1
|
Mokhtari Z, Jafari SM, Ziaiifar AM, Cacciotti I. Development and characterization of caffeine-loaded nanoliposomes decorated by cationic amylose and cationic amylose- menthol inclusion complex coatings; a novel oral co-delivery system. Food Chem 2025; 463:141350. [PMID: 39316912 DOI: 10.1016/j.foodchem.2024.141350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/31/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Nanoliposomes (NLPs) have evolved as compelling carriers for loading bioactive compounds. To improve the phospholipid bilayer membrane stability, caffeine-loaded NLPs were coated with cationic amylose (CA) and CA-menthol inclusion complexes (CAMICs). The zeta potential results indicated an electrostatic attraction between CA and the negatively charged NLPs. Observations from dynamic light scattering, atomic force microscopy, and Fourier transform infrared spectroscopy demonstrated the efficient deposition of both CA and CAMICs onto the surface of NLPs without altering their spherical shape. Raman spectra and X-ray diffraction patterns indicated that both CA and CAMICs can decrease membrane fluidity and enhance lipid packing laterally. Additional assessment through thermogravimetric analysis revealed that the coating of NLPs, particularly with CAMICs, protected caffeine against thermal degradation. These coated NLPs show promise for formulation advancement, facilitating the simultaneous delivery of functional compounds.
Collapse
Affiliation(s)
- Zohreh Mokhtari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| | - Aman-Mohammad Ziaiifar
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Ilaria Cacciotti
- Engineering Department, INSTM RU, University of Rome "Niccolò Cusano", Rome, Italy
| |
Collapse
|
2
|
Mork S, Johannessen M, Škalko-Basnet N, Jøraholmen MW. Chitosan and liposomal delivery systems for epicatechin or propyl gallate targeting localized treatment of vulvovaginal candidiasis. Int J Pharm 2024; 662:124489. [PMID: 39032871 DOI: 10.1016/j.ijpharm.2024.124489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Natural polyphenols are promising alternatives to antifungals for novel treatments of vulvovaginal candidiasis (VVC) in an era of antimicrobial resistance. However, polyphenols are poorly soluble and prone to degradation. To overcome their limitations, we propose incorporation in liposomes. The study aimed to develop chitosan and liposome comprising delivery systems for epicatechin (EC) or propyl gallate (PG) as treatment of VVC. EC was selected for its antioxidative properties and PG as an ester of antifungal gallic acid. To improve formulation retention at vaginal site, mucoadhesive chitosan was introduced into formulation as liposomal surface coating or hydrogel due to intrinsic antifungal properties. These polyphenol-loaded liposomes exhibited an average size of 125 nm with a 64 % entrapment efficiency (for both polyphenols). A sustained in vitro polyphenol release was seen from liposomes, particularly in chitosan hydrogel (p < 0.01 or lower). Viscosity was evaluated since increased viscosity upon mucin contact indicated adhesive bond formation between chitosan and mucin confirming mucoadhesiveness of formulations. Antifungal activity was evaluated by the broth microdilution method on Candida albicans CRM-10231. Unlike PG, incorporation of EC in liposomes enabled antifungal activity. Fungicidal activity of chitosan was confirmed both when used as liposomal coating material and as hydrogel vehicle.
Collapse
Affiliation(s)
- Silje Mork
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - Mona Johannessen
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway
| | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Universitetsveien 57, 9037 Tromsø, Norway.
| |
Collapse
|
3
|
Liu Z, Ye Y, Ma Y, Hu B, Zhu J. Inhaled heparin: Past, present, and future. Drug Discov Today 2024; 29:104065. [PMID: 38901669 DOI: 10.1016/j.drudis.2024.104065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
While heparin has traditionally served as a key anticoagulant in clinical practice for nearly a century, recent years have witnessed a growing interest in its role as a potent antiinflammatory and antiviral agent, as well as an anticancer agent. To address challenges with injection-based delivery, exploring patient-friendly routes such as oral and pulmonary delivery is crucial. This review specifically highlights the multiple therapeutic benefits of inhaled heparin. In summary, this review serves as a valuable source of information, providing deep insights into the diverse therapeutic advantages of inhaled heparin and its potential applications within clinical contexts.
Collapse
Affiliation(s)
- Zhewei Liu
- University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China
| | - Yuqing Ye
- University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Ying Ma
- Ningbo Inhale Pharma, 2260 Yongjiang Avenue, Ningbo National High-Tech Zone, Ningbo 315000, China; University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada
| | - Binjie Hu
- University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China
| | - Jesse Zhu
- University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, China; University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 3K7, Canada; Eastern Institute of Technology, 568 Tongxin Road, Ningbo 315000, China.
| |
Collapse
|
4
|
Javadi B, Farahmand A, Soltani-Gorde-Faramarzi S, Hesarinejad MA. Chitosan-coated nanoliposome: An approach for simultaneous encapsulation of caffeine and roselle-anthocyanin in beverages. Int J Biol Macromol 2024; 275:133469. [PMID: 38945345 DOI: 10.1016/j.ijbiomac.2024.133469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
The objective of the present research was to develop chitosan-coated nanoliposomes using a modified heating method as a delivery system for simultaneous encapsulation of caffeine and roselle anthocyanin to fortify beverage. Response surface methodology was used to ascertain the optimized formulation, aiming to maximize the encapsulation efficiency, minimize the particle size, and maximize the zeta potential. The liposomes fabricated under the optimized conditions (lecithin to cholesterol ratio of 13 and wall to core ratio of 2.16) showed encapsulation efficiency values of 66.73 % for caffeine and 97.03 % for anthocyanin, with a size of 268.1 nm and a zeta potential of -39.11 mV. Fourier transform infrared spectroscopy confirmed the formation of hydrogen bonds between the polar sites of lecithin and the loaded core compounds. Thermal analysis suggested the successful encapsulation of the caffeine and anthocyanin. Transmission and scanning electron microscopy images confirmed a uniform spherical shape with a smooth surface. Fortifying the model beverage with the liposome and the chitosan-coated nanoliposome revealed higher values of encapsulation efficiency of anthocyanin (70.33 ± 3.11 %), caffeine (86.37 ± 2.17 %) and smaller size (280.5 ± 0.74 nm) of the chitosan-coated nanoliposomes at the end of 60the days. A hedonic sensory test of the fortified beverage with chitosan-coated nanoliposomes confirmed an improvement in the organoleptic properties of the beverage by masking its bitterness (receiving three more sensory scores in perceiving the bitterness intensity). Overall, our study indicates that the high potential of the chitosan-coated nanoliposomes for the simultaneous loading of the caffeine and anthocyanin, as well as their possible application in food and beverage formulations.
Collapse
Affiliation(s)
- Bahareh Javadi
- Research and development center, Abfam Govara Tejarat Shargh Co., Mashhad, Iran
| | - Atefeh Farahmand
- Department of Food Science and Technology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Mohammad Ali Hesarinejad
- Department of Food Sensory and Cognitive Science, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| |
Collapse
|
5
|
Trivedi S, Belgamwar V. Fabrication and optimization of chitosan-g-m-PEG-NH 2 copolymer for advanced glioblastoma therapy using surface engineered lentinan loaded nanovesicles for nasal delivery. Int J Biol Macromol 2024; 273:133125. [PMID: 38897498 DOI: 10.1016/j.ijbiomac.2024.133125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Glioblastoma multiforme (GBM) exhibits a high mortality with an incidence rate of 3-5 per 100,000 each year, which demands existence of newer approach for its treatment. The current study focuses on synthesis of novel lipidic nanovesicles (LNs) loaded with highly potent macromolecule Lentinan (LNT) and surface modified with methoxy poly (ethylene glycol; PEG) amine (m-PEG-NH2)-grafted-chitosan (CS) for intranasal delivery. The grafting procedure was optimized using Box Behnken design (BBD) to limit the use of organic solvents. The fabricated polymer showed enhanced aqueous solubility, biodegradability and mucoadhesion, resulting in higher nasal mucosa permeation (z = 53.52 μm). The presence of PEG enabled the sustained release of LNT till 48 h and assisted in achieving higher accumulation of LNT in CSF (41.7 ± 3.1 μg/mL) and a higher brain targeting potential of 96.3 ± 2.31 % (p < 0.05). In-vitro cellular studies showed the enhanced anti-GBM effect of LNT on U87 MG cells by reducing the cell viability (~2 times reduction in IC50 value) accompanied with large number of cells undergoing late apoptosis and death (p < 0.05) because of the higher cellular uptake (63.22 ± 3.01 ng/100 cells) of novel formulation. The copolymer comprising LNs were biocompatible, stable and can be used as an effective tool in the management of GBM.
Collapse
Affiliation(s)
- Sagar Trivedi
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India.
| | - Veena Belgamwar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India.
| |
Collapse
|
6
|
Lin X, Li Y, Zhang B, Li J, Ren J, Tang Y, Wu S, Yang J, Wang Q. Alginate nanogel-embedded liposomal drug carriers facilitate drug delivery efficiency in arthritis treatment. Int J Biol Macromol 2024; 273:133065. [PMID: 38866273 DOI: 10.1016/j.ijbiomac.2024.133065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Despite numerous advantages of liposomes in treating rheumatoid arthritis (RA), the in vivo stability remains a critical issue. Current strategies for improving liposomal stability often compromise their original properties. Herein, we designed an alginate nanogel-embedded liposome aiming at retaining those inherent advantages while enhancing their in vivo stability. The introduction of alginate network within the liposome core can provide mechanical support and controlled drug release without affecting the surface properties. Results showed the cross-linking of alginate network within the inner core of liposomes elevated the particle rigidity to 3 times, allowing for improved stability and decreased drug leakage. Moreover, this nanogel-embedded liposome with optimized elasticity obviously facilitated cellular uptake in inflammatory macrophages. When entering blood circulation, increased rigidity altered the composition of protein corona on the particle surface, resulting in 2-fold increase in circulation time and improved drug accumulation in arthritic joints. When anti-inflammatory chlorogenic acid (CA) was encapsulated into the nanogel network, this CA-loaded nanogel-embedded liposome significantly inhibited ROS production and inflammatory response, ultimately achieved superior therapeutic outcome in arthritic rats. Results demonstrated that this nanogel-embedded liposomes can essentially retain the inherent advantages and overcome the drawbacks of liposomes, thereby improving the drug delivery efficiency.
Collapse
Affiliation(s)
- Xin Lin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yan Li
- Sichuan Institute for Food and Drug Control, Chengdu 611731, China
| | - Bin Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiao Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianheng Ren
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Yao Tang
- Sichuan Institute for Food and Drug Control, Chengdu 611731, China
| | - Sui Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinming Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
7
|
Hansen ME, Ibrahim Y, Desai TA, Koval M. Nanostructure-Mediated Transport of Therapeutics through Epithelial Barriers. Int J Mol Sci 2024; 25:7098. [PMID: 39000205 PMCID: PMC11241453 DOI: 10.3390/ijms25137098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
The ability to precisely treat human disease is facilitated by the sophisticated design of pharmacologic agents. Nanotechnology has emerged as a valuable approach to creating vehicles that can specifically target organ systems, effectively traverse epithelial barriers, and protect agents from premature degradation. In this review, we discuss the molecular basis for epithelial barrier function, focusing on tight junctions, and describe different pathways that drugs can use to cross barrier-forming tissue, including the paracellular route and transcytosis. Unique features of drug delivery applied to different organ systems are addressed: transdermal, ocular, pulmonary, and oral delivery. We also discuss how design elements of different nanoscale systems, such as composition and nanostructured architecture, can be used to specifically enhance transepithelial delivery. The ability to tailor nanoscale drug delivery vehicles to leverage epithelial barrier biology is an emerging theme in the pursuit of facilitating the efficacious delivery of pharmacologic agents.
Collapse
Affiliation(s)
- M. Eva Hansen
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yasmin Ibrahim
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, USA
| | - Tejal A. Desai
- University of California Berkeley-University of California San Francisco Graduate Program in Bioengineering, San Francisco, CA 94143, USA;
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94143, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
de Souza JB, de Lacerda Coriolano D, dos Santos Silva RC, da Costa Júnior SD, de Almeida Campos LA, Cavalcanti IDL, Lira Nogueira MCDB, Pereira VRA, Brelaz-de-Castro MCA, Cavalcanti IMF. Ceftazidime and Usnic Acid Encapsulated in Chitosan-Coated Liposomes for Oral Administration against Colorectal Cancer-Inducing Escherichia coli. Pharmaceuticals (Basel) 2024; 17:802. [PMID: 38931469 PMCID: PMC11206294 DOI: 10.3390/ph17060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Escherichia coli has been associated with the induction of colorectal cancer (CRC). Thus, combined therapy incorporating usnic acid (UA) and antibiotics such as ceftazidime (CAZ), co-encapsulated in liposomes, could be an alternative. Coating the liposomes with chitosan (Chi) could facilitate the oral administration of this nanocarrier. Liposomes were prepared using the lipid film hydration method, followed by sonication and chitosan coating via the drip technique. Characterization included particle size, polydispersity index, zeta potential, pH, encapsulation efficiency, and physicochemical analyses. The minimum inhibitory concentration and minimum bactericidal concentration were determined against E. coli ATCC 25922, NCTC 13846, and H10407 using the microdilution method. Antibiofilm assays were conducted using the crystal violet method. The liposomes exhibited sizes ranging from 116.5 ± 5.3 to 240.3 ± 3.5 nm and zeta potentials between +16.4 ± 0.6 and +28 ± 0.8 mV. The encapsulation efficiencies were 51.5 ± 0.2% for CAZ and 99.94 ± 0.1% for UA. Lipo-CAZ-Chi and Lipo-UA-Chi exhibited antibacterial activity, inhibited biofilm formation, and preformed biofilms of E. coli. The Lipo-CAZ-UA-Chi and Lipo-CAZ-Chi + Lipo-UA-Chi formulations showed enhanced activities, potentially due to co-encapsulation or combination effects. These findings suggest potential for in vivo oral administration in future antibacterial and antibiofilm therapies against CRC-inducing bacteria.
Collapse
Affiliation(s)
- Jaqueline Barbosa de Souza
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Davi de Lacerda Coriolano
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Rayza Camila dos Santos Silva
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Sérgio Dias da Costa Júnior
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Luís André de Almeida Campos
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Iago Dillion Lima Cavalcanti
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Mariane Cajubá de Britto Lira Nogueira
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Valéria Rêgo Alves Pereira
- Department of Immunology, Aggeu Magalhães Institute (IAM/FIOCRUZ), Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil;
| | - Maria Carolina Accioly Brelaz-de-Castro
- Department of Immunology, Aggeu Magalhães Institute (IAM/FIOCRUZ), Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil;
- Laboratory of Parasitology, Academic Center of Vitoria (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| |
Collapse
|
9
|
Obiedallah MM, Melekhin VV, Menzorova YA, Bulya ET, Minin AS, Mironov MA. Fucoidan coated liposomes loaded with novel antituberculosis agent: preparation, evaluation, and cytotoxicity study. Pharm Dev Technol 2024; 29:311-321. [PMID: 38529643 DOI: 10.1080/10837450.2024.2332454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
In this article, we described a novel antituberculosis imidazotetrazine derivative designed in fucoidan-coated liposomes to reduce its cytotoxicity and investigate its mucoadhesive properties. Firstly, fucoidan extracted from Ascophyllum nodosum was used for additional stabilization of liposomal suspensions and to give it mucoadhesive properties. PEG-600 and/or Tween-80 were used to increase the shelf life of liposomal suspension. The ratio of the fucoidan: lipids 1:2 was found to be the optimum that produces stable fucoidan-coated liposomes. The particle size of the optimum formulation was 336.3 ± 5.4, the PDI was 0.33, and the zeta potential was -39.6. This size and the practical spherical shape of the particles were confirmed by atomic force microscopy. In addition, the in vitro release profiles from uncoated and fucoidan-coated liposomes revealed significant and faster release compared to free antituberculosis agent. Using the MTT assay test, the fucoidan-coated liposomes exhibited fourteen times lower cytotoxicity (IC50 7.14 ± 0.91 µg/ml) than the free drug (IC50 0.49 ± 0.06). Moreover, the mucoadhesive capabilities of these liposomal formulations were also confirmed using snail mucin, which highlighting their potential use as an effective delivery system for antituberculosis therapy, with notable improvements in dissolution rate and reduced cytotoxicity.
Collapse
Affiliation(s)
- Manar M Obiedallah
- Institute of Chemical Technology, Ural Federal University, Ekaterinburg, Russia
- Department of Pharmaceutics, Assiut University, Assiut, Egypt
| | - Vsevolod V Melekhin
- Institute of Chemical Technology, Ural Federal University, Ekaterinburg, Russia
- Department of Medical Biology and Genetics, Ural State Medical University, Ekaterinburg, Russia
| | | | - Emmanuella T Bulya
- Institute of Chemical Technology, Ural Federal University, Ekaterinburg, Russia
| | - Artem S Minin
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation
| | - Maxim A Mironov
- Institute of Chemical Technology, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
10
|
Riazi H, Goodarzi MT, Tabrizi MH, Mozaffari M, Neamati A. Preparation of the Myricetin-Loaded PEGylated Niosomes and Evaluation of their in vitro Anti-Cancer Potentials. Chem Biodivers 2024; 21:e202301767. [PMID: 38470176 DOI: 10.1002/cbdv.202301767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
Several edible plants contain flavonoids, including myricetin (Myr), which perform a wide range of biological activities. Myr has antitumor properties against various tumor cells. In this study Myr-loaded PEGylated niosomes (Myr-PN) were prepared and their anti-cancer activities were evaluated in vitro. Myr-PNs were prepared as a tool for drug delivery to the tumor site. Myr-PN was characterized in terms of size, zeta potential, and functional groups using dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (SEM). The Myr-PN size was 241 nm with a polydispersity index (PDI) of 0.20, and zeta potential -32.7±6.6 mV. Apoptotic properties of Myr-PN against normal and cancer cell lines were determined by flow cytometry and real-time quantitative PCR. Cancer cells showed higher cytotoxicity when treated with Myr-PN compared with normal cells, indicating that the synthesized nanoparticles pose no adverse effects. Apoptosis was induced in cells treated with 250 μg/mL of Myr-PN, in which 45.2 % of cells were arrested in subG1, suggesting that Myr-PN can induce apoptosis. In vitro, the synthesized Myr-PN demonstrated potent anticancer properties. Furthermore, more research should be conducted in vitro and in vivo to study the more details of Myr-PN anti-cancer effects.
Collapse
Affiliation(s)
- Hanieh Riazi
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | | | | - Majid Mozaffari
- Department of Chemistry, Herbal Medicines Raw Materials Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Ali Neamati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
11
|
Ensaf PK, Goodarzi MT, Tabrizi MH, Neamati A, Hosseinyzadeh SS. Novel formulation of parthenolide-loaded liposome coated with chitosan and evaluation of its potential anticancer effects in vitro. Mol Biol Rep 2024; 51:369. [PMID: 38411765 DOI: 10.1007/s11033-024-09325-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND In this study the formulation of parthenolide (PN), an anticancer agent extracted from a natural product, into a liposome (PN-liposome), was examined. The surface of the PN-liposome was modified using chitosan (PN-chitosome). By using real-time quantitative PCR and flow cytometry, we examined the release of PN-chitosomes, cytotoxicity, and ability to induce apoptosis in vitro. METHODS AND RESULTS According to the present study, PN-chitosomes had a size of 251 nm which is acceptable for efficient enhanced permeation and retention (EPR) performance. PN-chitosomes were confirmed to be spherical in shape and size through FESEM analysis. In terms of encapsulation efficiency, 94.5% was achieved. PN-chitosome possessed a zeta potential of 34.72 mV, which was suitable for its stability. According to the FTIR spectra of PN and PN-chitosome, PN was chemically stable due to the intermolecular interaction between the liposome and the drug. After 48 h, only 10% of the PN was released from the PN-chitosome in PBS (pH 7.4), and less than 20% was released after 144 h. CONCLUSION In a dose-dependent manner, PN-chitosome exhibited anticancer properties that were more cytotoxic against cancer cells than normal cells. Moreover, the formulation activated both the apoptosis pathway and cytotoxic genes in real-time qPCR experiments. According to the cytotoxicity and activating apoptosis of the prepared modified particle, PN-chitosome may be helpful in the treatment of cancer.
Collapse
Affiliation(s)
| | | | | | - Ali Neamati
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
12
|
Dong L, Li Y, Cong H, Yu B, Shen Y. A review of chitosan in gene therapy: Developments and challenges. Carbohydr Polym 2024; 324:121562. [PMID: 37985064 DOI: 10.1016/j.carbpol.2023.121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Gene therapy, as a revolutionary treatment, has been gaining more and more attention. The key to gene therapy is the selection of suitable vectors for protection of exogenous nucleic acid molecules and enabling their specific release in target cells. While viral vectors have been widely used in researches, non-viral vectors are receiving more attention due to its advantages. Chitosan (CS) has been widely used as non-viral organic gene carrier because of its good biocompatibility and its ability to load large amounts of nucleic acids. This paper summarizes and evaluates the potential of chitosan and its derivatives as gene delivery vector materials, along with factors influencing transfection efficiency, performance evaluation, ways to optimize infectious efficiency, and the current main research development directions. Additionally, it provides an outlook on its future prospects.
Collapse
Affiliation(s)
- Liang Dong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Alwahsh W, Sahudin S, Alkhatib H, Bostanudin MF, Alwahsh M. Chitosan-Based Nanocarriers for Pulmonary and Intranasal Drug Delivery Systems: A Comprehensive Overview of their Applications. Curr Drug Targets 2024; 25:492-511. [PMID: 38676513 DOI: 10.2174/0113894501301747240417103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
The optimization of respiratory health is important, and one avenue for achieving this is through the application of both Pulmonary Drug Delivery System (PDDS) and Intranasal Delivery (IND). PDDS offers immediate delivery of medication to the respiratory system, providing advantages, such as sustained regional drug concentration, tunable drug release, extended duration of action, and enhanced patient compliance. IND, renowned for its non-invasive nature and swift onset of action, presents a promising path for advancement. Modern PDDS and IND utilize various polymers, among which chitosan (CS) stands out. CS is a biocompatible and biodegradable polysaccharide with unique physicochemical properties, making it well-suited for medical and pharmaceutical applications. The multiple positively charged amino groups present in CS facilitate its interaction with negatively charged mucous membranes, allowing CS to adsorb easily onto the mucosal surface. In addition, CS-based nanocarriers have been an important topic of research. Polymeric Nanoparticles (NPs), liposomes, dendrimers, microspheres, nanoemulsions, Solid Lipid Nanoparticles (SLNs), carbon nanotubes, and modified effective targeting systems compete as important ways of increasing pulmonary drug delivery with chitosan. This review covers the latest findings on CS-based nanocarriers and their applications.
Collapse
Affiliation(s)
- Wasan Alwahsh
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Shariza Sahudin
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
- Atta-Ur-Rahman Institute of Natural Products Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Hatim Alkhatib
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | | | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| |
Collapse
|
14
|
Li J, Huang S, Shi L, Chen G, Liu X, Liu M, Guo G. Interaction between long noncoding RNA and microRNA in lung inflammatory diseases. Immun Inflamm Dis 2024; 12:e1129. [PMID: 38270295 PMCID: PMC10777888 DOI: 10.1002/iid3.1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Non-coding RNAs (ncRNAs) are a group of RNAs that cannot synthesize proteins, but are critical in gene expression regulation. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), the two major family members, are intimately involved in controlling immune response, cell proliferation, apoptosis, differentiation and polarization, and cytokine secretion. Their interactions significantly influence lung inflammatory diseases and could be potential therapeutic targets. OBJECTIVES The review aims to elucidate the role of ncRNAs, especially the interactions between lncRNA and miRNA in lung diseases, including acute and chronic lung inflammatory diseases, as well as lung cancer. And provide novel insights into disease mechanisms and potential therapeutic methods. METHODS We conducted a comprehensive review of the latest studies on lncRNA and miRNA in lung inflammatory diseases. Our research involved searching through electronic databases like PubMed, Web of Science, and Scopus. RESULTS We explain the fundamental characteristics and functions of miRNA and lncRNA, their potential interaction mechanisms, and summarize the newly explorations on the role of lncRNA and miRNA interactions in lung inflammatory diseases. CONCLUSIONS Numerous lncRNAs and miRNAs have been found to partipicate in all stages of lung inflammatory diseases. While ncRNA-based therapies have been validated and developed, there remain challenges in developing more stable and effective drugs for clinical use.
Collapse
Affiliation(s)
- Jiaqi Li
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Shengyu Huang
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Liangliang Shi
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Guochang Chen
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xiaoxiao Liu
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound RepairThe First Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
15
|
Sadeghzadeh F, Nasiraei Haghighi H, Ghiyamati M, Hajizadenadaf F, Homayouni Tabrizi M. In vitro and in vivo study on the anticancer effects of anethole-loaded bovine serum albumin nanoparticles surface decorated with chitosan and folic acid. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00181-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
AbstractAnethole (Ant) is a herbal compound with unique properties, which is limited in its clinical use due to its low solubility in aqueous solutions. Therefore, in this study, albumin nanocarrier modified with chitosan-folate was used to transfer Ant to cancer cells and its anticancer effects were evaluated. First, Ant was loaded on albumin nanoparticles by desolvation method and then the surface of nanoparticles was covered with chitosan bound to folate. After characterization, the amount of Ant loading in nanoparticles was measured by the absorption method and then its toxicity effects on breast cancer cell lines, colon, and normal cells were evaluated by the MTT method. The real-time QPCR method was used to investigate the expression changes of apoptosis-related genes in the treated cells compared to the control cells, and finally, the antitumor effects of nanoparticles were evaluated in the mouse model carrying breast cancer. The results of this investigation showed the presence of nanoparticles with dimensions of 252 nm, a dispersion index of 0.28 mV, and a surface charge of 27.14 mV, which are trapped in about 88% of ATL. The toxicity effect of nanoparticles was shown on breast, colon, and normal cancer cells, respectively. In addition, the examination of the gene profile under investigation showed an increase in the expression of BAX and caspase-3 and -9 along with a decrease in the expression of the Bcl-2 gene, which confirms the activation of the internal pathway of apoptosis. The decrease in the volume of tumors and the presence of apoptotic areas in the tissue sections confirmed the antitumor effects of nanoparticles in the in vivo model. The inhibition percentage of free Ant and nanoparticles with a concentration of 25 and 50 mg/kg/tumor volume was reported as 36.9%, 56.6%, and 64.9%, respectively, during 15 days of treatment. These results showed the effectiveness of the formulation in inhibiting cancer cells both in vitro and in vivo.
Collapse
|
16
|
Khatamian N, Motavalizadehkakhky A, Homayouni Tabrizi M, Mehrzad J, Zhiani R. Preparation and characterization of the myricetin-loaded solid lipid nanoparticles decorated with folic acid-bound chitosan and evaluation of its antitumor and anti-angiogenic activities in vitro and in vivo in mice bearing tumor models. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AbstractMyricetin is a flavonoid with anticancer properties. This study aimed to formulate myricetin in the form of solid lipid nanoparticles (SLN), decorated with chitosan (CS) and active-targeted with folic acid (FA). After characterization, the in vitro release, cytotoxicity, antioxidant, and ability of the formulation to induce apoptosis using flow cytometry, fluorescent microscopy, and real-time qPCR were examined. Then in vivo anti-angiogenesis on chick chorioallantoic membrane (CAM) and antitumor activities on mice bearing tumor models were investigated. The present study showed that the size of 310 nm and zeta potential of + 30 mV were acceptable for oral administration. The Michaelis–Menten model fitted the drug release pattern with lag during 144 h of the study. The cytotoxicity assay showed that myricetin-SLN-CS-FA significantly killed cancer cells at the concentrations of 6.25, 12.5, 25, 50 and 100 µg/mL (*p < 0.05, **p < 0.01, and ***p < 0.001). The highest level of apoptosis was shown at the concentration of 45 µg/ml in flow cytometry, and fluorescent studies. These results showed the anticancer properties of myricetin-SLN-CS-FA in a dose-dependent manner. The real-time results also indicated that the formulation exerted its cytotoxic effect by activating apoptosis genes. The DPPH, ABTS, and FRAP studies also demonstrated the significant antioxidant properties of the myricetin-SLN-CS-FA (*p < 0.05, **p < 0.01, and ***p < 0.001). The anti-angiogenic activities of the formulations depicted in the CAM assay significantly decrease the number and length of the vessels (*p < 0.05, **p < 0.01, and ***p < 0.001), and also affect VEGF and VEGFR, genes involved in angiogenesis (**p < 0.01, and ***p < 0.001). The antitumor studies indicated the statistically significant effects of myricetin-SLN-CS-FA on reducing tumor volume (*p < 0.05 and ***p < 0.001). The H&E staining of the liver and monitoring of the animal weights also indicated the safety of the formulation. The analysis of mRNA expression in liver and tumor demonstrated that myricetin-SLN-CS-FA exerts its antitumor activities by modulating the inflammatory and oxidative responses in the tissues.
Collapse
|
17
|
Luo Z, Ji L, Liu H, Sun Y, Zhao C, Xu X, Gu X, Ai X, Yang C. Inhalation Lenalidomide-Loaded Liposome for Bleomycin-Induced Pulmonary Fibrosis Improvement. AAPS PharmSciTech 2023; 24:235. [PMID: 37973629 DOI: 10.1208/s12249-023-02690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, fibrotic interstitial lung disease with unclear etiology and increasing prevalence. Pulmonary administration can make the drug directly reach the lung lesion location and reduce systemic toxic and side effects. The effectiveness of lenalidomide (Len) liposomal lung delivery in idiopathic pulmonary fibrosis was investigated. Len liposomes (Len-Lip) were prepared from soybean lecithin, cholesterol (Chol), and medicine in different weight ratios by thin film hydration method. The Len-Lip were spherical in shape with an average size of 226.7 ± 1.389 nm. The liposomes with a higher negative zeta potential of around - 34 mV, which was conducive to improving stability by repelling each other. The drug loading and encapsulation rate were 2.42 ± 0.07% and 85.47 ± 2.42%. Len-Lip had little toxicity at the cellular level and were well taken up by cells. At bleomycin-induced pulmonary fibrosis model mice, inhalation Len-Lip could improve lung function and decrease lung hydroxyproline contents, and alleviate pulmonary fibrosis state. Inhalation Len-Lip provided a reference for the treatment of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhilin Luo
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Liyuan Ji
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
| | - Hongting Liu
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yao Sun
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Conglu Zhao
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiang Xu
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xiaoting Gu
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China.
| | - Xiaoyu Ai
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China.
| | - Cheng Yang
- College of Pharmacy, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
18
|
Alkwedhim MAH, Pouresmaeil V, Davoodi-Dehaghani F, Mahavar M, Homayouni Tabrizi M. Synthesis and evaluation of biological effects of modified graphene oxide nanoparticles containing Lawson (Henna extract) on gastric cancer cells. Mol Biol Rep 2023; 50:8971-8983. [PMID: 37715021 DOI: 10.1007/s11033-023-08797-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
PURPOSE Targeted Graphene Oxide (GO) nanoparticles can play an important role in the treatment of cancer by increasing cancer cell targeting. This study was conducted to synthesize GO nanoparticles functionalized with chitosan-folate (CS-FA) to deliver a natural product Lawsone (LA) for cancer treatment. METHODS After characterization of the LA-GO-CS-FA, antioxidant activities of the nanoparticles were investigated by ABTS, DPPH, and FRAP tests. CAM assay was used to study the effect of nanoparticles on angiogenesis. The expression level of inflammatory and angiogenic genes in cells treated with nanoparticles was evaluated by real-time PCR. RESULTS The findings demonstrated the formation of nanoparticles with a size of 113.3 nm, a PDI of 0.31, and a surface charge of + 11.07 mV. The percentages of encapsulation efficiency were reported at 93%. Gastric cancer cells were reported as the most sensitive to treatment compared to the control, and the gastric cancer cells were used to study gene expression changes. The anti-angiogenic effects of nanoparticles were confirmed by reducing the average number and length of blood vessels and reducing the height and weight of embryos in the CAM assay. The reducing the expression of genes involved in angiogenesis in real-time PCR was demonstrated. Nanoparticles displayed high antioxidant properties by inhibiting DPPH and ABTS radicals and reducing iron ions in the FRAP method. The reduction of pro-inflammatory genes in AGS cells which were treated with nanoparticles indicates the anti-inflammatory properties of nanoparticles. CONCLUSION This study showed the efficacy of nanoparticles in inhibiting gastric cancer cells by relying on inhibiting angiogenesis.
Collapse
Affiliation(s)
| | - Vahid Pouresmaeil
- Department of Biochemistry, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran.
| | - Fatemeh Davoodi-Dehaghani
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mobina Mahavar
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
19
|
Zacaron TM, Silva MLSE, Costa MP, Silva DME, Silva AC, Apolônio ACM, Fabri RL, Pittella F, Rocha HVA, Tavares GD. Advancements in Chitosan-Based Nanoparticles for Pulmonary Drug Delivery. Polymers (Basel) 2023; 15:3849. [PMID: 37765701 PMCID: PMC10536410 DOI: 10.3390/polym15183849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The evolution of respiratory diseases represents a considerable public health challenge, as they are among the leading causes of death worldwide. In this sense, in addition to the high prevalence of diseases such as asthma, chronic obstructive pulmonary disease, pneumonia, cystic fibrosis, and lung cancer, emerging respiratory diseases, particularly those caused by members of the coronavirus family, have contributed to a significant number of deaths on a global scale over the last two decades. Therefore, several studies have been conducted to optimize the efficacy of treatments against these diseases, focusing on pulmonary drug delivery using nanomedicine. Thus, the development of nanocarriers has emerged as a promising alternative to overcome the limitations of conventional therapy, by increasing drug bioavailability at the target site and reducing unwanted side effects. In this context, nanoparticles composed of chitosan (CS) show advantages over other nanocarriers because chitosan possesses intrinsic biological properties, such as anti-inflammatory, antimicrobial, and mucoadhesive capacity. Moreover, CS nanoparticles have the potential to enhance drug stability, prolong the duration of action, improve drug targeting, control drug release, optimize dissolution of poorly soluble drugs, and increase cell membrane permeability of hydrophobic drugs. These properties could optimize the performance of the drug after its pulmonary administration. Therefore, this review aims to discuss the potential of chitosan nanoparticles for pulmonary drug delivery, highlighting how their biological properties can improve the treatment of pulmonary diseases, including their synergistic action with the encapsulated drug.
Collapse
Affiliation(s)
- Thiago Medeiros Zacaron
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | | | - Mirsiane Pascoal Costa
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Dominique Mesquita e Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Allana Carvalho Silva
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Ana Carolina Morais Apolônio
- Postgraduate Program in Dentistry, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| | - Rodrigo Luiz Fabri
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
| | - Frederico Pittella
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| | - Helvécio Vinícius Antunes Rocha
- Laboratory of Micro and Nanotechnology—Farmanguinhos, FIOCRUZ—Fundação Oswaldo Cruz, Rio de Janeiro 21040-361, Rio de Janeiro, Brazil;
| | - Guilherme Diniz Tavares
- Postgraduate Program in Pharmaceutical Science, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil; (T.M.Z.); (M.P.C.); (D.M.e.S.); (A.C.S.); (R.L.F.); (F.P.)
- Faculty of Pharmacy, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Minas Gerais, Brazil;
| |
Collapse
|
20
|
Le-Deygen IM, Mamaeva PV, Skuredina AA, Safronova AS, Belogurova NG, Kudryashova EV. Combined System for the Simultaneous Delivery of Levofloxacin and Rifampicin: Structural and Functional Properties and Antibacterial Activity. J Funct Biomater 2023; 14:381. [PMID: 37504876 PMCID: PMC10381656 DOI: 10.3390/jfb14070381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The therapy of resistant forms of tuberculosis requires the simultaneous use of several drugs, in particular, a combination of rifampicin and levofloxacin. In this paper, we aimed to design a combined system for the simultaneous delivery of these drugs for potential inhalation administration. A feature of this system is the incorporation of rifampicin into optimized liposomal vesicles capable of forming a multipoint non-covalent complex with chitosan-β-cyclodextrin conjugates. Levofloxacin is incorporated into cyclodextrin tori by forming a host-guest complex. Here, a comprehensive study of the physicochemical properties of the obtained systems was carried out and special attention was paid to the kinetics of cargo release for individual drugs and in the combined system. The release of levofloxacin in combined system is slow and is described by the Higuchi model in all cases. The release of rifampicin from liposomes during the formation of complexes with polymeric conjugates is characterized by the change of the Higuchi model to the Korsmeyer-Peppas model with the main type of diffusion against Fick's law. Microbiological studies in solid and liquid growth media a consistently high antibacterial activity of the obtained systems was shown against B. subtilis and E. coli.
Collapse
Affiliation(s)
- Irina M Le-Deygen
- Chemical Enzymology Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Polina V Mamaeva
- Chemical Enzymology Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna A Skuredina
- Chemical Enzymology Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia S Safronova
- Chemical Enzymology Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Natalia G Belogurova
- Chemical Enzymology Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena V Kudryashova
- Chemical Enzymology Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
21
|
Fadaei MR, Mohammadi M, Fadaei MS, Jaafari MR. The crossroad of nanovesicles and oral delivery of insulin. Expert Opin Drug Deliv 2023; 20:1387-1413. [PMID: 37791986 DOI: 10.1080/17425247.2023.2266992] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023]
Abstract
INTRODUCTION Diabetes mellitus is one of the challenging health problems worldwide. Multiple daily subcutaneous injection of insulin causes poor compliance in patients. Development of efficient oral formulations to improve the quality of life of such patients has been an important goal in pharmaceutical industry. However, due to serious issues such as low bioavailability and instability, it has not been achieved yet. AREAS COVERED Due to functional properties of the vesicles and the fact that hepatic-directed vesicles of insulin could reach the clinical phases, we focused on three main vesicular delivery systems for oral delivery of insulin: liposomes, niosomes, and polymersomes. Recent papers were thoroughly discussed to provide a broad overview of such oral delivery systems. EXPERT OPINION Although conventional liposomes are unstable in the presence of bile salts, their further modifications such as surface coating could increase their stability in the GI tract. Bilosomes showed good flexibility and stability in GI fluids. Also, niosomes were stable, but they could not induce significant hypoglycemia in animal studies. Although polymersomes were effective, they are expensive and there are some issues about their safety and industrial scale-up. Also, we believe that other modifications such as addition of a targeting agent or surface coating of the vesicles could significantly increase the bioavailability of insulin-loaded vesicles.
Collapse
Affiliation(s)
- Mohammad Reza Fadaei
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Saleh Fadaei
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Hariharan K, Mehta T, Shah J, Dave H, Sami A, Omri A. Localized Delivery of Erlotinib Using Liposomal Gel Formulations for the Treatment of Oral Squamous Cell Carcinoma. Int J Pharm 2023:123144. [PMID: 37330155 DOI: 10.1016/j.ijpharm.2023.123144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Oral cancer accounts for more than 350000 cases worldwide with 90% of them being oral squamous cell carcinomas (OSCC). The current treatment modalities of chemoradiation have poor outcomes along with harmful effects to neighbouring healthy tissues. The present study aimed to deliver Erlotinib (ERB), locally at the site of tumor arising in the oral cavity. ERB was encapsulated in liposomal formulations (ERB Lipo) and optimized using full factorial, 32 experimental design. The optimized batch was then coated with chitosan to obtain CS-ERB Lipo and were characterized further. Both liposomal ERB formulations had size less than 200nm and PDI less than 0.4. Zeta potential was upto -50mV for ERB Lipo and upto + 25mV for CS-ERB Lipo indicating stable formulation. Liposomal formulations were freeze dried and loaded into gel to study in-vitro release and chemotherapeutic evaluation. CS-ERB Lipo showed sustained release upto 36 h from gel as compared to control formulation. In-vitro cell viability studies showed potent anti-cancer activity on KB-cells. In-vivo studies showed better pharmacological efficacy in terms of tumor volume reduction for ERB LIPO gel (49.19%) and CS-ERB Lipo gel (55.27%) as compared to plain ERB Gel (38.88%) applied locally. Histology also revealed that formulation could alleviate dysplasia condition to hyperplasia. The locoregional therapy of ERB Lipo gel and CS-ERB Lipo gel thus show promising outcome in improving pre-malignant and early-stage oral cavity cancers.
Collapse
Affiliation(s)
- Kartik Hariharan
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad, India-382481
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad, India-382481
| | - Jigna Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad, India-382481
| | - Heena Dave
- Institute of Science, Nirma University, SG Highway, Ahmedabad, India-382481
| | - Anam Sami
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Ahmedabad, India-382481
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury ON P3E 2C6, Ontario, Canada
| |
Collapse
|
23
|
Cong L, Wang J, Lu H, Tian M, Ying R, Huang M. Influence of different anionic polysaccharide coating on the properties and delivery performance of nanoliposomes for quercetin. Food Chem 2023; 409:135270. [PMID: 36580701 DOI: 10.1016/j.foodchem.2022.135270] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Nanoliposome is an effective delivery system for polyphenols, whereas it always suffers from low electrostatic stability and oxidation of lipid membranes. Here, different charged anionic polysaccharides including carrageenan (-62.67 ± 1.85 mV), trehalose (-20.73 ± 1.42 mV), and pectin (-4.47 ± 0.38 mV) were used as coating material to improve the stability of nanoliposomes. Results showed that carrageenan coating greatly inhibited aggregation and fusion of nanoliposome. The coating of the higher charged polysaccharides produced the more hydrogen bonds and made the inner chains of lipid molecules more compact, thus improving the rigidity of the membrane and thermal stability. In addition, the polysaccharide coating effectively reduced the lateral diffusion within the membrane and the propagation rate of oxidation reaction. The aim of this study is to investigate the effect of anionic polysaccharides with different charges on coated nanoliposomes, provide reference for the delivery of quercetin.
Collapse
Affiliation(s)
- Lixia Cong
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Lu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengwei Tian
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meigui Huang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
24
|
Sun D, Zhang G, Xie M, Wang Y, Liang X, Tu M, Su Z, Zeng R. Softness enhanced macrophage-mediated therapy of inhaled apoptotic-cell-inspired nanosystems for acute lung injury. J Nanobiotechnology 2023; 21:172. [PMID: 37248505 DOI: 10.1186/s12951-023-01930-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/14/2023] [Indexed: 05/31/2023] Open
Abstract
Engineered nanosystems offer a promising strategy for macrophage-targeted therapies for various diseases, and their physicochemical parameters including surface-active ligands, size and shape are widely investigated for improving their therapeutic efficacy. However, little is known about the synergistic effect of elasticity and surface-active ligands. Here, two kinds of anti-inflammatory N-acetylcysteine (NAC)-loaded macrophage-targeting apoptotic-cell-inspired phosphatidylserine (PS)-containing nano-liposomes (PSLipos) were constructed, which had similar size and morphology but different Young's modulus (E) (H, ~ 100 kPa > Emacrophage vs. L, ~ 2 kPa < Emacrophage). Interestingly, these PSLipos-NAC showed similar drug loading and encapsulation efficiency, and in vitro slow-release behavior of NAC, but modulus-dependent interactions with macrophages. Softer PSLipos-L-NAC could resist macrophage capture, but remarkably prolong their targeting effect period on macrophages via durable binding to macrophage surface, and subsequently more effectively suppress inflammatory response in macrophages and then hasten inflammatory lung epithelial cell wound healing. Especially, pulmonary administration of PSLipos-L-NAC could significantly reduce the inflammatory response of M1-like macrophages in lung tissue and promote lung injury repair in a bleomycin-induced acute lung injury (ALI) mouse model, providing a potential therapeutic approach for ALI. The results strongly suggest that softness may enhance ligand-directed macrophage-mediated therapeutic efficacy of nanosystems, which will shed new light on the design of engineered nanotherapeutics.
Collapse
Affiliation(s)
- Dazheng Sun
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Guanglin Zhang
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Henry Fok Colloge of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, P. R. China
| | - Mingyang Xie
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Yina Wang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, 510632, P. R. China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiangchao Liang
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Mei Tu
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Zhijian Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, 510632, P. R. China.
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, P. R. China.
| | - Rong Zeng
- Department of Materials Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China.
| |
Collapse
|
25
|
Hamedinasab H, Rezayan AH, Jaafari MR, Mashreghi M, Alvandi H. The Protective Effect of N-acetylcysteine against Liposome and Chitosan-Induced Cytotoxicity. J Microencapsul 2023:1-9. [PMID: 37147916 DOI: 10.1080/02652048.2023.2209646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
AIM N-acetylcysteine (NAC) as an antioxidant used to moderate liposome and chitosan-Induced cell cytotoxicity at their high concentrations. METHODS liposome and chitosan were prepared and characterized. The cytotoxicity effect of liposome with NAC-loaded liposome (liposome-NAC) and chitosan solution with chitosan solution containing NAC (chitosan-NAC) on the A549 cell line was compared. RESULTS Particle size, zeta potential, and NAC drug release for liposome were 125.9 ± 8 nm, -34.7 ± 2.1 mv, and 51.1% ±3%, respectively. SEM (Scanning electron microscope) and TEM (Transmission electron microscope) indicated spherical shape of liposome. Encapsulation efficiency of liposome-NAC was 12% ±0.98%. Particle size and zeta potential for chitosan solution were 361 ± 11.3 nm and 10.8 ± 1.52 mv. Stability storage study indicated good stability of chitosan and liposome. Cell viability of liposome-NAC and chitosan-NAC significantly was higher than liposome and chitosan at all four concentrations. CONCLUSION NAC has a protective effect against liposome and chitosan-induced cell toxicity.
Collapse
Affiliation(s)
- Hamed Hamedinasab
- Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Ali Hossein Rezayan
- Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hale Alvandi
- Division of Nanobiotechnology, Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| |
Collapse
|
26
|
Liu Q, Zhang X, Chai D, Li H, Li S, Wu D, Zhang L, Liu Z, Feng Y, Tang F, Feng H. Enhancement of the immune response via the facilitation of dendritic cell maturation by CD-205 Receptor-mediated Long-circling liposomes acting as an antigen and astragalus polysaccharide delivery system. Int Immunopharmacol 2023; 119:110242. [PMID: 37126987 DOI: 10.1016/j.intimp.2023.110242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Abstract
CD-205 receptor-mediated dendritic cell (DC) targeting liposomes are commonly used as a delivery system for inducing a strong T-cell immune response or specific immune tolerance. This delivery system can carry both the antigen and adjuvant, thereby modulating DC maturation and also activating the T-cell response. In order to maximize the desired therapeutic effects of Astragalus polysaccharides (APS) and induce an efficient cellular and humoral immune response against the antigen, ovalbumin (OVA) and APS were encapsulated in long-circling liposomes conjugated with anti-CD-205 receptor antibodies to produce CD-205-targeted liposomes (iLPSM). We explored using a series of experiments evaluating the targeting efficiency of iLPSM. In vitro, iLPSM nanoparticles promoted the proliferation of macrophages, and the nanoparticles were rapidly phagocytized by macrophages. In vivo, iLPSM significantly improved the antibody titers of OVA-specific IgG and IgG, isotypes cytokine production, and T and B lymphocyte differentiation. Furthermore, iLPSM facilitated the maturation of DCs. In addition, iLPSM nanoparticles could prolong the retention time of nanoparticles at the injection site, leading to a strong, sustained immune response. These results show that the CD-205 antibody successfully binds to the corresponding cell receptor.
Collapse
Affiliation(s)
- Qianqian Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China
| | - Xinnan Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China
| | - Dongkun Chai
- College of Veterinary Medicine, Southwest University, Rongchang, Chongqing 402460, PR China
| | - Hangyu Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China
| | - Sheng Li
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China
| | - Daiyan Wu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China
| | - Linzi Zhang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China
| | - Ziwei Liu
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China
| | - Yangyang Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China
| | - Feng Tang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China
| | - Haibo Feng
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan 610041, PR China; Key Laboratory of Ministry of Education and Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
27
|
Lu H, Wang J, Huang M, Ahmad M, Cong L, Tian M, Wang Q, Ying R, Tan C. Bitterness-masking assessment of luteolin encapsulated in whey protein isolate-coated liposomes. Food Funct 2023; 14:3230-3241. [PMID: 36938848 DOI: 10.1039/d2fo03641j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
An unacceptable bitter taste limits the application of luteolin in healthier food systems. In this study, a bitterness-masking assessment was performed on whey protein isolate-coated liposomes loaded with luteolin (WPI-coated liposomes) using an electronic tongue and human sensory test. The physical properties of the WPI-coated colloidal nanocarrier were characterized by zeta potential, average diameter, distribution, and morphology analyses. The results indicated that WPI-coated nanocarrier systems exhibited a uniformly dispersed distribution and spherical morphology. After the comparison of the bitterness value, the bitterness-reducing effect of 5% WPI-coated liposomes was the most significant and reduced the bitterness of luteolin by 75%. Raman spectroscopy and X-ray diffraction analysis demonstrated that the decoration of WPI on the liposomes reduced the free motion of lipid molecules. This promoted the ordering at the polar headgroup area and hydrophobic core of the lipid bilayer, which explained why luteolin-loaded liposomes (uncoated liposomes) and WPI-coated liposomes could reduce the bitterness of luteolin from the perspective of bitter molecular groups. Combined with the Raman spectral data, the bilayer rigidity of 5% WPI-coated liposomes was positively responsive to the stabilization of uncoated liposomes against storage and resistance ability against surfactants. It was proven that the emergence of the surface modification of the WPI coating enhanced the stability of uncoated liposomes. These results may contribute to the use of WPI-coated liposomes as prospective candidates for effective delivery of the bioactive bitter substance in nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Hui Lu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meigui Huang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lixia Cong
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengwei Tian
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qingling Wang
- School of Food Science and Technology, Shihezi University, Xinjiang Autonomous Region, Shihezi, PR China
| | - Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Tan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
28
|
Yu Z, Wu T, Liu X, Chen H, Ren C, Zhu L. Resveratrol-Loaded Dipalmitoylphosphatidylcholine Liposomal Large Porous Microparticle Inhalations for the Treatment of Bacterial Pneumonia Caused by Acinetobacter baumannii. J Aerosol Med Pulm Drug Deliv 2023; 36:2-11. [PMID: 36695669 DOI: 10.1089/jamp.2021.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background: Acinetobacter baumannii-mediated bacterial pneumonia is a common disease that is harmful to human health. Dipalmitoylphosphatidylcholine (DPPC) is the major lipid component of the pulmonary surfactant (PS) found in the alveolar space; the PS helps to keep surface tension low, which allows for improved oxygen delivery. Resveratrol (RE) is a phytoalexin found in plants that is released in response to injury or infection. The therapeutic effect of Re is limited due to its low solubility and bioavailability. In this study, we report pulmonary delivery of Re-loaded DPPC liposomal large porous microparticles (RDLPMs) for treatment of A. baumannii-induced pneumonia. Methods: Novel RDLPMs were prepared by rotary evaporation and a freeze-drying method in this study. RDLPMs were evaluated by the particle size, electric potential, in vitro release, and particle size distribution. A rat model of A. baumannii-mediated pneumonia was established and used for pharmacodynamic evaluations. Results: The Re-loaded DPPC liposomes (RDLs) consisted of Re/DPPC (1:3, mol/mol) and DPPC/cholesterol (3:1, w/w), with a hydration time of 15 minutes. The RDLs had a high encapsulation efficiency of 69.8% ± 1.6%, a mean size of 191.5 ± 4.5 nm, and a high zeta potential of 12.4 ± 1.5 mV. The RDLPMs were composed of mannitol/large porous microparticles/RDLs (1:4:2, w/w/w) and had a loading efficiency of 2.20% ± 0.24%. The RDLPMs had an aerodynamic diameter (2.73 ± 0.65 μm), a good fluidity (28.30° ± 6.13°), and demonstrated high lung deposition (fine particle fraction = 43.33%). Surprisingly, while penicillin showed better microbial inhibition than the RDLPMs and Re groups in vitro, the RDLPMs were more effective in vivo. Conclusion: The RDLPMs showed good powder properties for pulmonary delivery. The RDLPMs may inhibit the nuclear factor kappa-B pathway and downregulate the expression of cytokines downstream of tumor necrosis factor-α and interleukin-1β. As well as, RDLPMs demonstrated some antibacterial properties against A. baumannii bacteria. Re, when delivered in RDLPMs as a dry powder inhaler, is a promising substitute for antibiotics in the treatment of A. baumannii pneumonia.
Collapse
Affiliation(s)
- Zicheng Yu
- Department of Laboratory, Institute of Clinical Pharmacy and Pharmacology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Wu
- Department of Laboratory, Institute of Clinical Pharmacy and Pharmacology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Liu
- Department of Pharmacy, Shanghai United Family Pudong Hospital, Shanghai, China
| | - Hongjun Chen
- Department of Laboratory, Institute of Clinical Pharmacy and Pharmacology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunxia Ren
- Department of Laboratory, Institute of Clinical Pharmacy and Pharmacology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lifei Zhu
- Department of Laboratory, Institute of Clinical Pharmacy and Pharmacology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Biabangard A, Asoodeh A, Jaafari MR, Mashreghi M. Study of FA12 peptide-modified PEGylated liposomal doxorubicin (PLD) as an effective ligand to target Muc1 in mice bearing C26 colon carcinoma: in silico, in vitro, and in vivo study. Expert Opin Drug Deliv 2022; 19:1710-1724. [PMID: 36373415 DOI: 10.1080/17425247.2022.2147505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES This study tried to achieve active targeting of Muc1 in cancer; the surface of PEGylated liposomal doxorubicin (PLD/Doxil®) was decorated with FA12 peptide. METHODS According to docking results, FA12 was selected for this study, among four different peptides. MD simulation was also conducted as an additional confirmation of the binding interaction between FA12 and Muc1. Liposomal formulations were prepared; 1HNMR and HPLC techniques were used to verify peptide conjugation to DSPE-PEG2000-COOH. Afterward, DSPE-PEG2000-FA12 was post-inserted into the PLD at 50, 100, 200, and 400 peptides per liposome. The size, zeta potential, release profile, cytotoxicity (IC50), and cell uptake (using fluorescence microscopy and flow cytometry) were evaluated. In vivo biodistribution and antitumor activities were studied on mice bearing C-26 colon carcinoma. RESULTS Cell uptake and cytotoxicity results revealed that PLD-100 (targeted PLD with 100 FA12 per liposome) could significantly enhance cellular binding. Furthermore, PLD-100 demonstrated higher antitumor efficacy, indicating more remarkable survival compared to PLD and other targeted PLDs. PLD-100 exhibited higher doxorubicin tumor accumulation compared to PLD. CONCLUSIONS FA12 peptide is a promising targeting ligand for PLD to treat cancers with a high level of Muc1 expression and merits further investigations.
Collapse
Affiliation(s)
- Atefeh Biabangard
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Esim O, Oztuna A, Sarper M, Hascicek C. Chitosan-coated bovine serum albumin nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Liu S, Lian J, Xu Z, Ning Y, Shi M, Zhao Z, Zhang Z. Chitosan-coated nanoliposomes for efficient delivery of betanin with enhanced stability and bioavailability. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Elkomy MH, Ali AA, Eid HM. Chitosan on the surface of nanoparticles for enhanced drug delivery: A comprehensive review. J Control Release 2022; 351:923-940. [DOI: 10.1016/j.jconrel.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/26/2022]
|
33
|
Tziveleka LA, Pippa N, Ioannou E, Demetzos C, Roussis V. Development of Ulvan-Containing Liposomes as Antibacterial Drug Delivery Platforms. J Funct Biomater 2022; 13:jfb13040186. [PMID: 36278655 PMCID: PMC9589965 DOI: 10.3390/jfb13040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Liposomes, due to their safety profile and targeting ability, are among the most studied nanocarriers as antimicrobial delivery systems. However, due to lack of stability and the non-specific interaction of liposomes with cells and proteins, their use is relatively limited. Aiming to overcome these drawbacks, it was envisaged that incorporation of ulvan, a bioactive marine sulfated polysaccharide isolated from green algae, in liposomes could improve their physicochemical properties and overall stability. Thus, we initially studied the interactions of ulvan with neutral, negatively, and positively charged lipids using Differential Scanning Calorimetry and subsequently, based on the obtained results, we prepared the respective ulvan–containing neutral and charged liposomes, where ulvan interacts with both lipid chains and polar groups in the liposomal bilayer. In a further step, we entrapped in the liposomes fusidic acid, used as a model antibacterial drug, and proceeded with the evaluation of their antibacterial activity against Staphylococcus aureus. The physicochemical properties (size and ζ-potential), stability, morphology, and entrapment efficiency of the prepared liposomal formulations were determined.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Correspondence: (C.D.); (V.R.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Correspondence: (C.D.); (V.R.)
| |
Collapse
|
34
|
Balde A, Kim SK, Benjakul S, Nazeer RA. Pulmonary drug delivery applications of natural polysaccharide polymer derived nano/micro-carrier systems: A review. Int J Biol Macromol 2022; 220:1464-1479. [PMID: 36116588 DOI: 10.1016/j.ijbiomac.2022.09.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
Respiratory distress syndrome and pneumothorax are the foremost causes of death as a result of the changing lifestyle and increasing air pollution. Numerous approaches have been studied for the pulmonary delivery of drugs, proteins as well as peptides using meso/nanoparticles, nanocrystals, and liposomes. These nano/microcarrier systems (NMCs) loaded with drug provide better systemic as well as local action. Furthermore, natural polysaccharide-based polymers such as chitosan (CS), alginate (AG), hyaluronic acid, dextran, and cellulose are highly used for the preparation of nanoparticles and delivery of the drug into the pulmonary tract due to their advantageous properties such as low toxicity, high hydrophobicity, supplementary mucociliary clearance, mucoadhesivity, and biological efficacy. These properties ease the delivery of drugs onto the targeted site. Herein, recent advances in the natural polymer-derived NMCs have been reviewed for their transport and mechanism of action into the bronchiolar region as well as the respiratory region. Various physicochemical properties such as surface charge, size of nanocarrier system, surface modifications, and toxicological effects of these nanocarriers in vitro and in vivo are elucidated as well. Furthermore, challenges faced for the preparation of a model NMCs for pulmonary drug delivery are also discoursed.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan-si, Gyeonggi-do 11558, South Korea
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkhla University, 90112 Hat Yai, Songkhla, Thailand
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamilnadu, India.
| |
Collapse
|
35
|
Leong EWX, Ge R. Lipid Nanoparticles as Delivery Vehicles for Inhaled Therapeutics. Biomedicines 2022; 10:2179. [PMID: 36140280 PMCID: PMC9496059 DOI: 10.3390/biomedicines10092179] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Lipid nanoparticles (LNPs) have emerged as a powerful non-viral carrier for drug delivery. With the prevalence of respiratory diseases, particularly highlighted by the current COVID-19 pandemic, investigations into applying LNPs to deliver inhaled therapeutics directly to the lungs are underway. The progress in LNP development as well as the recent pre-clinical studies in three main classes of inhaled encapsulated drugs: small molecules, nucleic acids and proteins/peptides will be discussed. The advantages of the pulmonary drug delivery system such as reducing systemic toxicity and enabling higher local drug concentration in the lungs are evaluated together with the challenges and design considerations for improved formulations. This review provides a perspective on the future prospects of LNP-mediated delivery of inhaled therapeutics for respiratory diseases.
Collapse
Affiliation(s)
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
36
|
|
37
|
Lai EPC, Li C. Actinide Decorporation: A Review on Chelation Chemistry and Nanocarriers for Pulmonary Administration. Radiat Res 2022; 198:430-443. [PMID: 35943882 DOI: 10.1667/rade-21-00004.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
Chelation is considered the best method for detoxification by promoting excretion of actinides (Am, Np, Pu, Th, U) from the human body after internal contamination. Chemical agents that possess carboxylic acid or hydroxypyridinonate groups play a vital role in actinide decorporation. In this review article, we provide considerable background details on the chelation chemistry of actinides with an aim to formulate better decorporation agents. Nanocarriers for pulmonary delivery represent an exciting prospect in the development of novel therapies for actinide decorporation that both reduce toxic side effects of the agent and improve its retention in the body. Recent studies have demonstrated the benefits of using a nebulizer or an inhaler to administer chelating agents for the decorporation of actinides. Effective chelation therapy with large groups of internally contaminated people can be a challenge unless both the agent and the nanocarrier are readily available from strategic national stockpiles for radiological or nuclear emergencies. Sunflower lecithin is particularly adept at alleviating the burden of administration when used to form liposomes as a nanocarrier for pulmonary delivery of diethylenetriamine-pentaacetic acid (DTPA) or hydroxypyridinone (HOPO). Better physiologically-based pharmacokinetic models must be developed for each agent in order to minimize the frequency of multiple doses that can overload the emergency response operations.
Collapse
Affiliation(s)
- Edward P C Lai
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Chunsheng Li
- Radiation Protection Bureau, Health Canada, Ottawa, ON K1A 1C1, Canada
| |
Collapse
|
38
|
Prasher P, Sharma M, Singh SK, Gulati M, Jha NK, Gupta PK, Gupta G, Chellappan DK, Zacconi F, de Jesus Andreoli Pinto T, Chan Y, Liu G, Paudel K, Hansbro PM, George Oliver BG, Dua K. Targeting mucus barrier in respiratory diseases by chemically modified advanced delivery systems. Chem Biol Interact 2022; 365:110048. [PMID: 35932910 DOI: 10.1016/j.cbi.2022.110048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Mucus gel constitutes of heavily cross-linked mucin fibers forming a viscoelastic, dense porous network that coats all the exposed epithelia not covered with the skin. The layer provides protection to the underlying gastrointestinal, respiratory, and female reproductive tracts, in addition to the organs such as the surface of eye by trapping the pathogens, irritants, environmental fine particles, and potentially hazardous foreign matter. However, this property of mucus gel poses a substantial challenge for realizing the localized and sustained drug delivery across the mucosal surfaces. The mucus permeating particles that spare the protective properties of mucus gel improve the therapeutic potency of the drugs aimed at the management of diseases, including sexually transmitted infections, lung cancer, irritable bowel disease, degenerative eye diseases and infections, and cystic fibrosis. As such, the mucoadhesive materials conjugated with drug molecules display a prolonged retention time in the mucosal gel that imparts a sustained release of the deliberated drug molecules across the mucosa. The contemporarily developed mucus penetrating materials for drug delivery applications comprise of a finer size, appreciable hydrophilicity, and a neutral surface to escape the entrapment within the cross-inked mucus fibers. Pertaining to the mucus secretion as a first line of defence in respiratory tract in response to the invading physical, chemical, and biological pathogens, the development of mucus penetrating materials hold promise as a stalwart approach for revolutionizing the respiratory drug delivery paradigm. The present review provides an epigrammatic collation of the mucus penetrating/mucoadhesive materials for achieving a controlled/sustained release of the cargo pharmaceutics and drug molecules across the respiratory mucus barrier.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Monica Gulati
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, 201310, UP, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Flavia Zacconi
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Macul, Santiago, 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Street, São Paulo, 05508-000, Brazil
| | - Yinghan Chan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Keshav Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
39
|
Waghule T, Saha RN, Alexander A, Singhvi G. Tailoring the multi-functional properties of phospholipids for simple to complex self-assemblies. J Control Release 2022; 349:460-474. [PMID: 35841998 DOI: 10.1016/j.jconrel.2022.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 11/20/2022]
Abstract
The unique interfacial properties, huge diversity, and biocompatible nature of phospholipids make them an attractive pharmaceutical excipient. The amphiphilic nature of these molecules offers them the property to self-assemble into distinct structures. The solubility, chemical and structural properties, surface charge, and critical packing parameters of phospholipids play an essential role during formulation design. This review focuses on the relationship between the structural features of a phospholipid molecule and the formation of different lipid-based nanocarrier drug delivery systems. This provides a rationale and guideline for the selection of appropriate phospholipids while designing a drug delivery system. Finally, we refer to relevant recent case studies covering different types of phospholipid-based systems including simple to complex assemblies. Different carriers in the size range of 50 nm to a few microns can be prepared using phospholipids. The carriers can be delivered through oral, intravenous, nasal, dermal, transmucosal, and subcutaneous routes. A wide range of applicability can be achieved by incorporating various hydrophilic and lipophilic additives in the phospholipid bilayer. Advanced research has led to the discovery of phospholipid complexes and cell membrane mimicking lipids. Overall, phospholipids remain a versatile pharmaceutical excipient for drug delivery. They play multiple roles as solubilizer, emulsifier, surfactant, permeation enhancer, coating agent, release modifier, and liposome former.
Collapse
Affiliation(s)
- Tejashree Waghule
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Ranendra Narayan Saha
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India
| | - Amit Alexander
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781101, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, India.
| |
Collapse
|
40
|
Mashreghi M, Faal Maleki M, Askarizadeh A, Farshchi H, Farhoudi L, Nasrollahzadeh MS, Rezazade Bazaz M, Hadizadeh F, Jaafari MR. A novel and easy to prepare azo-based bioreductive linker and its application in hypoxia-sensitive cationic liposomal doxorubicin: Synthesis, characterization, in vitro and in vivo studies in mice bearing C26 tumor. Chem Phys Lipids 2022; 247:105226. [PMID: 35850240 DOI: 10.1016/j.chemphyslip.2022.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/01/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
This study designed and synthesized a cost-effective azo-based hypoxia-sensitive linker (AHSL) using commercially accessible, inexpensive raw materials and simple methods to apply in cationic nanoliposomes. Then, AHSL was post-inserted into the cationic liposome (Cat-lip), and PEG-Azo-Cat-lip was prepared and characterized using DLS. The decrease in the zeta-potential of formulation from + 18.4 mV for Cat-lip to + 6.1 mV and the increase in the size of the PEG-Azo-Cat-lip indicated the successful post insertion of AHSL into the liposomes. The Doxorubicin (Dox) release study showed that PEGylation results in a more stable PEG-Azo-Cat-lip than the Cat-lip. The increased cytotoxicity of the PEG-Azo-Cat-lip in the hypoxic condition also indicated the cleavage of the AHSL in the hypoxic environment. In vivo biodistribution using animal imaging has shown higher tumor accumulation of the MPEG-Azo-Cat-lip than Cat-lip during the 120 h of the study. The results of anti-tumor activities and biosafety of the formulations also showed the higher efficiency of the MPEG-Azo-Cat-lip compared with the Cat-lip. The results of this study indicated the antitumor efficacy of this hypoxia-sensitive which merits further investigation.
Collapse
Affiliation(s)
- Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Faal Maleki
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anis Askarizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Helaleh Farshchi
- Department of Horticulture, College of Agriculture, Ferdowsi University of Mashhad, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahda Sadat Nasrollahzadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahere Rezazade Bazaz
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Amjadi S, Almasi H, Hamishehkar H, Alizadeh Khaledabad M, Lim LT. Cationic inulin as a new surface decoration hydrocolloid for improving the stability of liposomal nanocarriers. Colloids Surf B Biointerfaces 2022; 213:112401. [PMID: 35151992 DOI: 10.1016/j.colsurfb.2022.112401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/28/2021] [Accepted: 02/04/2022] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to investigate the cationization of inulin with Williamson's etherification method, and compare cationic inulin with unmodified inulin coatings for stabilizing nanoliposomes (NLPs). The synthetized cationic inulin was characterized by Fourier transforms infrared (FT-IR) spectroscopy, carbon hydrogen nitrogen (CHN) elemental analysis, and energy-dispersive X-ray spectroscopy. Three concentrations of inulin and cationic inulin (1, 2, and 4 mg/mL) were used for the coating of NLPs. The concentration of 4 mg/mL was found to be optimal for inulin and cationic inulin as surface coating, on the basis of particle size, zeta potential, and microstructural morphology. The lowest values of particle size (93.41 nm), polydispersity index (0.25), and negative zeta potential (-24.41 mV) were related to the coated NLPs with cationic inulin at a concentration of 4 mg/mL. The transmission electron microscopy image of the coated NLPs with cationic inulin exhibited a spherical and core-shell structure. The coated NLPs with cationic inulin showed the highest thermal stability, physical stability, and oxidative stability. In conclusion, cationic inulin coating conferred a stronger protection than the unmodified inulin coating of NLPs. The technique developed here can be applied for surface decoration of NLPs to improve their stability.
Collapse
Affiliation(s)
- Sajed Amjadi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, P.O. Box 57561-51818, Urmia, Iran
| | - Hadi Almasi
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, P.O. Box 57561-51818, Urmia, Iran.
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Alizadeh Khaledabad
- Department of Food Science and Technology, Faculty of Agriculture, Urmia University, P.O. Box 57561-51818, Urmia, Iran
| | - Loong-Tak Lim
- Department of Food Science, University of Guelph, Guelph, Ontario N1G2W1, Canada
| |
Collapse
|
42
|
Kumar M, Jha A, Bharti K, Parmar G, Mishra B. Advances in lipid-based pulmonary nanomedicine for the management of inflammatory lung disorders. Nanomedicine (Lond) 2022; 17:913-934. [PMID: 35451334 DOI: 10.2217/nnm-2021-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inflammatory lung disorders have become one of the fastest growing global healthcare concerns, with more than 500 million annual cases of disorders such as chronic obstructive pulmonary disease, asthma and pulmonary fibrosis. Owing to environmental changes and socioeconomic disparity, the numbers are expected to grow even more in years to come. The therapeutic strategies and approved drugs currently employed in the management of inflammatory lung disorders show dose-dependent resistance and pharmacokinetic limitations. This review comprehensively discusses lipid-based pulmonary nanomedicine as a potential platform to overcome these barriers while ensuring site-specific drug delivery and minimal side effects in nontargeted tissues for the management of noninfectious inflammatory lung disorders.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Kanchan Bharti
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Gourav Parmar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
43
|
Cao Y, Dong X, Chen X. Polymer-Modified Liposomes for Drug Delivery: From Fundamentals to Applications. Pharmaceutics 2022; 14:pharmaceutics14040778. [PMID: 35456613 PMCID: PMC9026371 DOI: 10.3390/pharmaceutics14040778] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Liposomes are highly advantageous platforms for drug delivery. To improve the colloidal stability and avoid rapid uptake by the mononuclear phagocytic system of conventional liposomes while controlling the release of encapsulated agents, modification of liposomes with well-designed polymers to modulate the physiological, particularly the interfacial properties of the drug carriers, has been intensively investigated. Briefly, polymers are incorporated into liposomes mainly using “grafting” or “coating”, defined according to the configuration of polymers at the surface. Polymer-modified liposomes preserve the advantages of liposomes as drug-delivery carriers and possess specific functionality from the polymers, such as long circulation, precise targeting, and stimulus-responsiveness, thereby resulting in improved pharmacokinetics, biodistribution, toxicity, and therapeutic efficacy. In this review, we summarize the progress in polymer-modified liposomes for drug delivery, focusing on the change in physiological properties of liposomes and factors influencing the overall therapeutic efficacy.
Collapse
Affiliation(s)
- Yifeng Cao
- Department of Electronic Chemicals, Institute of Zhejiang University-Quzhou, Quzhou 324000, China
- Correspondence: (Y.C.); (X.C.)
| | - Xinyan Dong
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China;
| | - Xuepeng Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China
- Correspondence: (Y.C.); (X.C.)
| |
Collapse
|
44
|
Prasher P, Sharma M, Singh SK, Gulati M, Patravale V, Oliver BG, Dua K. Mucoadhesive particles: an emerging toolkit for advanced respiratory drug delivery. Nanomedicine (Lond) 2022; 17:821-826. [DOI: 10.2217/nnm-2021-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Arcadia Grant, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, 144402, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, 144402, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai, 400019, India
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney NSW, 2007, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, 2037, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo NSW, 2007, Australia
| |
Collapse
|
45
|
Valente SA, Silva LM, Lopes GR, Sarmento B, Coimbra MA, Passos CP. Polysaccharide-based formulations as potential carriers for pulmonary delivery - A review of their properties and fates. Carbohydr Polym 2022; 277:118784. [PMID: 34893219 DOI: 10.1016/j.carbpol.2021.118784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 12/31/2022]
Abstract
Polysaccharides can be elite carriers for therapeutic molecules due to their versatility and low probability to trigger toxicity and immunogenic responses. Local and systemic therapies can be achieved through particle pulmonary delivery, a promising non-invasive alternative. Successful pulmonary delivery requires particles with appropriate flowability to reach alveoli and avoid premature clearance mechanisms. Polysaccharides can form micro-, nano-in-micro-, and large porous particles, aerogels, and hydrogels. Herein, the characteristics of polysaccharides used in drug formulations for pulmonary delivery are reviewed, providing insights into structure-function relationships. Charged polysaccharides can confer mucoadhesion, whereas the ability for specific sugar recognition may confer targeting capacity for alveolar macrophages. The method of particle preparation must be chosen considering the properties of the components and the delivery device to be utilized. The fate of polysaccharide-based carriers is dependent on enzyme-triggered hydrolytic and/or oxidative mechanisms, allowing their complete degradation and elimination through urine or reutilization of released monosaccharides.
Collapse
Affiliation(s)
- Sara A Valente
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lisete M Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Guido R Lopes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Sarmento
- INEB - Institute of Biomedical Engineering Instituto, University of Porto, 4150-180 Porto, Portugal; i3S - Institute for Research & Innovation in Health, University of Porto, 4150-180 Porto, Portugal; CESPU - Institute for Research and Advanced Training in Health Sciences and Technologies, 4585-116 Gandra, Portugal
| | - Manuel A Coimbra
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cláudia P Passos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
46
|
Sarhadi S, Moosavian SA, Mashreghi M, Rahiman N, Golmohamadzadeh S, Tafaghodi M, Sadri K, Chamani J, Jaafari MR. B12-functionalized PEGylated liposomes for the oral delivery of insulin: In vitro and in vivo studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103141] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
47
|
Ahani E, Montazer M, Mianehro A, Samadi N, Toliyat T, Mahmoudi Rad M. Preparation of long-lasting antibacterial wound dressing through diffusion of cationic-liposome-encapsulated polyhexamethylene biguanide. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Shirvany A, Rezayan AH, Alvandi H, Barshan Tashnizi M, Sabahi H. Preparation and Evaluation of a Niosomal Drug Delivery System Containing Cefazolin and Study of Its Antibacterial Activity. IRANIAN JOURNAL OF MEDICAL MICROBIOLOGY 2021. [DOI: 10.30699/ijmm.15.6.638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
Mukhtar M, Fényes E, Bartos C, Zeeshan M, Ambrus R. Chitosan biopolymer, its derivatives and potential applications in nano-therapeutics: A comprehensive review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Sodium caseinate-coated and β-cyclodextrin/vitamin E inclusion complex-loaded nanoliposomes: A novel stabilized nanocarrier. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|