1
|
Tasrin A, Heryanto H, Tahir D. Tofu dregs protein-based bioplastics for high degradability in soil and seawater: Structural properties and chemical bonding in supporting degradability. Int J Biol Macromol 2024; 282:136919. [PMID: 39490859 DOI: 10.1016/j.ijbiomac.2024.136919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Biodegradable and renewable bioplastics have the potential to play a crucial role in the bioeconomy. In this study, we extract protein from tofu dregs and use formaldehyde (HCHO) as a strengthening agent. We employ the casting method to manufacture the bioplastics. These bioplastics are then characterized using X-ray diffraction (XRD) to analyze crystal structure, Fourier-transform infrared spectroscopy (FTIR) to identify chemical bonding of functional groups, tensile strength tests to determine mechanical properties, and degradation tests in seawater and in soil to assess biodegradability. The results show that biodegradation by composting in soil was 81.25 % and 90.91 % for sample I (unfiltered pulp) and sample II (filtered pulp), respectively, and for seawater degradation by 0.46 cm2 and 1.15 cm2. These findings underscore the potential of tofu dregs protein-based bioplastics as an environmentally friendly and cost-effective alternative to conventional materials, thereby playing a significant role in the global effort to reduce plastic waste and inspiring further research and innovation in this field.
Collapse
Affiliation(s)
- Anika Tasrin
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | - Heryanto Heryanto
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
2
|
Li X, Chen S, Shao J, Bai M, Zhang Z, Song P, Jiang S, Li J. From waste to strength: Tailor-made enzyme activation design transformation of denatured soy meal into high-performance all-biomass adhesive. Int J Biol Macromol 2024; 273:133054. [PMID: 38862054 DOI: 10.1016/j.ijbiomac.2024.133054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Given the severe protein denaturation and self-aggregation during the high-temperature desolubilization, denatured soy meal (DSM) is limited by its low reactivity, high viscosity, and poor water solubility. Preparing low-cost and high-performance adhesives with DSM as the key feedstock is still challenging. Herein, this study reveals a double-enzyme co-activation method targeting DSM with the glycosidic bonds in protein-carbohydrate complexes and partial amide bonds in protein, increasing the protein dispersion index from 10.2 % to 75.1 % improves the reactivity of DSM. The green crosslinker transglutaminase (TGase) constructs a robust adhesive isopeptide bond network with high water-resistant bonding strength comparable to chemical crosslinkers. The adhesive has demonstrated high dry/wet shear strength (2.56 and 0.93 MPa) for plywood. After molecular recombination by enzyme strategy, the adhesive had the proper viscosity, high reactivity, and strong water resistance. This research showcases a novel perspective on developing a DSM-based adhesive and blazes new avenues for changes in protein structural function and adhesive performance.
Collapse
Affiliation(s)
- Xinyi Li
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shiqing Chen
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Jiawei Shao
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Mingyang Bai
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Zhicheng Zhang
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Pingan Song
- Centre for Future Materials, School of Agriculture and Environmental Science, University of Southern Queensland, Springfield 4300, Australia
| | - Shuaicheng Jiang
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Jianzhang Li
- State Key Laboratory of Efficient Production of Forest Resources, MOE Key Laboratory of Wood Material Science and Application & Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Arghavani P, Behjati Hosseini S, Moosavi-Movahedi F, Karami S, Edrisi M, Azadi M, Azadarmaki S, Moosavi-Movahedi AA. In Situ Nanoencapsulation of Curcumin in Soy Protein Isolate Amyloid-like Aggregates for Enhanced Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30997-31010. [PMID: 38838270 DOI: 10.1021/acsami.4c06972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The importance of amyloid nanofibrils made from food proteins is rising in diverse fields, such as biomedicine and food science. These protein nanofibrils (PNFs) serve as versatile and sustainable building blocks for biomaterials, characterized by their high β-sheet content and an ordered hydrogen bond network. These properties offer both stability and flexibility, along with an extreme aspect ratio and reactive functional groups. Plant-derived amyloid nanofibrils, such as soy protein isolate (SPI) PNFs, are increasingly favored due to their affordability and sustainability compared with animal proteins. This study aimed to explore the formation and application of SPI amyloid-like aggregates (SPIA) and their nanoencapsulation of curcumin (Cur) for biomedical purposes, particularly in wound healing. Under specific conditions of low pH and high temperature, SPIA formed, exhibited an amyloid nature, and successfully encapsulated Cur, thereby enhancing its stability and availability. Spectroscopic and microscopic analyses confirmed structural changes in SPIA upon the incorporation of Cur and the fabrication of SPIA@Cur. The obtained results indicate that in the presence of Cur, SPIA forms faster, attributed to accelerated SPI denaturation, an increased nucleation rate, and enhanced self-assembly facilitated by Cur's hydrophobic interactions and π-π stacking with SPI peptides. In vitro studies demonstrated the biocompatibility, biodegradability, and antioxidant properties of SPIA@Cur along with controlled release behavior. In vivo experiments in male Wistar rats revealed that both SPIA and SPIA@Cur significantly accelerate wound closure compared with untreated wounds, with SPIA@Cur showing slightly better efficacy. The histological analysis supported enhanced wound healing, indicating the potential of SPIA@Cur for biomedical applications.
Collapse
Affiliation(s)
- Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran
| | | | | | - Shima Karami
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran
| | - Mohammad Edrisi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran
| | - Mohadeseh Azadi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417466191, Iran
| | | | | |
Collapse
|
4
|
Sánchez-Pineda PA, López-Pacheco IY, Villalba-Rodríguez AM, Godínez-Alemán JA, González-González RB, Parra-Saldívar R, Iqbal HMN. Enhancing the production of PHA in Scenedesmus sp. by the addition of green synthesized nitrogen, phosphorus, and nitrogen-phosphorus-doped carbon dots. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:77. [PMID: 38835059 PMCID: PMC11149319 DOI: 10.1186/s13068-024-02522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Plastic consumption has increased globally, and environmental issues associated with it have only gotten more severe; as a result, the search for environmentally friendly alternatives has intensified. Polyhydroxyalkanoates (PHA), as biopolymers produced by microalgae, might be an excellent option; however, large-scale production is a relevant barrier that hinders their application. Recently, innovative materials such as carbon dots (CDs) have been explored to enhance PHA production sustainably. This study added green synthesized multi-doped CDs to Scenedesmus sp. microalgae cultures to improve PHA production. Prickly pear was selected as the carbon precursor for the hydrothermally synthesized CDs doped with nitrogen, phosphorous, and nitrogen-phosphorous elements. CDs were characterized by different techniques, such as FTIR, SEM, ζ potential, UV-Vis, and XRD. They exhibited a semi-crystalline structure with high concentrations of carboxylic groups on their surface and other elements, such as copper and phosphorus. A medium without nitrogen and phosphorous was used as a control to compare CDs-enriched mediums. Cultures regarding biomass growth, carbohydrates, lipids, proteins, and PHA content were analyzed. The obtained results demonstrated that CDs-enriched cultures produced higher content of biomass and PHA; CDs-enriched cultures presented an increase of 26.9% in PHA concentration and an increase of 32% in terms of cell growth compared to the standard cultures.
Collapse
Affiliation(s)
| | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| | | | | | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Monterrey, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Monterrey, Mexico.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, 64849, Monterrey, Mexico.
| |
Collapse
|
5
|
Rahmati F, Sethi D, Shu W, Asgari Lajayer B, Mosaferi M, Thomson A, Price GW. Advances in microbial exoenzymes bioengineering for improvement of bioplastics degradation. CHEMOSPHERE 2024; 355:141749. [PMID: 38521099 DOI: 10.1016/j.chemosphere.2024.141749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024]
Abstract
Plastic pollution has become a major global concern, posing numerous challenges for the environment and wildlife. Most conventional ways of plastics degradation are inefficient and cause great damage to ecosystems. The development of biodegradable plastics offers a promising solution for waste management. These plastics are designed to break down under various conditions, opening up new possibilities to mitigate the negative impact of traditional plastics. Microbes, including bacteria and fungi, play a crucial role in the degradation of bioplastics by producing and secreting extracellular enzymes, such as cutinase, lipases, and proteases. However, these microbial enzymes are sensitive to extreme environmental conditions, such as temperature and acidity, affecting their functions and stability. To address these challenges, scientists have employed protein engineering and immobilization techniques to enhance enzyme stability and predict protein structures. Strategies such as improving enzyme and substrate interaction, increasing enzyme thermostability, reinforcing the bonding between the active site of the enzyme and substrate, and refining enzyme activity are being utilized to boost enzyme immobilization and functionality. Recently, bioengineering through gene cloning and expression in potential microorganisms, has revolutionized the biodegradation of bioplastics. This review aimed to discuss the most recent protein engineering strategies for modifying bioplastic-degrading enzymes in terms of stability and functionality, including enzyme thermostability enhancement, reinforcing the substrate binding to the enzyme active site, refining with other enzymes, and improvement of enzyme surface and substrate action. Additionally, discovered bioplastic-degrading exoenzymes by metagenomics techniques were emphasized.
Collapse
Affiliation(s)
- Farzad Rahmati
- Department of Microbiology, Faculty of Science, Qom Branch, Islamic Azad University (IAU), Qom 37185364, Iran
| | - Debadatta Sethi
- Sugarcane Research Station, Odisha University of Agriculture and Technology, Nayagarh, India
| | - Weixi Shu
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | | | - Mohammad Mosaferi
- Health and Environment Research Center, Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Allan Thomson
- Perennia Food and Agriculture Corporation., 173 Dr. Bernie MacDonald Dr., Bible Hill, Truro, NS, B6L 2H5, Canada
| | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
6
|
Abate T, Amabile C, Muñoz R, Chianese S, Musmarra D. Polyhydroxyalkanoate recovery overview: properties, characterizations, and extraction strategies. CHEMOSPHERE 2024; 356:141950. [PMID: 38599326 DOI: 10.1016/j.chemosphere.2024.141950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/27/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Due to their excellent properties, polyhydroxyalkanoates are gaining increasing recognition in the biodegradable polymer market. These biogenic polyesters are characterized by high biodegradability in multiple environments, overcoming the limitation of composting plants only and their versatility in production. The most consolidated techniques in the literature or the reference legislation for the physical, chemical and mechanical characterisation of the final product are reported since its usability on the market is still linked to its quality, including the biodegradability certificate. This versatility makes polyhydroxyalkanoates a promising prospect with the potential to replace fossil-based thermoplastics sustainably. This review analyses and compares the physical, chemical and mechanical properties of poly-β-hydroxybutyrate and poly-β-hydroxybutyrate-co-β-hydroxyvalerate, indicating their current limitations and strengths. In particular, the copolymer is characterised by better performance in terms of crystallinity, hardness and workability. However, the knowledge in this area is still in its infancy, and the selling prices are too high (9-18 $ kg-1). An analysis of the main extraction techniques, established and in development, is also included. Solvent extraction is currently the most widely used method due to its efficiency and final product quality. In this context, the extraction phase of the biopolymer production process remains a major challenge due to its high costs and the need to use non-halogenated toxic solvents to improve the production of good-quality bioplastics. The review also discusses all fundamental parameters for optimising the process, such as solubility and temperature.
Collapse
Affiliation(s)
- Teresa Abate
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Claudia Amabile
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Raul Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011, Valladolid, Spain
| | - Simeone Chianese
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy.
| | - Dino Musmarra
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, 81031, Aversa, Italy
| |
Collapse
|
7
|
Bagnani M, Peydayesh M, Knapp T, Appenzeller E, Sutter D, Kränzlin S, Gong Y, Wehrle A, Greuter S, Bucher M, Schmid M, Mezzenga R. From Soy Waste to Bioplastics: Industrial Proof of Concept. Biomacromolecules 2024; 25:2033-2040. [PMID: 38327086 DOI: 10.1021/acs.biomac.3c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The global plastic waste problem is pushing for the development of sustainable alternatives, encouraged by stringent regulations combined with increased environmental consciousness. In response, this study presents an industrial-scale proof of concept to produce self-standing, transparent, and flexible bioplastic films, offering a possible solution to plastic pollution and resource valorization. We achieve this by combining amyloid fibrils self-assembled from food waste with methylcellulose and glycerol. Specifically, soy whey and okara, two pivotal protein-rich byproducts of tofu manufacturing, emerge as sustainable and versatile precursors for amyloid fibril formation and bioplastic development. An exhaustive industrial-scale feasibility study involving the transformation of 500 L of soy whey into ∼1 km (27 kg) of bioplastic films underscores the potential of this technology. To extend the practicality of our approach, we further processed a running kilometer of film at the industrial scale into transparent windows for paper-based packaging. The mechanical properties and the water interactions of the novel film are tested and compared with those of commercially used plastic films. By pioneering the large-scale production of biodegradable bioplastics sourced from food byproducts, this work not only simultaneously addresses the dual challenges of plastic pollution and food waste but also practically demonstrates the feasibility of biopolymeric building block valorization for the development of sustainable materials in real-world scenarios.
Collapse
Affiliation(s)
- Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Thomas Knapp
- MIGROS Industrie AG, Josefstrasse 212, 8005 Zürich, Switzerland
| | | | - Daniel Sutter
- FOLEX AG, Bahnhofstrasse 92, 6423 Seewen, Switzerland
| | - Stefan Kränzlin
- PAWI Packaging Schweiz AG, Grüzefeldstrasse 63, 8404 Winterthur, Switzerland
| | - Yi Gong
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Alexandra Wehrle
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Stella Greuter
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Matthias Bucher
- Faculty of Life Sciences, Sustainable Packaging Institute SPI, Albstadt-Sigmaringen University, Anton-Günther-Street 51, 72488 Sigmaringen, Germany
| | - Markus Schmid
- Faculty of Life Sciences, Sustainable Packaging Institute SPI, Albstadt-Sigmaringen University, Anton-Günther-Street 51, 72488 Sigmaringen, Germany
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
8
|
Hassan F, Mu B, Yang Y. Natural polysaccharides and proteins-based films for potential food packaging and mulch applications: A review. Int J Biol Macromol 2024; 261:129628. [PMID: 38272415 DOI: 10.1016/j.ijbiomac.2024.129628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Conventional nondegradable packaging and mulch films, after reaching the end of their use, become a major source of waste and are primarily disposed of in landfills. Accumulation of non-degradable film residues in the soil leads to diminished soil fertility, reduced crop yield, and can potentially affect humans. Application of degradable films is still limited due to the high cost, poor mechanical, and gas barrier properties of current biobased synthetic polymers. In this respect, natural polysaccharides and proteins can offer potential solutions. Having versatile functional groups, three-dimensional network structures, biodegradability, ease of processing, and the potential for surface modifications make polysaccharides and proteins excellent candidates for quality films. Besides, their low-cost availability as industrial waste/byproducts makes them cost-effective alternatives. This review paper covers the performance properties, cost assessment, and in-depth analysis of macromolecular structures of some natural polysaccharides and proteins-based films that have great potential for packaging and mulch applications. Proper dissolution of biopolymers to improve molecular interactions and entanglement, and establishment of crosslinkages to form an ordered and cohesive polymeric structure can help to obtain films with good properties. Simple aqueous-based film formulation techniques and utilization of waste/byproducts can stimulate the adoption of affordable biobased films on a large-scale.
Collapse
Affiliation(s)
- Faqrul Hassan
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Bingnan Mu
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States
| | - Yiqi Yang
- Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Department of Biological Systems Engineering, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States.
| |
Collapse
|
9
|
Li T, Kambanis J, Sorenson TL, Sunde M, Shen Y. From Fundamental Amyloid Protein Self-Assembly to Development of Bioplastics. Biomacromolecules 2024; 25:5-23. [PMID: 38147506 PMCID: PMC10777412 DOI: 10.1021/acs.biomac.3c01129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023]
Abstract
Proteins can self-assemble into a range of nanostructures as a result of molecular interactions. Amyloid nanofibrils, as one of them, were first discovered with regard to the relevance of neurodegenerative diseases but now have been exploited as building blocks to generate multiscale materials with designed functions for versatile applications. This review interconnects the mechanism of amyloid fibrillation, the current approaches to synthesizing amyloid protein-based materials, and the application in bioplastic development. We focus on the fundamental structures of self-assembled amyloid fibrils and how external factors can affect protein aggregation to optimize the process. Protein self-assembly is essentially the autonomous congregation of smaller protein units into larger, organized structures. Since the properties of the self-assembly can be manipulated by changing intrinsic factors and external conditions, protein self-assembly serves as an excellent building block for bioplastic development. Building on these principles, general processing methods and pathways from raw protein sources to mature state materials are proposed, providing a guide for the development of large-scale production. Additionally, this review discusses the diverse properties of protein-based amyloid nanofibrils and how they can be utilized as bioplastics. The economic feasibility of the protein bioplastics is also compared to conventional plastics in large-scale production scenarios, supporting their potential as sustainable bioplastics for future applications.
Collapse
Affiliation(s)
- Tianchen Li
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Jordan Kambanis
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Timothy L. Sorenson
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| | - Margaret Sunde
- School
of Medical Sciences and Sydney Nano, The
University of Sydney, Sydney NSW 2006, Australia
| | - Yi Shen
- School
of Chemical and Biomolecular Engineering and Sydney Nano, The University of Sydney, PNR Building, Darlington NSW 2008, Australia
| |
Collapse
|
10
|
Xie D, Zhang R, Zhang C, Yang S, Xu Z, Song Y. A novel, robust mechanical strength, and naturally degradable double crosslinking starch-based bioplastics for practical applications. Int J Biol Macromol 2023; 253:126959. [PMID: 37739289 DOI: 10.1016/j.ijbiomac.2023.126959] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
The increasing number of petroleum-based plastics has caused severe environmental pollution, which has attracted great research interest in the development of low-cost, renewable, and degradable starch-based bioplastics. However, developing starch-based bioplastics with robust mechanical strength, excellent water resistance, and thermal resistance remains a great challenge. In this study, we presented a simple and efficient method for preparing high-performance novel starch-based bioplastics with chemical and physical double crosslinking network structures filled with 2,2,6,6-tetramethylpiperidine 1-oxy-oxidized cellulose nanofibers and zinc oxide nanoparticles. Compared with pure starch-based bioplastics, the tensile strength of the novel robust strength starch-based bioplastics increased by 431.2 %. The novel starch-based bioplastics exhibited excellent mechanical properties (tensile strength up to 24.54 MPa), water resistance, thermal resistance, and biodegradability. In addition, the novel starch-based bioplastics could be reused, crushed, dissolved, and re-poured after use. After recycling, the novel starch-based bioplastics could be discarded in the soil to achieve complete degradation within six weeks. Owing to these characteristics, the novel starch-based bioplastics are good alternatives used to replace traditional petroleum-based plastics and have great development prospects.
Collapse
Affiliation(s)
- Di Xie
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Rui Zhang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Congcong Zhang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Siwen Yang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Zesheng Xu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, PR China
| | - Yongming Song
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin, Heilongjiang 150040, PR China.
| |
Collapse
|
11
|
Rashwan AK, Osman AI, Abdelshafy AM, Mo J, Chen W. Plant-based proteins: advanced extraction technologies, interactions, physicochemical and functional properties, food and related applications, and health benefits. Crit Rev Food Sci Nutr 2023:1-28. [PMID: 37966163 DOI: 10.1080/10408398.2023.2279696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Even though plant proteins are more plentiful and affordable than animal proteins in comparison, direct usage of plant-based proteins (PBPs) is still limited because PBPs are fed to animals as feed to produce animal-based proteins. Thus, this work has comprehensively reviewed the effects of various factors such as pH, temperature, pressure, and ionic strength on PBP properties, as well as describes the protein interactions, and extraction methods to know the optimal conditions for preparing PBP-based products with high functional properties and health benefits. According to the cited studies in the current work, the environmental factors, particularly pH and ionic strength significantly affected on physicochemical and functional properties of PBPs, especially solubility was 76.0% to 83.9% at pH = 2, while at pH = 5.0 reduced from 5.3% to 9.6%, emulsifying ability was the lowest at pH = 5.8 and the highest at pH 8.0, and foaming capacity was lowest at pH 5.0 and the highest at pH = 7.0. Electrostatic interactions are the main way for protein interactions, which can be used to create protein/polysaccharide complexes for food industrial purposes. The extraction yield of proteins can be reached up to 86-95% with high functional properties using sustainable and efficient routes, including enzymatic, ultrasound-, microwave-, pulsed electric field-, and high-pressure-assisted extraction. Nondairy alternative products, especially yogurt, 3D food printing and meat analogs, synthesis of nanoparticles, and bioplastics and packaging films are the best available PBPs-based products. Moreover, PBPs particularly those that contain pigments and their products showed good bioactivities, especially antioxidants, antidiabetic, and antimicrobial.
Collapse
Affiliation(s)
- Ahmed K Rashwan
- Department of Traditional Chinese Medicine, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Asem M Abdelshafy
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University-Assiut Branch, Assiut, Egypt
| | - Jianling Mo
- Department of Traditional Chinese Medicine, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Tallawi M, Amrein D, Gemmecker G, Aifantis KE, Drechsler K. A novel polysaccharide/zein conjugate as an alternative green plastic. Sci Rep 2023; 13:13161. [PMID: 37573459 PMCID: PMC10423201 DOI: 10.1038/s41598-023-40293-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
The flax seed cake is a waste product from flax oil extraction. Adding value to this wasted material aligns with the concept of circularity. In this study, we explored zein protein conjugation with flax mucilage for packaging material development. Although both flax mucilage and zein have excellent film-forming properties, they lack the required mechanical properties for industrial processing and are sensitive to high humidity. We present a simple and non-toxic one-pot method for developing the novel flax mucilage/zein conjugate. Where the flax mucilage undergoes oxidation to form aldehyde groups, which then react with zein's amino groups in a glycation process. The conjugates were analyzed using different techniques. The flax mucilage conjugate had a water-holding capacity of 87-62%. Increasing the zein content improved the surface smoothness of the films. On the other hand, higher levels of zein led to a significant decrease in film solubility (p < 0.05). The flax mucilage conjugate exhibited thermoplastic and elastic properties; revealing Young's modulus of 1-3 GPa, glass transition temperature between 49 °C and 103 °C and excellent processability with various industrial techniques. Showing its potential as a sustainable alternative to traditional plastics.
Collapse
Affiliation(s)
- Marwa Tallawi
- Carbon Composite, School of Engineering and Design, Technical University of Munich, 85748, Garching, Germany.
| | - Danial Amrein
- Carbon Composite, School of Engineering and Design, Technical University of Munich, 85748, Garching, Germany
| | - Gerd Gemmecker
- School of Natural Sciences, Bavarian NMR Center, Technical University of Munich, 85748, Garching, Germany
| | - Katerina E Aifantis
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Klaus Drechsler
- Carbon Composite, School of Engineering and Design, Technical University of Munich, 85748, Garching, Germany
| |
Collapse
|
13
|
Pooja N, Chakraborty I, Rahman MH, Mazumder N. An insight on sources and biodegradation of bioplastics: a review. 3 Biotech 2023; 13:220. [PMID: 37265543 PMCID: PMC10230146 DOI: 10.1007/s13205-023-03638-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
Durability and affordability are two main reasons for the widespread consumption of plastic in the world. However, the inability of these materials to undergo degradation has become a significant threat to the environment and human health To address this issue, bioplastics have emerged as a promising alternative. Bioplastics are obtained from renewable and sustainable biomass and have a lower carbon footprint and emit fewer greenhouse gases than petroleum-based plastics. The use of these bioplastics sourced from renewable biomass can also reduce the dependency on fossil fuels, which are limited in availability. This review provides an elaborate comparison of biodegradation rates of potential bioplastics in soil from various sources such as biomass, microorganisms, and monomers. These bioplastics show great potential as a replacement for conventional plastics due to their biodegradable and diverse properties.
Collapse
Affiliation(s)
- Nag Pooja
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Md. Hafizur Rahman
- Department of Quality Control and Safety Management, Faculty of Food Sciences and Safety, Khulna Agricultural University, Khulna, Bangladesh
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
14
|
Boisseaux P, Hopkinson P, Santillo D, Smith C, Garmulewicz A, Powell Z, Galloway T. Environmental safety of second and third generation bioplastics in the context of the circular economy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114835. [PMID: 37003058 DOI: 10.1016/j.ecoenv.2023.114835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Bioplastics derived from organic materials other than crude oil are often suggested as sustainable solutions for tackling end-of-life plastic waste, but little is known of their ecotoxicity to aquatic species. Here, we investigated the ecotoxicity of second and third generation bioplastics toward the freshwater zooplankton Daphnia magna. In acute toxicity tests (48 h), survival was impacted at high concentrations (g.L-1 range), within the range of salinity-induced toxicity. Macroalgae-derived bioplastic induced hormetic responses under chronic exposure (21 d). Most biological traits were enhanced from 0.06 to 0.25 g.L-1 (reproduction rate, body length, width, apical spine, protein concentration), while most of these traits returned to controls level at 0.5 g.L-1. Phenol-oxidase activity, indicative of immune function, was enhanced only at the lowest concentration (0.06 g.L-1). We hypothesise these suggested health benefits were due to assimilation of carbon derived from the macroalgae-based bioplastic as food. Polymer identity was confirmed by infra-red spectroscopy. Chemical analysis of each bioplastic revealed low metal abundance whilst non target exploration of organic compounds revealed trace amounts of phthalates and flame retardants. The macroalgae-bioplastic disintegrated completely in compost and biodegraded up to 86 % in aqueous medium. All bioplastics acidified the test medium. In conclusion, the tested bioplastics were classified as environmentally safe. Nonetheless, a reasonable end-of-life management of these safer-by-design materials is advised to ensure the absence of harmful effects at high concentrations, depending on the receiving environment.
Collapse
Affiliation(s)
- Paul Boisseaux
- College of Life and Environmental Sciences, University of Exeter, EX4 4QD Exeter, UK.
| | - Peter Hopkinson
- Exeter Business School, Building One, University of Exeter, EX4 4QD Exeter, UK
| | - David Santillo
- Greenpeace laboratory, Innovation Centre, University of Exeter, EX4 4RN Exeter, UK
| | | | - Alysia Garmulewicz
- Materiom C.I.C, E8 4QS London, UK; Faculty of Administration and Economics, Department of Administration, University of Santiago of Chile, 9170022 Santiago, Chile
| | | | - Tamara Galloway
- College of Life and Environmental Sciences, University of Exeter, EX4 4QD Exeter, UK
| |
Collapse
|
15
|
Abstract
For each kilogram of food protein wasted, between 15 and 750 kg of CO2 end up in the atmosphere. With this alarming carbon footprint, food protein waste not only contributes to climate change but also significantly impacts other environmental boundaries, such as nitrogen and phosphorus cycles, global freshwater use, change in land composition, chemical pollution, and biodiversity loss. This contrasts sharply with both the high nutritional value of proteins, as well as their unique chemical and physical versatility, which enable their use in new materials and innovative technologies. In this review, we discuss how food protein waste can be efficiently valorized not only by reintroduction into the food chain supply but also as a template for the development of sustainable technologies by allowing it to exit the food-value chain, thus alleviating some of the most urgent global challenges. We showcase three technologies of immediate significance and environmental impact: biodegradable plastics, water purification, and renewable energy. We discuss, by carefully reviewing the current state of the art, how proteins extracted from food waste can be valorized into key players to facilitate these technologies. We furthermore support analysis of the extant literature by original life cycle assessment (LCA) examples run ad hoc on both plant and animal waste proteins in the context of the technologies considered, and against realistic benchmarks, to quantitatively demonstrate their efficacy and potential. We finally conclude the review with an outlook on how such a comprehensive management of food protein waste is anticipated to transform its carbon footprint from positive to negative and, more generally, have a favorable impact on several other important planetary boundaries.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Massimo Bagnani
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
| | - Wei Long Soon
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University, 639798 Singapore
| | - Raffaele Mezzenga
- ETH
Zurich, Department of Health
Sciences and Technology, 8092 Zurich, Switzerland
- Department
of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
16
|
Yamada M, Kawamura M, Yamada T. Preparation of bioplastic consisting of salmon milt DNA. Sci Rep 2022; 12:7423. [PMID: 35523933 PMCID: PMC9076882 DOI: 10.1038/s41598-022-11482-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/18/2022] [Indexed: 11/09/2022] Open
Abstract
The microplastic that pollutes the ocean is a serious problem around the world. The bioplastic consisting of biopolymers which is degraded in nature, is one of the strategies to solve this problem. Although the bioplastics consisting of protein, polysaccharide, polylactic acid, etc., have been reported, which consist of DNA, one of the most important materials in the genetic process, have not been reported to the best of our knowledge. In addition, a large amount of DNA-containing materials, such as salmon milts, is discarded as industrial waste around the world. Therefore, we demonstrated the preparation of a bioplastic consisting of salmon milt DNA. The DNA plastic was prepared by the immersion of a DNA pellet in a formaldehyde (HCHO) solution and heating. As a result, the water-stable DNA plastics were obtained at the HCHO concentration of 20% or more. Particularly, the DNA plastic with a 25% HCHO treatment showed water-insoluble, thermally stable, and highly mechanical properties. These are due to the formation of a three-dimensional network via the crosslinking reaction between the DNA chains. In addition, since DNA in plastic possesses the double-stranded structure, these plastics effectively accumulated the DNA intercalator, such as ethidium bromide. Furthermore, the DNA plastics indicated a biodegradable property in a nuclease-containing aqueous solution and the biodegradable stability was able to be controlled by the HCHO concentration. Therefore, salmon milt DNA has shown the potential to be a biodegradable plastic.
Collapse
Affiliation(s)
- Masanori Yamada
- Department of Chemistry, Faculty of Science, Okayama University of Science, Ridaicho, Kita-ku, Okayama, 700-0005, Japan.
| | - Midori Kawamura
- Department of Chemistry, Faculty of Science, Okayama University of Science, Ridaicho, Kita-ku, Okayama, 700-0005, Japan
| | - Tetsuya Yamada
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
17
|
Rice bran-based bioplastics: Effects of the mixing temperature on starch plastification and final properties. Int J Biol Macromol 2021; 188:932-940. [PMID: 34384803 DOI: 10.1016/j.ijbiomac.2021.08.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/28/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022]
Abstract
The agro-food industry produces huge amounts of wastes and by-products with high levels of carbohydrates and proteins, basic food groups that, properly treated, can be employed for the development of bioplastics. These high added-value products represent an alternative to traditional polymers. In this research work, rice bran was mixed with glycerol and water obtaining homogeneous blends which then are processed into bioplastics via injection moulding. The mixing temperature aids starch plastification and thus, affects the properties of the final specimens. In this way, the mechanical characterization revealed improvements for the highest temperature (110 °C) used which, at the same time, exhibited poor physical integrity during water immersion. Although the mechanical properties of the dried system obtained at 80 °C are slightly inferior to those obtained for the non-dried 110 °C system, these specimens are considered more adequate since they exhibited higher physical integrity and, consequently, better operating conditions.
Collapse
|
18
|
Comparative analysis of various extraction processes based on economy, eco-friendly, purity and recovery of polyhydroxyalkanoate: A review. Int J Biol Macromol 2021; 183:1881-1890. [PMID: 34090850 DOI: 10.1016/j.ijbiomac.2021.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/06/2023]
Abstract
Bioplastics have been an interesting area of research and development in the last few decades. Normal plastics are made out of petroleum products, which is a non-renewable resource. Apart from that, its non-biodegradable nature makes it a serious threat to the environment, and hence a better alternative is needed. Bioplastics are synthesized by microorganisms and are biodegradable; this property makes them a promising alternative to normal plastic. However, the major drawback related to bioplastic is the high cost of its production. Polyhydroxyalkanoate (PHA) is a very popular biopolymer produced by different types of microbes. The review focuses on the different methods of extraction of PHA based on the percentage of purity, recovery, eco-friendly, and cost-effectiveness. There is a wide array of extraction methods reported to date, wherein there is the involvement of different types of solvents (like halogenated, non-halogenated, and green solvents) or mechanical or enzymatic methods. Each extraction process has its advantages and disadvantages. In this study, we have attempted to present a structured comparison of these different methods and highlight the factors that can be addressed for better extraction of PHA thereby making it a feasible alternative to commercial synthetic plastic.
Collapse
|
19
|
Srivastava RK, Shetti NP, Reddy KR, Kwon EE, Nadagouda MN, Aminabhavi TM. Biomass utilization and production of biofuels from carbon neutral materials. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116731. [PMID: 33607352 DOI: 10.1016/j.envpol.2021.116731] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 05/22/2023]
Abstract
The availability of organic matters in vast quantities from the agricultural/industrial practices has long been a significant environmental challenge. These wastes have created global issues in increasing the levels of BOD or COD in water as well as in soil or air segments. Such wastes can be converted into bioenergy using a specific conversion platform in conjunction with the appropriate utilization of the methods such as anaerobic digestion, secondary waste treatment, or efficient hydrolytic breakdown as these can promote bioenergy production to mitigate the environmental issues. By the proper utilization of waste organics and by adopting innovative approaches, one can develop bioenergy processes to meet the energy needs of the society. Waste organic matters from plant origins or other agro-sources, biopolymers, or complex organic matters (cellulose, hemicelluloses, non-consumable starches or proteins) can be used as cheap raw carbon resources to produce biofuels or biogases to fulfill the ever increasing energy demands. Attempts have been made for bioenergy production by biosynthesizing, methanol, n-butanol, ethanol, algal biodiesel, and biohydrogen using different types of organic matters via biotechnological/chemical routes to meet the world's energy need by producing least amount of toxic gases (reduction up to 20-70% in concentration) in order to promote sustainable green environmental growth. This review emphasizes on the nature of available wastes, different strategies for its breakdown or hydrolysis, efficient microbial systems. Some representative examples of biomasses source that are used for bioenergy production by providing critical information are discussed. Furthermore, bioenergy production from the plant-based organic matters and environmental issues are also discussed. Advanced biofuels from the organic matters are discussed with efficient microbial and chemical processes for the promotion of biofuel production from the utilization of plant biomasses.
Collapse
Affiliation(s)
- Rajesh K Srivastava
- Department of Biotechnology, GIT, GITAM (Deemed to Be University), Rushikonda, Visakhapatnam, 530045, (A.P.), India
| | - Nagaraj P Shetti
- Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi, 580027, Karnataka, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH, 45324, USA
| | | |
Collapse
|
20
|
Álvarez-Castillo E, Felix M, Bengoechea C, Guerrero A. Proteins from Agri-Food Industrial Biowastes or Co-Products and Their Applications as Green Materials. Foods 2021; 10:981. [PMID: 33947093 PMCID: PMC8145534 DOI: 10.3390/foods10050981] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
A great amount of biowastes, comprising byproducts and biomass wastes, is originated yearly from the agri-food industry. These biowastes are commonly rich in proteins and polysaccharides and are mainly discarded or used for animal feeding. As regulations aim to shift from a fossil-based to a bio-based circular economy model, biowastes are also being employed for producing bio-based materials. This may involve their use in high-value applications and therefore a remarkable revalorization of those resources. The present review summarizes the main sources of protein from biowastes and co-products of the agri-food industry (i.e., wheat gluten, potato, zein, soy, rapeseed, sunflower, protein, casein, whey, blood, gelatin, collagen, keratin, and algae protein concentrates), assessing the bioplastic application (i.e., food packaging and coating, controlled release of active agents, absorbent and superabsorbent materials, agriculture, and scaffolds) for which they have been more extensively produced. The most common wet and dry processes to produce protein-based materials are also described (i.e., compression molding, injection molding, extrusion, 3D-printing, casting, and electrospinning), as well as the main characterization techniques (i.e., mechanical and rheological properties, tensile strength tests, rheological tests, thermal characterization, and optical properties). In this sense, the strategy of producing materials from biowastes to be used in agricultural applications, which converge with the zero-waste approach, seems to be remarkably attractive from a sustainability prospect (including environmental, economic, and social angles). This approach allows envisioning a reduction of some of the impacts along the product life cycle, contributing to tackling the transition toward a circular economy.
Collapse
Affiliation(s)
| | | | - Carlos Bengoechea
- Departamento de Ingeniería Química, Escuela Politécnica Superior, 41011 Sevilla, Spain; (E.Á.-C.); (M.F.); (A.G.)
| | | |
Collapse
|
21
|
Mirpoor SF, Giosafatto CVL, Porta R. Biorefining of seed oil cakes as industrial co-streams for production of innovative bioplastics. A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Alonso-González M, Felix M, Guerrero A, Romero A. Effects of Mould Temperature on Rice Bran-Based Bioplastics Obtained by Injection Moulding. Polymers (Basel) 2021; 13:polym13030398. [PMID: 33513774 PMCID: PMC7866207 DOI: 10.3390/polym13030398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/16/2022] Open
Abstract
The high production rate of conventional plastics and their low degradability result in severe environmental problems, such as plastic accumulation and some other related consequences. One alternative to these materials is the production of oil-free bioplastics, based on wastes from the agro-food industry, which are biodegradable. Not only is rice bran an abundant and non-expensive waste, but it is also attractive due to its high protein and starch content, which can be used as macromolecules for bioplastic production. The objective of this work was to develop rice-bran-based bioplastics by injection moulding. For this purpose, this raw material was mixed with a plasticizer (glycerol), analysing the effect of three mould temperatures (100, 130 and 150 °C) on the mechanical and microstructural properties and water absorption capacity of the final matrices. The obtained results show that rice bran is a suitable raw material for the development of bioplastics whose properties are strongly influenced by the processing conditions. Thus, higher temperatures produce stiffer and more resistant materials (Young's modulus improves from 12 ± 7 MPa to 23 ± 6 and 33 ± 6 MPa when the temperature increases from 100 to 130 and 150 °C, respectively); however, these materials are highly compact and, consequently, their water absorption capacity diminishes. On the other hand, although lower mould temperatures lead to materials with lower mechanical properties, they exhibit a less compact structure, resulting in enhanced water absorption capacity.
Collapse
Affiliation(s)
- María Alonso-González
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
- Correspondence: ; Tel.: +34-635-313-411
| | - Manuel Felix
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain; (M.F.); (A.G.)
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain; (M.F.); (A.G.)
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| |
Collapse
|
23
|
Comparison between pea and soy protein‐based bioplastics obtained by injection molding. J Appl Polym Sci 2020. [DOI: 10.1002/app.50412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|