); (I.L.)
| | - Nikolay Borodinov
- Department of Materials Science and Enfineering, Clemson University, Clemson, SC 29634, USA; (E.L.S.A.); (N.B.); (I.L.)
| | - Igor Luzinov
- Department of Materials Science and Enfineering, Clemson University, Clemson, SC 29634, USA; (E.L.S.A.); (N.B.); (I.L.)
| | - Alexey Vertegel
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (M.B.); (S.S.)
| |
Collapse
|
44
|
Mujtaba M, Ali Q, Yilmaz BA, Seckin Kurubas M, Ustun H, Erkan M, Kaya M, Cicek M, Oner ET. Understanding the effects of chitosan, chia mucilage, levan based composite coatings on the shelf life of sweet cherry. Food Chem 2023; 416:135816. [PMID: 36893634 DOI: 10.1016/j.foodchem.2023.135816] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/05/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Sweet cherry (Prunus avium L.) fruits are prone to quality and quantity loss in shelf-life conditions and cold storage due to their short post-harvest life. Until now efforts have been made to extend the shelf life of the sweet cherry. However, an efficient and commercially scalable process remains elusive. To contribute to this challenge, here in this study, biobased composite coatings consisting of chitosan, mucilage, and levan, were applied on sweet cherry fruits and tested for postharvest parameters in both market and cold storage conditions. Results demonstrated that the shelf life of sweet cherries can be extended until the 30th day while retaining important post-harvest properties like decreased weight loss, fungal deterioration, increased stem removal force, total flavonoid, l-ascorbic acid, and oxalic acid. Given the cost-effectiveness of the polymers used, the findings of this study indicate the feasibility of extending the shelf-life of sweet cherries on a larger scale.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Espoo FI-02044, Finland.
| | - Qasid Ali
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey
| | - Bahar Akyuz Yilmaz
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Mehmet Seckin Kurubas
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey
| | - Hayri Ustun
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey
| | - Mustafa Erkan
- Department of Horticulture, Faculty of Agriculture, Akdeniz University, 07059 Antalya, Turkey
| | - Murat Kaya
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Mehmet Cicek
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, 20070 Denizli, Turkey
| | - Ebru Toksoy Oner
- IBSB, Department of Bioengineering, Marmara University, RTE Campus, Istanbul, Turkey
| |
Collapse
|
45
|
Naitzel TDC, Garcia VADS, Lourenço CAM, Vanin FM, Yoshida CMP, Carvalho RAD. Properties of Paperboard Coated with Natural Polymers and Polymer Blends: Effect of the Number of Coating Layers. Foods 2023; 12:2745. [PMID: 37509837 PMCID: PMC10379446 DOI: 10.3390/foods12142745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Paper is one of the packaging materials that presents a biodegradable character, being used in several areas; however, its barrier properties (gases and fat) and mechanics are reduced, which limits its application. Coating papers with synthetic polymers improve these properties, reducing their biodegradability and recyclability. The objective of this work was to develop and characterize coated paperboard, using the tape casting technique, with different ratios of film form agar-agar/chitosan (AA:CHI, 100:0, 50:50, and 0:100) and different numbers of coating layers (operating times for application of 14.25 min and 28.5 min for one and two layers, respectively). A significant reduction in water absorption capacity was found by applying a 0:100 coating (approximately 15%). Considering all coating formulations, the water vapor permeability reduced by 10 to 60% compared to uncoated paperboard, except for two layers coated with 0:100. The tensile index (independent of AA:CHI) was higher in the machine direction (22.59 to 24.99 MPa) than in the cross-section (11.87-13.01 MPa). Paperboard coated only with chitosan showed superior properties compared to the other formulation coatings evaluated.
Collapse
Affiliation(s)
- Thaís de Cássia Naitzel
- Faculty of Animal Science and Food Engineering, USP-University of São Paulo, Street Duque de Caxias Norte 225, Pirassununga 13635-900, Brazil
| | - Vitor Augusto Dos Santos Garcia
- Faculty of Agricultural Sciences, UNESP-São Paulo State University, Street José Barbosa de Barros 1780, Botucatu 19082-080, Brazil
| | - Carla Alves Monaco Lourenço
- Faculty of Animal Science and Food Engineering, USP-University of São Paulo, Street Duque de Caxias Norte 225, Pirassununga 13635-900, Brazil
| | - Fernanda Maria Vanin
- Faculty of Animal Science and Food Engineering, USP-University of São Paulo, Street Duque de Caxias Norte 225, Pirassununga 13635-900, Brazil
| | - Cristiana Maria Pedroso Yoshida
- Institute of Environmental, Chemical and Pharmaceutical Sciences, UNIFESP-Federal University of São Paulo, Rua São Nicolau 210, Diadema 09913-030, Brazil
| | - Rosemary Aparecida de Carvalho
- Faculty of Animal Science and Food Engineering, USP-University of São Paulo, Street Duque de Caxias Norte 225, Pirassununga 13635-900, Brazil
| |
Collapse
|
46
|
Liu YQ, Song QW, Mo CR, Yu WW, Hu CY. Effect of neutralization treatment on properties of chitosan/bamboo leaf flavonoids/nano-metal oxide composite films and application of films in antioxidation of rapeseed oil. Int J Biol Macromol 2023; 242:124951. [PMID: 37211071 DOI: 10.1016/j.ijbiomac.2023.124951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Neutralization treatment improved the slow-release antioxidant food packaging function of chitosan (CS)/bamboo leaf flavone (BLF)/nano-metal oxides composite films. The film cast from the CS composite solution neutralized by KOH solution had good thermal stability. The elongation at break of the neutralized CS/BLF film was increased by about 5 times, which provided the possibility for its packaging application. After 24 h of soaking in different pH solutions, the unneutralized films swelled severely and even dissolved, while the neutralized films maintained the basic structure with a small degree of swelling, and the release trend of BLF conformed to the logistic function (R2 ≥ 0.9186). The films had a good ability to resist free radicals, which was related to the release amount of BLF and the pH of the solution. The antimicrobial neutralized CS/BLF/nano-ZnO film, like the nano-CuO and Fe3O4 films, were effective in inhibiting the increase in peroxide value and 2-thiobarbituric acid induced by thermal oxygen oxidation of rapeseed oil and had no toxicity to normal human gastric epithelial cells. Therefore, the neutralized CS/BLF/nano-ZnO film is likely to become an active food packaging material for oil-packed food, which can prolong the shelf life of packaged food.
Collapse
Affiliation(s)
- Yi-Qi Liu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China
| | - Qiao-Wei Song
- Packaging Engineering Institute, Jinan University, Qianshan Road 206, Zhuhai, Guangdong 519070, China
| | - Chun-Ru Mo
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China
| | - Wen-Wen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China
| | - Chang-Ying Hu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, Guangdong, China.
| |
Collapse
|
47
|
Adımcılar V, Kalaycıoğlu Z, Akın-Evingür G, Torlak E, Erim FB. Comparative physical, antioxidant, and antimicrobial properties of films prepared by dissolving chitosan in bioactive vinegar varieties. Int J Biol Macromol 2023; 242:124735. [PMID: 37169044 DOI: 10.1016/j.ijbiomac.2023.124735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Solvent casting following the dissolution of chitosan in aqueous acetic acid is the most widely used method for preparing chitosan films. In this study, an economical and practical way is proposed to improve the physicochemical properties of chitosan films by using vinegar varieties both as solvents and as bioactive additives to improve the properties of the films. Chitosan films were prepared by dissolving chitosan in pomegranate, grape, apple, and hawthorn vinegar. Vinegar contains bioactive phenolics and different organic acids together with acetic acid, depending on the main raw material from which it is obtained. The films' mechanical, optical properties, antioxidant and antimicrobial activities were compared with each other and with the chitosan film prepared by dissolving chitosan in acetic acid. The antioxidant and antimicrobial properties of chitosan films prepared with vinegar increased. The use of vinegar as a solvent increased the UV light barrier properties of the films. Improved antimicrobial, antioxidant, optical, and elastic properties of films prepared by dissolving chitosan in vinegar varieties are promising in applications of these films as potential and economic food packaging materials.
Collapse
Affiliation(s)
- Veselina Adımcılar
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkey
| | - Zeynep Kalaycıoğlu
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkey
| | - Gülşen Akın-Evingür
- Piri Reis University, Department of Industrial Engineering, Tuzla, Istanbul, Turkey
| | - Emrah Torlak
- Necmettin Erbakan University, Department of Molecular Biology and Genetics, Konya, Turkey
| | - F Bedia Erim
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul, Turkey.
| |
Collapse
|
48
|
Geng C, Liu X, Ma J, Ban H, Bian H, Huang G. High strength, controlled release of curcumin-loaded ZIF-8/chitosan/zein film with excellence gas barrier and antibacterial activity for litchi preservation. Carbohydr Polym 2023; 306:120612. [PMID: 36746592 DOI: 10.1016/j.carbpol.2023.120612] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Polysaccharide films containing protein additives have good application prospects in agriculture and food field. However, interfacial incompatibility between hydrophobic proteins and hydrophilic polymers remains a major technical challenge. In this work, the interfacial compatibility between hydrophobic zein and hydrophilic chitosan (CS) is improved by the chemical crosslinking between zinc ions of curcumin-loaded zeolitic imidazolate framework-8 (Cur-ZIF-8) with CS and zein. With the improvement of interface compatibility, the results show that the elongation at break and O2 barrier property of synthesized Cur-ZIF-8/CS/Zein are 9.2 and 1.5 times higher than CS/Zein, respectively. And the Cur-ZIF-8/CS/Zein exhibits superior antibacterial and antioxidant properties as well. Importantly, Cur-ZIF-8/CS/Zein can also be used as an intelligent-responsive release platform for curcumin. As a result, Cur-ZIF-8/CS/Zein can keep the freshness and appearance of litchi at least 8 days longer than that of CS/Zein. Therefore, this study provides a novel method to improve the interfacial compatibility between hydrophobic proteins and hydrophilic polymers, and is expected to expand the application of protein/polymer composites in agriculture and food field.
Collapse
Affiliation(s)
- Chao Geng
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Xueying Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Jinlian Ma
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Haina Ban
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Hedong Bian
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Guohuan Huang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
49
|
Vidal CP, Velásquez E, Gavara R, Hernández-Muñoz P, Muñoz-Shugulí C, José Galotto M, de Dicastillo CL. Modeling the release of an antimicrobial agent from multilayer film containing coaxial electrospun polylactic acid nanofibers. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
50
|
Nano-chitin: Preparation strategies and food biopolymer film reinforcement and applications. Carbohydr Polym 2023; 305:120553. [PMID: 36737217 DOI: 10.1016/j.carbpol.2023.120553] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Current trends in food packaging systems are toward biodegradable polymer materials, especially the food biopolymer films made from polysaccharides and proteins, but they are limited by mechanical strength and barrier properties. Nano-chitin has great economic value as a highly efficient functional and reinforcing material. The combination of nano-chitin and food biopolymers offers good opportunities to prepare biodegradable packaging films with enhanced physicochemical and functional properties. This review aims to give the latest advances in nano-chitin preparation strategies and its uses in food biopolymer film reinforcement and applications. The first part systematically introduces various preparation methods for nano-chitin, including chitin nanofibers (ChNFs) and chitin nanocrystals (ChNCs). The nano-chitin reinforced biodegradable films based on food biopolymers, such as polysaccharides and proteins, are described in the second part. The last part provides an overview of the current applications of nano-chitin reinforced food biopolymer films in the food industry.
Collapse
|