1
|
Wang W, Chang J, Zhang Z, Liu H, He L, Liu Y, Kang J, Goff HD, Li Z, Guo Q. The galactomannan-EGCG physical complex: Effect of branching degree and molecular weight on structural and physiological properties. Carbohydr Polym 2024; 343:122447. [PMID: 39174126 DOI: 10.1016/j.carbpol.2024.122447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/27/2024] [Indexed: 08/24/2024]
Abstract
Polysaccharides and polyphenols are bioactive components that co-exist in many plant foods. Their binary interaction in terms of the structure-function relationships, however, has not been well clarified. This study elucidated the correlation between the structural and physiological properties of galactomannan (GM) -catechin monomer complexes and GM with different branching or molecular weight (Mw). Results indicated that locus bean gum with lower branching degree (Gal/Man is 0.259) bound more readily to EGCG with adsorption rate of 19.42 %. EGCG and ECG containing galloyl groups were more inclined to form hydrogen bonds with GMs, significantly improving the adsorption by GMs. The introduction of EGCG could enhance the antioxidant activity and starch digestion inhibition of GM, which positively correlated with the adsorption capacity of EGCG. The guar gum (GG) with higher Mw (7384.3 kDa) could transport 71.51 % EGCG into the colon, while the retention rate of EGCG reaching the colon alone was only 46.33 %. Conversely, GM-EGCG complex with lower Mw (6.9 kDa) could be readily utilized by gut microbiota, and increased production of short-chain fatty acids (SCFAs). This study elucidated the structure-properties relationship of GM-EGCG complexes, and provide a new idea for the development and precision nutrition of polysaccharides-polyphenol complexes fortified functional foods.
Collapse
Affiliation(s)
- Wan Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Junhui Chang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhihui Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Haijing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Li He
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yan Liu
- College of Food and Health, Zhejiang Agriculture and Forestry University, No. 666, Wusu Road, Linan District, 311300 Hangzhou, Zhejiang Province, China
| | - Ji Kang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - H Douglas Goff
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Zhenjing Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
2
|
Tan R, Tang Q, Xia B, Fu C, Wang L. Organic acid treatments on citrus insoluble dietary fibers and the corresponding effects on starch in vitro digestion. Int J Biol Macromol 2024:134082. [PMID: 39084968 DOI: 10.1016/j.ijbiomac.2024.134082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
Three environmentally friendly organic acids, acetic acid, citric acid and oxalic acid, were used to treat citrus insoluble dietary fiber (CIDF) in present study, aiming to explore the changes in structural properties as well as their inhibitory effects on starch digestion. The results showed that organic acid treatment significantly reduced the particle size of all three CIDFs, with rougher and folded surfaces, improved crystallinity and thermal stability. During in vitro digestion, it was found that organic acid treatment could increase the particle size and viscosity of digestion, and also effectively enhance the inhibitory ability of α-glucosidase activity, resulting in a further blockage of starch digestion. The starch digestion in oxalic acid-treated group (with 3 wt% addition) was significantly reduced by 18.72 % compared to blank group and 9.05 % compared to untreated. These findings provide evidence of the potential of organic acid-treated insoluble dietary fiber as a functional food.
Collapse
Affiliation(s)
- Ruilin Tan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qingmiao Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bin Xia
- Wuhan Sanji Food Technology Co., Ltd., Wuhan, Hubei 430070, China
| | - Caixia Fu
- HuBei TuLaoHan Ecological Agriculture Technology Co., Ltd., Yichang, Hubei 443000, China
| | - Lufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Wuhan Sanji Food Technology Co., Ltd., Wuhan, Hubei 430070, China.
| |
Collapse
|
3
|
Ma M, Gu Z, Cheng L, Li Z, Li C, Hong Y. Effect of hydrocolloids on starch digestion: A review. Food Chem 2024; 444:138636. [PMID: 38310781 DOI: 10.1016/j.foodchem.2024.138636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Rapidly digestible starch can increase postprandial blood sugar rapidly, which can be overcome by hydrocolloids. The paper aims to review the effect of hydrocolloids on starch digestion. Hydrocolloids used to reduce starch digestibility are mostly polysaccharides like xanthan gum, pectin, β-glucan, and konjac glucomannan. Their effectiveness is related to their source and structure, mixing mode of hydrocolloid/starch, physical treatment, and starch processing. The mechanisms of hydrocolloid action include increased system viscosity, inhibition of enzymatic activity, and reduced starch accessibility to enzymes. Reduced starch accessibility to enzymes involves physical barrier and structural orderliness. In the future, physical treatments and intensity used for stabilizing hydrocolloid/starch complex, risks associated with different doses of hydrocolloids, and the development of related clinical trials should be focused on. Besides, investigating the effect of hydrocolloids on starch should be conducted in the context of practical commercial applications rather than limited to the laboratory level.
Collapse
Affiliation(s)
- Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314050, China.
| |
Collapse
|
4
|
Chen X, Zhu L, Zhang H, Wu G, Cheng L, Zhang Y. A review of endogenous non-starch components in cereal matrix: spatial distribution and mechanisms for inhibiting starch digestion. Crit Rev Food Sci Nutr 2024:1-16. [PMID: 38920118 DOI: 10.1080/10408398.2024.2370487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
As compared with exogenous components, non-starch components (NSCS), such as proteins, lipids, non-starch polysaccharides (NSPs), and polyphenols, inherently present in cereals, are more effective at inhibiting starch digestibility. Existing research has mostly focused on complex systems but overlooked the analysis of the in-situ role of the NSCS. This study reviews the crucial mechanisms by which endogenous NSCS inhibit starch digestion, emphasizing the spatial distribution-function relationship. Starch granules are filled with pores/channels-associated proteins and lipids, embedding in the protein matrix, and maintained by endosperm cell walls. The potential starch digestion inhibition of endogenous NSCS is achieved by altering starch gelatinization, molecular structure, digestive enzyme activity, and accessibility. Starch gelatinization is constrained by endogenous NSCS, particularly cell wall NSPs and matrix proteins. The stability of the starch crystal structure is enhanced by the proteins and lipids distributed in the starch granule pores and channels. Endogenous polyphenols greatly inhibit digestive enzymes and participate in the cross-linking of NSPs in the cell wall space, which together constitute a physical barrier that hinders amylase diffusion. Additionally, the spatial entanglement of NSCS and starch under heat and non-heat processing conditions reduces starch accessibility. This review provides novel evidence for the health benefits of whole cereals.
Collapse
Affiliation(s)
- Xiaoyu Chen
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling Zhu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hui Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gangcheng Wu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lilin Cheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yayuan Zhang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
5
|
Yang Y, Wang Y, Jiao A, Jin Z. Understanding the mechanisms of β-glucan regulating the in vitro starch digestibility of highland barley starch under spray drying: Structure and physicochemical properties. Food Chem 2024; 441:138385. [PMID: 38218152 DOI: 10.1016/j.foodchem.2024.138385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
This study investigated the effects of β-glucan (0-6%) on the physicochemical properties, structure, and in vitro digestibility of highland barley starch (HBS) under spray drying (SD). SD significantly enhanced the inhibitory effect of 6% β-glucan on the in vitro digestibility and glucose diffusion of HBS. After SD, the addition of β-glucan at 4% and 6% concentration significantly increased the pasting temperatures of starch while decreased the rheological properties. Thermal properties demonstrated that β-glucan improved the thermal stability and residue content of HBS at 600°C, lowered its maximum loss rate, and maintained its thermal stability after SD. Structural properties showed that β-glucan affected greatly on amorphous regions of HBS after SD. Additionally, β-glucan dispersed more evenly in the starch system and experienced hydrogen bonding with starch after SD. This study presents a novel approach to enhancing the inhibitory effect of β-glucan on starch digestion.
Collapse
Affiliation(s)
- Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Yihui Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
6
|
Wang C, Lin M, Li Y, Zhuang W, Guo Z. Effect of steam explosion modified soluble dietary fiber from Tremella fuciformis stem on the quality and digestibility of biscuits. Int J Biol Macromol 2024; 265:130905. [PMID: 38492690 DOI: 10.1016/j.ijbiomac.2024.130905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Steam explosion (SE) technology is an effective modification method for improving resource utilization of edible fungi processing by-products. In this study, the effect of SE-modified Tremella fuciformis (T. fuciformis) stem soluble dietary fiber (SDF) on the quality and digestibility of biscuits was investigated. The results showed that the addition of SE-modified T. fuciformis stem SDF (M-SDF) changed the gluten network structure and moisture distribution in the biscuits, which improved the spread ratio of the biscuits and resulted in attractive colors. Meanwhile, as starch was embedded, the starch hydrolysis rate (from 60.9 ± 0.90 % to 43.01 ± 0.78 %) and estimated glycemic index (from 84.10 ± 4.39 to 68.45 ± 3.15) of 12 % M-SDF biscuits were reduced. Furthermore, 8 % M-SDF received the highest sensory scores. These results demonstrate the potential applicability of SE-modified edible fungi processing by-product SDF as an additive in functional foods.
Collapse
Affiliation(s)
- Changrong Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Mengfan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Yibin Li
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, PR China
| | - Weijing Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China; Integrated Scientific Research Base of Edible fungi Processing and Comprehensive Utilization Technology, Ministry of Agriculture and Rural Affairs, Fuzhou, Fujian, PR China.
| |
Collapse
|
7
|
Chen R, Ma Y, Chen Z, Wang Z, Chen J, Wang Y, Zhang S. Fabrication and characterization of dual-functional porous starch with both emulsification and antioxidant properties. Int J Biol Macromol 2024; 264:130570. [PMID: 38462096 DOI: 10.1016/j.ijbiomac.2024.130570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Starchy materials with good antioxidant, emulsification and adsorption properties have potential applications in industry. To improve these properties, a Dual-functional porous starch was prepared through one-pot synthesis. In this case, octenyl succinic anhydride (OSA) and syringic acid (SA) were selected to modify the porous starch (PS) by esterification, with subsequent signals recorded by 1H NMR at 1.2 ppm and FT-IR at 1743 cm-1, indicating the formation of Dual-functional porous starch grafted by OSA and SA. N2 adsorption analysis further proved that the porous structure (2.9 m2g-1) was still maintained after modification. This was followed by measurements of droplet size distribution (34.18 ± 3.80 μm), zeta potential (-39.62 ± 1.89 mV) and emulsion index (85.10 ± 1.76 %), all of which indicated good emulsifying capacity. Meanwhile, results of radical scavenging assay proved that the Dual-functional porous starch had considerable antioxidant properties due to the introduction of SA groups. Besides, the Dual-functional porous starch also showed good resistance to digestion. These findings not only provide a novel strategy for constructing multi-functionalized starchy materials, but also open up potential applications of starch in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Ruixi Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| | - Zidi Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Zhipeng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jinfeng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| |
Collapse
|
8
|
Yang Y, Wang Y, Zhang R, Jiao A, Jin Z. The impact of different soluble endogenous proteins and their combinations with β-glucan on the in vitro digestibility, microstructure, and physicochemical properties of highland barley starch. Int J Biol Macromol 2024; 260:129417. [PMID: 38224806 DOI: 10.1016/j.ijbiomac.2024.129417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The impacts of protein types and its interaction with β-glucan on the in vitro digestibility of highland barley starch were investigated through analyzing physicochemical and microstructural properties of highland barley flour (HBF) after sequentially removing water- (WP), salt- (SP), alcohol- (AP) and alkali-soluble (AlkP) proteins. Resistant starch (RS) increased significantly in HBF after removing WP and SP, and RS of HBF was lower than that of without β-glucan. After removing WP, SP and AP, swelling powers of HBF without β-glucan (9.33-9.77) were higher than those of HBF (12.09-15.95). Trends of peak viscosity and peak temperature (thermal degradation temperature) were similar as swelling power, and HBF without AP showed the highest peak temperature (310.33 °C). Removals of different proteins improved the crystalline structure and short-range order of starch. There was a blue shift in T2 values and an opposite change in free water proportion. The matrix on starch surface was mainly formed by AP and AlkP, which could be aggregated by β-glucan. But, the inhibitory effect of AP or AlkP was stronger than that of proteins combined with β-glucan. These results help in the development of starch-based foods with different digestive properties by combining different protein types with β-glucan.
Collapse
Affiliation(s)
- Yueyue Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yihui Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ruixin Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Tan X, Cheng X, Ma B, Cui F, Wang D, Shen R, Li X, Li J. Characterization and Function Analysis of Soluble Dietary Fiber Obtained from Radish Pomace by Different Extraction Methods. Molecules 2024; 29:500. [PMID: 38276578 PMCID: PMC10818875 DOI: 10.3390/molecules29020500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Soluble dietary fiber (SDF) benefits human health, and different extraction methods might modify the structure and functions of the SDFs. Radish is rich in dietary fiber. To assess the impact of various extraction techniques on the properties and functions of radish SDF, the SDFs were obtained from white radish pomace using alkaline, ultrasonic-assisted, and fermentation-assisted extraction methods. Analysis was conducted on the structure, physicochemical characteristics, thermal properties, and functional attributes of the SDFs. The study revealed that various extraction techniques can impact the monosaccharides composition and functionality of the SDFs. Compared with the other two extraction methods, the surface structures of SDFs obtained by fermentation-assisted extraction were looser and more porous, and the SDF had better water solubility and water/oil holding capacity. The adsorption capacities of glucose and cholesterol of the SDFs obtained from fermentation-assisted extraction were also improved. Wickerhamomyces anomalus YFJ252 seems the most appropriate strain to ferment white radish pomace to acquire SDF; the water holding, oil holding, glucose absorption capacity, and cholesterol absorption capacity at pH 2 and pH 7 have a 3.06, 1.65, 3.19, 1.27, and 1.83 fold increase than the SDF extracted through alkaline extraction method.
Collapse
Affiliation(s)
- Xiqian Tan
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (X.T.); (X.C.); (B.M.); (F.C.); (D.W.)
| | - Xiaoxiao Cheng
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (X.T.); (X.C.); (B.M.); (F.C.); (D.W.)
| | - Bingyu Ma
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (X.T.); (X.C.); (B.M.); (F.C.); (D.W.)
| | - Fangchao Cui
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (X.T.); (X.C.); (B.M.); (F.C.); (D.W.)
| | - Dangfeng Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (X.T.); (X.C.); (B.M.); (F.C.); (D.W.)
| | - Ronghu Shen
- Hangzhou Xiaoshan Agriculture Development Co., Ltd., Xiaoshan, Hangzhou 311215, China
| | - Xuepeng Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (X.T.); (X.C.); (B.M.); (F.C.); (D.W.)
| | - Jianrong Li
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China; (X.T.); (X.C.); (B.M.); (F.C.); (D.W.)
| |
Collapse
|
10
|
Zhang S, Yue M, Yu X, Wang S, Zhang J, Wang C, Ma C. Interaction between potato starch and barley β-glucan and its influence on starch pasting and gelling properties. Int J Biol Macromol 2023; 253:126840. [PMID: 37696374 DOI: 10.1016/j.ijbiomac.2023.126840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
The interactions between potato starch (PtS) and barley β-glucan (BBG) were investigated by preparing PtS-BBG mixtures, and the pasting, rheological, gelling and structural properties were evaluated. Rapid viscosity analysis suggested that BBG reduced the peak and breakdown viscosity, while increasing the setback viscosity of PtS. PtS-12%BBG showed the lowest leached amylose content (12.02 ± 0.36 %). The particle size distribution pattern of PtS was not changed with the addition of BBG, and the median diameter of PtS-12%BBG (88.21 ± 0.41 μm) was smaller than that of PtS (108.10 ± 6.26 μm). Rheological results showed that PtS and PtS-BBG gels exhibited weak gel behaviors, and BBG could remarkably affect the elastic and viscous modulus of PtS gels. Textural analysis suggested that the strength and hardness of PtS gels were increased when few BBG (<6 %, w/w) was present in the system. BBG improved the freeze-thaw stability of PtS gels. Structural analysis indicated that hydrogen bonds were the main force in the PtS-BBG systems. These results indicated that BBG interacted with starch via hydrogen bonds, which delayed starch gelatinization and improved gelling properties of PtS gels. Overall, this study gained insights into starch-polysaccharide interactions and revealed the possible applications of BBG in food processing.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Minghui Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Xiaowei Yu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Sihua Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Jing Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
11
|
Ma Y, Chen R, Chen Z, Wang Z, Chen J, Zhang S. Probing covalent and non-covalent interactions between vanillic acid and starch and their effects on digestibility by solid-state NMR. Int J Biol Macromol 2023; 251:126304. [PMID: 37573923 DOI: 10.1016/j.ijbiomac.2023.126304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Intermolecular interactions play a significant role on the physicochemical properties and digestibility of starchy foods. This study investigated the covalent and non-covalent interactions between vanillic acid (VA) and porous starch (PS) as well as their effects on digestibility using solid-state NMR. VA-PS conjugates and mixtures were synthesized and characterized using 1H NMR, FT-IR, SEM and XRD. 13C NMR peaks at 163 ppm and FT-IR signals at 1737 cm-1 indicated the formation of ester bond in VA-PS conjugates. While differences between covalent and non-covalent interactions were also probed by solid-state NMR. The specific binding sites between VA and PS were subsequently identified by 1H13C HETCOR spectra before assessing the impact of covalent and non-covalent interactions on digestibility through an in vitro digestion test. The results revealed 13C chemical shifts of about 2.0 ppm, indicating stronger intermolecular interactions, and reduced mobility of the VA-PS conjugate due to its covalent bonding. Overall, the results showed that the VA-PS conjugate, characterized by stronger covalent interactions, exhibited superior effects in inhibiting starch digestibility compared with non-covalent interactions.
Collapse
Affiliation(s)
- Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| | - Ruixi Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Zidi Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Zhipeng Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Jinfeng Chen
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, Gansu, China; State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| |
Collapse
|
12
|
Rostamabadi H, Bajer D, Demirkesen I, Kumar Y, Su C, Wang Y, Nowacka M, Singha P, Falsafi SR. Starch modification through its combination with other molecules: Gums, mucilages, polyphenols and salts. Carbohydr Polym 2023; 314:120905. [PMID: 37173042 DOI: 10.1016/j.carbpol.2023.120905] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/15/2023]
Abstract
Apart from its non-toxicity, biocompatibility and biodegradability, starch has demonstrated eminent functional characteristics, e.g., forming well-defined gels/films, stabilizing emulsions/foams, and thickening/texturizing foods, which make it a promising hydrocolloid for various food purposes. Nonetheless, because of the ever-increasing range of its applications, modification of starch via chemical and physical methods for expanding its capabilities is unavoidable. The probable detrimental impacts of chemical modification on human health have encouraged scientists to develop potent physical approaches for starch modification. In this category, in recent years, starch combination with other molecules (i.e., gums, mucilages, salts, polyphenols) has been an interesting platform for developing modified starches with unique attributes where the characteristics of the fabricated starch could be finely tuned via adjusting the reaction parameters, type of molecules reacting with starch and the concentration of the reactants. The modification of starch characteristics upon its complexation with gums, mucilages, salts, and polyphenols as common ingredients in food formulations is comprehensively overviewed in this study. Besides their potent impact on physicochemical, and techno-functional attributes, starch modification via complexation could also remarkably customize the digestibility of starch and provide new products with less digestibility.
Collapse
Affiliation(s)
- Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Dagmara Bajer
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Ilkem Demirkesen
- Department of Animal Health, Food and Feed Research, General Directorate of Agricultural Research and Policies, Ministry of Agriculture and Forestry, Ankara, Turkey
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Chunyan Su
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing, China
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, 02-787 Warsaw, Poland
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
13
|
Ge J, Chen X, Zhang X, Dai Q, Wei H. Comparisons of rice taste and starch physicochemical properties in superior and inferior grains of rice with different taste value. Food Res Int 2023; 169:112886. [PMID: 37254334 DOI: 10.1016/j.foodres.2023.112886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 06/01/2023]
Abstract
The difference in grain yield between superior grains (SG) on the upper part and inferior grains (IG) on the lower part of the same panicle was widely reported. To date, variations in rice taste quality between SG and IG and the related starch physicochemical properties remained poorly understood. Here, rice cultivars with different taste quality (NT, normal taste; GT, good taste) were grown to investigate the mechanism underlying taste difference between SG and IG and the correlation between cooked rice taste and starch properties. In this study, the taste value of GT rice was 32.2% higher than that of NT rice across the cultivars. The GT rice comprised a series of typical taste qualities of larger stickiness, smaller hardness, lower apparent amylose content (AAC), and lower protein content (PC). The taste quality differed among rice grains on the same panicle; SG achieved 21.9% and 17.0% higher taste value than IG in GT rice and NT rice, respectively. The higher taste value in SG was owing to the larger stickiness and lower PC. Meanwhile, SG of GT rice achieved the lowest PC (8.2%) and gluten content (5.6%), which might indicate a better health value. Additionally, larger and smoother granules, more fa (DP < 12), lower crystallinity, and larger 1045/1022 cm-1 ratios were found in SG starch compared to IG starch. These led to a weaker swelling power and lower gelatinization enthalpy in SG starch, while gelatinization temperature and retrogression enthalpy were the opposite. Moreover, SG starch exhibited higher storage modulus, loss modulus, slowly digestible starch contents, and resistant starch contents than IG. Our results revealed a great difference in taste quality between SG and IG in rice. The larger and smoother starch granules and shorter chain length could increase the ordered structure of starch, thus improving swelling power, gelatinization properties, and rheological characteristics and facilitating better taste quality of SG over IG. Besides, the lower PC (especially gluten content), higher slowly digestible starch, and higher resistant starch content indicated a more promising health value of SG in the food industry.
Collapse
Affiliation(s)
- Jialin Ge
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Coastal Areas, the Ministry of Agriculture and Rural Affairs of China/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China.
| | - Xu Chen
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Coastal Areas, the Ministry of Agriculture and Rural Affairs of China/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China
| | - Xubin Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Coastal Areas, the Ministry of Agriculture and Rural Affairs of China/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China
| | - Qigen Dai
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Coastal Areas, the Ministry of Agriculture and Rural Affairs of China/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China; Institutes of Agricultural Science and Technology Development/Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Huanhe Wei
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Key Laboratory of Saline-Alkali Soil Reclamation and Utilization in Coastal Areas, the Ministry of Agriculture and Rural Affairs of China/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
14
|
Zhang S, Yue M, Wang S, Zhang J, Zhang D, Wang C, Chen S, Ma C. Insights into the modification of physicochemical properties and digestibility of pea starch gels with barley β-glucan. J Food Sci 2023; 88:2833-2844. [PMID: 37219380 DOI: 10.1111/1750-3841.16615] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
The influences of barley β-glucan (BBG) on the physicochemical properties and in vitro digestibility of pea starch were investigated. BBG was found to decrease pasting viscosity in a concentration dependent manner and inhibited the aggregation of pea starch. After the presence of BBG, the gelatinization enthalpy of pea starch was decreased (from 7.83 ± 0.03 to 5.55 ± 0.22 J/g), whereas the gelatinization temperature was enhanced (from 62.64 ± 0.01 to 64.52 ± 0.14°C) according to the differential scanning calorimeter results. In addition, BBG inhibited the swelling of pea starch and amylose leaching. When amylose leached out from pea starch to form a BBG-amylose barrier, starch gelatinization was inhibited. The starch gels exhibited weak gels and shear thinning behaviors by rheological tests results. The interaction between BBG and amylose led to lower viscoelasticity and texture parameters in pea starch gels. The structure analysis results unveiled that the force between BBG and amylose was mainly hydrogen bonds. Pea starch hydrolysis was inhibited when BBG was present in the system, which was connected with the restricted starch gelatinization. These results obtained in the study would supply insights into incorporating BBG into various food systems.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Minghui Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Sihua Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Jing Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Chengjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| |
Collapse
|
15
|
Liu Y, Li X, Qin H, Huang M, Liu S, Chang R, Xi B, Mao J, Zhang S. Obtaining non-digestible polysaccharides from distillers' grains of Chinese baijiu after extrusion with enhanced antioxidation capability. Int J Biol Macromol 2023:124799. [PMID: 37182635 DOI: 10.1016/j.ijbiomac.2023.124799] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
Distillers' grains of Chinese Baijiu (DGS) presents a significant challenge to the environmentally-friendly production of the brewing industry. This study utilized screw extrusion to modify the morphological and crystalline characteristics of DGS, resulting in a 316 % increase in the yield of non-digestible polysaccharides extraction. Physiochemical characteristics of extracted polysaccharides were variated, including infrared spectrum, monosaccharide composition, and molecular weight. Polysaccharides extracted from extruded DGS exhibited enhanced inhibitory capacity on α-amylase activity and starch hydrolyzation, as compared to those extracted from unextruded DGS. Additionally, the ABTS, DPPH, and OH radical scavenging efficiencies took a maximum increase of 1.20, 1.38, and 1.02-fold, correspondingly. Extrusion is a novel approach for the recycling non-digestible polysaccharides from DGS, augmenting the bioactivity of extracts and their potential application in functional food.
Collapse
Affiliation(s)
- Yizhou Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiong Li
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hui Qin
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
| | - Mengyang Huang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Rui Chang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Beidou Xi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jian Mao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Suyi Zhang
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China.
| |
Collapse
|
16
|
Chen HH, Shyu YT, Wu SJ. Physicochemical characteristics and retardation effects on in vitro starch digestibility of non-starch polysaccharides in jelly-fig (Ficus pumila L. var. awkeotsang). Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
17
|
Chai Z, Yin X, Zheng Y, Ye X, Tian J. Effects of hawthorn addition on the physicochemical properties and hydrolysis of corn starch. Food Chem X 2022; 16:100478. [PMID: 36299864 PMCID: PMC9589023 DOI: 10.1016/j.fochx.2022.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022] Open
Abstract
Hawthorn powder were mixed with corn starch and heated in water to make corn starch-hawthorn mixtures (CS-Haw) and then the physicochemical properties and hydrolysis characteristics of the mixtures were measured. Results showed that the addition of hawthorn powder decreased the viscosity of corn starch, and prolonged the pasting temperature, while the microstructure analysis indicated that hawthorn particles aggregated on the surfaces of starch granules, reducing the chance of starch contacting with water, then delayed the starch gelatinization. The presence of hawthorn powder also reduced the G' value to varying degrees and the loss tangent of CS-Haw was significantly higher than that of corn starch. The addition of hawthorn powder in large amounts also increased the rapidly digestible starch, while decrease the slowly digestible starch and resistant starch. The present research will provide basic theoretical support for the application of hawthorn in healthy starch food processing.
Collapse
Affiliation(s)
- Ziqi Chai
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Center of Food & Health, The Rural Development Academy of Zhejiang University, Zhejiang University, Hangzhou 310058, China
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Xiuxiu Yin
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yuxue Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Center of Food & Health, The Rural Development Academy of Zhejiang University, Zhejiang University, Hangzhou 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
- Center of Food & Health, The Rural Development Academy of Zhejiang University, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Chen X, Zhang H, Zhu L, Wu G, Cheng L, Li J. Effects of structural barriers on digestive properties of highland barley as compared with unpolished rice and oats. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Zhang K, Ouyang H, He Y, Wang X, Lin Y, Zhu P, Cheng F, Tang K. Effect of hyperbranched poly(trimellitic glyceride)/oxidized starch composite sizing agent on the adhesion of polyester yarns. J Appl Polym Sci 2022. [DOI: 10.1002/app.53326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kang Zhang
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang China
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Haishun Ouyang
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Yixuan He
- College of Mechanical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Xinquan Wang
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang China
| | - Yi Lin
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Puxin Zhu
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Fei Cheng
- College of Biomass Science and Engineering Sichuan University Chengdu China
| | - Kewen Tang
- College of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang China
| |
Collapse
|
20
|
Physical barrier effects of dietary fibers on lowering starch digestibility. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Hu H, Lin H, Xiao L, Guo M, Yan X, Su X, Liu L, Sang S. Impact of Native Form Oat β-Glucan on the Physical and Starch Digestive Properties of Whole Oat Bread. Foods 2022; 11:2622. [PMID: 36076808 PMCID: PMC9455579 DOI: 10.3390/foods11172622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/13/2022] Open
Abstract
To investigate the effect of oat bran on bread quality and the mechanism of reducing the glycemic index (GI) of bread, wheat bran (10%, w/w, flour basis), oat bran (10%), and β-glucan (0.858%) were individually added to determine the expansion of dough, the specific volume, texture, color, GI, starch digestion characteristics, and α-amylase inhibition rate of bread. The results showed that the incorporation of wheat bran and oat bran both reduced the final expanded volume of the dough, decreased the specific volume of the bread, and increased the bread hardness and crumb redness and greenness values as compared to the control wheat group. The above physical properties of bran-containing bread obviously deteriorated while the bread with β-glucan did not change significantly (p < 0.05). The GI in vitro of bread was in the following order: control (94.40) > wheat bran (69.24) > β-glucan (65.76) > oat bran (64.93). Correspondingly, the oat bran group had the highest content of slowly digestible starch (SDS), the β-glucan group had the highest content of resistant starch (RS), and the control group had the highest content of rapidly digestible starch (RDS). For the wheat bran, oat bran, and β-glucan group, their inhibition rates of α-amylase were 9.25%, 28.93%, and 23.7%, respectively. The β-glucan reduced the bread GI and α-amylase activity by intertwining with starch to form a more stable gel network structure, which reduced the contact area between amylase and starch. Therefore, β-glucan in oat bran might be a key component for reducing the GI of whole oat bread.
Collapse
Affiliation(s)
- Han Hu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Huihui Lin
- Department of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Lei Xiao
- Department of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Minqi Guo
- Department of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Xi Yan
- Department of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Xueqian Su
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Lianliang Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| | - Shangyuan Sang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315832, China
| |
Collapse
|
22
|
The Impact of Enhancing Diet Quality or Dietary Supplementation of Flavor and Multi-Enzymes on Primiparous Lactating Sows. Animals (Basel) 2022; 12:ani12121493. [PMID: 35739830 PMCID: PMC9219450 DOI: 10.3390/ani12121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 01/10/2023] Open
Abstract
This study was aimed to explore how a high-quality diet or a flavor plus multi-enzyme diet affects the feed intake, nutrient digestibility and antioxidation capacity of lactating sows and the growth of their progeny. Thirty primiparous sows were randomly assigned to three treatments from d 2 of lactation until weaning (d 21): control (CON), with a basal diet; high quality (HQ), with 200 kcal/kg higher net energy than CON; or the CON diet supplemented with 500 mg/kg flavor and 100 mg/kg multi-enzymes (F + E). Sows fed with the HQ or F + E diets improved piglets’ live weight (p < 0.05) and average daily weight gain (p < 0.10), litter weight gain (p < 0.10) and piglet growth to milk yield ratio (p < 0.10). Compared with CON, the HQ and F + E groups increased the digestibility of ether extract, ash, neutral detergent fiber, crude fiber and phosphorus (p < 0.10), and the HQ group also increased dry matter, gross energy, crude protein, acid detergent fiber and energy intake (p < 0.05). Compared with CON, the F + E group decreased serum urea nitrogen and aspartate aminotransferase (p < 0.05) and enhanced superoxide dismutase, catalase and glutathione peroxidase, but it decreased malondialdehyde in milk supernatant (p < 0.05).
Collapse
|
23
|
Yang Y, Jiao A, Liu Q, Ren X, Zhu K, Jin Z. The effects of removing endogenous proteins, β-glucan and lipids on the surface microstructure, water migration and glucose diffusion in vitro of starch in highland barley flour. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
24
|
Atac LE, Sensoy I. Effects of psyllium and cellulose fibres on thermal, structural, and
in vitro
digestion behaviour of wheat starch. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Leyla Elif Atac
- Department of Food Engineering Middle East Technical University Universiteler Mahallesi Cankaya Ankara 06800 Turkey
| | - Ilkay Sensoy
- Department of Food Engineering Middle East Technical University Universiteler Mahallesi Cankaya Ankara 06800 Turkey
| |
Collapse
|
25
|
Zhou Z, Ye F, Lei L, Zhou S, Zhao G. Fabricating low glycaemic index foods: Enlightened by the impacts of soluble dietary fibre on starch digestibility. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Wan Y, Xu X, Gilbert RG, Sullivan MA. A Review on the Structure and Anti-Diabetic (Type 2) Functions of β-Glucans. Foods 2021; 11:57. [PMID: 35010185 PMCID: PMC8750484 DOI: 10.3390/foods11010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes, a long-term chronic metabolic disease, causes severe and increasing economic and health problems globally. There is growing evidence that β-glucans can function as bioactive macromolecules that help control type 2 diabetes with minimal side effects. However, conflicting conclusions about the antidiabetic activities of β-glucans have been published, potentially resulting from incomplete understanding of their precise structural characteristics. This review aims to increase clarity on the structure-function relationships of β-glucans in treating type 2 diabetes by examining detailed structural and conformational features of naturally derived β-glucans, as well as both chemical and instrumental methods used in their characterization, and their underlying anti-diabetic mechanisms. This may help to uncover additional structure and function relationships and to expand applications of β-glucans.
Collapse
Affiliation(s)
- Yujun Wan
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China;
| | - Robert G. Gilbert
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Mitchell A. Sullivan
- Glycation and Diabetes Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4072, Australia
| |
Collapse
|
27
|
Liu M, Zhou S, Li Y, Tian J, Zhang C. Structure, physicochemical properties and effects on nutrients digestion of modified soluble dietary fiber extracted from sweet potato residue. Food Res Int 2021; 150:110761. [PMID: 34865779 DOI: 10.1016/j.foodres.2021.110761] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022]
Abstract
Alkaline hydrogen peroxide (AHP) modification increased the yield and the content of soluble dietary fiber extracted from sweet potato residue. As compared to the original sweet potato dietary fiber (O-SPDF), AHP modified SPDF (A-SPDF) had a smaller molecular weight of 69073.59 Da and a lower zeta-potential of -27 mV. Monosaccharide composition analysis revealed that A-SPDF had a higher proportion of pectin polysaccharides with homogalacturonan (HG) and rhamnogalacturonan-Ⅰ (RG-Ⅰ) backbones. Fourier transformed infrared (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses were employed to determine the structural differences between A-SPDF and O-SPDF. Characterization of their rheological properties showed that A-SPDF exhibited higher viscosity than O-SPDF at concentrations of 2%, 4% and 6%, respectively. Additionally, A-SPDF had a more gel-like behavior than O-SPDF in the presence of Ca2+, supporting the better functional properties of A-SPDF as determined by water holding capacities (WHC), oil holding capacities (OHC), and water swelling capacities (WSC). Furthermore, A-SPDF performed significantly better in inhibiting starch hydrolysis and reducing the glucose diffusion rate using an Infogest simulated digestion model. However, SPDFs had no impact on the digestion rate of protein. Our results suggested that A-SPDF has the potential to serve as a novel food additive and functional hydrocolloid to attenuate nutrients digestion related disorders, which forms the scientific basis for the better utilization of sweet potato residue and further develop sweet potato dietary fiber (SPDF) as a functional food and/or additive in the food industry.
Collapse
Affiliation(s)
- Man Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| | - Sihan Zhou
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| | - Yongxin Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| | - Jun Tian
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| | - Chunlei Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| |
Collapse
|
28
|
Zhou R, Wang Y, Wang Z, Liu K, Wang Q, Bao H. Effects of Auricularia auricula-judae polysaccharide on pasting, gelatinization, rheology, structural properties and in vitro digestibility of kidney bean starch. Int J Biol Macromol 2021; 191:1105-1113. [PMID: 34560153 DOI: 10.1016/j.ijbiomac.2021.09.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 12/30/2022]
Abstract
Auricularia auricula-judae polysaccharide (AP) has unique molecular structures and multiple bioactivities with excellent gel-forming property and thermal tolerance. However, few researches focus on the interactions between AP and legume starches. In this study, the effects of AP on the pasting, gelatinization, rheology, microstructure, and in vitro digestibility of kidney bean starch (KBST) were evaluated. The pasting, gelling and structural properties of AP-KBST mixtures were characterized by rapid visco analyzer, rheometry, texture analyzer, laser particle analyzer, low-field nuclear magnetic resonance, Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. And an in vitro method was employed to measure the digestibility of AP-KBST composites. The pasting viscosity, swelling degree of starch granules, viscoelasticity, gel strength, cold storage stability and water-retention capacity of KBST were enhanced with increasing AP concentration. The combination of AP and KBST exhibited a higher short-range ordered and a firmer and denser structure than that of KBST alone. Moreover, AP increased the contents of resistant starch and slowly digestible starch, which were positively correlated with the storage modulus and the degree of order, thereby suggesting that the formation of strong and ordered gel network structure by synergistic interactions between AP and KBST was responsible for the reduced starch digestibility.
Collapse
Affiliation(s)
- Rui Zhou
- College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Yijun Wang
- College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Zaixu Wang
- College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Ke Liu
- Hubei Key Laboratory of Low Dimensional Optoelectronic Material and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Qi Wang
- Guelph Food Research Centre, Agriculture and Agri-Food Canada, 93 Stone Road W., Guelph, Ontario N1G 5C9, Canada
| | - Honghui Bao
- College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang 441053, China.
| |
Collapse
|
29
|
In vitro digestion and structural properties of rice starch modified by high methoxyl pectin and dynamic high-pressure microfluidization. Carbohydr Polym 2021; 274:118649. [PMID: 34702468 DOI: 10.1016/j.carbpol.2021.118649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/09/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022]
Abstract
The rheological, structural properties and in vitro digestibility of starch with high methoxyl pectin (HMP) and further modified by dynamic high-pressure microfluidization (DHPM) were investigated. The viscosity and elasticity increased on addition of HMP and were more pronouncedly affected by 10% HMP. However, after DHPM treatment, the viscosity and elasticity decreased with increasing DHPM pressure. After 100 MPa DHPM treatment, the ordered and crystalline structures were further increased compared with starch-HMP mixtures. A compact and dense surface of starch paste was formed under 100 MPa DHPM and 10% HMP treatment, thus significantly slowing down the digestibility. In contrast, the crystalline and semicrystalline structure of starch were disrupted by intense shear force under 200 MPa DHPM. This study provides theoretical information regarding starch-HMP interaction and improves their functional and physicochemical properties through a promising strategy for better applications in food formulation.
Collapse
|
30
|
Tu J, Brennan M, Brennan C. An insight into the mechanism of interactions between mushroom polysaccharides and starch. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Xie F, Gu BJ, Saunders SR, Ganjyal GM. High methoxyl pectin enhances the expansion characteristics of the cornstarch relative to the low methoxyl pectin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106131] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Zhang H, Li Z, Zhang L, Lai PFH, Tian Y, Cui SW, Ai L. Effects of soluble dietary fibers on the viscosity property and digestion kinetics of corn starch digesta. Food Chem 2020; 338:127825. [PMID: 32810814 DOI: 10.1016/j.foodchem.2020.127825] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 11/28/2022]
Abstract
Four soluble dietary fibers (SDFs) were fortified with corn starch (CS) at different concentrations to match the same viscosity equivalents. The mixtures were subjected to a simulated digestion procedure to study the effects of SDFs on viscosity properties and digestion kinetics of CS. Results showed that SDFs increased the hydration property and decreased the water mobility of digesta. During digestion process, SDFs increased the apparent viscosity of digesta to some extent, and showed significant difference to delay the decay of digesta viscosity (kv). The amylolysis inhibitory ability was similar when each SDF was present at the same viscosity equivalent, however, significant differences were found on the digestion rate constant of k2. Linear correlations between kv and k2 were established for 1 and 2 equivalent groups. These results demonstrated that SDFs could delay the digestion process as chemistry differences, which related to their ability on delaying the change of digesta viscosity.
Collapse
Affiliation(s)
- Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Zhi Li
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lele Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Phoency F H Lai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yanjun Tian
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Steve W Cui
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
33
|
Zhang H, Kai G, Xia Y, Wang G, Ai L. Antioxidant and in vitro digestion property of black rice (Oryza sativa L.): a comparison study between whole grain and rice bran. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2020. [DOI: 10.1515/ijfe-2019-0260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractA comparison study between whole grain and rice bran to evaluate the antioxidant activity and starch digestion property of black rice was conducted. Total phenolics content (TPC) and total anthocyanins content (TAC) analysis found that TPC and TAC contribution of rice bran to the whole grain were over 73 and 91%, respectively. Cyanidin-3-glucoside with minor peonidin-3-glucoside were identified in all whole grain and rice bran samples by HPLC-ESI-MS. The rice bran exhibited much stronger antioxidant activities than the whole grain, acting as the major antioxidant contributor to the black rice due to the high levels of TPC and TAC. In vitro digestion analysis found that rice bran could significantly decrease the digestibility and predicted glycemic index (pGI) of rice flour by lowering the rapid digestion starch and increasing the resistant starch (RS). This study revealed that rice bran could be a potential edible resource of phenolic-enriched antioxidant and glycemic regulator in food industry.
Collapse
Affiliation(s)
- Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Guoyin Kai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
34
|
Effects of tamarind seed polysaccharide on gelatinization, rheological, and structural properties of corn starch with different amylose/amylopectin ratios. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105854] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|