1
|
Dikmetas DN, Yenipazar H, Can Karaca A. Recent advances in encapsulation of resveratrol for enhanced delivery. Food Chem 2024; 460:140475. [PMID: 39047495 DOI: 10.1016/j.foodchem.2024.140475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Due to its numerous biological activities, such as antioxidant, anti-inflammatory, antitumor, anti-atherosclerosis, anti-aging, anti-osteoporosis, anti-obesity, estrogenic, neuroprotective and cardioprotective effects, resveratrol has attracted a lot of attention in the food and pharmaceutical industries as a promising bioactive. However, low solubility in aqueous media, limited bioavailability, and low stability of resveratrol in hostile environments limit its applications. The necessity for a summary of recent developments is highlighted by the growing body of research on resveratrol encapsulation as a means of overcoming the mentioned application constraints. This review highlights the present developments in resveratrol delivery techniques, including spray drying, liposomes, emulsions, and nanoencapsulation. Bioaccessibility, bioavailability, stability, and release of resveratrol from encapsulating matrices are discussed. Future research should focus on encapsulation approaches with high loading capacity, targeted delivery, and controlled release. In light of the growing interest in resveratrol and the increasing complexity of resveratrol-based formulations, review of current encapsulation methods is crucial to address existing limitations and pave the way for the development of next-generation delivery systems. This review discusses how the delivery systems with different structures and release mechanisms can unlock the full potential and benefits of resveratrol by enhancing its bioavailability and stability.
Collapse
Affiliation(s)
- Dilara Nur Dikmetas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey
| | - Hande Yenipazar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey.
| |
Collapse
|
2
|
Migliozzi S, He Y, Parhizkar M, Lan Y, Angeli P. Pickering emulsions for stimuli-responsive transdermal drug delivery: effect of rheology and microstructure on performance. SOFT MATTER 2024; 20:8621-8637. [PMID: 39431994 DOI: 10.1039/d4sm00993b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
This work investigates the design of stimuli-responsive Pickering emulsions (PEs) for transdermal drug delivery applications, by exploring the impact of stabilising microgels size and interactions on their rheological and release properties. Temperature-responsive poly(N-isopropylacrylamide) microgels modified with 1-benzyl-3-vinylimidazolium bromide (pNIPAM-co-BVI) are synthesized in varying sizes and used to stabilise jojoba oil-in-water concentrated emulsions. The results reveals two distinct behaviours: for small microgels (∼300 nm), the PEs exhibit a smooth, uniform structure characterised by a mild yield stress, characteristic of soft glassy systems. Conversely, larger microgels (∼800 nm) induce droplet clustering, resulting in increased elasticity and a more complex yielding process. Interestingly, transdermal delivery tests demonstrate that microstructure, rather than bulk rheology, governs sustained drug release. The release process can be modelled as diffusion-controlled transport through a porous medium with random traps. At room temperature, the trap size corresponds to the droplet size, and the release time scales with the total dispersed phases volume fraction. However, at physiological temperature (37 °C), above the volume-phase transition temperature of the microgels, the release time increases significantly. The trap size approaches the microgel size, suggesting that microgel porosity becomes the dominant factor controlling drug release. Overall, the results highlight the critical role of microstructure design in optimising stimuli-responsive PEs for controlled transdermal drug delivery.
Collapse
Affiliation(s)
- Simona Migliozzi
- Department of Chemical Engineering, University College London, London, UK.
| | - Yiting He
- Department of Chemical Engineering, University College London, London, UK.
- Centre for Nature Inspired Engineering, University College London, London, UK
| | | | - Yang Lan
- Department of Chemical Engineering, University College London, London, UK.
- Centre for Nature Inspired Engineering, University College London, London, UK
| | - Panagiota Angeli
- Department of Chemical Engineering, University College London, London, UK.
| |
Collapse
|
3
|
Rajoo A, Siva SP, Siew Sia C, Chan ES, Ti Tey B, Ee Low L. Transitioning from Pickering emulsions to Pickering emulsion hydrogels: A potential advancement in cosmeceuticals. Eur J Pharm Biopharm 2024:114572. [PMID: 39486631 DOI: 10.1016/j.ejpb.2024.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Cosmeceuticals, focusing on enhancing skin health and appearance, heavily rely on emulsions as one of the common mediums. These emulsions pose a challenge due to their dependence on surfactants which are essential for stability but are causing concerns about environmental impact as well as evolving consumer preferences. This has led to research focused on Pickering emulsions (PEs), which are colloidal particle-based emulsion alternatives. Compared to conventional emulsions, PEs offer enhanced stability and functionality in addition to serving as a sustainable alternative but still pose challenges such as rheological control and requiring further improvement in long-term stability, whereby the limitations could be addressed through the introduction of a hydrogel network. In this review, we first highlight the strategies and considerations to optimize active ingredient (AI) absorption and penetration in a PE-based formulation. We then delve into a comprehensive overview of the potential of Pickering-based cosmeceutical emulsions including their attractive features, the various Pickering particles that can be employed, past studies and their limitations. Further, PE hydrogels (PEHs), which combines the features between PE and hydrogel as an innovative solution to address challenges posed by both conventional emulsions and PEs in the cosmeceutical industry is explored. Moreover, concerns related to toxicity and biocompatibility are critically examined, alongside considerations of scalability and commercial viability, providing a forward-looking perspective on potential future research directions centered on the application of PEHs in the cosmeceutical field.
Collapse
Affiliation(s)
- Akashni Rajoo
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sangeetaprivya P Siva
- Centre for Sustainable Design, Modelling and Simulation, Faculty of Engineering, Built Environment and IT, SEGi University, 47810 Petaling Jaya, Malaysia
| | - Chin Siew Sia
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Liang Ee Low
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Medical Engineering and Technology (MET) Hub, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
4
|
Barilyuk DV, Korol AA, Chikanova ES, Lomakina MA, Shtansky DV. Highly Hydrophilic TiO 2 Nanoparticles as Stabilizers of Pickering Emulsions with Photosensitive Lipophilic Compounds: Synthesis and Application. J Phys Chem B 2024; 128:7903-7911. [PMID: 39096291 DOI: 10.1021/acs.jpcb.4c03315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Pickering emulsions are a very promising system for encapsulating and photoprotecting active ingredients. The highest photoprotection efficiency can be achieved when bare TiO2 nanoparticles are used as stabilizers. However, the main problem when using highly hydrophilic TiO2 nanoparticles is their inability to adsorb at the oil-water interface. Here, we developed emulsions stabilized by bare, highly hydrophilic TiO2 nanoparticles for the encapsulation and photoprotection of active lipophilic compounds. Emulsion stabilization occurs due to the formation of hydrogen bonds between hydroxyl groups on the particle surface and the carbonyl groups of the oil molecules. The stability and rheological properties of emulsions are explained by the properties of the initial hydrosols. The resulting Pickering emulsions demonstrated effective UV protection of α-lipoic acid. Our results pave the way for the formulation of Pickering emulsions with a widely used cosmetic oil and show for the first time the possibility of photoprotection of a lipophilic active substance using unmodified TiO2 nanoparticles.
Collapse
Affiliation(s)
- Danil V Barilyuk
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| | - Artem A Korol
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| | - Ekaterina S Chikanova
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| | - Maria A Lomakina
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskiye Gory, 1/3, Moscow 119991, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| |
Collapse
|
5
|
Xu J, Zhang Y, Yao X, Wang S, Lv K, Luo G, Wang J, Li G. Intestinal Targeted Nanogel with Broad-Spectrum Autonomous ROS Scavenging Performance for Enhancing the Bioactivity of trans-Resveratrol. Int J Nanomedicine 2024; 19:5995-6014. [PMID: 38895150 PMCID: PMC11185258 DOI: 10.2147/ijn.s464849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction To improve the bioavailability of trans-resveratrol (trans-Res), it is commonly co-delivered with antioxidant bioactives using a complex synthetic intestinal targeted carrier, however, which makes practical application challenging. Methods A nanogel (Ngel), as broad-spectrum autonomous ROS scavenger, was prepared using selenized thiolated sodium alginate (TSA-Se) and crosslinked with calcium lactate (CL) for loading trans-Res to obtain Ngel@Res, which maintained spherical morphology in the upper digestive tract but broke down in the lower digestive tract, resulting in trans-Res release. Results Under protection of Ngel, trans-Res showed enhanced stability and broad-spectrum ROS scavenging activity. The synergistic mucoadhesion of Ngel prolonged the retention time of trans-Res in the intestine. Ngel and Ngel@Res increased the lifespan of Caenorhabditis elegans to 26.00 ± 2.17 and 26.00 ± 4.27 days by enhancing the activity of antioxidases, upregulating the expression of daf-16, sod-5 and skn-1, while downregulating the expression of daf-2 and age-1. Conclusion This readily available, intestinal targeted selenized alginate-based nanogel effectively improves the bioactivity of trans-Res.
Collapse
Affiliation(s)
- Jingwen Xu
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Yue Zhang
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Xiaolin Yao
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
| | - Sijuan Wang
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Kaiqiang Lv
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Guangwen Luo
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Jiaqi Wang
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
- Xi’an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi’an, 710021, People’s Republic of China
| | - Guoliang Li
- School of Food Science and Engineering, School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi’an, 710021, People’s Republic of China
| |
Collapse
|
6
|
Aboulfotoh MM. Effect of cevimeline and different concentration of gum arabic on parotid salivary gland function in methotrexate-induced xerostomia: a comparative study. BMC Oral Health 2024; 24:624. [PMID: 38807094 PMCID: PMC11134700 DOI: 10.1186/s12903-024-04374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVE This study assessed the effect of cevimeline and different concentrations of gum arabic on the parotid gland of rats being given xerostomia-inducing methotrexate. METHODS One hundred twenty-five rats were divided into five equal groups of twenty-five each. The rats in Group I received basic diets, while those in Groups II, III, IV, and V received 20 mg/kg MTX as a single intraperitoneal dose on day one. Group III received 10 mg/kg CVM dissolved in saline orally and daily, and the other two groups received a 10% W/V aqueous suspension of GA. Therefore, Group IV received 2 ml/kg suspension orally and daily, while Group V received 3 ml/kg suspension orally and daily. After 9 days, the parotid glands were dissected carefully and prepared for hematoxylin and eosin (H&E) staining as a routine histological stain and caspase-3 and Ki67 immunohistochemical staining. Quantitative data from α-Caspase-3 staining and Ki67 staining were statistically analysed using one-way ANOVA followed by Tukey's multiple comparisons post hoc test. RESULTS Regarding caspase-3 and Ki67 immunohistochemical staining, one-way ANOVA revealed a significant difference among the five groups. For Caspase-3, the highest mean value was for group II (54.21 ± 6.90), and the lowest mean value was for group I (15.75 ± 3.67). The other three groups had mean values of 31.09 ± 5.90, 30.76 ± 5.82, and 20.65 ± 3.47 for groups III, IV, and V, respectively. For Ki67, the highest mean value was for group I (61.70 ± 6.58), and the lowest value was for group II (18.14a ± 5.16). The other three groups had mean values of 34.4 ± 9.27, 48.03 ± 8.40, and 50.63 ± 8.27 for groups III, IV, and V, respectively. CONCLUSION GA, rather than the normally used drug CVM, had a desirable effect on the salivary glands of patients with xerostomia.
Collapse
Affiliation(s)
- Mahmoud Mohamed Aboulfotoh
- Oral Biology Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamasa, Egypt.
| |
Collapse
|
7
|
Sharkawy A, Rodrigues AE. Plant gums in Pickering emulsions: A review of sources, properties, applications, and future perspectives. Carbohydr Polym 2024; 332:121900. [PMID: 38431409 DOI: 10.1016/j.carbpol.2024.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Recently, there has been an increasing research interest in the development of Pickering emulsions stabilized with naturally derived biopolymeric particles. In this regard, plant gums, obtained as plant exudates or from plant seeds, are considered promising candidates for the development of non-toxic, biocompatible, biodegradable and eco-friendly Pickering stabilizers. The main objective of this review article is to provide a detailed overview and assess the latest advances in the formulation of Pickering emulsions stabilized with plant gum-based particles. The plant gum sources, types and properties are outlined. Besides, the current methodologies used in the production of plant gum particles formed solely of plant gums, or through interactions of plant gums with proteins or other polysaccharides are highlighted and discussed. Furthermore, the work compiles and assesses the innovative applications of plant gum-based Pickering emulsions in areas such as encapsulation and delivery of drugs and active agents, along with the utilization of these Pickering emulsions in the development of active packaging films, plant-based products and low-fat food formulations. The last part of the review presents potential future research trends that are expected to motivate and direct research to areas related to other novel food applications, as well as tissue engineering and environmental applications.
Collapse
Affiliation(s)
- Asma Sharkawy
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Alírio E Rodrigues
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
8
|
Silva GC, Rodrigues RAF, Bottoli CBG. In vitro diffusion of plant phenolics through the skin: A review update. Int J Cosmet Sci 2024; 46:239-261. [PMID: 38083814 DOI: 10.1111/ics.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Excessive skin exposure to deleterious environmental variables results in inflammation as well as molecular and cellular impairments that compromise its functionality, aesthetic qualities, and overall well-being. The implementation of topical administration of antioxidants and other compounds as a method for preventing or reversing damage is a rational approach. Numerous phenolic compounds derived from plants have demonstrated capabilities such as scavenging free radicals and promoting tissue healing. However, the primary obstacle lies in effectively delivering these compounds to the specific place on the skin, and accurately forecasting their diffusion through the skin can assist in determining the most effective tactics. Hence, this article provides a comprehensive analysis of recent literature pertaining to the in vitro skin diffusion characteristics of plant phenolics. The aim is to gain a deeper understanding of their behaviour when present in various forms such as solutions, suspensions, and formulations. METHOD The data on plant extracts and isolated plant phenolic compounds in vitro skin diffusion assays published over the last six years were compiled and discussed. RESULTS Even though the gold standard Franz diffusion cell is the most commonly used in the assessment of in vitro plant phenolic skin diffusion profiles, a plethora of skin models and assay conditions are reported for a variety of compounds and extracts in different vehicles. CONCLUSION The presence of numerous models and vehicles poses a challenge in creating correlations among the existing data on plant phenolic compounds. However, it is possible to draw some general conclusions regarding molecular, vehicle, and skin characteristics based on the gathered information.
Collapse
Affiliation(s)
- Gisláine C Silva
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Campinas, Brazil
| | - Rodney A F Rodrigues
- Universidade Estadual de Campinas (UNICAMP), Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Paulínia, Brazil
| | - Carla B G Bottoli
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Campinas, Brazil
| |
Collapse
|
9
|
Ponphaiboon J, Limmatvapirat S, Limmatvapirat C. Development and Evaluation of a Stable Oil-in-Water Emulsion with High Ostrich Oil Concentration for Skincare Applications. Molecules 2024; 29:982. [PMID: 38474494 DOI: 10.3390/molecules29050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
This study investigates the development of an oil-in-water (O/W) emulsion enriched with a high concentration of ostrich oil, recognized for its abundant content of oleic acid (34.60 ± 0.01%), tailored for skincare applications. Using Span and Tween emulsifiers, we formulated an optimized emulsion with 20% w/w ostrich oil and a 15% w/w blend of Span 20 and Tween 80. This formulation, achieved via homogenization at 3800 rpm for 5 min, yielded the smallest droplet size (5.01 ± 0.43 μm) alongside an appropriate zeta potential (-32.22 mV). Our investigation into the influence of Span and Tween concentrations, types, and ratios on the stability of 20% w/w ostrich oil emulsions, maintaining a hydrophile-lipophile balance (HLB) of 5.5, consistently demonstrated the superior stability of the optimized emulsion across various formulations. Cytotoxicity assessments on human dermal fibroblasts affirmed the safety of the emulsion. Notably, the emulsion exhibited a 52.20 ± 2.01% inhibition of linoleic acid oxidation, surpassing the 44.70 ± 1.94% inhibition observed for ostrich oil alone. Moreover, it demonstrated a superior inhibitory zone against Staphylococcus aureus (12.32 ± 0.19 mm), compared to the 6.12 ± 0.15 mm observed for ostrich oil alone, highlighting its enhanced antioxidant and antibacterial properties and strengthening its potential for skincare applications. The optimized emulsion also demonstrates the release of 78.16 ± 1.22% of oleic acid across the cellulose acetate membrane after 180 min of study time. This successful release of oleic acid further enhances the overall efficacy and versatility of the optimized emulsion. Stability assessments, conducted over 6 months at different temperatures (4 °C, 25 °C, 45 °C), confirmed the emulsion's sustained physicochemical and microbial stability, supporting its promise for topical applications. Despite minor fluctuations in acid values (AV) and peroxide values (PV), the results remained within the acceptable limits. This research elucidates the crucial role of emulsification in optimizing the efficacy and stability of ostrich oil in skincare formulations, providing valuable insights for practical applications where stability is paramount.
Collapse
Affiliation(s)
- Juthaporn Ponphaiboon
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Products Research Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Products Research Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chutima Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Products Research Center (NPRC), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
10
|
Li G, Li J, Lee YY, Qiu C, Zeng X, Wang Y. Pickering emulsions stabilized by chitosan-flaxseed gum-hyaluronic acid nanoparticles for controlled topical release of ferulic acid. Int J Biol Macromol 2024; 255:128086. [PMID: 37981278 DOI: 10.1016/j.ijbiomac.2023.128086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
Chitosan (CS) based nanoparticles (NPs) were fabricated via an ionic gelation reaction modified by flaxseed gum (FG) or sodium tripolyphosphate (STPP). The average particle size, morphology, interfacial tension, and wettability of NPs were characterized. The particle size of CS-STPP-HA (hyaluronic acid)-FA (ferulic acid) NPs and CS-FG-HA-FA NPs was 400.8 nm and 262.4 nm, respectively under the optimized conditions of CS/STPP = 5:1 (w/w) or CS/FG = 1:1 (v/v) with HA concentration of 0.25 mg/mL and FA dosage of 25 μM. FG acted as a good alternative for STPP to form particles with CS in stabilizing Pickering emulsion with an internal diacylglycerol (DAG) phase of 50-80 % (v/v). The complex nanoparticles had high surface activity and contact angle close to 90 °C, being able to tightly packed at the droplet surface. The emulsions had high thermal, ionic and oxidative stability. With the aid of moisturizing polysaccharides and DAG oil, the emulsions had a good sustained-release ability for FA with deeper penetration and retention into the dermis of the skin. Thus, FG and HA-based NPs serve as green vehicles for the fabrication of novel Pickering emulsions and possess great potential to be applied as a delivery system for lipophilic active agents in functional food and cosmetic products.
Collapse
Affiliation(s)
- Guanghui Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Junle Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China
| | - Yee-Ying Lee
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chaoying Qiu
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| | - Xiaofang Zeng
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Guangzhou 510632, China.
| |
Collapse
|
11
|
Hu X, Jiang Q, Du L, Meng Z. Edible polysaccharide-based oleogels and novel emulsion gels as fat analogues: A review. Carbohydr Polym 2023; 322:121328. [PMID: 37839840 DOI: 10.1016/j.carbpol.2023.121328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/23/2023] [Accepted: 08/22/2023] [Indexed: 10/17/2023]
Abstract
Polysaccharide-based oleogels and emulsion gels have become novel strategies to replace solid fats due to safe and plentiful raw material, healthier fatty acid composition, controllable viscoelasticity, and more varied nutrition/flavor embedding. Recently, various oleogelation techniques and novel emulsion gels have been reported further to enrich the potential of polysaccharides in oil structuring, in which a crucial step is to promote the formation of polysaccharide networks determining gel properties through different media. Meanwhile, polysaccharide-based oleogels and emulsion gels have good oil holding, nutrient/flavor embedding, and 3D food printability, and their applications as fat substitutes have been explored in foods. This paper comprehensively reviews the types, preparation methods, and mechanisms of various polysaccharide-based oleogels and emulsion gels; meanwhile, the food applications and new trends of polysaccharide-based gels are discussed. Moreover, some viewpoints about potential developments and application challenges of polysaccharide-based gels are mentioned. In the future, polysaccharide-based gels may be flexible materials for customized nutritional foods and molecular gastronomy. However, it is still a challenge to select the appropriate oleogels or emulsion gels to meet the requirements of the products. Once this issue is addressed, oleogels and emulsion gels are anticipated to be used widely.
Collapse
Affiliation(s)
- Xiangfang Hu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Qinbo Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Liyang Du
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Shayeganmehr D, Ramezannia F, Gharib B, Rezaeilaal A, Shahi F, Jafariazar Z, Afshar M. Pharmaceutical and clinical studies of celecoxib topical hydrogel for management of chemotherapy-induced hand-foot syndrome. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1571-1581. [PMID: 36418469 DOI: 10.1007/s00210-022-02339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022]
Abstract
Hand-foot syndrome (HFS) can be categorized as a frequent dose-limiting side effect following administration of chemotherapeutic agents, which needs an effective medication to avoid dose reduction or discontinuation. Oral celecoxib has been proved to be the best pharmacological intervention to ameliorate the skin lesions. However, due to reported gastrointestinal and cardiovascular toxicity following its long-term administration, celecoxib topical application would be a safe alternative for skin disorders. In this work, first, we formulated and optimized a topical hydrogel of celecoxib (1%) and then we investigated its efficacy in the management of chemotherapy-induced HFS in cancer patients. Optimized hydrogel showed acceptable results for drug content, pH, rheology, and stability. Analyzing in vitro drug release study by various mathematical models, the optimized hydrogel showed a zero-order release pattern with 93.27 ± 1.56% cumulative celecoxib release within 8 h. Ex vivo permeation studies across Wistar rat skin indicated suitable skin retention of celecoxib for topical delivery. Twenty-nine patients suffering from HFS were randomized to receive celecoxib and the placebo hydrogels 2 times a day for 3 weeks. At the baseline and at the end of the trial, HFS grades were determined. No serious adverse events occurred in patients who completely followed the instructions. No statistically significant differences between two arms were observed at the baseline (p value = 0.38). By contrast, Wilcoxon signed-rank test showed significant differences when secondary grades (p value = 0.05) and grade differences (p values < 0.001) were analyzed. Overall, the study proved that celecoxib hydrogel could be a promising intervention to manage HFS side effect.
Collapse
Affiliation(s)
- Delaram Shayeganmehr
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, 193956466, Iran
| | - Fatemeh Ramezannia
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, 193956466, Iran
| | - Behrooz Gharib
- Naft Hospital, Hematology and Oncology Department, Tehran, 1547735119, Iran
| | - Azin Rezaeilaal
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, 193956466, Iran
| | - Farhad Shahi
- Department of Medical Oncology, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Jafariazar
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, 193956466, Iran
| | - Minoo Afshar
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, 193956466, Iran.
| |
Collapse
|
13
|
Elshall AA, Ghoneim AM, Abd-Elmonsif NM, Osman R, Shaker DS. Boosting hair growth through follicular delivery of Melatonin through lecithin-enhanced Pickering emulsion stabilized by chitosan-dextran nanoparticles in testosterone induced androgenic alopecia rat model. Int J Pharm 2023; 639:122972. [PMID: 37084830 DOI: 10.1016/j.ijpharm.2023.122972] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The strategy in this work was loading Melatonin (MEL), the powerful antioxidant photosensitive molecule, in novel Pickering emulsions (PEs) stabilized by chitosan-dextran sulphate nanoparticles (CS-DS NPs) and enhanced by lecithin, for treatment of androgenic alopecia (AGA). Biodegradable CS-DS NPs dispersion was prepared by polyelectrolyte complexation and optimized for PEs stabilization. PEs were characterized for droplet size, zeta potential, morphology, photostability and antioxidant activity. Ex-vivo permeation study through rat full thickness skin was conducted with optimized formula. Differential tape stripping trailed by cyanoacrylate skin surface biopsy was executed, for quantifying MEL in skin compartments and hair follicles. In-vivo evaluation of MEL PE hair growth activity was performed on testosterone induced AGA rat model. Visual inspection followed by anagen to telogen phase ratio (A/T) and histopathological examinations were conducted and compared with marketed 5% minoxidil spray "Rogaine ®". Data showed that PE improved MEL antioxidant activity and photostability. Ex-vivo results displayed MEL PE high follicular deposition. In-vivo study demonstrated that MEL PE treated testosterone induced AGA rat group, restored hair loss and produced maximum hair regeneration along with prolonged anagen phase amongst tested groups. The histopathological examination revealed that MEL PE prolonged anagen stage, increased follicular density and A/T ratio by 1.5-fold. The results suggested that lecithin-enhanced PE stabilized by CS-DS NPs was found to be an effective approach to enhance photostability, antioxidant activity and follicular delivery of MEL. Thus, MEL-loaded PE could be a promising competitor to commercially marketed Minoxidil for treatment of AGA.
Collapse
Affiliation(s)
- Asmaa A Elshall
- Department of Applied Biotechnology, Biotechnology School, Nile University, Sheikh Zayed, Giza, Egypt.
| | - Amira M Ghoneim
- Department of Pharmaceutics &Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt.
| | - Nehad M Abd-Elmonsif
- Department of Oral Biology, Faculty of oral and dental medicine, Future University in Egypt (FUE), Cairo, Egypt
| | - Rihab Osman
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Dalia S Shaker
- Department of Pharmaceutics &Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt (FUE), Cairo, Egypt
| |
Collapse
|
14
|
Xu T, Gu Z, Cheng L, Li C, Li Z, Hong Y. Stability, oxidizability, and topical delivery of resveratrol encapsulated in octenyl succinic anhydride starch/chitosan complex-stabilized high internal phase Pickering emulsions. Carbohydr Polym 2023; 305:120566. [PMID: 36737204 DOI: 10.1016/j.carbpol.2023.120566] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) stabilized with octenyl succinic anhydride starch/chitosan complexes were examined as a topical delivery vehicle for resveratrol. All resveratrol-loaded HIPPEs showed stable gel-like network structures, with the droplet size and microrheological properties largely dependent on the complex concentrations. HIPPEs exhibited strong stability when subjected to light, high temperature, UV radiation and freeze-thaw treatment, and resveratrol retention was greatly improved with the increasing addition of complexes and resveratrol. High amounts of resveratrol facilitated the antioxidant activity of HIPPEs, whereas sustained release of resveratrol was mainly related to the existence of complex interfacial layers. Moreover, HIPPEs overcome the stratum corneum barrier, with an approximately 3-5-fold increase in resveratrol deposition in deep skin compared to bulk oil. In conclusion, the emulsion composition (especially at the particle level) was vital for the effectiveness of HIPPEs as a carrier, which may provide new opportunities to design topical delivery systems.
Collapse
Affiliation(s)
- Tian Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314050, China.
| |
Collapse
|
15
|
Meng W, Sun H, Mu T, Garcia-Vaquero M. Chitosan-based Pickering emulsion: A comprehensive review on their stabilizers, bioavailability, applications and regulations. Carbohydr Polym 2023; 304:120491. [PMID: 36641178 DOI: 10.1016/j.carbpol.2022.120491] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chitosan-based particles are one of the most promising Pickering emulsions stabilizers due to its cationic properties, cost-effective, biocompatibility, biodegradability. However, there are currently no comprehensive reviews analyzing the role of chitosan to develop Pickering emulsions, and the bioavailability and multiple uses of these emulsions. SCOPE AND APPROACH This review firstly summarizes the types, preparation and functional properties of chitosan-based Pickering emulsion stabilizers, followed by in vivo and in vitro bioavailability, main regulations, and future application and trends. KEY FINDINGS AND CONCLUSIONS Stabilizers used in chitosan-based Pickering emulsions include 6 categories: chitosan self-aggregating particles and 5 types of composites (chitosan-protein, chitosan-polysaccharide, chitosan-fatty acid, chitosan-polyphenol, and chitosan-inorganic). Chitosan-based Pickering emulsions improved the bioavailability of different compounds compared to traditional emulsions. Current applications include hydrogels, microcapsules, food ingredients, bio-based films, cosmeceuticals, porous scaffolds, environmental protection agents, and interfacial catalysis systems. However, due to current limitations, more research and development are needed to be extensively explored to meet consumer demand, industrial manufacturing, and regulatory requirements. Thus, optimization of stabilizers, bioavailability studies, 3D4D printing, fat substitutes, and double emulsions are the main potential development trends or research gaps in the field which would contribute to increase adoption of these promising emulsions at industrial level.
Collapse
Affiliation(s)
- Weihao Meng
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China.
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
16
|
Hazt B, Pereira Parchen G, Fernanda Martins do Amaral L, Rondon Gallina P, Martin S, Hess Gonçalves O, Alves de Freitas R. Unconventional and conventional Pickering emulsions: Perspectives and challenges in skin applications. Int J Pharm 2023; 636:122817. [PMID: 36905974 DOI: 10.1016/j.ijpharm.2023.122817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Pickering emulsions are free from molecular and classical surfactants and are stabilized by solid particles, creating long-term stability against emulsion coalescence. Additionally, these emulsions are both environmentally and skin-friendly, creating new and unexplored sensorial perceptions. Although the literature mostly describes conventional emulsions (oil-in-water), there are unconventional emulsions (multiple, oil-in-oil and water-in-water) with excellent prospects and challenges in skin application as oil-free systems, permeation enhancers and topical drug delivery agents, with various possibilities in pharmaceutical and cosmetic products. However, up to now, these conventional and unconventional Pickering emulsions are not yet available as commercial products. This review brings to the discussion some important aspects such as the use of phases, particles, rheological and sensorial perception, as well as current trends in the development of these emulsions.
Collapse
Affiliation(s)
- Bianca Hazt
- Chemistry Department, Universidade Federal do Paraná (UFPR), R. Coronel F. H. dos Santos, 210, Curitiba - 81531-980, PR, Brazil.
| | - Gabriela Pereira Parchen
- Department of Pharmacy, Universidade Federal do Paraná (UFPR), Av. Pref. Lothário Meissner, 632, Curitiba - 80210-170, PR, Brazil.
| | | | - Patrícia Rondon Gallina
- Department of Pharmacy, Universidade Federal do Paraná (UFPR), Av. Pref. Lothário Meissner, 632, Curitiba - 80210-170, PR, Brazil
| | - Sandra Martin
- Mackenzie School of Medicine, R. Padre Anchieta, 2770, Curitiba - 80730-000, PR, Brazil
| | - Odinei Hess Gonçalves
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Post-Graduation Program of Food Technology, Federal University of Technology - Paraná, Via Rosalina Maria Dos Santos, 1233, Campo Mourão - 87301-899, PR, Brazil.
| | - Rilton Alves de Freitas
- Department of Pharmacy, Universidade Federal do Paraná (UFPR), Av. Pref. Lothário Meissner, 632, Curitiba - 80210-170, PR, Brazil.
| |
Collapse
|
17
|
Cheng H, Chang X, Luo H, Tang H, Chen L, Liang L. Co-encapsulation of resveratrol in fish oil microcapsules optimally stabilized by enzyme-crosslinked whey protein with gum Arabic. Colloids Surf B Biointerfaces 2023; 223:113172. [PMID: 36736176 DOI: 10.1016/j.colsurfb.2023.113172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/01/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
O/W emulsion and its spray-dried microcapsule contain the oil phase and the protein matrix, providing the potential to co-encapsulate different antioxidants. However, antioxidants were generally encapsulated in the oil phase of microcapsule, its protein matrix is rarely used. It is first to prove the possibility to encapsulate resveratrol in the emulsified oil droplets at high wall/core ratios. The optimal microcapsule with 1.75% surface oil was fabricated with 15% transglutaminase-crosslinked WPI (TGase-WPI) and 5% gum Arabic (GA). Resveratrol mainly located in the protein matrix of initial emulsion and reconstituted microcapsule. The effects of TGase-WPI/GA microcapsule and resveratrol co-encapsulation on DHA/EPA and lipid hydroperoxides/TBARS were different. The interfacial protein, the partition of resveratrol in the emulsified oil droplets and its storage stability and inhibitory effect on size change of reconstituted microcapsules increased as the polyphenol increased. These results expand the potential use of spray-dried microcapsules as co-encapsulation carriers.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xuan Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; Ever Maple Food Science Technology Co., Ltd., Hangzhou, China
| | - Hui Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Honggang Tang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, China
| | - Lihong Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
18
|
Yang D, Feng Y, Yao X, Zhao B, Li D, Liu N, Fang Y, Midgley A, Liu D, Katsuyoshi N. Recent advances in bioactive nanocrystal-stabilized Pickering emulsions: Fabrication, characterization, and biological assessment. Compr Rev Food Sci Food Saf 2023; 22:946-970. [PMID: 36546411 DOI: 10.1111/1541-4337.13096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/07/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Numerous literatures have shown the advantages of Pickering emulsion (PE) for the delivery of bioactive ingredients in the fields of food, medicine, and cosmetics, among others. On this basis, the multi-loading mode of bioactives (internal phase encapsulation and/or loading at the interface) in small molecular bioactives nanocrystal-stabilized PE (BNC-PE) enables them higher loading efficiencies, controlled release, and synergistic or superimposed effects. Therefore, BNC-PE offers an efficacious delivery system. In this review, we briefly summarize BNC-PE fabrication and characterization, with a focus on the processes of possible evolution and absorption of differentially applied BNC-PE when interacting with the body. In addition, methods of monitoring changes and absorption of BNC-PE in vivo, from the nanomaterial perspective, are also introduced. The purpose of this review is to provide an accessible and comprehensive methodology for the characterization and evaluation of BNC-PE after formulation and preparation, especially in relation to biological assessment and detailed mechanisms throughout the absorption process of BNC-PE in vivo.
Collapse
Affiliation(s)
- Dan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Yuqi Feng
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Xiaolin Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Baofu Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Dan Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Ning Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
- School of Biomedical and Pharmaceutical Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Adam Midgley
- Key Laboratory of Bioactive Materials (MoE), College of Life Sciences, Nankai University, Tianjin, China
| | - Dechun Liu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Nishinari Katsuyoshi
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| |
Collapse
|
19
|
Ren Z, Chen Z, Zhang Y, Lin X, Weng W, Li B. Characteristics and in vitro digestion of resveratrol encapsulated in Pickering emulsions stabilized by tea water-insoluble protein nanoparticles. Food Chem X 2023; 18:100642. [PMID: 36968315 PMCID: PMC10034416 DOI: 10.1016/j.fochx.2023.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
This study focused on the characteristics and in vitro digestion of resveratrol encapsulated in Pickering emulsions stabilized by tea water-insoluble protein nanoparticles (TWINs). The absolute value of zeta potential of Pickering emulsions stabilized by TWIPNs (TWIPNPEs) encapsulating resveratrol was above 40 mV. Resveratrol encapsulated in TWIPNPEs was located at a hydrophobic environment of emulsion droplets. Additionally, the encapsulation efficiency (EE) of TWIPNPEs at TWIPN concentrations of 3.0% and 4.0% was above 85%. The resveratrol encapsulated in TWIPNPEs at a TWIPN concentration of 4.0% was still greater than 80% after UV irradiation to reduce the susceptibility of resveratrol for photodegradation. Moreover, the bioavailability of resveratrol in TWIPNPEs was improved in the simulated in vitro digestion. The bioavailability of resveratrol in TWIPNPEs in the simulated system was two times higher than unencapsulated resveratrol. This research could be useful for the encapsulation and application of nutraceuticals like resveratrol based on TWIPNPEs.
Collapse
Affiliation(s)
- Zhongyang Ren
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Zhongzheng Chen
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Yuanyuan Zhang
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Xiaorong Lin
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Bin Li
- College of Food Science, South China Agricultural University, 483 Wushan Street, Tianhe District, Guangzhou 510642, China
- Corresponding author.
| |
Collapse
|
20
|
Xu T, Hong Y, Gu Z, Cheng L, Li C, Li Z. Adsorption and Assembly of Octenyl Succinic Anhydride Starch/Chitosan Electrostatic Complexes at Oil-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3006-3017. [PMID: 36745541 DOI: 10.1021/acs.langmuir.2c02878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Biopolymer electrostatic complexes are popular Pickering stabilizers whose structures greatly affect their interfacial properties. This study comprehensively demonstrated the interfacial adsorption and assembly of dissolved octenyl succinic anhydride (OSA) starch (OSA-D)/chitosan (CS) electrostatic complexes with different structures through complementary characterization methods. We found that compared with single-component systems, OSA-D/CS complexes exhibited significantly increased wetting stability and adsorption rate to the interface, which was reinforced by molecular dynamics simulations. Their soft structures and the entanglement of molecular chains led to the formation of thick and highly viscoelastic multilayer adsorbed films, which greatly resisted deformation against shearing forces. The adsorption and assembly of the complexes were strongly influenced by OSA-D/CS ratios and pH, which could be related to the different interfacial interaction strengths. Overall, the electrostatic complexation, structural characteristics, and interfacial properties of OSA-D/CS complexes were well related, thereby providing valuable information for the regulation of controlled interfaces and bulk system properties.
Collapse
Affiliation(s)
- Tian Xu
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
- Jiaxing Institute of Future Food, Jiaxing314050, PR China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi214122, China
- Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi214122, China
| |
Collapse
|
21
|
Afzal O, Altamimi ASA, Alamri MA, Altharawi A, Alossaimi MA, Akhtar MS, Tabassum F, Almalki WH, Singh T. Resveratrol-Loaded Chia Seed Oil-Based Nanogel as an Anti-Inflammatory in Adjuvant-Induced Arthritis. Gels 2023; 9:gels9020131. [PMID: 36826301 PMCID: PMC9956310 DOI: 10.3390/gels9020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Natural anti-inflammatory nutraceuticals may be useful in preventing rheumatoid arthritis from worsening. Resveratrol (RV) and chia seed oil, having antioxidant potential, can assist in avoiding oxidative stress-related disorders. This investigation developed and evaluated resveratrol-loaded chia seed oil-based nanoemulsion (NE) gel formulations through in vitro and in vivo studies. The physical stability and in vitro drug permeability of the chosen formulations (NE1 to NE10) were studied. The optimized RV-loaded nanoemulsion (NE2) had droplets with an average size of 37.48 nm that were homogeneous in shape and had a zeta potential of -18 mV. RV-NE2, with a permeability of 98.21 ± 4.32 µg/cm2/h, was gelled with 1% carbopol-940P. A 28-day anti-arthritic assessment (body weight, paw edema, and levels of pro-inflammatory mediators including TNF-α, IL-6, IL-1β, and COX-2) following topical administration of RV-NE2 gel showed significant reversal of arthritic symptoms in arthritic Wistar rats induced by Freund's complete adjuvant injection. Therefore, RV-NE2 gel demonstrated the potential to achieve local therapeutic benefits in inflammatory arthritic conditions due to its increased topical bioavailability and balancing of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: ; Tel.: +966-1158-86094
| | - Abdulamalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Fauzia Tabassum
- Department of Pharmacology, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Waleed H. Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Tanuja Singh
- Department of Botany, Patliputra University, Patna 800020, India
| |
Collapse
|
22
|
Feng S, Guo Y, Liu F, Li Z, Chen K, Handa A, Zhang Y. The impacts of complexation and glycated conjugation on the performance of soy protein isolate-gum Arabic composites at the o/w interface for emulsion-based delivery systems. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
23
|
Elmowafy M, Shalaby K, Elkomy MH, Awad Alsaidan O, Gomaa HAM, Abdelgawad MA, Massoud D, Salama A, El-Say KM. Development and assessment of phospholipid-based luteolin-loaded lipid nanocapsules for skin delivery. Int J Pharm 2022; 629:122375. [PMID: 36351506 DOI: 10.1016/j.ijpharm.2022.122375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
Luteolin is an excellent flavone possessing several beneficial properties such as antioxidant and anti-inflammatory effects which are interesting for skin delivery. Development of an appropriate skin delivery system could be a promising strategy to improve luteolin cutaneous performance.So, the main aim of this work was to fabricate, characterize and evaluate phospholipid-based luteolin-loaded lipid nanocapsules for skin delivery. The influence of phospholipid/oil ratio, surfactant type and chitosan coating were investigated. The prepared formulations underwent in vitro assessment and the selected formulations were evaluated ex vivo and in vivo. The mean diameters of investigated formulations varied between 174 nm and 628 nm while zeta potential varied between -25.7 ± 4.8 mV and 6.8 ± 1.7 mV. Increasing in phospholipid/oil ratios resulted in decrease in particles size with little effect on zeta potential and drug encapsulation. Cremophor EL showed the lowest particle sizes and the highest drug encapsulation. Chitosan coating shifted zeta potential towards positive values. Structural analyses showed that luteolin is incorporated into lipid core of nanocapsules. Selected formulations (LNC4 and LNC13) exhibited sustained in vitro release and antioxidant activity. LNC13 (chitosan coated) showed higher flux (0.457 ± 0.113 µg/cm2/h), permeability (45.70 ± 11.66 *10-5 cm2/h) and skin retention (121.66 ± 7.6 µg/cm2 after 24 h) when compared to LNC4 and suspension. It also showed disordered the integrity of the stratum corneum, increased epidermal thickness and relieving most of inflammatory features in animal model. In conclusion, this study proves that lipid nanocapsules could effectively deliver luteolin into skin and then can be established as a potential system in the pharmaceutical and cosmeceutical horizons.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia.
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohammed H Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Diaa Massoud
- Department of Biology, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ayman Salama
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
24
|
Pickering Emulsions Stabilized by Chitosan/Natural Acacia Gum Biopolymers: Effects of pH and Salt Concentrations. Polymers (Basel) 2022; 14:polym14235270. [PMID: 36501665 PMCID: PMC9738950 DOI: 10.3390/polym14235270] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, chitosan (CT) and naturally occurring acacia gum (AG) blends were employed as emulsifiers to form a series of emulsions developed from diesel and water. Effects of pH level (3, 5, 10, and 12) and various NaCl salt concentrations (0.25-1%) on the stability, viscosity, and interfacial properties of CT-(1%)/AG-(4%) stabilized Pickering emulsions were evaluated. Bottle test experiment results showed that the stability indexes of the CT/AG emulsions were similar under acidic (3 and 5) and alkaline (10 and 12) pH media. On the other hand, the effects of various NaCl concentrations on the stability of CT-(1%)/AG-(4%) emulsion demonstrated analogous behavior throughout. From all the NaCl concentrations and pH levels examined, viscosities of this emulsion decreased drastically with the increasing shear rate, indicating pseudoplastic fluid with shear thinning characteristics of these emulsions. The viscosity of CT-(1%)/AG-(4%) emulsion increased at a low shear rate and decreased with an increasing shear rate. The presence of NaCl salt and pH change in CT/AG solutions induced a transformation in the interfacial tension (IFT) at the diesel/water interface. Accordingly, the IFT values of diesel/water in the absence of NaCl/CT/AG (without emulsifier and salt) remained fairly constant for a period of 500 s, and its average IFT value was 26.16 mN/m. In the absence of salt, the addition of an emulsifier (CT-(1%)/AG-(4%)) reduced the IFT to 16.69 mN/m. When the salt was added, the IFT values were further reduced to 12.04 mN/m. At low pH, the IFT was higher (17.1 mN/M) compared to the value of the IFT (10.8 mN/M) at high pH. The results obtained will help understand the preparation and performance of such emulsions under different conditions especially relevant to oil field applications.
Collapse
|
25
|
Pickering high internal phase emulsions with excellent UV protection property stabilized by Spirulina protein isolate nanoparticles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
26
|
de Carvalho-Guimarães FB, Correa KL, de Souza TP, Rodríguez Amado JR, Ribeiro-Costa RM, Silva-Júnior JOC. A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals (Basel) 2022; 15:1413. [PMID: 36422543 PMCID: PMC9698490 DOI: 10.3390/ph15111413] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 09/10/2023] Open
Abstract
Pickering emulsions are systems composed of two immiscible fluids stabilized by organic or inorganic solid particles. These solid particles of certain dimensions (micro- or nano-particles), and desired wettability, have been shown to be an alternative to conventional emulsifiers. The use of biodegradable and biocompatible stabilizers of natural origin, such as clay minerals, presents a promising future for the development of Pickering emulsions and, with this, they deliver some advantages, especially in the area of biomedicine. In this review, the effects and characteristics of microparticles in the preparation and properties of Pickering emulsions are presented. The objective of this review is to provide a theoretical basis for a broader type of emulsion, in addition to reviewing the main aspects related to the mechanisms and applications to promote its stability. Through this review, we highlight the use of this type of emulsion and its excellent properties as permeability promoters of solid particles, providing ideal results for local drug delivery and use in Pickering emulsions.
Collapse
Affiliation(s)
| | - Kamila Leal Correa
- Laboratory of Pharmaceutical and Cosmetic R&D, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | - Tatiane Pereira de Souza
- Laboratory of Innovation and Development in Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus 69077-000, Brazil
| | - Jesus Rafael Rodríguez Amado
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Food and Nutrition, Federal University of Mato-Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Roseane Maria Ribeiro-Costa
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | | |
Collapse
|
27
|
Formulation, in-vitro and ex-vivo evaluation of albendazole loaded ufasomal nanoformulation for topical delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Zhang N, Han J, Chen F, Gao C, Tang X. Chitosan/gum arabic complexes to stabilize Pickering emulsions: Relationship between the preparation, structure and oil-water interfacial activity. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Chitosan IR806 dye-based polyelectrolyte complex nanoparticles with mitoxantrone combination for effective chemo-photothermal therapy of metastatic triple-negative breast cancer. Int J Biol Macromol 2022; 216:558-570. [PMID: 35809672 DOI: 10.1016/j.ijbiomac.2022.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/21/2022]
Abstract
Chemo-photothermal therapy is one of the emerging therapies for treating triple-negative breast cancer. In this study, we have used ionotropic gelation method to fabricate chitosan and IR806 dye-based polyelectrolyte complex (CIR-PEx) nanoparticles. These nano-complexes were in size range of 125 ± 20 nm. The complexation of IR 806 dye with chitosan improved photostability, photothermal transduction, and showed excellent biocompatibility. Cancer cells treated with CIR-PEx NPs enhanced intracellular uptake within 5 h of incubation and also displayed mitochondrial localization. With the combination of CIR-PEx NPs and a chemotherapeutic agent (i.e., mitoxantrone, MTX), a significant decline in cancer cell viability was observed in both 2D and 3D cell culture models. The chemo-photothermal effect of CIR-PEx NPs + MTX augmented apoptosis in cancer cells when irradiated with NIR light. Furthermore, when tested in the 4 T1-tumor model, the chemo-photothermal therapy showed a drastic decline in tumor volume and inhibited metastatic lung nodules. The localized hyperthermia caused by photothermal therapy reduced the primary tumor burden, and the chemotherapeutic activity of mitoxantrone further complemented by inhibiting the spread of cancer cells. The proposed chemo-photothermal therapy combination could be a promising strategy for treating triple-negative metastatic breast cancer.
Collapse
|
30
|
Zhang M, Zhu J, Zhou L, Kan J, Zhao M, Huang R, Liu J, Marchioni E. Antarctic krill oil high internal phase Pickering emulsion stabilized by bamboo protein gels and the anti-inflammatory effect in vitro and in vivo. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
31
|
Zhao Q, Fan L, Liu Y, Li J. Recent advances on formation mechanism and functionality of chitosan-based conjugates and their application in o/w emulsion systems: A review. Food Chem 2022; 380:131838. [PMID: 35115204 DOI: 10.1016/j.foodchem.2021.131838] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022]
Abstract
Chitosan is very attractive in the food industry due to its good biocompatibility and high biodegradability. In particular, it can be used as a preferred material for the fabrication of stabilizers in emulsion-based foods. However, poor solubility and antioxidant activity limit its wide application. The functionality of chitosan can be extended by forming chitosan-based conjugates, which can be used to modulate the characteristics of the oil-water interface, thereby improving the stability and performance of the o/w emulsions. This review highlights the recent progress of chitosan-based conjugates, focusing on the classification, formation mechanism and functional properties, and the applications of these conjugates in o/w emulsions are summarized. Lastly, the promising research trends and challenges of chitosan-based conjugates and their emulsion systems in this field are also discussed. This review will provide a theoretical basis for the wide application of chitosan-based conjugates in emulsion systems.
Collapse
Affiliation(s)
- Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
32
|
Abstract
The manufacturing of stable emulsion is a very important challenge for the cosmetic industry, which has motivated intense research activity for replacing conventional molecular stabilizers with colloidal particles. These allow minimizing the hazards and risks associated with the use of conventional molecular stabilizers, providing enhanced stability to the obtained dispersions. Therefore, particle-stabilized emulsions (Pickering emulsions) present many advantages with respect to conventional ones, and hence, their commercialization may open new avenues for cosmetic formulators. This makes further efforts to optimize the fabrication procedures of Pickering emulsions, as well as the development of their applicability in the fabrication of different cosmetic formulations, necessary. This review tries to provide an updated perspective that can help the cosmetic industry in the exploitation of Pickering emulsions as a tool for designing new cosmetic products, especially creams for topical applications.
Collapse
|
33
|
Pickering emulsions stabilized with chitosan/gum Arabic particles: Effect of chitosan degree of deacetylation on the physicochemical properties and cannabidiol (CBD) topical delivery. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Fabrication and In Vitro/Vivo Evaluation of Drug Nanocrystals Self-Stabilized Pickering Emulsion for Oral Delivery of Quercetin. Pharmaceutics 2022; 14:pharmaceutics14050897. [PMID: 35631483 PMCID: PMC9145886 DOI: 10.3390/pharmaceutics14050897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to develop a new drug nanocrystals self-stabilized Pickering emulsion (NSSPE) for improving oral bioavailability of quercetin (QT). Quercetin nanocrystal (QT–NC) was fabricated by high pressure homogenization method, and QT–NSSPE was then prepared by ultrasound method with QT–NC as solid particle stabilizer and optimized by Box-Behnken design. The optimized QT–NSSPE was characterized by fluorescence microscope (FM), scanning electron micrograph (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The stability, in vitro release, and in vivo oral bioavailability of QT–NSSPE were also investigated. Results showed that the droplets of QT–NSSPE with the size of 10.29 ± 0.44 μm exhibited a core-shell structure consisting of a core of oil and a shell of QT–NC. QT–NSSPE has shown a great stability in droplets shape, size, creaming index, zeta potential, and QT content during 30 days storage at 4, 25, and 40 °C. In vitro release studies showed that QT–NSSPE performed a better dissolution behavior (65.88% within 24 h) as compared to QT–NC (50.71%) and QT coarse powder (20.15%). After oral administration, the AUC0–t of QT–NSSPE was increased by 2.76-times and 1.38 times compared with QT coarse powder and QT–NC. It could be concluded that NSSPE is a promising oral delivery system for improving the oral bioavailability of QT.
Collapse
|
35
|
Ma J, Wang Y, Lu R. Mechanism and Application of Chitosan and Its Derivatives in Promoting Permeation in Transdermal Drug Delivery Systems: A Review. Pharmaceuticals (Basel) 2022; 15:ph15040459. [PMID: 35455456 PMCID: PMC9033127 DOI: 10.3390/ph15040459] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 01/15/2023] Open
Abstract
The mechanisms and applications of chitosan and its derivatives in transdermal drug delivery to promote drug permeation were reviewed in this paper. Specifically, we summarized the permeation-promoting mechanisms of chitosan and several of its derivatives, including changing the structure of stratum corneum proteins, acting on the tight junction of granular layers, affecting intercellular lipids, and increasing the water content of stratum corneum. These mechanisms are the reason why chitosan and its derivatives can increase the transdermal permeation of drugs. In addition, various transdermal preparations containing chitosan and its derivatives were summarized, and their respective advantages were expounded, including nanoparticles, emulsions, transdermal microneedles, nanocapsules, transdermal patches, transdermal membranes, hydrogels, liposomes, and nano-stents. The purpose of this review is to provide a theoretical basis for the further and wider application of chitosan in transdermal drug delivery systems. In the future, research results of chitosan and its derivatives in transdermal drug delivery need more support from in vivo experiments, as well as good correlation between in vitro and in vivo experiments. In conclusion, the excellent permeability-promoting property, good biocompatibility, and biodegradability of chitosan and its derivatives make them ideal materials for local transdermal drug delivery.
Collapse
|
36
|
Effect of Natural Deep Eutectic Solvents on trans-Resveratrol Photo-Chemical Induced Isomerization and 2,4,6-Trihydroxyphenanthrene Electro-Cyclic Formation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072348. [PMID: 35408747 PMCID: PMC9000676 DOI: 10.3390/molecules27072348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022]
Abstract
trans-Resveratrol is a natural bioactive compound with well-recognized health promoting effects. When exposed to UV light, this compound can undergo a photochemically induced trans/cis isomerization and a 6π electrochemical cyclization with the subsequent formation of 2,4,6-trihydroxyphenanthrene (THP). THP is a potentially harmful compound which can exert genotoxic effects. In this work we improved the chromatographic separation and determination of the two resveratrol isomers and of THP by using a non-commercial pentafluorophenyl stationary phase. We assessed the effect of natural deep eutectic solvents (NaDES) as possible photo-protective agents by evaluating cis-resveratrol isomer and THP formation under different UV-light exposure conditions with the aim of enhancing resveratrol photostability and inhibiting THP production. Our results demonstrate a marked photoprotective effect exerted by glycerol-containing NaDES, and in particular by proline/glycerol NaDES, which exerts a strong inhibitory effect on the photochemical isomerization of resveratrol and significantly limits the formation of the toxic derivative THP. Considering the presence of resveratrol in various commercial products, these results are of note in view of the potential genotoxic risk associated with its photochemical degradation products and in view of the need for the development of green, eco-sustainable and biocompatible resveratrol photo-stable formulations.
Collapse
|
37
|
The multilayered emulsion-filled gel microparticles: Regulated the release behavior of β-carotene. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Zhang B, Shi J, Zhao Y, Wang H, Chu Z, Chen Y, Wu Z, Jiang Z. Pickering interfacial biocatalysis with enhanced diffusion processes for CO2 mineralization. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Falsafi SR, Rostamabadi H, Samborska K, Mirarab S, Rashidinejhad A, Jafari SM. Protein-polysaccharide interactions for the fabrication of bioactive-loaded nanocarriers: Chemical conjugates and physical complexes. Pharmacol Res 2022; 178:106164. [PMID: 35272044 DOI: 10.1016/j.phrs.2022.106164] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 01/22/2023]
Abstract
As unique biopolymeric architectures, covalently and electrostatically protein-polysaccharide (PRO-POL) systems can be utilized for bioactive delivery by virtue of their featured structures and unique physicochemical attributes. PRO-POL systems (i. e, microscopic /nano-dimensional multipolymer particles, molecularly conjugated vehicles, hydrogels/nanogels/oleogels/emulgels, biofunctional films, multilayer emulsion-based delivery systems, particles for Pickering emulsions, and multilayer coated liposomal nanocarriers) possess a number of outstanding attributes, like biocompatibility, biodegradability, and bioavailability with low toxicity that qualify them as powerful agents for the delivery of different bioactive ingredients. To take benefits from these systems, an in-depth understanding of the chemical conjugates and physical complexes of the PRO-POL systems is crucial. In this review, we offer a comprehensive study concerning the unique properties of covalently/electrostatically PRO-POL systems and introduce emerging platforms to fabricate relevant nanocarriers for encapsulation of bioactive components along with a subsequent sustained/controlled release.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Hadis Rostamabadi
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| | - Katarzyna Samborska
- Institute of Food Sciences, Warsaw University of Life Sciences WULS-SGGW, Warsaw, Poland
| | - Saeed Mirarab
- Sari Agricultural Sciences and Natural Resources University, Khazar Abad Road, P.O. Box 578, Sari, Iran
| | - Ali Rashidinejhad
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain.
| |
Collapse
|
40
|
Tavasoli S, Liu Q, Jafari SM. Development of Pickering emulsions stabilized by hybrid biopolymeric particles/nanoparticles for nutraceutical delivery. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Peito S, Peixoto D, Ferreira-Faria I, Margarida Martins A, Margarida Ribeiro H, Veiga F, Marto J, Cláudia Santos A. Nano- and microparticle-stabilized Pickering emulsions designed for topical therapeutics and cosmetic applications. Int J Pharm 2022; 615:121455. [PMID: 35031412 DOI: 10.1016/j.ijpharm.2022.121455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Pickering emulsions are systems composed of two immiscible fluids, which are stabilized by solid organic or inorganic particles. These solid particles include a broad range of particles that can be used to stabilize Pickering emulsions. An improved resistance against coalescence and lower toxicity, against conventional emulsions stabilized by surfactants, make Pickering emulsions suitable candidates for numerous applications, such as catalysis, food, oil recovery, cosmetics, and pharmaceutical industries. In this article, we give an overview of Pickering emulsions focusing on topical applications. First, we reference the parameters that influence the stabilization of Pickering emulsions. Second, we discuss some of the already investigated topical applications of nano- and microparticles used to stabilize Pickering emulsions. Afterwards, we consider some of the most promising stabilizers of Pickering emulsions for topical applications. Ultimately, we carried out a brief analysis of toxicity and advances in future perspectives, highlighting the promising use of these emulsions in cosmetics and dermopharmaceutical formulations.
Collapse
Affiliation(s)
- Sofia Peito
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Inês Ferreira-Faria
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana Margarida Martins
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Helena Margarida Ribeiro
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Joana Marto
- Research Institute for Medicine (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
42
|
Pickering emulsions stabilized by pea protein isolate-chitosan nanoparticles: fabrication, characterization and delivery EPA for digestion in vitro and in vivo. Food Chem 2022; 378:132090. [PMID: 35032809 DOI: 10.1016/j.foodchem.2022.132090] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/19/2022]
Abstract
The work aimed to prepare pea protein isolate-chitosan (PPI-CS) nanoparticles, fabricate PPI-CS nanoparticles stabilized Pickering emulsions (PPI-CS Pickering emulsions) and deliver EPA for digestion in vitro and in vivo. The nanoparticles were characterized by scanning electron microscopy (SEM), and PPI-CS Pickering emulsions were characterized by physicochemical and rheological properties. The results showed that the size of PPI-CS nanoparticles was 194.22 ± 0.45 nm. Rheological measurement showed that the PPI-CS Pickering emulsions possessed a gel-like network. EPA encapsulated Pickering emulsions (EPA-PE, φ = 0.6) exhibited a high retention rate (93%) during storage and performed a lower release rate compared with EPA-PE (φ = 0.4) in vitro digestion. The area under the curve of EPA concentration of EPA-PE group and EPA-emulsions (EPA-Em) group was 1.71 and 1.48, respectively. It demonstrated that PPI-CS Pickering emulsions provided the possibility to deliver EPA for digestive absorption.
Collapse
|
43
|
DENG W, LI Y, WU L, CHEN S. Pickering emulsions stabilized by polysaccharides particles and their applications: a review. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.24722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Wei DENG
- Fujian Agriculture and Forestry University, China
| | - Yibin LI
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | - Li WU
- Fujian Academy of Agricultural Sciences, China; Fujian Key Laboratory of Agricultural Product (Food) Processing, China
| | | |
Collapse
|
44
|
Mahmood S, Almurisi SH, AL-Japairai K, Hilles AR, Alelwani W, Bannunah AM, Alshammari F, Alheibshy F. Ibuprofen-Loaded Chitosan-Lipid Nanoconjugate Hydrogel with Gum Arabic: Green Synthesis, Characterisation, In Vitro Kinetics Mechanistic Release Study and PGE2 Production Test. Gels 2021; 7:gels7040254. [PMID: 34940313 PMCID: PMC8701348 DOI: 10.3390/gels7040254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023] Open
Abstract
Ibuprofen is a well-known non-steroidal anti-inflammatory (NSAID) medicine that is often used to treat inflammation in general. When given orally, it produces gastrointestinal issues which lead to lower patient compliance. Ibuprofen transdermal administration improves both patient compliance and the efficacy of the drug. Nanoconjugation hydrogels were proposed as a controlled transdermal delivery tool for ibuprofen. Six formulations were prepared using different compositions including chitosan, lipids, gum arabic, and polyvinyl alcohol, through ionic interaction, maturation, and freeze–thaw methods. The formulations were characterised by size, drug conjugation efficiency, differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR). Further analysis of optimised hydrogels was performed, including X-ray diffraction (XRD), rheology, gel fraction and swelling ability, in vitro drug release, and in vitro macrophage prostaglandin E2 (PGE2) production testing. The effects of ibuprofen’s electrostatic interaction with a lipid or polymer on the physicochemical and dissolution characterisation of ibuprofen hydrogels were evaluated. The results showed that the S3 (with lipid conjugation) hydrogel provided higher conjugation efficiency and prolonged drug release compared with the S6 hydrogel.
Collapse
Affiliation(s)
- Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence:
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan 25200, Malaysia;
| | - Khater AL-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Gambang 26300, Malaysia;
| | - Ayah Rebhi Hilles
- International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia;
| | - Walla Alelwani
- Department of Biochemistry, Collage of Science, University of Jeddah, Jeddah 21577, Saudi Arabia;
| | - Azzah M. Bannunah
- Department of Basic Sciences, Common First Year Deanship, Umm Al-Qura University, Makkah 24230, Saudi Arabia;
| | - Farhan Alshammari
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia; (F.A.); (F.A.)
| | - Fawaz Alheibshy
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia; (F.A.); (F.A.)
- Department of Pharmaceutics, College of Pharmacy, Aden University, Aden 6075, Yemen
| |
Collapse
|
45
|
Sharkawy A, Silva AM, Rodrigues F, Barreiro F, Rodrigues A. Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles as green topical delivery vehicles for cannabidiol (CBD). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Pickering emulsions-chitosan hydrogel beads carrier system for loading of resveratrol: Formulation approach and characterization studies. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
47
|
Sharkawy A, Barreiro MF, Rodrigues AE. New Pickering emulsions stabilized with chitosan/collagen peptides nanoparticles: Synthesis, characterization and tracking of the nanoparticles after skin application. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126327] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
The Use of Micro- and Nanocarriers for Resveratrol Delivery into and across the Skin in Different Skin Diseases-A Literature Review. Pharmaceutics 2021; 13:pharmaceutics13040451. [PMID: 33810552 PMCID: PMC8066164 DOI: 10.3390/pharmaceutics13040451] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, polyphenols have been extensively studied due to their antioxidant, anticancer, and anti-inflammatory properties. It has been shown that anthocyanins, flavonols, and flavan-3-ols play an important role in the prevention of bacterial infections, as well as vascular or skin diseases. Particularly, resveratrol, as a multi-potent agent, may prevent or mitigate the effects of oxidative stress. As the largest organ of the human body, skin is an extremely desirable target for the possible delivery of active substances. The transdermal route of administration of active compounds shows many advantages, including avoidance of gastrointestinal irritation and the first-pass effect. Moreover, it is non-invasive and can be self-administered. However, this delivery is limited, mainly due to the need to overpassing the stratum corneum, the possible decomposition of the substances in contact with the skin surface or in the deeper layers thereof. In addition, using resveratrol for topical and transdermal delivery faces the problems of its low solubility and poor stability. To overcome this, novel systems of delivery are being developed for the effective transport of resveratrol across the skin. Carriers in the micro and nano size were demonstrated to be more efficient for safe and faster topical and transdermal delivery of active substances. The present review aimed to discuss the role of resveratrol in the treatment of skin abnormalities with a special emphasis on technologies enhancing transdermal delivery of resveratrol.
Collapse
|
49
|
Almeida T, Silvestre AJD, Vilela C, Freire CSR. Bacterial Nanocellulose toward Green Cosmetics: Recent Progresses and Challenges. Int J Mol Sci 2021; 22:2836. [PMID: 33799554 PMCID: PMC8000719 DOI: 10.3390/ijms22062836] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
In the skin care field, bacterial nanocellulose (BNC), a versatile polysaccharide produced by non-pathogenic acetic acid bacteria, has received increased attention as a promising candidate to replace synthetic polymers (e.g., nylon, polyethylene, polyacrylamides) commonly used in cosmetics. The applicability of BNC in cosmetics has been mainly investigated as a carrier of active ingredients or as a structuring agent of cosmetic formulations. However, with the sustainability issues that are underway in the highly innovative cosmetic industry and with the growth prospects for the market of bio-based products, a much more prominent role is envisioned for BNC in this field. Thus, this review provides a comprehensive overview of the most recent (last 5 years) and relevant developments and challenges in the research of BNC applied to cosmetic, aiming at inspiring future research to go beyond in the applicability of this exceptional biotechnological material in such a promising area.
Collapse
Affiliation(s)
| | | | | | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (T.A.); (A.J.D.S.); (C.V.)
| |
Collapse
|
50
|
Wu S, Gong Y, Liu S, Pei Y, Luo X. Functionalized phosphorylated cellulose microspheres: Design, characterization and ciprofloxacin loading and releasing properties. Carbohydr Polym 2021; 254:117421. [DOI: 10.1016/j.carbpol.2020.117421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/24/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
|