1
|
Karthick V, Zahir AA, Amalraj S, Rahuman AA, Anbarasan K, Santhoshkumar T. Sustained release of nano-encapsulated glimepiride drug with chitosan nanoparticles: A novel approach to control type 2 diabetes in streptozotocin-induced Wistar albino rats. Int J Biol Macromol 2024; 287:138496. [PMID: 39647738 DOI: 10.1016/j.ijbiomac.2024.138496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
The objective of the present study was to encapsulate the effective antidiabetic glimepiride (GLM) drug with biodegradable chitosan nanoparticles (CS NPs) in order to reduce the risk of side effects, regulate and improve alternatives to therapy for people with type 2 Diabetes mellitus. The characterizations of the encapsulated EGLM-CS NPs were published in a previous paper. In continuation of the past study, here we report the in vitro and in vivo activities of EGLM-CS NPs in streptozotocin-induced diabetes Wistar albino rats orally treated for 28 days. Based on our results, the in vitro 3 T3-L1 cell lines observed that the highest concentration of 500 μg/mL exhibited 91.48 % cell viability after 24 h of treatment. The in vivo results of the EGLM-CS NPs treated rats group showed gradual control of the blood glucose level at 90 and 120 min compared to other groups because the drug showed a sustained release mechanism. A significant difference was observed in serum lipid profiles between diabetic treated and control rats. It is believed that the CS NPs served as a carrier system for the GLM drug, protected it from degradation, and enhanced its solubility as well as bioavailability. After 28 days of treatment, all the animal groups organs (pancreas, liver, and kidney) were dissected for histopathological analysis. The EGLM-CS NPs treated group displayed regeneration cells of the islets of Langerhans in the pancreas and normal cellular size with hyperplasia. The therapeutic potential was observed by the liver and kidney from rats reveals few tubule necrosis, improved bioavailability as compared to pure GLM drug treated rats. Hence, our formulated NPs are safe, no toxic effect on the vital organs, which will be helpful to improve the lives of diabetic patients and contribute to the overall health of the individuals.
Collapse
Affiliation(s)
- Venkatesan Karthick
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam - 632 509, Ranipet District (Affiliated to Thiruvalluvar University, Vellore), Tamil Nadu, India
| | - Abdul Abduz Zahir
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam - 632 509, Ranipet District (Affiliated to Thiruvalluvar University, Vellore), Tamil Nadu, India.
| | - Singamoorthy Amalraj
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences (Autonomous), Kalamaserry, Kochi 683104, Kerala, India
| | - Abdul Abdul Rahuman
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam - 632 509, Ranipet District (Affiliated to Thiruvalluvar University, Vellore), Tamil Nadu, India
| | - Karunanithi Anbarasan
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam - 632 509, Ranipet District (Affiliated to Thiruvalluvar University, Vellore), Tamil Nadu, India
| | - Thirunavukkarasu Santhoshkumar
- Unit of Nanotechnology and Bioactive Natural Products, Post Graduate and Research Department of Zoology, C. Abdul Hakeem College (Autonomous), Melvisharam - 632 509, Ranipet District (Affiliated to Thiruvalluvar University, Vellore), Tamil Nadu, India
| |
Collapse
|
2
|
Xia H, Wang X, Li J, Li J, Man J. Fabrication of Ca-alginate microspheres by diffusion-induced gelation in double emulsion droplets for oral insulin. Int J Biol Macromol 2024; 277:134141. [PMID: 39053823 DOI: 10.1016/j.ijbiomac.2024.134141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Sodium alginate has good biocompatibility and is widely used in the study of drug carriers. In this paper, a method to prepare calcium alginate microspheres with high sphericity based on double emulsion droplets was proposed, in which sodium alginate is used as the innermost phase. By adjusting the density of the system, the double-emulsion droplets could be suspended in the collecting solution, leading to the homogeneous reaction between the sodium alginate droplets and the calcium ions. By changing the flow rate, the size of the droplets could be changed, and by changing the concentration of calcium ions in the collecting solution, the sphericity of the calcium alginate microspheres could be changed. Then the swelling properties and drug release properties of calcium alginate microspheres were determined. The drug delivery study revealed that the insulin-loaded Ca-Alginate microspheres were able to decrease blood glucose by 41.4 % after oral administration to mice. Thus, the Ca-Alginate microsphere is a suitable candidate for controlled pH-sensitive drug delivery.
Collapse
Affiliation(s)
- He Xia
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Xiaojie Wang
- Department of Pharmacology, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| |
Collapse
|
3
|
Silant’ev VE, Belousov AS, Trukhin FO, Struppul NE, Shmelev ME, Patlay AA, Shatilov RA, Kumeiko VV. Rational Design of Pectin-Chitosan Polyelectrolyte Nanoparticles for Enhanced Temozolomide Delivery in Brain Tumor Therapy. Biomedicines 2024; 12:1393. [PMID: 39061967 PMCID: PMC11273711 DOI: 10.3390/biomedicines12071393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Conventional chemotherapeutic approaches currently used for brain tumor treatment have low efficiency in targeted drug delivery and often have non-target toxicity. Development of stable and effective drug delivery vehicles for the most incurable diseases is one of the urgent biomedical challenges. We have developed polymer nanoparticles (NPs) with improved temozolomide (TMZ) delivery for promising brain tumor therapy, performing a rational design of polyelectrolyte complexes of oppositely charged polysaccharides of cationic chitosan and anionic pectin. The NPs' diameter (30 to 330 nm) and zeta-potential (-29 to 73 mV) varied according to the initial mass ratios of the biopolymers. The evaluation of nanomechanical parameters of native NPs demonstrated changes in Young's modulus from 58 to 234 kPa and adhesion from -0.3 to -3.57 pN. Possible mechanisms of NPs' formation preliminary based on ionic interactions between ionogenic functional groups were proposed by IR spectroscopy and dynamic rheology. The study of the parameters and kinetics of TMZ sorption made it possible to identify compounds that most effectively immobilize and release the active substance in model liquids that simulate the internal environment of the body. A polyelectrolyte carrier based on an equal ratio of pectin-chitosan (0.1% by weight) was selected as the most effective for the delivery of TMZ among a series of obtained NPs, which indicates a promising approach to the treatment of brain tumors.
Collapse
Affiliation(s)
- Vladimir E. Silant’ev
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
- Laboratory of Electrochemical Processes, Institute of Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Andrei S. Belousov
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Fedor O. Trukhin
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Nadezhda E. Struppul
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Mikhail E. Shmelev
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Aleksandra A. Patlay
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Roman A. Shatilov
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
| | - Vadim V. Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia; (A.S.B.); (F.O.T.); (N.E.S.); (M.E.S.); (A.A.P.); (R.A.S.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
4
|
Stoleru OA, Burlec AF, Mircea C, Felea MG, Macovei I, Hăncianu M, Corciovă A. Multiple nanotechnological approaches using natural compounds for diabetes management. J Diabetes Metab Disord 2024; 23:267-287. [PMID: 38932892 PMCID: PMC11196251 DOI: 10.1007/s40200-023-01376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/18/2023] [Indexed: 06/28/2024]
Abstract
Objectives Diabetes mellitus (DM) is a long-standing and non-transmissible endocrine disease that generates significant clinical issues and currently affects approximately 400 million people worldwide. The aim of the present review was to analyze the most relevant and recent studies that focused on the potential application of plant extracts and phytocompounds in nanotechnology for the treatment of T2DM. Methods Various databases were examined, including Springer Link, Google Scholar, PubMed, Wiley Online Library, and Science Direct. The search focused on discovering the potential application of nanoparticulate technologies in enhancing drug delivery of phytocompounds for the mentioned condition. Results Several drug delivery systems have been considered, that aimed to reduce adverse effects, while enhancing the efficiency of oral antidiabetic medications. Plant-based nanoformulations have been highlighted as an innovative approach for DM treatment due to their eco-friendly and cost-effective synthesis methods. Their benefits include targeted action, enhanced availability, stability, and reduced dosage frequency. Conclusions Nanomedicine has opened new opportunities for the diagnosis, treatment, and prevention of DM. The use of nanomaterials has demonstrated improved outcomes for both T1DM and T2DM. Notably, flavonoids, including substances such as quercetin, naringenin and myricitrin, have been recognized for their enhanced efficacy when delivered through novel nanotechnologies in preventing T2DM onset and associated complications. The perspectives on the addressed subject point to the development of more nanostructured phytocompounds with improved bioavailability and therapeutic efficacy.
Collapse
Affiliation(s)
- Ozana Andreea Stoleru
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ana Flavia Burlec
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maura Gabriela Felea
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Irina Macovei
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Monica Hăncianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreia Corciovă
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
5
|
Soomro MA, Khan S, Majid A, Bhatti S, Perveen S, Phull AR. Pectin as a biofunctional food: comprehensive overview of its therapeutic effects and antidiabetic-associated mechanisms. DISCOVER APPLIED SCIENCES 2024; 6:298. [DOI: 10.1007/s42452-024-05968-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/15/2024] [Indexed: 07/06/2024]
Abstract
AbstractPectin is a complex polysaccharide found in a variety of fruits and vegetables. It has been shown to have potential antidiabetic activity along with other biological activities, including cholesterol-lowering properties, antioxidant activity, anti-inflammatory and immune-modulatory effects, augmented healing of diabetic foot ulcers and other health benefits. There are several pectin-associated antidiabetic mechanisms, such as the regulation of glucose metabolism, reduction of oxidative stress, increased insulin sensitivity, appetite suppression and modulation of the gut microbiome. Studies have shown that pectin supplementation has antidiabetic effects in different animal models and in vitro. In human studies, pectin has been found to have a positive effect on blood glucose control, particularly in individuals with type 2 diabetes. Pectin also shows synergistic effects by enhancing the potency and efficacy of antidiabetic drugs when taken together. In conclusion, pectin has the potential to be an effective antidiabetic agent. However, further research is needed to fully understand its detailed molecular mechanisms in various animal models, functional food formulations and safety profiles for the treatment and management of diabetes and associated complications in humans. The current study was carried out to provide the critical approach towards therapeutical potential, anti-diabetic potential and underlying molecular mechanisms on the basis of existing knowledge.
Collapse
|
6
|
Zhou S, Zhang W, Han X, Liu J, Asemi Z. The present state and future outlook of pectin-based nanoparticles in the stabilization of Pickering emulsions. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 38733326 DOI: 10.1080/10408398.2024.2351163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
The stabilization of Pickering emulsions using micro/nanoparticles has gained significant attention due to their wide range of potential applications in industries such as cosmetics, food, catalysis, tissue engineering, and drug delivery. There is a growing demand for the development of environmentally friendly micro/nanoparticles to create stable Pickering emulsions. Naturally occurring polysaccharides like pectin offer promising options as they can assemble at oil/water interfaces. This polysaccharide is considered a green candidate because of its biodegradability and renewable nature. The physicochemical properties of micro/nanoparticles, influenced by fabrication methods and post-modification techniques, greatly impact the characteristics and applications of the resulting Pickering emulsions. This review focuses on recent advancements in Pickering emulsions stabilized by pectin-based micro/nanoparticles, as well as the application of functional materials in delivery systems, bio-based films and 3D printing using these emulsions as templates. The effects of micro/nanoparticle properties on the characteristics of Pickering emulsions and their applications are discussed. Additionally, the obstacles that currently hinder the practical implementation of pectin-based micro/nanoparticles and Pickering emulsions, along with future prospects for their development, are addressed.
Collapse
Affiliation(s)
- Shengxue Zhou
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Wei Zhang
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
| | - Xiao Han
- Jilin Jinziyuan Biotechnology Co., Ltd, Shuangliao, Jilin, China
| | - Jinhui Liu
- College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, China
- Huashikang (Shenyang) Health Industry Group Co., Ltd, Shenyang, Liaoning, China
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R, Iran
| |
Collapse
|
7
|
Jain N, Singh Y, Nouri A, Garg U, Pandey M. Assessment of healing capacity of glucose-responsive smart gels on the diabetic wound: A comprehensive review. J Drug Deliv Sci Technol 2024; 93:105403. [DOI: 10.1016/j.jddst.2024.105403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Jain A, Dawre S. A Comprehensive Review on Prospects of Polymeric Nanoparticles for Treatment of Diabetes Mellitus: Receptors-Ligands, In vitro & In vivo Studies. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:457-478. [PMID: 37534486 DOI: 10.2174/1872210517666230803091245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023]
Abstract
As per International Diabetes Federation Report 2022, worldwide diabetes mellitus (DM) caused 6.7M moralities and ~537M adults suffering from diabetes mellitus. It is a chronic condition due to β-cell destruction or insulin resistance that leads to insulin deficiency. This review discusses Type-1 DM and Type-2 DM pathophysiology in detail, with challenges in management and treatment. The toxicity issues of conventional drugs and insulin injections are complex to manage. Thus, there is a need for technological intervention. In recent years, nanotechnology has found a fruitful advancement of novel drug delivery systems that might potentially increase the efficacy of anti-diabetic drugs. Amongst nano-formulations, polymeric nanoparticles have been studied to enhance the bioavailability and efficacy of anti-diabetic drugs and insulin. In the present review, we summarized polymeric nanoparticles with different polymers utilized to deliver anti-diabetic drugs with in vitro and in vivo studies. Furthermore, this review also includes the role of receptors and ligands in diabetes mellitus and the utilization of receptor-ligand interaction to develop targeted nanoparticles. Additionally, we discussed the utility of nanoparticles for the delivery of phytoconstituents which aids in protecting the oxidative stress generated during diabetes mellitus. Atlast, this article also comprises of numerous patents that have been filed or granted for the delivery of antidiabetic and anticancer molecules for the treatment of diabetes mellitus and pancreatic cancer.
Collapse
Affiliation(s)
- Arinjay Jain
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMS, NMIMS, Babulde Banks of Tapi River, Mumbai-Agra Road, Shirpur, Maharashtra, 425405, India
| | - Shilpa Dawre
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMS, NMIMS, Babulde Banks of Tapi River, Mumbai-Agra Road, Shirpur, Maharashtra, 425405, India
| |
Collapse
|
9
|
Vazquez-Ayala L, Del Ángel-Olarte C, Escobar-García DM, Rosales-Mendoza S, Solis-Andrade I, Pozos-Guillén A, Palestino G. Chitosan sponges loaded with metformin and microalgae as dressing for wound healing: A study in diabetic bio-models. Int J Biol Macromol 2024; 254:127691. [PMID: 37898249 DOI: 10.1016/j.ijbiomac.2023.127691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Among the conditions caused by diabetes, the diabetic foot is a significant public health problem due to its delayed healing process. That makes it essential to design, manufacture, and apply auxiliary dressings during healing. In this work, chitosan sponges were developed and evaluated as wound dressings. Metformin, fucoidan, and exopolysaccharide from Porphyridium purpureum algae were loaded into the sponges and studied as healing promoters. The composite sponges were physicochemically, morphologically, and thermally characterized, allowing us to determine the chemical mechanisms involved in the sponge formation. The mechanical analysis demonstrated that sponge composites have shape memory and good mechanical performance under compression stress, showing a compressive strength above 30 kPa. These results correlated with the materials' porosity, influencing the swelling capacity that reached a maximum of 70 %. The morphology of materials was observed by SEM, resulting in folded films with surface porosity. The results of the biocompatibility tests confirmed that the materials are not cytotoxic or hemolytic and have good antibacterial activity. In vivo wound healing evaluation showed that metformin-loaded chitosan sponges regenerated skin tissue after 21 days of treatment, highlighting the rate of healing provided when exopolysaccharide was added to promote tissue regeneration, which can be corroborated by histological analysis. These results make chitosan sponge compounds promising dressings for diabetic foot wound treatment.
Collapse
Affiliation(s)
- Laura Vazquez-Ayala
- Grupo de Biopolímeros y Nanoestructuras, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a. sección, San Luis Potosí 78210, Mexico
| | - César Del Ángel-Olarte
- Grupo de Biopolímeros y Nanoestructuras, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico
| | - Diana María Escobar-García
- Laboratorio de Ciencias Básicas, Universidad Autónoma de San Luis Potosí, Facultad de Estomatología, Av. Dr. Manuel Nava No. 2, San Luis Potosí 78290, Mexico
| | - Sergio Rosales-Mendoza
- Grupo de Biopolímeros y Nanoestructuras, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a. sección, San Luis Potosí 78210, Mexico
| | - Ivon Solis-Andrade
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a. sección, San Luis Potosí 78210, Mexico
| | - Amaury Pozos-Guillén
- Laboratorio de Ciencias Básicas, Universidad Autónoma de San Luis Potosí, Facultad de Estomatología, Av. Dr. Manuel Nava No. 2, San Luis Potosí 78290, Mexico
| | - Gabriela Palestino
- Grupo de Biopolímeros y Nanoestructuras, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a. sección, San Luis Potosí 78210, Mexico.
| |
Collapse
|
10
|
Kim DK, Park JY, Kang YJ, Khang D. Drug Repositioning of Metformin Encapsulated in PLGA Combined with Photothermal Therapy Ameliorates Rheumatoid Arthritis. Int J Nanomedicine 2023; 18:7267-7285. [PMID: 38090362 PMCID: PMC10711299 DOI: 10.2147/ijn.s438388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Purpose Rheumatoid arthritis (RA) is a highly prevalent form of autoimmune disease that affects nearly 1% of the global population by causing severe cartilage damage and inflammation. Despite its prevalence, previous efforts to prevent the perpetuation of RA have been hampered by therapeutics' cytotoxicity and poor delivery to target cells. The present study exploited drug repositioning and nanotechnology to convert metformin, a widely used antidiabetic agent, into an anti-rheumatoid arthritis drug by designing poly(lactic-co-glycolic acid) (PLGA)-based spheres. Moreover, this study also explored the thermal responsiveness of the IL-22 receptor, a key regulator of Th-17, to incorporate photothermal therapy (PTT) into the nanodrug treatment. Materials and Methods PLGA nanoparticles were synthesized using the solvent evaporation method, and metformin and indocyanine green (ICG) were encapsulated in PLGA in a dropwise manner. The nanodrug's in vitro anti-inflammatory properties were examined in J744 and FLS via real-time PCR. PTT was induced by an 808 nm near-infrared (NIR) laser, and the anti-RA effects of the nanodrug with PTT were evaluated in DBA/1 collagen-induced arthritis (CIA) mice models. Further evaluation of anti-RA properties was carried out using flow cytometry, immunofluorescence analysis, and immunohistochemical analysis. Results The encapsulation of metformin into PLGA allowed the nanodrug to enter the target cells via macropinocytosis and clathrin-mediated endocytosis. Metformin-encapsulated PLGA (PLGA-MET) demonstrated promising anti-inflammatory effects by decreasing the expression of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), increasing the expression of anti-inflammatory cytokines (IL-10 and IL-4), and promoting the polarization of M1 to M2 macrophages in J774 cells. The treatment of the nanodrug with PTT exhibited more potent anti-inflammatory effects than free metformin or PLGA-MET in CIA mice models. Conclusion These results demonstrated that PLGA-encapsulated metformin treatment with PTT can effectively ameliorate inflammation in a spatiotemporal manner.
Collapse
Affiliation(s)
- Dae Kyu Kim
- Deparment of Biochemistry, Bowdoin College, Brunswick, ME, 04011, USA
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Jun Young Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
| | - Youn Joo Kang
- Department of Rehabilitation Medicine, Nowon Eulji Medical Center, Eulji University School of Medicine, Seoul, 01830, South Korea
| | - Dongwoo Khang
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea
- Department of Physiology, School of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
11
|
Kuzmanović Nedeljković S, Radan M, Ćujić Nikolić N, Mutavski Z, Krgović N, Marković S, Stević T, Živković J, Šavikin K. Microencapsulated Bilberry and Chokeberry Leaf Extracts with Potential Health Benefits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3979. [PMID: 38068615 PMCID: PMC10707773 DOI: 10.3390/plants12233979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 04/12/2024]
Abstract
The aim of the research was to develop microencapsulated powders of bilberry and chokeberry extracts via the spray drying technique. Two biopolymers, pectin alone and in combination with HP-β-CD, were used to preserve the antioxidant, hypoglycemic, photoprotective, and antimicrobial bioactivity of the berry leaf extracts. Moreover, the formed powders were characterized in terms of technological, chemical, and several biological properties. The obtained micro-sized powders (mean average particle diameter from 3.83 to 5.94 µm) demonstrated a process yield of up to 73%. The added biopolymers improved the flowability and cohesive properties of the powders and increased their thermal stability to 170 °C. The total content of polyphenolics in the powders ranged from 323.35 to 367.76 mg GAE/g DW for bilberry and from 186.85 to 227.59 mg GAE/g DW for chokeberry powders; meanwhile, chlorogenic acid was the predominant compound in powders. All samples showed stronger α-glucosidase inhibitory activity (IC50 values ranged from 5.00 to 19.59 µg/mL) compared with the reference standard. The study confirmed that spray drying is a suitable method for the preservation of the polyphenolic-rich extracts, while the addition of carriers has a positive effect on the improvement of microencapsulated powders' properties.
Collapse
Affiliation(s)
| | - Milica Radan
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Nada Ćujić Nikolić
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Zorana Mutavski
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Nemanja Krgović
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Smilja Marković
- Institute of Technical Sciences of SASA, Knez Mihailova 35/IV, 11000 Belgrade, Serbia;
| | - Tatjana Stević
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Jelena Živković
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Katarina Šavikin
- Institute for Medicinal Plants Research Dr Josif Pančić, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Chen NX, Su XL, Feng Y, Liu Q, Tan L, Yuan H, Chen Y, Zhao J, Zhao YQ, Dusenge MA, Hu J, Ye Q, Ou-Yang ZY, Zhong MM, Zhang Q, Guo Y, Feng YZ, Peng YB. Chitosan nanoparticles for sustained release of metformin and its derived synthetic biopolymer for bone regeneration. Front Bioeng Biotechnol 2023; 11:1169496. [PMID: 37476483 PMCID: PMC10354276 DOI: 10.3389/fbioe.2023.1169496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Background: There are considerable socioeconomic costs associated with bone defects, making regenerative medicine an increasingly attractive option for treating them. Chitosan is a natural biopolymer; it is used in approaches for sustained slow release and osteogenesis, and metformin has osteoinductivity. Our study aimed to synthesize chitosan and human serum albumin (HSA) with a metformin nanoformulation to evaluate the therapeutic effects of this nanoformulation on bone defects in vitro. Methods: A pluripotent differentiation assay was performed in vitro on mouse bone marrow mesenchymal stem cells (BMSCs). Cell Counting Kit-8 was used to detect whether metformin was toxic to BMSCs. The osteogenesis-related gene expression of osteocalcin (OCN) and osteoprotegerin (OPG) from BMSCs was tested by real-time polymerase chain reaction (PCR). HSA, metformin hydrochloride, and chitosan mixtures were magnetically stirred to finish the assembly of metformin/HSA/chitosan nanoparticles (MHC NPs). The MHC NPs were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and Fourier transform infrared spectroscopy (FT-IR). To test the expression of OCN and OPG, western blot were used. MHC NPs were evaluated in vitro for their osteoinductivity using alkaline phosphatase (ALP). Results: BMSCs successfully differentiated into osteogenic and adipogenic lineages in vitro. According to real-time PCR, a 50 µM concentration of metformin promoted osteogenesis in BMSCs most effectively by upregulating the osteogenic markers OCN and OPG. The microstructure of MHC NPs was spherical with an average nanosize of 20 ± 4.7 nm and zeta potential of -8.3 mV. A blueshift and redshift were observed in MHC NPs following exposure to wavelengths of 1,600-1,900 and 2,000-3,700 nm, respectively. The encapsulation (%) of metformin was more than 90%. The simulation study showed that MHC NPs have good stability and it could release metformin slowly in vitro at room temperature. Upon treatment with the studied MHC NPs for 3 days, ALP was significantly elevated in BMSCs. In addition, the MHC NPs-treated BMSCs upregulated the expression of OPG and OCN, as shown by real-time PCR and western blot. Conclusion: MHC NPs have a stable metformin release effect and osteogenic ability. Therefore, as a derived synthetic biopolymer, it is expected to play a role in bone tissue regeneration.
Collapse
Affiliation(s)
- Ning-Xin Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Lin Su
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Yuan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Meng-Mei Zhong
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong-Bo Peng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, The Key Laboratory of Biochemistry and Molecular Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Kumar D, Binwal M, Bawankule DU, Yadav NP, Rout PK. Modification of novel gymnemic acid enrich extract to Ag-nanoparticles and lipid soluble derivative for the amelioration of insulin impairment in L6 myoblasts. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
14
|
Noreen S, Hasan S, Ghumman SA, Anwar S, Gondal HY, Batool F, Noureen S. Formulation, Statistical Optimization, and In Vivo Pharmacodynamics of Cydonia oblonga Mucilage/Alginate Mucoadhesive Microspheres for the Delivery of Metformin HCl. ACS OMEGA 2023; 8:5925-5938. [PMID: 36816641 PMCID: PMC9933240 DOI: 10.1021/acsomega.2c07789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
In recent years, attention has shifted toward the utilization of natural polymers for encapsulation and sustained release of health-hazardous drugs. The purpose of this work is to define and assess the sustained delivery potential and mucoadhesive potential of a Cydonia oblonga mucilage (COM) and sodium alginate (Na-Alg)-constituting polymeric delivery carrier of antidiabetic drugs with a specific end goal to retain metformin HCl in the stomach while expanding the drug's bioavailability. Metformin HCl was encapsulated in mucoadhesive microspheres by an ionic gelation method. Polymers with different combinations were tried, and the resulting mucoadhesive COM/Na-Alg microspheres were assessed for particle size (mm) PS/Y1, drug encapsulation efficiency DEE (%)/Y2, and in vitro percentage cumulative drug release R12h/Y3 using Drug Design Expert software version 10. The response surface methodology by a 32-central composite design predicted optimal synthesis parameters for the microspheres to be 295 mg for COM and 219 mg for Na-Alg. An optimized formulation was prepared under these conditions and used to evaluate the micrometric properties, morphology and structural characteristics, swelling behavior, in vitro drug release, and kinetics. Acute toxicity studies were carried out on blank COM/Na-Alg microspheres to deem them safe for in vivo studies. The DEE (%) was calculated to be 85.8 ± 1.67, whereas scanning electron microscopy (SEM) showed a coarse surface with characteristic wrinkles and cracks with an optical microscopic particle size of 0.96 ± 2.45. The ex vivo tests showed great mucoadhesive properties and good swelling behavior with pH-responsive drug release and a significant reduction in in vivo blood glucose levels. The results advocated the use of optimized microspheres to enhance the bioactivity with a possible dose reduction, making it less symptomatic, reducing the expense of the treatment, and subsequently facilitating better patient compliance.
Collapse
Affiliation(s)
- Sobia Noreen
- Institute
of Chemistry, University of Sargodha, Sargodha40100, Pakistan
| | - Sara Hasan
- Institute
of Chemistry, University of Sargodha, Sargodha40100, Pakistan
- Department
of Chemistry, The University of Lahore, Sargodha Campus, Sargodha40100, Pakistan
| | | | - Shoaib Anwar
- Institute
of Chemistry, University of Sargodha, Sargodha40100, Pakistan
| | | | - Fozia Batool
- Institute
of Chemistry, University of Sargodha, Sargodha40100, Pakistan
| | - Shazia Noureen
- Institute
of Chemistry, University of Sargodha, Sargodha40100, Pakistan
| |
Collapse
|
15
|
Lu W, Yu L, Wang L, Liu S, Li M, Wu Z, Chen S, Hu R, Hao H. Metformin Hydrochloride Mucosal Nanoparticles-Based Enteric Capsule for Prolonged Intestinal Residence Time, Improved Bioavailability, and Hypoglycemic Effect. AAPS PharmSciTech 2022; 24:31. [PMID: 36577873 DOI: 10.1208/s12249-022-02402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 12/29/2022] Open
Abstract
Metformin hydrochloride enteric-coated capsule (MH-EC) is a commonly used clinical drug for the treatment of type 2 diabetes. In this study, we described a metformin hydrochloride mucosal nanoparticles enteric-coated capsule (MH-MNPs-EC) based on metformin hydrochloride chitosan mucosal nanoparticles (MH-CS MNPs) and its preparation method to improve the bioavailability and hypoglycemic effect duration of MH-EC. In intestinal adhesion study, the residue rates of free drugs and mucosal nanoparticles were 10.52% and 67.27%, respectively after cleaned with PBS buffer. MH-CS MNPs could significantly improve the efficacy of MH and promote the rehabilitation of diabetes rats. In vitro release test of MH-MNPs-EC showed continuous release over 12 h, while commercial MH-EC released completely within about 1 h in intestinal environment (pH 6.8). Pharmacokinetic study was performed in beagle dogs compared to the commercial MH-EC. The durations of blood MH concentration above 2 μg/mL were 9 h for MH-MNPs-EC versus 2 h for commercial MH-EC. The relative bioavailability of MH-MNPs-EC was determined as 185.28%, compared with commercial MH-EC. In conclusion, MH-CS MNPs have good intestinal adhesion and can significantly prolong the residence time of MH in the intestine. MH-MNPs-EC has better treatment effect compared with MH-EC, and it is expected to be a potential drug product for the treatment of diabetes because of its desired characteristics.
Collapse
Affiliation(s)
- Wenjie Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Lingfei Yu
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Lujun Wang
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Songlin Liu
- Anhui Huangshan Capsule Co. Ltd., Huangshan, 242700, Anhui, China
| | - Manman Li
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Zijun Wu
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Shengqi Chen
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
| | - Rongfeng Hu
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
| | - Haiping Hao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
16
|
Panigrahy SK, Kumar A. Biopolymeric nanocarrier: an auspicious system for oral delivery of insulin. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2145-2164. [PMID: 35773232 DOI: 10.1080/09205063.2022.2096527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Subcutaneous administration of insulin has been practiced for the clinical supervision of diabetes pathogenesis but it is often ineffective to imitate the glucose homeostasis and is always invasive. Therefore, it causes patient discomfort and infection of local tissue. These issues lead to finding an alternative route for insulin delivery that could be effective, promising, and non-invasive. However, delivery of insulin orally is the most suitable route but the rapid breakdown of insulin by the gastrointestinal enzymes becomes a major barrier to this method. Therefore, nanocarriers (which guard insulin against degradation and facilitate its uptake) are preferred for oral insulin delivery. Among various categories of nanocarriers, bio-polymeric nanocarriers draw special attention owing to their hydrophilic, non-toxic, and biodegradable nature. This review provides a detailed overview of insulin-loaded biopolymer-based nanocarriers, which give future direction in the optimization and development of a clinically functional formulation for their effective and safe delivery.
Collapse
Affiliation(s)
- Suchitra Kumari Panigrahy
- Department of Biotechnology, Guru GhasidasVishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, India
| |
Collapse
|
17
|
Natural Polysaccharide-Based Nanodrug Delivery Systems for Treatment of Diabetes. Polymers (Basel) 2022; 14:polym14153217. [PMID: 35956731 PMCID: PMC9370904 DOI: 10.3390/polym14153217] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, natural polysaccharides have been considered as the ideal candidates for novel drug delivery systems because of their good biocompatibility, biodegradation, low immunogenicity, renewable source and easy modification. These natural polymers are widely used in the designing of nanocarriers, which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. A great deal of studies could be focused on developing polysaccharide nanoparticles and promoting their application in various fields, especially in biomedicine. In this review, a variety of polysaccharide-based nanocarriers were introduced, including nanoliposomes, nanoparticles, nanomicelles, nanoemulsions and nanohydrogels, focusing on the latest research progress of these nanocarriers in the treatment of diabetes and the possible strategies for further study of polysaccharide nanocarriers.
Collapse
|
18
|
Alqosaibi AI. Nanocarriers for anticancer drugs: Challenges and perspectives. Saudi J Biol Sci 2022; 29:103298. [PMID: 35645591 PMCID: PMC9130109 DOI: 10.1016/j.sjbs.2022.103298] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/12/2022] [Accepted: 04/17/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer is the second most common cause of death globally, surpassed only by cardiovascular disease. One of the hallmarks of cancer is uncontrolled cell division and resistance to cell death. Multiple approaches have been developed to tackle this disease, including surgery, radiotherapy and chemotherapy. Although chemotherapy is used primarily to control cell division and induce cell death, some cancer cells are able to resist apoptosis and develop tolerance to these drugs. The side effects of chemotherapy are often overwhelming, and patients can experience more adverse effects than benefits. Furthermore, the bioavailability and stability of drugs used for chemotherapy are crucial issues that must be addressed, and there is therefore a high demand for a reliable delivery system that ensures fast and accurate targeting of treatment. In this review, we discuss the different types of nanocarriers, their properties and recent advances in formulations, with respect to relevant advantages and disadvantages of each.
Collapse
Affiliation(s)
- Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| |
Collapse
|
19
|
Allawadhi P, Singh V, Govindaraj K, Khurana I, Sarode LP, Navik U, Banothu AK, Weiskirchen R, Bharani KK, Khurana A. Biomedical applications of polysaccharide nanoparticles for chronic inflammatory disorders: Focus on rheumatoid arthritis, diabetes and organ fibrosis. Carbohydr Polym 2022; 281:118923. [PMID: 35074100 DOI: 10.1016/j.carbpol.2021.118923] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022]
Abstract
Polysaccharides are biopolymers distinguished by their complex secondary structures executing various roles in microorganisms, plants, and animals. They are made up of long monomers of similar type or as a combination of other monomeric chains. Polysaccharides are considered superior as compared to other polymers due to their diversity in charge and size, biodegradability, abundance, bio-compatibility, and less toxicity. These natural polymers are widely used in designing of nanoparticles (NPs) which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. The side chain reactive groups of polysaccharides are advantageous for functionalization with nanoparticle-based conjugates or therapeutic agents such as small molecules, proteins, peptides and nucleic acids. Polysaccharide NPs show excellent pharmacokinetic and drug delivery properties, facilitate improved oral absorption, control the release of drugs, increases in vivo retention capability, targeted delivery, and exert synergistic effects. This review updates the usage of polysaccharides based NPs particularly cellulose, chitosan, hyaluronic acid, alginate, dextran, starch, cyclodextrins, pullulan, and their combinations with promising applications in diabetes, organ fibrosis and arthritis.
Collapse
Affiliation(s)
- Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Kannan Govindaraj
- Department of Developmental BioEngineering, Technical Medicine Centre, University of Twente, Enschede, the Netherlands
| | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India.
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
20
|
Bouriche S, Alonso-García A, Cárceles-Rodríguez CM, Rezgui F, Fernández-Varón E. An in vivo pharmacokinetic study of metformin microparticles as an oral sustained release formulation in rabbits. BMC Vet Res 2021; 17:315. [PMID: 34563196 PMCID: PMC8467142 DOI: 10.1186/s12917-021-03016-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 09/03/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Metformin hydrochloride is a biguanide derivative that has been widely used to treat type 2 diabetes in humans. In veterinary medicine, metformin has shown increasing potential for diabetes treatment in different species, such as equids, dogs, cats and rabbits. It is highly hydrophilic, with incomplete gastrointestinal absorption and very large variability in absolute bioavailability between species, ranging from 4% in equids to 60% in humans. Metformin also shows a short half-life of approximately 2 h in dogs, cats, horses and humans. The objectives of this study were to evaluate a poly (lactic acid) (PLA) metformin microparticle formulation to test in rabbits and conduct a pharmacokinetics study of intravenous (SIV) and oral solution (SPO) metformin administration and oral PLA microparticle (SPLA) administration to rabbits to evaluate the improvement in the metformin pharmacokinetics profile. RESULTS Metformin-loaded PLA microparticles were characterized by a spherical shape and high encapsulation efficiency. The results from Fourier transform infrared (FTIR) spectroscopy suggested the presence of interactions between metformin and PLA. X-Ray diffraction (XRD) analysis corroborated the results from the differential scanning calorimetry (DSC) studies, showing that metformin is present in an amorphous state within the microparticles. Physicochemical characterization suggested that PLA and metformin hydrochloride interacted within the microparticles via hydrogen bonding interactions. The pharmacokinetic study in rabbits showed sustained-release characteristics from the prepared microparticles with a delay in the time needed to reach the maximum concentration (Tmax), decreased Cmax and bioavailability, and increased mean residence time (MRT) and half-life compared to the pure drug solution. CONCLUSIONS Metformin-loaded PLA microparticles showed optimal and beneficial properties in terms of their physicochemical characteristics, making them suitable for use in an in vivo pharmacokinetic study. The pharmacokinetic parameters of the metformin microparticles from the in vivo study showed a shorter Tmax, longer MRT and half-life, decreased Cmax and the prolonged/sustained release expected for metformin. However, the unexpected decrease in bioavailability of metformin from the microparticles with respect to the oral solution should be evaluated for microparticle and dose design in future works, especially before being tested in other animal species in veterinary medicine.
Collapse
Affiliation(s)
- Sihem Bouriche
- Laboratoire des Matériaux Organiques (LMO), Faculté de Technologie, Département de Génie des Procédés, Université de Bejaia, 06000, Bejaia, Algeria.,Department of Pharmacology, Faculty of Veterinary Medicine, Universidad de Murcia, Murcia, Spain
| | - Angela Alonso-García
- Department of Pharmacology, Faculty of Veterinary Medicine, Universidad de Murcia, Murcia, Spain
| | | | - Farouk Rezgui
- Laboratoire des Matériaux Organiques (LMO), Faculté de Technologie, Département de Génie des Procédés, Université de Bejaia, 06000, Bejaia, Algeria
| | - Emilio Fernández-Varón
- Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| |
Collapse
|
21
|
Abdel-Latif AS, Abu-Risha SE, Bakr SM, EL-Kholy WM, EL-Sawi MR. Potassium bromate-induced nephrotoxicity and potential curative role of metformin loaded on gold nanoparticles. Sci Prog 2021; 104:368504211033703. [PMID: 34293965 PMCID: PMC10358642 DOI: 10.1177/00368504211033703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Potassium bromate (KBrO3) is classified by the International Agency for Research on Cancer as a carcinogenic compound, where it causes renal tumors. The present study investigated the potential curative effect of metformin loaded on gold nanoparticles (MET AuNPs) in attenuating KBrO3-induced nephrotoxicity. Rats were divided into eight groups (control, MET, AuNPs, MET AuNPs, KBrO3, KBrO3/MET, KBrO3/AuNPS, and KBrO3/MET AuNPs). KBrO3 administration resulted in a significant elevation in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total protein (TP), albumin (Alb), total bilirubin (TB), direct bilirubin (DB), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), creatinine, urea, uric acid. Also, KBrO3 significantly increased renal malondialdehyde (MDA), protein carbonyl (PC), and nitric oxide (NO) levels and reduced the activities of antioxidant molecules superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and Reduced glutathione (GSH). It also caused damaged DNA spots in comet assay and increased inflammatory IL-6 and apoptotic markers (caspase 3, Bax) while antiapoptotic Bcl-2 was significantly reduced. MET, AuNPS, MET AuNPS reduced the extent of renal damage induced by KBrO3 as indicated by decreased (AST, ALT, ALP, Alb, TP, TB, DB, creatinine, urea, uric, Lipid profile). MET, AuNPS, MET AuNPS showed a good curative effect against KBrO3-induced nephrotoxicity and MET AuNPS group showed better results compared with monotherapy.
Collapse
Affiliation(s)
- Ahmed S Abdel-Latif
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sally E Abu-Risha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Samaa M Bakr
- Department of Zoology, Faculty of Science, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Wafaa M EL-Kholy
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mamdouh R EL-Sawi
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
22
|
Kerry RG, Mahapatra GP, Maurya GK, Patra S, Mahari S, Das G, Patra JK, Sahoo S. Molecular prospect of type-2 diabetes: Nanotechnology based diagnostics and therapeutic intervention. Rev Endocr Metab Disord 2021; 22:421-451. [PMID: 33052523 DOI: 10.1007/s11154-020-09606-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote β-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3β), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha, 757003, India
| | - Subhasis Mahari
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sabuj Sahoo
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
23
|
Lari AS, Zahedi P, Ghourchian H, Khatibi A. Microfluidic-based synthesized carboxymethyl chitosan nanoparticles containing metformin for diabetes therapy: In vitro and in vivo assessments. Carbohydr Polym 2021; 261:117889. [PMID: 33766375 DOI: 10.1016/j.carbpol.2021.117889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 11/18/2022]
Abstract
This work was aimed to synthesize novel crosslinked carboxymethyl chitosan nanoparticles (CMCS NPs) containing metformin hydrochloride (MET) using microfluidics (MF) and evaluate their performance for diabetes therapy. The field emission-scanning electron microscopy (FE-SEM) images and dynamic light scattering (DLS) results showed that the NPs average size was 77 ± 19 nm with a narrow size distribution. They exhibited a high encapsulation efficiency (∼90 %) and the controlled drug release while crosslinking using CaCl2. Eventually, the in vivo assessments dedicated an increased body weight up to 7.94 % and a decreased blood glucose level amount of 43.58 % for MF MET-loaded CMCS NPs with respect to the free drug in diabetic rats. Also, the results of histopathological studies revealed the size of the pancreatic islets to be 2.32 μm2 and β cells intensity to be 64 cells per islet for the diabetic rats after treating with the MF-based sample. These data were close to those obtained for the healthy rats.
Collapse
Affiliation(s)
- Atefe Sadeghi Lari
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran
| | - Payam Zahedi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran.
| | - Hedayatollah Ghourchian
- Laboratory of Bio-Analysis, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Alireza Khatibi
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box: 11155-4563, Tehran, Iran
| |
Collapse
|
24
|
Rehman A, Jafari SM, Tong Q, Riaz T, Assadpour E, Aadil RM, Niazi S, Khan IM, Shehzad Q, Ali A, Khan S. Drug nanodelivery systems based on natural polysaccharides against different diseases. Adv Colloid Interface Sci 2020; 284:102251. [PMID: 32949812 DOI: 10.1016/j.cis.2020.102251] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Drug nanodelivery systems (DNDSs) are fascinated cargos to achieve outstanding therapeutic results of various drugs or natural bioactive compounds owing to their unique structures. The efficiency of several pharmaceutical drugs or natural bioactive ingredients is restricted because of their week bioavailability, poor bioaccessibility and pharmacokinetics after orally pathways. In order to handle such constraints, usage of native/natural polysaccharides (NPLS) in fabrication of DNDSs has gained more popularity in the arena of nanotechnology for controlled drug delivery to enhance safety, biocompatibility, better retention time, bioavailability, lower toxicity and enhanced permeability. The main commonly used NPLS in nanoencapsulation systems include chitosan, pectin, alginates, cellulose, starches, and gums recognized as potential materials for fabrication of cargos. Herein, this review is centered on different polysaccharide-based nanocarriers including nanoemulsions, nanohydrogels, nanoliposomes, nanoparticles and nanofibers, which have already served as encouraging candidates for entrapment of therapeutic drugs as well as for their sustained controlled release. Furthermore, the current article explicitly offers comprehensive details regarding application of NPLS-based nanocarriers encapsulating several drugs intended for the handling of numerous disorders, including diabetes, cancer, HIV, malaria, cardiovascular and respiratory as well as skin diseases.
Collapse
Affiliation(s)
- Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| | - Qunyi Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China.
| | - Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Qayyum Shehzad
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Ahmad Ali
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Sohail Khan
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
25
|
Yuan X, Ding L, Diao J, Wen S, Xu C, Zhou L, Du A. PolyMet-HA nanocomplexs regulates glucose uptake by inhibiting SHIP2 activity. J Biomater Appl 2020; 35:849-856. [PMID: 32741295 DOI: 10.1177/0885328220947343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metformin, the first-line drug to treat type 2 diabetes, inhibits mitochondrial glycerolphosphate dehydrogenase in the liver to suppress gluconeogenesis. The major adverse effects caused by metformin were lactic acidosis and gastrointestinal discomfort. Therefore, there is need to develop a strategy with excellent permeability and appropriate retention effects.In this study, we synthesized a simple and biocompatible PolyMetformin (denoted as PolyMet) through conjugation of PEI1.8K with dicyandiamide, and then formed PolyMet-hyaluronic acid (HA) nanocomplexs by electrostatic self-assembly of the polycationic PolyMet and polyanionic hyaluronic acid (HA). Similar to metformin, the PolyMet-HA nanocomplexs could reduce the catalytic activity of the recombinant SHIP2 phosphatase domain in vitro. In SHIP2-overexpressing myotubes, PolyMet-HA nanocomplexes ameliorated glucose uptake by downregulating glucose transporter 4 endocytosis. PolyMet-HA nanocomplexes also could restore Akt signaling and protect the podocyte from apoptosis induced by SHIP2 overexpression. In essence, the PolyMet-HA nanocomplexes act similarly to metformin and increase glucose uptake, and maybe have a potential role in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Xinlu Yuan
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Ling Ding
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Jianjun Diao
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Song Wen
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Chenglin Xu
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Ligang Zhou
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| | - Anqing Du
- 542170Fudan University Pudong Medical Center, Shanghai Pudong Hospital, Shanghai, China
| |
Collapse
|
26
|
Salama AH, Elmotasem H, Salama AAA. Nanotechnology based blended chitosan-pectin hybrid for safe and efficient consolidative antiemetic and neuro-protective effect of meclizine hydrochloride in chemotherapy induced emesis. Int J Pharm 2020; 584:119411. [PMID: 32423876 DOI: 10.1016/j.ijpharm.2020.119411] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022]
Abstract
The aim of this study was to formulate an easily-administered, safe and effective dosage form loaded with meclizine for treatment of chemotherapy-induced nausea and vomiting (CINV) through the buccal route. CINV comprises bothersome side effects accompanying cytotoxic drugs administration in cancer patients. Meclizine was loaded in chitosan-pectin nanoparticles which were further incorporated within a buccal film. Different formulations were prepared based on a 21.31 full factorial study using Design Expert®8. The optimum formulation possessed favorable characters regarding its particle size (129 nm), entrapment efficiency (90%) and release profile. Moreover, its permeation efficiency through sheep buccal mucosa was assessed via Franz cell diffusion and confocal laser microscopy methods. Enhanced permeation was achieved compared with the free drug form. In-vivo performance was assessed using cyclophosphamide induced emesis. The proposed formulation exerted significant relief of the measured responses (reduced body weight and motor coordination, elevated emesis, anorexia, proinflammatory mediators and neurotransmitters that were also associated with scattered degenerated neurons and glial cells). The developed formulation ameliorated all behavioral, biochemical and histopathological changes induced by cyclophosphamide. The obtained data were promising suggesting that our bioadhesive formulation can offer an auspicious medication for treating distressing symptoms associated with chemotherapy for cancer patients.
Collapse
Affiliation(s)
- Alaa H Salama
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt.
| | - Heba Elmotasem
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Abeer A A Salama
- Pharmacology Department, Medical Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
27
|
Sabourian P, Ji J, Lotocki V, Moquin A, Hanna R, Frounchi M, Maysinger D, Kakkar A. Facile design of autogenous stimuli-responsive chitosan/hyaluronic acid nanoparticles for efficient small molecules to protein delivery. J Mater Chem B 2020; 8:7275-7287. [DOI: 10.1039/d0tb00772b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chitosan is functionalized with oxidative stress-sensitive thioketal entities in a one-pot methodology, and self-assembled into drugs or protein loaded dual stimuli responsive nanoparticles, which kill glioblastoma cells and increase nerve outgrowth.
Collapse
Affiliation(s)
- Parinaz Sabourian
- Department of Chemistry
- McGill University
- Montréal
- Canada
- Department of Chemical and Petroleum Engineering
| | - Jeff Ji
- Department of Pharmacology and Therapeutics
- McGill University
- Montréal
- Canada
| | | | - Alexandre Moquin
- Department of Chemistry
- McGill University
- Montréal
- Canada
- Department of Pharmacology and Therapeutics
| | - Ramez Hanna
- Department of Chemistry
- McGill University
- Montréal
- Canada
| | - Masoud Frounchi
- Department of Chemical and Petroleum Engineering
- Sharif University of Technology
- Tehran
- Iran
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics
- McGill University
- Montréal
- Canada
| | - Ashok Kakkar
- Department of Chemistry
- McGill University
- Montréal
- Canada
| |
Collapse
|
28
|
Rebitski EP, Darder M, Carraro R, Aranda P, Ruiz-Hitzky E. Chitosan and pectin core–shell beads encapsulating metformin–clay intercalation compounds for controlled delivery. NEW J CHEM 2020. [DOI: 10.1039/c9nj06433h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clay–metformin intercalation compounds as a reservoir in biopolymer core–shell beads as an example of targeted controlled release systems for oral drug administration.
Collapse
Affiliation(s)
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid
- CSIC
- 28049 Madrid
- Spain
| | - Raffaele Carraro
- Instituto de Investigación Biomédica del Hospital Universitario de La Princesa
- 28005 Madrid
- Spain
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid
- CSIC
- 28049 Madrid
- Spain
| | | |
Collapse
|