1
|
Li H, Zhu Y, Yang TX, Zhao QS, Zhao B. Development and characterization of pectin-based composite film incorporated with cannabidiol/2,6-di-O-methyl-β-cyclodextrin inclusion complex for food packaging. Int J Biol Macromol 2024; 277:133525. [PMID: 38945317 DOI: 10.1016/j.ijbiomac.2024.133525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
To reduce environmental pollution and improve human health, developing green active food packaging materials is very necessary. In this study, a novel antioxidant and antibacterial composite film was produced by incorporating inclusion complex (CDIC) of cannabidiol (CBD) with 2,6-di-O-methyl-β-cyclodextrin (DM-β-CD) into pectin. The pectin films loaded with CBD and hemp leaf water extract (HLE) were prepared for comparison. Comprehensive characterizations showed CBD was encapsulated by DM-β-CD and CDIC was evenly dispersed into pectin matrix, forming the compact and intact film. The composite films showed good mechanical properties and biodegradability. CDIC film showed the highest transparency and smoothness (Rrms/Rmax: 2.6/16.8 nm). The addition of bioactives reduced the water-binding capacity and CDIC film had the strongest hydrophobicity. Besides, DM-β-CD encapsulation improved the thermal stability of CBD in CDIC film. Benefiting from encapsulation and excellent bioactivities of CBD, CDIC film showed excellent antioxidant capacity and antibacterial activity, effectively inhibiting colony growth and maintaining the strawberry color in strawberry preservation. This work could provide a novel eco-friendly candidate for food packaging material and expand the use of CBD in food industry.
Collapse
Affiliation(s)
- Hang Li
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Zhu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tian-Xiao Yang
- Department of Biomedicine, Beijing City University, Beijing 100094, China
| | - Qing-Sheng Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Bing Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Bialik-Wąs K, Kulawik-Pióro A, Sienkiewicz A, Łętocha A, Osińska J, Malarz K, Mrozek-Wilczkiewicz A, Barczewski M, Lanoue A, Giglioli-Guivarc'h N, Miastkowska M. Design and development of multibiocomponent hybrid alginate hydrogels and lipid nanodispersion as new materials for medical and cosmetic applications. Int J Biol Macromol 2024; 278:134405. [PMID: 39116986 DOI: 10.1016/j.ijbiomac.2024.134405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
The multibiocomponent hybrid alginate hydrogels based on brown and sea algae, containing 100 % ingredients of natural origin were prepared by ionic crosslinking reaction of a polymeric matrix with lipid nanodispersion. To the best of the Authors' knowledge such multicomponent biobased hydrogel of promising medical and cosmetical applications for the first time was obtained in the environment of flower water, received earlier as a waste by-product from various chemical processes. An innovative hybrid alginate hydrogel that is completely biodegradable and eco-friendly was obtained following waterless and upcycling trends that are in line with the principles of sustainable development. The optimal composition of the lipid nanodispersion and the polymeric matrix was selected using the statistical method of design of the experiment. Based on obtained results, multibiocomponent hybrid alginate hydrogels with various ratios of lipid nanodispersion were obtained. Subsequently, the porous structure and elasticity of the hybrid hydrogels were analyzed. Moreover, to confirm the safety of the multibiocomponent alginate hybrid hydrogels the cytotoxic tests were carried out using human fibroblasts and keratinocytes cell lines. As the final product hybrid of hydrolate-swollen alginate hydrogel and lipid nanodispersion containing several active ingredients (silymarin, bakuchiol, spirulina) was obtained.
Collapse
Affiliation(s)
- Katarzyna Bialik-Wąs
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland.
| | - Agnieszka Kulawik-Pióro
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Anna Sienkiewicz
- Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Anna Łętocha
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Julia Osińska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| | - Katarzyna Malarz
- Department of Systems Biology and Engineering, Silesian University of Technology, 16 Akademicka St., 44-100 Gliwice, Poland; Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty St., 41-500 Chorzow, Poland
| | - Anna Mrozek-Wilczkiewicz
- Department of Systems Biology and Engineering, Silesian University of Technology, 16 Akademicka St., 44-100 Gliwice, Poland; Chelkowski Institute of Physics, University of Silesia in Katowice, 1A 75 Pułku Piechoty St., 41-500 Chorzow, Poland
| | - Mateusz Barczewski
- Institute of Materials Technology, Faculty of Mechanical Engineering and Management, Poznan University of Technology, 24 Jana Pawła II St., 60-965 Poznan, Poland
| | - Arnaud Lanoue
- Université de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales", UFR des Sciences Pharmaceutiques, 31 av. Monge, F-37200 Tours, France
| | - Nathalie Giglioli-Guivarc'h
- Université de Tours, EA 2106 "Biomolécules et Biotechnologies Végétales", UFR des Sciences Pharmaceutiques, 31 av. Monge, F-37200 Tours, France
| | - Małgorzata Miastkowska
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland
| |
Collapse
|
3
|
Bu K, Huang D, Zhang H, Xu K, Zhu C. Ultrasonic-microwave technique promotes the physicochemical structure of hydrogel and its release characterization of curcumin in vitro. Food Chem 2024; 451:139389. [PMID: 38670023 DOI: 10.1016/j.foodchem.2024.139389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
In this study, soybean protein isolate and hawthorn pectin were mixed to prepare binary hydrogels using ultrasound and microwave techniques. Moderate treatment can not only significantly improve the mechanical strength of the hydrogel, but also increase the tightness of the internal cross-linking. The strengthening of interactions (hydrogen bonds, hydrophobic interactions, and disulfide bonds) was the main reason for this trend. Especially, the ultrasonic-microwave (80 s) treatment hydrogel possessed excellent hardness (33.426 N), water-holding capacity (98.26%), elasticity (G' = 1205 Pa), and a more homogeneous and denser microstructure. In addition, the hydrogel minimized the extent of curcumin loss (21.23%) after 5 weeks of storage. In general, the ultrasonic-microwave technique could significantly promote the physicochemical structure and curcumin bioaccessibility of hydrogels, which showed excellent market prospects in the food industry.
Collapse
Affiliation(s)
- Kaixuan Bu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Dongjie Huang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Hao Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Kang Xu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
4
|
Sun W, Bu K, Meng H, Zhu C. Hawthorn pectin/soybean isolate protein hydrogel bead as a promising ferrous ion-embedded delivery system. Colloids Surf B Biointerfaces 2024; 237:113867. [PMID: 38522284 DOI: 10.1016/j.colsurfb.2024.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
In this study, hydrogel beads [SPI/HP-Fe (II)] were prepared by cross-linking soybean isolate protein (SPI) and hawthorn pectin (HP) with ferrous ions as a backbone, and the effects of ultrasound and Fe2+ concentration on the mechanical properties and the degree of cross-linking of internal molecules were investigated. The results of textural properties and water-holding capacity showed that moderate ultrasonic power and Fe2+ concentration significantly improved the stability and water-holding capacity of the hydrogel beads and enhanced the intermolecular interactions in the system. Scanning electron microscopy (SEM) confirmed that the hydrogel beads with 60% ultrasonic power and 8% Fe2+ concentration had a denser network. X-ray photoelectron spectroscopy (XPS) and atomic absorption experiments demonstrated that ferrous ions were successfully loaded into the hydrogel beads with an encapsulation efficiency of 82.5%. In addition, in vitro, simulated digestion experiments were performed to understand how the encapsulated Fe2+ is released from the hydrogel beads, absorbed, and utilized in the gastrointestinal environment. The success of the experiments demonstrated that the hydrogel beads were able to withstand harsh environments, ensuring the bioactivity of Fe2+ and improving its bioavailability. In conclusion, a novel and efficient ferrous ion delivery system was developed using SPI and HP, demonstrating the potential application of SPI/HP-Fe (II) hydrogel beads as an iron supplement to overcome the inefficiency of intake of conventional iron supplements.
Collapse
Affiliation(s)
- Wenxian Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Kaixuan Bu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China
| | - Huangmei Meng
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
5
|
Li R, Fan H, Li B, Ge J, Zhang Y, Xu X, Pan S, Liu F. Comparison on emulsifying and emulgelling properties of low methoxyl pectin with varied degree of methoxylation from different de-esterification methods. Int J Biol Macromol 2024; 263:130432. [PMID: 38403224 DOI: 10.1016/j.ijbiomac.2024.130432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Low methoxyl pectin (LMP) with different degree of methoxylation (DM, 40-50 %, 20-30 % and 5-10 %) were prepared from commercially available citrus pectin using high hydrostatic pressure assisted enzymatic (HHP-pectin) and traditional alkaline (A-pectin) de-esterification method. The results showed that both de-esterification methods and DM exhibited LMPs with varied physicochemical, structural, and functional properties. As the DM decreased, LMP showed a decrease in molecular weight (Mw), while an increase in negative charges and rhamnogalacturonan I (RG-I) ratio, accompanied with better emulsion stability, emulsion gel strength and water-holding properties. Relative to A-pectin, HHP-pectin had higher Mw and lower RG-I side chain ratio, contributing to its better thermal stability, apparent viscosity, and emulgelling properties. HHP-pectin with lower DM (5-10 %) showed superior thickening, emulsifying and emulgelling properties, while that with higher DM (40-45 %) had superior thermal stability, which provided alternative for de-esterification and targeted structural modification of pectin.
Collapse
Affiliation(s)
- Ruoxuan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Hekai Fan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Bowen Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Jinjiang Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Yanbing Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China
| | - Fengxia Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), Wuhan, Hubei, PR China.
| |
Collapse
|
6
|
Liao J, Zhou Y, Zhao X, Hou B, Zhang J, Huang H. Chitin microspheres: From fabrication to applications. Carbohydr Polym 2024; 329:121773. [PMID: 38286547 DOI: 10.1016/j.carbpol.2023.121773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024]
Abstract
Chitin microspheres (CMs) have attracted increasing attention due to their biocompatibility, uniform size and shape, large surface area, and porous structure. Considerable research efforts have been focused on developing CMs and promoting their applications in various areas. In this context, this review aims to describe the most recent progress in the fabrication and application of CMs. Different routes that can be used to prepare CMs, such as the drip method and the emulsion method, are emphatically introduced. Moreover, the applications of CMs as drug delivery systems, wound dressings, three-dimensional (3D) scaffolds, water purification, and functional supporting materials in the fields of biomedicine, tissue engineering, environmental protection, and energy storage are also highlighted. We hope this review can provide a comprehensive and useful database for further innovation of CMs.
Collapse
Affiliation(s)
- Jing Liao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Yuhang Zhou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xingyue Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Bo Hou
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China.
| | - Huihua Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
7
|
Gruppuso M, Turco G, Marsich E, Porrelli D. Antibacterial and bioactive multilayer electrospun wound dressings based on hyaluronic acid and lactose-modified chitosan. BIOMATERIALS ADVANCES 2023; 154:213613. [PMID: 37666062 DOI: 10.1016/j.bioadv.2023.213613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
Antibacterial multilayer electrospun matrices based on hyaluronic acid (HA) and a lactose-modified chitosan (CTL) were synthetized (i) by combining electrospun polycaprolactone (PCL) and polysaccharidic matrices in a bilayer device and (ii) by sequentially coating the PCL mat with CTL and HA. In both cases, the antibacterial activity was provided by loading rifampicin within the PCL support. All matrices disclosed suitable morphology and physicochemical properties to be employed as wound dressings. Indeed, both the bilayer and coated fibers showed an optimal swelling capacity (3426 ± 492 % and 1435 ± 251 % after 7 days, respectively) and water vapor permeability (160 ± 0.78 g/m2h and 170 ± 12 g/m2h at 7 days, respectively). On the other hand, the polysaccharidic dressings were completely wettable in the presence of various types of fluids. Depending on the preparation method, a different release of both polysaccharides and rifampicin was detected, and the immediate polysaccharide dissolution from the bilayer structure impacted the antibiotic release (42 ± 4 % from the bilayer structure against 25 ± 2 % from the coated fibers in 4 h). All the multilayer matrices, regardless of their production strategy and composition, revealed optimal biocompatibility and bioactivity with human dermal fibroblasts, as the released bioactive polysaccharides induced a faster wound closure in the cell monolayer (100 % in 24 h) compared to the controls (78 ± 8 % for untreated cells and 89 ± 5 % for cells treated with PCL alone, after 24 h). The inhibitory and bactericidal effects of the rifampicin loaded matrices were assessed on S. aureus, S. epidermidis, E. coli, and P. aeruginosa. The antibacterial matrices were found to be highly effective except for E. coli, which was more resistant even at higher amounts of rifampicin, with a bacterial concentration of 6.4 ± 0.4 log CFU/mL and 6.8 ± 0.3 log CFU/mL after 4 h in the presence of the rifampicin-loaded bilayer and coated matrices, respectively.
Collapse
Affiliation(s)
- Martina Gruppuso
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| | - Gianluca Turco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy.
| | - Davide Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34129 Trieste, Italy.
| |
Collapse
|
8
|
Kumawat A, Jasuja K, Ghoroi C. TiB 2-Derived Nanosheets Enhance the Tensile Strength and Controlled Drug Release of Biopolymeric Films Used in Wound Healing. ACS APPLIED BIO MATERIALS 2023; 6:4111-4126. [PMID: 37796555 DOI: 10.1021/acsabm.3c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Wound healing using an alginate-based biopolymeric film is one of the most preferred treatments. However, these films lack mechanical strength (elasticity and tensile strength), show higher initial burst release, and exhibit high vapor permeability. The present study reports the development of nanosheets derived from titanium diboride (10 nm) (NTB)-incorporated biopolymeric films (0.025, 0.05, and 0.1% w/v) using sodium alginate (SA) and carboxymethyl cellulose (CMC) to overcome the shortfalls. The surface properties of the film, nanosheet distribution within the film, and possible interactions with the film are explored by using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier transform infrared (FTIR), and X-ray diffraction (XRD). These analyses confirm that nanosheets are uniformly distributed in the film and introduce unevenness on the film's surface. The tensile strength of the nanosheet-incorporated film (0.1% NTB film) using UTM is found to be 24.30 MPa (six times higher compared to the blank film), equivalent to human skin. The water vapor transmission rate of the film is also found to be in the desired range (i.e., 2000-2500 g/m2 day). The biocompatibility of the NTB film is confirmed by the MTT assay test using NIH/3T3 cells and HEK 293 cells. Furthermore, the scratch assay shows that the developed films promote cell migration and proliferation. The antibacterial activity of the film is also demonstrated using a model drug, tetracycline hydrochloride (TCl). Besides, the film exhibits the sustained release of TCl and follows the Korsmeyer-Peppas model for drug release. Overall, the 0.1% w/v NTB film is easy to fabricate, biocompatible and shows superior mechanical properties.
Collapse
Affiliation(s)
- Akshant Kumawat
- DryProTech Lab. and BoRN Research Lab, Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| | - Kabeer Jasuja
- DryProTech Lab. and BoRN Research Lab, Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| | - Chinmay Ghoroi
- DryProTech Lab. and BoRN Research Lab, Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, Gujarat, India
| |
Collapse
|
9
|
Nájera-Martínez EF, Flores-Contreras EA, Araújo RG, Iñiguez-Moreno M, Sosa-Hernández JE, Iqbal HMN, Pastrana LM, Melchor-Martínez EM, Parra-Saldívar R. Microencapsulation of Gallic Acid Based on a Polymeric and pH-Sensitive Matrix of Pectin/Alginate. Polymers (Basel) 2023; 15:3014. [PMID: 37514404 PMCID: PMC10384038 DOI: 10.3390/polym15143014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The encapsulation of gallic acid (GA) through several methods has enhanced its shelf life and facilitated industrial applications. Polymeric matrices made of alginate and pectin were evaluated to encapsulate GA via spray drying. The pH-responsive release mechanism was monitored to validate the matrices' performances as wall materials and extend the bioactive compound stability. The microcapsules produced were characterized via scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier-transform infrared spectroscopy (FTIR), and cyclic voltammetry (CV). The retention and encapsulation efficiency ranges were 45-82% and 79-90%, respectively. The higher values were reached at 3 and 0.75% (w/v) pectin and sodium alginate, respectively. The scanning electron microscopy showed smooth spherical capsules and the average particle size ranged from 1327 to 1591 nm. Their performance and stability were evaluated with optimal results at a pH value of 7 throughout the investigation period. Therefore, this work demonstrated the suitability of gallic acid encapsulation via spray drying using pectin and alginate, which are biopolymers that can be obtained from circular economy processes starting from agro-industrial biomass. The developed formulations provide an alternative to protecting and controlling the release of GA, promoting its application in the food, pharmaceutical, and cosmetic industries and allowing for the release of compounds with high bioactive potential.
Collapse
Affiliation(s)
| | - Elda A Flores-Contreras
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Rafael G Araújo
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Maricarmen Iñiguez-Moreno
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Lorenzo M Pastrana
- Food Processing and Nutrition Group, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Elda M Melchor-Martínez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
10
|
Meng W, Zhang X, Zhang Y, Zhang X, Zhu W, Huang H, Han X, Liu Y, Xu C. Poly(vinyl alcohol)/sodium alginate polymer membranes as eco-friendly and biodegradable coatings for slow release fertilizers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3592-3601. [PMID: 36326723 DOI: 10.1002/jsfa.12312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The use of slow release fertilizers (SRFs) is an effective approach for reducing agriculture cost, environmental and ecological issues simultaneously. The present study provides a series of poly(vinyl alcohol) (PVA)/sodium alginate (SA) polymer membranes as eco-friendly and biodegradable coatings for SRFs. Moreover, polymer-coated urea (PCU) granules were fabricated through coating the urea granules with the resulting membranes. Our first interest was to fabricate three membranes (PS1, PS2, PS3) of different PVA/SA weight ratios (9:1, 8:2, 7:3) using glutaraldehyde as a crosslinking agent, and crosslink the PS3 membrane with a CaCl2 solution further to obtain the PC3 membrane. The chemical properties and morphologies of the membranes were characterized. Second, the nitrogen release behavior of the PCU granules was measured and calculated, respectively. RESULTS Crosslinking with glutaraldehyde made the PS1, PS2, PS3 membranes uniform and compact, whereas crosslinking with a CaCl2 solution formed an 'egg box' structure inside the PC3 membrane. PS3 membrane with the minimum PVA/SA weight ratio had the highest hydrophily (water uptake: 106.25%, water contact angle: 55.1o ), whereas PC3 membrane had the lowest hydrophily (water uptake: 21.57%, water contact angle: 67.3o ). The biodegradation ratios of the membranes were in the range 44-60% in 90 days, indicating that they had excellent biodegradability. The measured fractional release on the day 30 of the PCU granules ranged from 89.33% to 97.07%. The calculated nitrogen release behavior agreed well with the measured values. CONCLUSION The resulting eco-friendly and biodegradable PVA/SA membranes are alternative coatings for SRFs. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wen Meng
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Xu Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Yang Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Xianglu Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Wending Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Handa Huang
- Hefei Lvnong Fertilizer Co., Ltd, Hefei, China
| | - Xiaozhao Han
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Yahua Liu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| | - Chao Xu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
11
|
Tang NFR, Heryanto H, Armynah B, Tahir D. Bibliometric analysis of the use of calcium alginate for wound dressing applications: A review. Int J Biol Macromol 2023; 228:138-152. [PMID: 36543298 DOI: 10.1016/j.ijbiomac.2022.12.140] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Wounds can cause many disorders and affect the quality of health, so it is necessary to develop wound dressings that have a role in accelerating the healing process. Wound dressings have evolved over time, and today there are many types of wound dressings that can suit the type of wound the patient has. This review discusses the development, types, and research directions of wound dressings from calcium alginate (CaAlg), using bibliometric analysis with time intervals from 1982 to 2021. It was found that, in the late 1990s, research related to this matter began to increase. United Kingdom, United States, China, Japan, and Italy are the five most influential countries. And from the results of the keyword analysis, it was found that, in addition to studying the general properties of wound dressings, currently there are many developments related to the structure of the material as well as the effect of adding drugs to wound dressings, so that the current study also displays various characterizations.
Collapse
Affiliation(s)
| | - Heryanto Heryanto
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | - Bidayatul Armynah
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
12
|
Ma Z, Sun J, Zhou S, Shan W, Yan Y, Liu Y. Compact fiber sensor for pH measurement based on the composite effect of hydrogel deformation and LC refractive index variation. OPTICS LETTERS 2023; 48:139-142. [PMID: 36563388 DOI: 10.1364/ol.479025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
A novel, to the best of our knowledge, type of compact pH fiber sensor combined with a hydrogel based on the whispering gallery mode (WGM) is proposed and integrates a liquid crystal (LC) microdroplet in a capillary in a compact structure as small as 180 µm. In the research, the hydrogel performs both as a supporting frame and a responsive material that causes morphological deformation of the LC microdroplet with pH variation. Moreover, a new phenomenon of pH-induced LC refractive index variation is observed and applied in the pH measurement, so that the acid itself can also lead the LC microdroplet structure transition. Thus, the WGM method is applied to detect the composite effect simultaneously to improve the sensing capability. The sensitivity of the sensor in the pH range from 4.55 to 6.86 reaches 3.19 nm/pH. The response time is short, within 60 s. The simple and compact structure of the sensor reduces the cost and enhances the stability, which is of great potential for biomedical pH measurement.
Collapse
|
13
|
Gong W, Liu L, Luo L, Ji L. Preparation and characterization of a self-crosslinking sodium alginate-bioactive glass sponge. J Biomed Mater Res B Appl Biomater 2023; 111:173-183. [PMID: 35938837 DOI: 10.1002/jbm.b.35143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 11/06/2022]
Abstract
In this research, bioactive glass particles prepared by the reactive flash nanoprecipitation method (RFNP-BG particles) are used to crosslink sodium alginate to prepare biological sponges (SA-BG sponges) by freeze-drying. An experiment for the cross-linking mechanism confirms that the continuous release of Ca2+ from RFNP-BG is promoted by the crosslinking reaction and in turn leads to the gelation process of SA. Bioactive glass particles not only provide Ca2+ for the crosslinking of sodium alginate, but also enhance the mechanical properties of the SA-BG sponges. The results show that the elastic modulus of the SA-BG sponges increases from 0.026 MPa to 0.641 MPa, and the resistance to external force deformation is greatly improved; the thermal decomposition temperature increases from 105°C to 166°C; compared with a pure SA sponge, the water resistance is significantly improved. In vitro cell experiments show that the SA-BG sponges have a certain adverse effect on cell proliferation, but it is in an acceptable range. qPCR results show that the SA-BG sponges have a certain beneficial effect on promoting osteogenic gene expression. The SA-BG sponges have great application potential in the fields of medicine, hemostasis, and wound closure.
Collapse
Affiliation(s)
- Wensheng Gong
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Lingling Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Liping Luo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Lijun Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Alginates Combined with Natural Polymers as Valuable Drug Delivery Platforms. Mar Drugs 2022; 21:md21010011. [PMID: 36662184 PMCID: PMC9861938 DOI: 10.3390/md21010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Alginates (ALG) have been used in biomedical and pharmaceutical technologies for decades. ALG are natural polymers occurring in brown algae and feature multiple advantages, including biocompatibility, low toxicity and mucoadhesiveness. Moreover, ALG demonstrate biological activities per se, including anti-hyperlipidemic, antimicrobial, anti-reflux, immunomodulatory or anti-inflammatory activities. ALG are characterized by gelling ability, one of the most frequently utilized properties in the drug form design. ALG have numerous applications in pharmaceutical technology that include micro- and nanoparticles, tablets, mucoadhesive dosage forms, wound dressings and films. However, there are some shortcomings, which impede the development of modified-release dosage forms or formulations with adequate mechanical strength based on pure ALG. Other natural polymers combined with ALG create great potential as drug carriers, improving limitations of ALG matrices. Therefore, in this paper, ALG blends with pectins, chitosan, gelatin, and carrageenans were critically reviewed.
Collapse
|
15
|
Upadhyay U, Sireesha S, Gupta S, Sreedhar I, Anitha K. Freeze v/s air-dried alginate-pectin gel beads modified with sodium dodecyl sulphate for enhanced removal of copper ions. Carbohydr Polym 2022; 301:120294. [DOI: 10.1016/j.carbpol.2022.120294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
|
16
|
Eldeeb AE, Salah S, Elkasabgy NA. Biomaterials for Tissue Engineering Applications and Current Updates in the Field: A Comprehensive Review. AAPS PharmSciTech 2022; 23:267. [PMID: 36163568 PMCID: PMC9512992 DOI: 10.1208/s12249-022-02419-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/09/2022] [Indexed: 01/10/2023] Open
Abstract
Tissue engineering has emerged as an interesting field nowadays; it focuses on accelerating the auto-healing mechanism of tissues rather than organ transplantation. It involves implanting an In Vitro cultured initiative tissue or a scaffold loaded with tissue regenerating ingredients at the damaged area. Both techniques are based on the use of biodegradable, biocompatible polymers as scaffolding materials which are either derived from natural (e.g. alginates, celluloses, and zein) or synthetic sources (e.g. PLGA, PCL, and PLA). This review discusses in detail the recent applications of different biomaterials in tissue engineering highlighting the targeted tissues besides the in vitro and in vivo key findings. As well, smart biomaterials (e.g. chitosan) are fascinating candidates in the field as they are capable of elucidating a chemical or physical transformation as response to external stimuli (e.g. temperature, pH, magnetic or electric fields). Recent trends in tissue engineering are summarized in this review highlighting the use of stem cells, 3D printing techniques, and the most recent 4D printing approach which relies on the use of smart biomaterials to produce a dynamic scaffold resembling the natural tissue. Furthermore, the application of advanced tissue engineering techniques provides hope for the researchers to recognize COVID-19/host interaction, also, it presents a promising solution to rejuvenate the destroyed lung tissues.
Collapse
Affiliation(s)
- Alaa Emad Eldeeb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Salwa Salah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
17
|
Formulation and Evaluation of Chitosan-Gelatin Thermosensitive Hydrogels Containing 5FU-Alginate Nanoparticles for Skin Delivery. Gels 2022; 8:gels8090537. [PMID: 36135249 PMCID: PMC9498398 DOI: 10.3390/gels8090537] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/11/2022] Open
Abstract
(1) Background: Chitosan-gelatin-based thermosensitive hydrogel containing 5FU-alginate nanoparticles was formulated for the effective and sustained delivery of 5FU to the skin. (2) Methods: Alginate, a polysaccharide was used for the formulation of nanoparticles using a spray drying technique. Size, zeta potential, and surface morphology were investigated using a zetasizer and scanning electron microscope. The hydrogel was fabricated using chitosan and gelatin. Several important analyses were used to characterize these prepared topical hydrogels. The pH, visual transparency, rheological behavior, and swelling index of the prepared hydrogels were evaluated. The in vitro release studies were performed at different pH (5.5 and 7.4) and temperature (32 and 37 °C) conditions using a Franz diffusion cell. Ex vivo permeation and in vivo studies were performed using Sprague Dawley rats. (3) Results: Results show that spherical nanoparticles were produced at sizes of 202−254 nm and with zeta potentials of −43 to −38 mV. The prepared nanoparticles were successfully incorporated into chitosan-gelatin-based hydrogels using a glycerol 2-phosphate disodium salt hydrates crosslinker. Drug polymers and excipients compatibility and formulation of hydrogels was confirmed by ATR-FTIR results. The pH of the prepared hydrogels was in accordance with the skin pH. The viscosity of prepared hydrogel increased with temperature increase and phase transition (sol-gel transition) occurred at 34 °C. The release of drug was sustained in case of nanoparticles incorporated hydrogels (5FU-Alg-Np-HG) as compared to nanoparticles (5FU-Alg-Np) and simple hydrogels (5FU-HG) (ANOVA; p < 0.05). The premature and initial burst release of 5FU was prevented using 5FU-Alg-Np-HG. The release mechanism of 5FU from the 5FU-Alg-Np-HG diffusion was followed by swelling and erosion, as suggested by Korsmeyer-Peppas model. The prepared hydrogel proved to be non-irritant. Ex vivo permeation study across rat’s skin suggests that permeability of nanoparticles (5FU-Alg-Np) was higher than the 5FU-Alg-Np-HG (ANOVA; p < 0.05). However, skin-related drug retention of 5FU-Alg-Np-HG was significantly higher than the 5FU solution, 5FU-Alg-Np, and 5FU-HG (ANOVA; p < 0.05). This was due to swelling of hydrogels in the lower layers of skin where the temperature is 37 °C. The higher concentration of 5FU in the skin is helpful for treatment of local skin cancer, such as melanoma, and actinic keratosis. In vivo results also confirmed maximum AUC, t1/2, and skin-related drug retention of 5FU-Alg-Np-HG. (4) Conclusions: Chitosan-gelatin-based hydrogels containing 5FU-Alg-Np possess exceptional properties, and can be used for the sustained delivery of 5FU for the treatment of local skin cancers.
Collapse
|
18
|
Eivazzadeh-Keihan R, Noruzi EB, Aliabadi HAM, Sheikhaleslami S, Akbarzadeh AR, Hashemi SM, Gorab MG, Maleki A, Cohan RA, Mahdavi M, Poodat R, Keyvanlou F, Esmaeili MS. Recent advances on biomedical applications of pectin-containing biomaterials. Int J Biol Macromol 2022; 217:1-18. [PMID: 35809676 DOI: 10.1016/j.ijbiomac.2022.07.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/13/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022]
Abstract
There is a growing demand for biomaterials developing with novel properties for biomedical applications hence, hydrogels with 3D crosslinked polymeric structures obtained from natural polymers have been deeply inspected in this field. Pectin a unique biopolymer found in the cell walls of fruits and vegetables is extensively used in the pharmaceutical, food, and textile industries due to its ability to form a thick gel-like solution. Considering biocompatibility, biodegradability, easy gelling capability, and facile manipulation of pectin-based biomaterials; they have been thoroughly investigated for various potential biomedical applications including drug delivery, wound healing, tissue engineering, creation of implantable devices, and skin-care products.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Ehsan Bahojb Noruzi
- Faculty of Chemistry, Department of Inorganic Chemistry, University of Tabriz, Tabriz, Iran
| | - Hooman Aghamirza Moghim Aliabadi
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Advanced Chemical Studies Lab, Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Sahra Sheikhaleslami
- Advanced Chemical Studies Lab, Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - Ali Reza Akbarzadeh
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Seyed Masoud Hashemi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mostafa Ghafori Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Reza Ahangari Cohan
- Nanobiotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Roksana Poodat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Faeze Keyvanlou
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mir Saeed Esmaeili
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
19
|
Zirak Hassan Kiadeh S, Ghaee A, Pishbin F, Nourmohammadi J, Farokhi M. Nanocomposite pectin fibers incorporating folic acid-decorated carbon quantum dots. Int J Biol Macromol 2022; 216:605-617. [PMID: 35809673 DOI: 10.1016/j.ijbiomac.2022.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022]
Abstract
Pectin has recently attracted increasing attention as an alternative biomaterial commonly used in biomedical and pharmaceutical fields. It shows several promising properties, including good biocompatibility, health benefits, nontoxicity, and biodegradation. In this research, novel nanocomposite fibers composed of folic acid-decorated carbon dots (CDs) in pectin/PEO matrix were fabricated using the electrospinning technique, which was never reported previously. Nitrogen-doped and nitrogen, sulfur-doped CDs were synthesized with average diameters of 2.74 nm and 2.17 nm using the one-step hydrothermal method, studied regarding their physicochemical, optical, and biocompatibility properties. The relative Quantum yields of N-CDs and N, S doped CDs were measured to be 54.7 % and 30.2 %, respectively. Nanocomposite fibers containing CDs were prepared, and their morphology, physicochemical properties, conductivity, drug release behavior, and cell viability were characterized. The results indicated that CDs improve fibrous scaffolds' tensile strength from 13.74 to 35.22 MPa while maintaining comparable extensibility. Furthermore, by incorporation of CDs in the prepared fibers conductivity enhanced from 8.69 × 10-9 S·m-1 to 1.36 × 10-4 S·m-1. The nanocomposite fibrous scaffold was also biocompatible with controlled drug release over 212 h, potentially promising tissue regeneration.
Collapse
Affiliation(s)
- Shahrzad Zirak Hassan Kiadeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Fatemehsadat Pishbin
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Jhamak Nourmohammadi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
20
|
Algal sulfated polysaccharide-based hydrogels enhance gelling properties and in vitro wound healing compared to conventional hydrogels. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Qin C, Yang G, Zhu C, Wei M. Characterization of edible film fabricated with HG-type hawthorn pectin gained using different extraction methods. Carbohydr Polym 2022; 285:119270. [DOI: 10.1016/j.carbpol.2022.119270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
|
22
|
Eldeeb AE, Salah S, Amer MS, Elkasabgy NA. 3D nanocomposite alginate hydrogel loaded with pitavastatin nanovesicles as a functional wound dressing with controlled drug release; preparation, in-vitro and in-vivo evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Mirhaj M, Labbaf S, Tavakoli M, Seifalian A. An Overview on the Recent Advances in the Treatment of Infected Wounds: Antibacterial Wound Dressings. Macromol Biosci 2022; 22:e2200014. [PMID: 35421269 DOI: 10.1002/mabi.202200014] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/20/2022] [Indexed: 11/11/2022]
Abstract
A wound can be surgical, cuts from an operation or due to accident and trauma. The infected wound, as a result of bacteria growth within the damaged skin, interrupts the natural wound healing process and significantly impacts the quality of life. Wound dressing is an important segment of the skincare industry with its economic burden estimated at $ 20.4 billion (in 2021) in the global market. The results of recent clinical trials suggest that the use of modern dressings can be the easiest, most accessible, and most cost-effective way to treat chronic wounds and, hence, holds significant promise. With the sheer number of dressings in the market, the selection of correct dressing is confusing for clinicians and healthcare workers. The aim of this research was to review widely used types of antibacterial wound dressings, as well as emerging products, for their efficiency and mode of action. In this review, we focus on introducing antibiotics and antibacterial nanoparticles as two important and clinically widely used categories of antibacterial agents. The perspectives and challenges for paving the way for future research in this field are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Amelia Seifalian
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Laurano R, Boffito M, Ciardelli G, Chiono V. Wound Dressing Products: a Translational Investigation from the Bench to the Market. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
25
|
Swelling, Protein Adsorption, and Biocompatibility In Vitro of Gel Beads Prepared from Pectin of Hogweed Heracleum sosnówskyi Manden in Comparison with Gel Beads from Apple Pectin. Int J Mol Sci 2022; 23:ijms23063388. [PMID: 35328806 PMCID: PMC8954847 DOI: 10.3390/ijms23063388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
The study aims to develop gel beads with improved functional properties and biocompatibility from hogweed (HS) pectin. HS4 and AP4 gel beads were prepared from the HS pectin and apple pectin (AP) using gelling with calcium ions. HS4 and AP4 gel beads swelled in PBS in dependence on pH. The swelling degree of HS4 and AP4 gel beads was 191 and 136%, respectively, in PBS at pH 7.4. The hardness of HS4 and AP4 gel beads reduced 8.2 and 60 times, respectively, compared with the initial value after 24 h incubation. Both pectin gel beads swelled less in Hanks’ solution than in PBS and swelled less in Hanks’ solution containing peritoneal macrophages than in cell-free Hanks’ solution. Serum protein adsorption by HS4 and AP4 gel beads was 118 ± 44 and 196 ± 68 μg/cm2 after 24 h of incubation. Both pectin gel beads demonstrated low rates of hemolysis and complement activation. However, HS4 gel beads inhibited the LPS-stimulated secretion of TNF-α and the expression of TLR4 and NF-κB by macrophages, whereas AP4 gel beads stimulated the inflammatory response of macrophages. HS4 gel beads adsorbed 1.3 times more LPS and adhered to 1.6 times more macrophages than AP4 gel beads. Thus, HS pectin gel has advantages over AP gel concerning swelling behavior, protein adsorption, and biocompatibility.
Collapse
|
26
|
Oh G, Choi I, Park WS, Oh CH, Heo S, Kang D, Jung W. Preparation and properties of physically cross‐linked
PVA
/pectin hydrogels blended at different ratios for wound dressings. J Appl Polym Sci 2022. [DOI: 10.1002/app.51696] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gun‐Woo Oh
- Research Center for Marine Integrated Bionics Technology Pukyong National University Busan 48513 South Korea
| | - Il‐Whan Choi
- Department of Microbiology, College of Medicine Inje University Busan 48516 South Korea
| | - Won Sun Park
- Institute of Medical Sciences, Department of Physiology Kangwon National University School of Medicine Chuncheon 24341 South Korea
| | - Chul Hong Oh
- Jeju International Marine Science Center for Research & Education Korea Institute of Ocean Science & Technology (KIOST) Jeju 63349 South Korea
| | - Soo‐Jin Heo
- Jeju International Marine Science Center for Research & Education Korea Institute of Ocean Science & Technology (KIOST) Jeju 63349 South Korea
| | - Do‐Hyung Kang
- Jeju International Marine Science Center for Research & Education Korea Institute of Ocean Science & Technology (KIOST) Jeju 63349 South Korea
| | - Won‐Kyo Jung
- Research Center for Marine Integrated Bionics Technology Pukyong National University Busan 48513 South Korea
- Department of Biomedical Engineering and New‐senior Healthcare Innovation Center (BK21 Plus) Pukyong National University Busan 48513 South Korea
| |
Collapse
|
27
|
Bostancı NS, Büyüksungur S, Hasirci N, Tezcaner A. pH responsive release of curcumin from photocrosslinked pectin/gelatin hydrogel wound dressings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112717. [DOI: 10.1016/j.msec.2022.112717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022]
|
28
|
Characterization and Biocompatibility Properties In Vitro of Gel Beads Based on the Pectin and κ-Carrageenan. Mar Drugs 2022; 20:md20020094. [PMID: 35200624 PMCID: PMC8878971 DOI: 10.3390/md20020094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to investigate the influence of kappa (κ)-carrageenan on the initial stages of the foreign body response against pectin gel. Pectin-carrageenan (P-Car) gel beads were prepared from the apple pectin and κ-carrageenan using gelling with calcium ions. The inclusion of 0.5% κ-carrageenan (Car0.5) in the 1.5 (P1.5) and 2% pectin (P2) gel formulations decreased the gel strength by 2.5 times. Car0.5 was found to increase the swelling of P2 gel beads in the cell culture medium. P2 gel beads adsorbed 30–42 mg/g of bovine serum albumin (BSA) depending on pH. P2-Car0.2, P2-Car0.5, and P1.5-Car0.5 beads reduced BSA adsorption by 3.1, 5.2, and 4.0 times compared to P2 beads, respectively, at pH 7. The P1.5-Car0.5 beads activated complement and induced the haemolysis less than gel beads of pure pectin. Moreover, P1.5-Car0.5 gel beads allowed less adhesion of mouse peritoneal macrophages, TNF-α production, and NF-κB activation than the pure pectin gel beads. There were no differences in TLR4 and ICAM-1 levels in macrophages treated with P and P-Car gel beads. P2-Car0.5 hydrogel demonstrated lower adhesion to serous membrane than P2 hydrogel. Thus, the data obtained indicate that the inclusion of κ-carrageenan in the apple pectin gel improves its biocompatibility.
Collapse
|
29
|
Du L, Yang L, Xu B, Nie L, Lu H, Wu J, Xu H, Lou Y. Melt electrowritten poly(caprolactone) lattices incorporated with silver nanoparticles for directional water transport antibacterial wound dressings. NEW J CHEM 2022. [DOI: 10.1039/d2nj01612e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The composite dressing has excellent antibacterial ability and directional water transport effect, showing potential application in wound care.
Collapse
Affiliation(s)
- Lei Du
- Zhejiang Provincial Research Center of Clothing Engineering Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Liu Yang
- Zhejiang Provincial Research Center of Clothing Engineering Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bingjie Xu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Longping Nie
- Zhejiang Provincial Research Center of Clothing Engineering Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huali Lu
- Zhejiang Provincial Research Center of Clothing Engineering Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jindan Wu
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Huaizhong Xu
- Department of Bio-based Materials Science, Kyoto Institute of Technology, Kyoto 606-8585, Japan
| | - Yi Lou
- Department of General Surgery, Hangzhou Children's Hospital, Hangzhou 310014, China
| |
Collapse
|
30
|
Pitton M, Fiorati A, Buscemi S, Melone L, Farè S, Contessi Negrini N. 3D Bioprinting of Pectin-Cellulose Nanofibers Multicomponent Bioinks. Front Bioeng Biotechnol 2021; 9:732689. [PMID: 34926414 PMCID: PMC8678092 DOI: 10.3389/fbioe.2021.732689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Pectin has found extensive interest in biomedical applications, including wound dressing, drug delivery, and cancer targeting. However, the low viscosity of pectin solutions hinders their applications in 3D bioprinting. Here, we developed multicomponent bioinks prepared by combining pectin with TEMPO-oxidized cellulose nanofibers (TOCNFs) to optimize the inks' printability while ensuring stability of the printed hydrogels and simultaneously print viable cell-laden inks. First, we screened several combinations of pectin (1%, 1.5%, 2%, and 2.5% w/v) and TOCNFs (0%, 0.5%, 1%, and 1.5% w/v) by testing their rheological properties and printability. Addition of TOCNFs allowed increasing the inks' viscosity while maintaining shear thinning rheological response, and it allowed us to identify the optimal pectin concentration (2.5% w/v). We then selected the optimal TOCNFs concentration (1% w/v) by evaluating the viability of cells embedded in the ink and eventually optimized the writing speed to be used to print accurate 3D grid structures. Bioinks were prepared by embedding L929 fibroblast cells in the ink printed by optimized printing parameters. The printed scaffolds were stable in a physiological-like environment and characterized by an elastic modulus of E = 1.8 ± 0.2 kPa. Cells loaded in the ink and printed were viable (cell viability >80%) and their metabolic activity increased in time during the in vitro culture, showing the potential use of the developed bioinks for biofabrication and tissue engineering applications.
Collapse
Affiliation(s)
- Matteo Pitton
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Silvia Buscemi
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy
| | - Lucio Melone
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy.,Centro di Ricerca per l'Energia, l'Ambiente e il Territorio (CREAT), Università Telematica eCampus, Novedrate, Italy
| | - Silvia Farè
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| | - Nicola Contessi Negrini
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta", Politecnico di Milano, Milan, Italy.,INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Milan, Italy
| |
Collapse
|
31
|
The Effect of Glycerin Content in Sodium Alginate/Poly(vinyl alcohol)-Based Hydrogels for Wound Dressing Application. Int J Mol Sci 2021; 22:ijms222112022. [PMID: 34769449 PMCID: PMC8584732 DOI: 10.3390/ijms222112022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
The impact of different amounts of glycerin, which was used in the system of sodium alginate/poly(vinyl alcohol) (SA/PVA) hydrogel materials on the properties, such as gel fraction, swelling ability, degradation in simulated body fluids, morphological analysis, and elongation tests were presented. The study shows a significant decrease in the gel fraction from 80.5 ± 2.1% to 45.0 ± 1.2% with the increase of glycerin content. The T5 values of the tested hydrogels were varied and range from 88.7 °C to 161.5 °C. The presence of glycerin in the matrices significantly decreased the thermal resistance, which was especially visible by T10 changes (273.9 to 163.5 °C). The degradation tests indicate that most of the tested materials do not degrade throughout the incubation period and maintain a constant ion level after 7-day incubation. The swelling abilities in distilled water and phosphate buffer solution are approximately 200-300%. However, we noticed that these values decrease with the increase in glycerin content. All tested matrices are characterized by the maximum elongation rate at break in a range of 37.6-69.5%. The FT-IR analysis exhibits glycerin changes in hydrogel structures, which is associated with the cross-linking reaction. Additionally, cytotoxicity results indicate good adhesion properties and no toxicity towards normal human dermal fibroblasts.
Collapse
|
32
|
Zhang S, Waterhouse GIN, Xu F, He Z, Du Y, Lian Y, Wu P, Sun-Waterhouse D. Recent advances in utilization of pectins in biomedical applications: a review focusing on molecular structure-directing health-promoting properties. Crit Rev Food Sci Nutr 2021:1-34. [PMID: 34637646 DOI: 10.1080/10408398.2021.1988897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The numerous health benefits of pectins justify their inclusion in human diets and biomedical products. This review provides an overview of pectin extraction and modification methods, their physico-chemical characteristics, health-promoting properties, and pharmaceutical/biomedical applications. Pectins, as readily available and versatile biomolecules, can be tailored to possess specific functionalities for food, pharmaceutical and biomedical applications, through judicious selection of appropriate extraction and modification technologies/processes based on green chemistry principles. Pectin's structural and physicochemical characteristics dictate their effects on digestion and bioavailability of nutrients, as well as health-promoting properties including anticancer, immunomodulatory, anti-inflammatory, intestinal microflora-regulating, immune barrier-strengthening, hypercholesterolemia-/arteriosclerosis-preventing, anti-diabetic, anti-obesity, antitussive, analgesic, anticoagulant, and wound healing effects. HG, RG-I, RG-II, molecular weight, side chain pattern, and degrees of methylation, acetylation, amidation and branching are critical structural elements responsible for optimizing these health benefits. The physicochemical characteristics, health functionalities, biocompatibility and biodegradability of pectins enable the construction of pectin-based composites with distinct properties for targeted applications in bioactive/drug delivery, edible films/coatings, nano-/micro-encapsulation, wound dressings and biological tissue engineering. Achieving beneficial synergies among the green extraction and modification processes during pectin production, and between pectin and other composite components in biomedical products, should be key foci for future research.
Collapse
Affiliation(s)
- Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | | | - Fangzhou Xu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Ziyang He
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yuyi Du
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Yujing Lian
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Taian, China.,School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Bennacef C, Desobry-Banon S, Probst L, Desobry S. Advances on alginate use for spherification to encapsulate biomolecules. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106782] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Ramakrishnan RK, Wacławek S, Černík M, Padil VVT. Biomacromolecule assembly based on gum kondagogu-sodium alginate composites and their expediency in flexible packaging films. Int J Biol Macromol 2021; 177:526-534. [PMID: 33636265 DOI: 10.1016/j.ijbiomac.2021.02.156] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
The assembly of bio-based macromolecules of gum kondagogu/sodium alginate (KO/SA) was fabricated using glycerol as a plasticiser and their optimum blending ratio was identified based on their physical and chemical, structural, mechanical, barrier, and morphological properties. The attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) analysis show that both biomacromolecules are well organised due to the hydrogen bond interaction between molecular chains involving the hydroxyl, carbonyl, and acetyl groups. Structural identification was performed by recording X-ray diffraction (XRD) spectra. Field emission scanning electron microscopy (FESEM) was used to identify the distinction between the surface of the films of biopolymers, and their conjugates, where the addition of SA increased the surface homogeneity and smoothness. The water contact angle of the blend films reached up to 81°, although the value for pure biomacromolecule films was very low. The blend films also exhibited high tensile strength (up to 24 MPa) compared to the pure biopolymer films. Investigation of film-forming ability, mechanical strength, permeability, transparency, and biodegradability of the developed KO/SA bio-macromolecular association may be established as green and sustainable food packaging films.
Collapse
Affiliation(s)
- Rohith K Ramakrishnan
- Institute for Nanomaterials, Advanced Technologies and Innovation (C×I), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation (C×I), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation (C×I), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Vinod V T Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation (C×I), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| |
Collapse
|
35
|
Electrospun pectin/modified copper-based metal-organic framework (MOF) nanofibers as a drug delivery system. Int J Biol Macromol 2021; 173:351-365. [PMID: 33450340 DOI: 10.1016/j.ijbiomac.2021.01.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 01/10/2023]
Abstract
Pectin has been regarded as a drug carrier accelerating the healing process due to its bioactivities, abundance and lower cost of resources. However, a big challenge related to its practical application is its poor mechanical strength. In this study the modified Cu-based MOF containing Folic acid was synthesized and incorporated in the suitable pectin electrospun nanofibers which not only improved the copper ions release behavior but also made the fiber mat stronger, antibacterial and induce angiogenesis, fibroblast migration, and proliferation due to loaded copper ions and folic acid. The nanofibers composing of 75% pectin and 4000 kDa -PEO were chosen after morphological and mechanical characterization. Finally, the effect of MOF incorporation on the nanocomposite samples was characterized in terms of morphological, physiochemical and biological properties. The nanofibrous mats were evaluated by tensile testing, antibacterial and cytotoxicity. The release behavior of copper ions and folic acid was controlled and their burst release alleviated reducing cytotoxicity in vitro. It was found that the Young's moduli of the pectin nanofibers were improved to 19.13 MPa by the addition of Cu-based MOFs. Moreover, nanocomposite pectin nanofibers were found to be antibacterial and biocompatible. These results demonstrate that MOF-contained pectin nanofibers are promising for biomedical applications.
Collapse
|