1
|
Lin H, Xing J, Wang H, Wang S, Fang R, Li X, Li Z, Song N. Roles of Lipolytic enzymes in Mycobacterium tuberculosis pathogenesis. Front Microbiol 2024; 15:1329715. [PMID: 38357346 PMCID: PMC10865251 DOI: 10.3389/fmicb.2024.1329715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that can endure for long periods in an infected patient, without causing disease. There are a number of virulence factors that increase its ability to invade the host. One of these factors is lipolytic enzymes, which play an important role in the pathogenic mechanism of Mtb. Bacterial lipolytic enzymes hydrolyze lipids in host cells, thereby releasing free fatty acids that are used as energy sources and building blocks for the synthesis of cell envelopes, in addition to regulating host immune responses. This review summarizes the relevant recent studies that used in vitro and in vivo models of infection, with particular emphasis on the virulence profile of lipolytic enzymes in Mtb. A better understanding of these enzymes will aid the development of new treatment strategies for TB. The recent work done that explored mycobacterial lipolytic enzymes and their involvement in virulence and pathogenicity was highlighted in this study. Lipolytic enzymes are expected to control Mtb and other intracellular pathogenic bacteria by targeting lipid metabolism. They are also potential candidates for the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Hong Lin
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Jiayin Xing
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Hui Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Shuxian Wang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Ren Fang
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Xiaotian Li
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Zhaoli Li
- SAFE Pharmaceutical Technology Co. Ltd., Beijing, China
| | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
2
|
Rubinstein M, Makhon A, Losev Y, Valenci GZ, Gatt YE, Margalit H, Fass E, Kutikov I, Murik O, Zeevi DA, Savyon M, Tau L, Kaidar Shwartz H, Dveyrin Z, Rorman E, Nissan I. Prolonged survival of a patient with active MDR-TB HIV co-morbidity: insights from a Mycobacterium tuberculosis strain with a unique genomic deletion. Front Med (Lausanne) 2023; 10:1292665. [PMID: 38020140 PMCID: PMC10657812 DOI: 10.3389/fmed.2023.1292665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Coinfection of HIV and multidrug-resistant tuberculosis (MDR-TB) presents significant challenges in terms of the treatment and prognosis of tuberculosis, leading to complexities in managing the disease and impacting the overall outcome for TB patients. This study presents a remarkable case of a patient with MDR-TB and HIV coinfection who survived for over 8 years, despite poor treatment adherence and comorbidities. Whole genome sequencing (WGS) of the infecting Mycobacterium tuberculosis (Mtb) strain revealed a unique genomic deletion, spanning 18 genes, including key genes involved in hypoxia response, intracellular survival, immunodominant antigens, and dormancy. This deletion, that we have called "Del-X," potentially exerts a profound influence on the bacterial physiology and its virulence. Only few similar deletions were detected in other non-related Mtb genomes worldwide. In vivo evolution analysis identified drug resistance and metabolic adaptation mutations and their temporal dynamics during the patient's treatment course.
Collapse
Affiliation(s)
- Mor Rubinstein
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Andrei Makhon
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Yelena Losev
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Gal Zizelski Valenci
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Yair E. Gatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ephraim Fass
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Ina Kutikov
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Omer Murik
- Translational Genomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - David A. Zeevi
- Translational Genomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Michal Savyon
- Tel Aviv District Health Office, Ministry of Health, Tel Aviv, Israel
| | - Luba Tau
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hasia Kaidar Shwartz
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Zeev Dveyrin
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Efrat Rorman
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Israel Nissan
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| |
Collapse
|
3
|
Anand PK, Kaur G, Saini V, Kaur J, Kaur J. N-terminal PPE domain plays an integral role in extracellular transportation and stability of the immunomodulatory Rv3539 protein of the Mycobacterium tuberculosis. Biochimie 2023; 213:30-40. [PMID: 37156406 DOI: 10.1016/j.biochi.2023.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/31/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Multigene PE/PPE family is exclusively present in mycobacterium species. Only few selected genes of this family have been characterized till date. Rv3539 was annotated as PPE63 with conserved PPE domain at N-terminal and PE-PPE at C-terminal. An α/β hydrolase structural fold, characteristic of lipase/esterase, was present in the PE-PPE domain. To assign the biochemical function to Rv3539, the corresponding gene was cloned in pET-32a (+) as full-length, PPE, and PE-PPE domains individually, followed by expression in E. Coli C41 (DE3). All three proteins demonstrated esterase activity. However, the enzyme activity in the N-terminal PPE domain was very low. The enzyme activity of Rv3539 and PE-PPE proteins was approximately same with the pNP-C4 as optimum substrate at 40 °C and pH 8.0. The loss of enzyme activity after mutating the predicted catalytic triad (Ser296Ala, Asp369Ala, and His395Ala) found only in the PE-PPE domain, confirmed the candidature of the bioinformatically predicted active site residue. The optimal activity and thermostability of the Rv3539 protein was altered by removing the PPE domain. CD-spectroscopy analysis confirmed the role of PPE domain to the thermostability of Rv3539 by maintaining the structural integrity at higher temperatures. The presence of the N-terminal PPE domain directed the Rv3539 protein to the cell membrane/wall and the extracellular compartment. The Rv3539 protein could generate humoral response in TB patients. Therefore, results demonstrated that Rv3539 demonstrated esterase activity. PE-PPE domain of Rv3539 is functionally automated, however, N-terminus domain played a role in protein stabilization and its transportation. Both domains participated in immunomodulation.
Collapse
Affiliation(s)
- Pradeep Kumar Anand
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| | - Gagandeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India.
| | - Jasbinder Kaur
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India.
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
4
|
Anand PK, Saini V, Kaur J, Kumar A, Kaur J. Cell wall and immune modulation by Rv1800 (PPE28) helps M. smegmatis to evade intracellular killing. Int J Biol Macromol 2023; 247:125837. [PMID: 37455004 DOI: 10.1016/j.ijbiomac.2023.125837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Rv1800 is predicted as PPE family protein found in pathogenic mycobacteria only. Under acidic stress, the rv1800 gene was expressed in M. tuberculosis H37Ra. In-silico study showed lipase/esterase activity in C-terminus PE-PPE domain having pentapeptide motif with catalytic Ser-Asp-His residue. Full-length Rv1800 and C-terminus PE-PPE domain proteins showed esterase activity with pNP-C4 at the optimum temperature of 40 °C and pH 8.0. However, the N-terminus PPE domain showed no esterase activity, but involved in thermostability of Rv1800 full-length protein. M. smegmatis expressing rv1800 (MS_Rv1800) showed altered colony morphology and a significant resistance to numerous environmental stresses, antibiotics and higher lipid content. In extracellular and membrane fraction, Rv1800 protein was detected, while C terminus PE-PPE was present in cytoplasm, suggesting the role of N-terminus PPE domain in transportation of protein. MS_Rv1800 infected macrophage showed higher intracellular survival and low production of ROS, NO and expression levels of iNOS and pro-inflammatory cytokines, while induced expression of the anti-inflammatory cytokines. The Rv1800, PPE and PE-PPE showed antibody-mediated immunity in MDR-TB and PTB patients. Overall, these results confirmed the esterase activity in the C-terminus and function of N-terminus in thermostabilization and transportation; predicting the role of Rv1800 in immune/lipid modulation to support intracellular mycobacterium survival.
Collapse
Affiliation(s)
- Pradeep Kumar Anand
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India
| | - Varinder Saini
- Department of Pulmonary Medicine, Government Medical College and Hospital, Chandigarh, India
| | - Jasbinder Kaur
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, India
| | - Arbind Kumar
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
5
|
Anand PK, Kaur J. Rv3539 (PPE63) of Mycobacterium Tuberculosis Promotes Survival of Mycobacterium Smegmatis in Human Macrophages Cell Line via Cell Wall Modulation of Bacteria and Altering Host's Immune Response. Curr Microbiol 2023; 80:267. [PMID: 37401981 DOI: 10.1007/s00284-023-03360-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/31/2023] [Indexed: 07/05/2023]
Abstract
The modulation of host's immune response plays an important role in the intracellular survival of Mycobacterium tuberculosis. The intracellular pathogen counteracts environmental stresses with help of the expression of several genes. The M. tuberculosis genome encodes several immune-modulatory proteins including PE (proline-glutamic acid)/PPE (proline-proline-glutamic acid) superfamily proteins. It is unclear how the unique PE/PPE proteins superfamily contributes to survival under different stress and pathophysiology conditions. Previously, we showed that PPE63 (Rv3539) has C-terminal esterase extension and was localized as a membrane attached and in extracellular compartment. Therefore, the probability of these proteins interacting with the host to modulate the host immune response cannot be ruled out. The physiological role of PPE63 was characterized by expressing the PPE63 in the M. smegmatis, a non-pathogenic strain intrinsically deficient of PPE63. The recombinant M. smegmatis expressing PPE63 altered the colony morphology, lipid composition, and integrity of the cell wall. It provided resistance to multiple hostile environmental stress conditions and several antibiotics. MS_Rv3539 demonstrated higher infection and intracellular survival in comparison to the MS_Vec in the PMA-differentiated THP-1 cells. The decreased intracellular level of ROS, NO, and expression of iNOS was observed in THP-1 cells upon infection with MS_Rv3539 in comparison to MS_Vec. Further, the decrease in expression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1β and enhanced anti-inflammatory cytokines like IL-10, pointed toward its role in immune modulation. Overall this study suggested the role of Rv3539 in enhanced intracellular survival of M. smegmatis via cell wall modulation and altered immune response of host.
Collapse
Affiliation(s)
- Pradeep K Anand
- Department of Biotechnology, Panjab University, BMS Block-1, South Campus, Chandigarh, 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, BMS Block-1, South Campus, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Maharajh R, Pillay M, Senzani S. A computational method for the prediction and functional analysis of potential Mycobacterium tuberculosis adhesin-related proteins. Expert Rev Proteomics 2023; 20:483-493. [PMID: 37873953 DOI: 10.1080/14789450.2023.2275678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
OBJECTIVES Mycobacterial adherence plays a major role in the establishment of infection within the host. Adhesin-related proteins attach to host receptors and cell-surface components. The current study aimed to utilize in-silico strategies to determine the adhesin potential of conserved hypothetical (CH) proteins. METHODS Computational analysis was performed on the whole Mycobacterium tuberculosis H37Rv proteome using a software program for the prediction of adhesin and adhesin-like proteins using neural networks (SPAAN) to determine the adhesin potential of CH proteins. A robust pipeline of computational analysis tools: Phyre2 and pFam for homology prediction; Mycosub, PsortB, and Loctree3 for subcellular localization; SignalP-5.0 and SecretomeP-2.0 for secretory prediction, were utilized to identify adhesin candidates. RESULTS SPAAN revealed 776 potential adhesins within the whole MTB H37Rv proteome. Comprehensive analysis of the literature was cross-tabulated with SPAAN to verify the adhesin prediction potential of known adhesin (n = 34). However, approximately a third of known adhesins were below the probability of adhesin (Pad) threshold (Pad ≥0.51). Subsequently, 167 CH proteins of interest were categorized using essential in-silico tools. CONCLUSION The use of SPAAN with supporting in-silico tools should be fundamental when identifying novel adhesins. This study provides a pipeline to identify CH proteins as functional adhesin molecules.
Collapse
Affiliation(s)
- Rivesh Maharajh
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Manormoney Pillay
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sibusiso Senzani
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Baruzzo G, Serafini A, Finotello F, Sanavia T, Cioetto-Mazzabò L, Boldrin F, Lavezzo E, Barzon L, Toppo S, Provvedi R, Manganelli R, Di Camillo B. Role of the Extracytoplasmic Function Sigma Factor SigE in the Stringent Response of Mycobacterium tuberculosis. Microbiol Spectr 2023; 11:e0294422. [PMID: 36946740 PMCID: PMC10100808 DOI: 10.1128/spectrum.02944-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/15/2023] [Indexed: 03/23/2023] Open
Abstract
Bacteria respond to nutrient starvation implementing the stringent response, a stress signaling system resulting in metabolic remodeling leading to decreased growth rate and energy requirements. A well-characterized model of stringent response in Mycobacterium tuberculosis is the one induced by growth in low phosphate. The extracytoplasmic function (ECF) sigma factor SigE was previously suggested as having a key role in the activation of stringent response. In this study, we challenge this hypothesis by analyzing the temporal dynamics of the transcriptional response of a sigE mutant and its wild-type parental strain to low phosphate using RNA sequencing. We found that both strains responded to low phosphate with a typical stringent response trait, including the downregulation of genes encoding ribosomal proteins and RNA polymerase. We also observed transcriptional changes that support the occurring of an energetics imbalance, compensated by a reduced activity of the electron transport chain, decreased export of protons, and a remodeling of central metabolism. The most striking difference between the two strains was the induction in the sigE mutant of several stress-related genes, in particular, the genes encoding the ECF sigma factor SigH and the transcriptional regulator WhiB6. Since both proteins respond to redox unbalances, their induction suggests that the sigE mutant is not able to maintain redox homeostasis in response to the energetics imbalance induced by low phosphate. In conclusion, our data suggest that SigE is not directly involved in initiating stringent response but in protecting the cell from stress consequent to the low phosphate exposure and activation of stringent response. IMPORTANCE Mycobacterium tuberculosis can enter a dormant state enabling it to establish latent infections and to become tolerant to antibacterial drugs. Dormant bacteria's physiology and the mechanism(s) used by bacteria to enter dormancy during infection are still unknown due to the lack of reliable animal models. However, several in vitro models, mimicking conditions encountered during infection, can reproduce different aspects of dormancy (growth arrest, metabolic slowdown, drug tolerance). The stringent response, a stress response program enabling bacteria to cope with nutrient starvation, is one of them. In this study, we provide evidence suggesting that the sigma factor SigE is not directly involved in the activation of stringent response as previously hypothesized, but it is important to help the bacteria to handle the metabolic stress related to the adaptation to low phosphate and activation of stringent response, thus giving an important contribution to our understanding of the mechanism behind stringent response development.
Collapse
Affiliation(s)
- Giacomo Baruzzo
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Agnese Serafini
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | | | - Tiziana Sanavia
- Department of Information Engineering, University of Padova, Padua, Italy
| | | | - Francesca Boldrin
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, Padua, Italy
| | | | | | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padua, Italy
- Department of Comparative Biomedicine and Food Science, University of Padova, Padua, Italy
| |
Collapse
|
8
|
Ragavendran PV, Tripathi V, Gandotra S. Structure prediction-based insights into the patatin family of Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748562 DOI: 10.1099/mic.0.001270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite its genome sequencing more than two decades ago, the majority of the genes of Mycobacterium tuberculosis remain functionally uncharacterized. Patatins are one such class of proteins that, despite undergoing an expansion in this pathogenic species compared to their non-pathogenic cousins, remain largely unstudied. Recent advances in protein structure prediction using machine learning tools such as AlphaFold2 have provided high-confidence predicted structures for all M. tuberculosis proteins. Here we present detailed analyses of the patatin family of M. tuberculosis using AlphaFold-predicted structures, providing insights into likely modes of regulation, membrane interaction and substrate binding. Regulatory domains within this family of proteins include cyclic nucleotide binding, lid-like domains and other helical domains. Using structural homologues, we identified the likely membrane localization mechanisms and substrate-binding sites. These analyses reveal diversity in their regulatory capacity, mechanisms of membrane binding and likely length of fatty acid substrates. Together, this analysis suggests unique roles for the eight predicted patatins of M. tuberculosis.
Collapse
Affiliation(s)
- P V Ragavendran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.,Immunology and Infectious Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, New Delhi, India
| | - Vaishnavi Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.,Immunology and Infectious Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, New Delhi, India
| | - Sheetal Gandotra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.,Immunology and Infectious Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, New Delhi, India
| |
Collapse
|
9
|
Peng Y, Zhu X, Gao L, Wang J, Liu H, Zhu T, Zhu Y, Tang X, Hu C, Chen X, Chen H, Chen Y, Guo A. Mycobacterium tuberculosis Rv0309 Dampens the Inflammatory Response and Enhances Mycobacterial Survival. Front Immunol 2022; 13:829410. [PMID: 35281073 PMCID: PMC8907127 DOI: 10.3389/fimmu.2022.829410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
To reveal functions of novel Mycobacterium tuberculosis (M. tb) proteins responsible for modulating host innate immunity is essential to elucidation of mycobacterial pathogenesis. In this study, we aimed to identify the role of a putative protein Rv0309 encoded within RD8 of M. tb genome in inhibiting the host inflammatory response and the underlying mechanism, using in-vitro and in-vivo experiments. A recombinant M. smegmatis strain Ms_rv0309 expressing Rv0309 and a mutant Bacillus Calmette-Guérin (BCG)ΔRS01790 strain with deletion of BCG_RS01790, 100% homologue of Rv0309 in BCG, were constructed. Rv0309 was found to localize in the cell wall and be able to decrease cell wall permeability. Purified recombinant rRv0309 protein inhibited lipopolysaccharide-induced IL-6 release in RAW264.7 cells. BCG_RS01790 in BCG or Rv0309 in Ms_rv0309 strain greatly inhibited production of IL-6, IL-1β, and TNF-α in RAW264.7 cells. Similarly, BCGΔRS01790 strongly induced expression of these cytokines compared with wild-type BCG and complement strain, cBCGΔRS01790::RS01790. Further BCG_RS01790 or Rv0309 suppressed cytokine production through NF-κB p65/IκBα and MAPK ERK/JNK signaling. Importantly, BCG_RS01790 in BCG and Rv0309 in Ms_rv0309 strain enhanced mycobacterial survival in macrophages. Mice infected with BCGΔRS01790 exhibited high levels of IFN-γ, TNF-α and IL-1β, and large numbers of neutrophils and lymphocytes in the early stage, and minimal lung bacterial load and inflammatory damage in late stage of the experiment. In conclusion, the cell wall protein Rv0309 or BCG_RS01790 enhanced mycobacterial intracellular survival after infection likely through inhibition of the pro-inflammatory response and decrease of bacterial cell wall permeability, thereby contributing to mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Yongchong Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojie Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lin Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jieru Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Han Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yifan Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xin Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Huazhong Agriculture University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Huazhong Agriculture University, Wuhan, China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China.,International Research Center for Animal Disease, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Li Q, Peng Z, Fu X, Wang H, Zhao Z, Pang Y, Chen L. Rv3737 is required for Mycobacterium tuberculosis growth in vitro and in vivo and correlates with bacterial load and disease severity in human tuberculosis. BMC Infect Dis 2022; 22:256. [PMID: 35287590 PMCID: PMC8919692 DOI: 10.1186/s12879-021-06967-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Background Rv3737 is the sole homologue of multifunctional transporter ThrE in Mycobacterium tuberculosis (Mtb). In this study, we aimed to investigate whether this transporter participates in vitro and in vivo survival of Mtb. Methods To characterize the role of Rv3737, we constructed and characterized a Mtb H37RvΔRv3737. This strain was evaluated for altered growth rate and macrophage survival using a cell model of infection. In addition, the comparative analysis was conducted to determine the association between Rv3737 mRNA expression and disease severity in active pulmonary TB patients. Results The H37RvΔRv3737 strain exhibited significantly slow growth rate compared to H37Rv-WT strain in standard culture medium. Additionally, the survival rate of H37Rv-WT strain in macrophages was 2 folds higher than that of H37RvΔRv3737 at 72 h. A significantly higher level of TNF-α and IL-6 mRNA expression was observed in macrophages infected with H37RvΔRv3737 as compared to H37Rv-WT. Of note, Rv3737 expression was significantly increased in clinical Mtb isolates than H37Rv-WT. The relative expression level of Rv3737 was positively correlated with lung cavity number of TB patients. Similarly, the higher Rv3737 mRNA level resulted in lower C(t) value by Xpert MTB/RIF assay, demonstrating that a positive correlation between Rv3737 expression and bacterial load in TB patients. Conclusions Our data takes the lead in demonstrate that the threonine transporter Rv3737 is required for in vitro growth and survival of bacteria inside macrophages. In addition, the expression level of Rv3737 may be associated with bacterial load and disease severity in pulmonary tuberculosis patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06967-y.
Collapse
Affiliation(s)
- Qing Li
- Tuberculosis Division of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, 563000, Guizhou Province, China.,Department of Bacteriology and Immunology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Area 2, Yard 9, Beiguan Street, Yongzhun Town, Tongzhou District, Beijing, 101100, China
| | - Zhangli Peng
- Tuberculosis Division of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, 563000, Guizhou Province, China
| | - Xuefeng Fu
- Tuberculosis Division of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, 563000, Guizhou Province, China
| | - Hong Wang
- Tuberculosis Division of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, 563000, Guizhou Province, China
| | - Zhaoliang Zhao
- Tuberculosis Division of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, 563000, Guizhou Province, China
| | - Yu Pang
- Department of Bacteriology and Immunology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Area 2, Yard 9, Beiguan Street, Yongzhun Town, Tongzhou District, Beijing, 101100, China.
| | - Ling Chen
- Tuberculosis Division of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan District, Zunyi City, 563000, Guizhou Province, China.
| |
Collapse
|
11
|
Sundararajan S, Muniyan R. Latent tuberculosis: interaction of virulence factors in Mycobacterium tuberculosis. Mol Biol Rep 2021; 48:6181-6196. [PMID: 34351540 DOI: 10.1007/s11033-021-06611-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) remains a prominent health concern worldwide. Besides extensive research and vaccinations available, attempts to control the pandemic are cumbersome due to the complex physiology of Mycobacterium tuberculosis (Mtb). Alongside the emergence of drug-resistant TB, latent TB has worsened the condition. The tubercle bacilli are unusually behaved and successful with its strategies to modulate genes to evade host immune system and persist within macrophages. Under latent/unfavorable conditions, Mtb conceals itself from immune system and modulates its genes. Among many intracellular modulated genes, important are those involved in cell entry, fatty acid degradation, mycolic acid synthesis, phagosome acidification inhibition, inhibition of phagosome-lysosome complex and chaperon protein modulation. Though the study on these genes date back to early times of TB, an insight on their inter-relation within and to newly evolved genes are still required. This review focuses on the findings and discussions on these genes, possible mechanism, credibility as target for novel drugs and repurposed drugs and their interaction that enables Mtb in survival, pathogenesis, resistance and latency.
Collapse
Affiliation(s)
- Sadhana Sundararajan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Rajiniraja Muniyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
12
|
Kumari B, Kaur J. Correlation of over-expression of rv1900c with enhanced survival of M. smegmatis under stress conditions: Modulation of cell surface properties. Gene 2021; 791:145720. [PMID: 34019937 DOI: 10.1016/j.gene.2021.145720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/21/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Mycobacterium tuberculosis has distinct cell wall composition that helps in intracellular survival of bacteria. Rv1900c, a two domain protein, has been grouped in lip gene family. The expression of rv1900c was upregulated under acidic, nutritive and iron stress conditions in M. tuberculosis H37Ra. To investigate the biological effect of Rv1900c in mycobacterium physiology, rv1900c gene was cloned in M. smegmatis, a surrogate host. Its counterpart MSMEG_4477 in M. smegmatis demonstrated 38% protein similarity with Rv1900c. MSMEG_4477 gene was knocked out in M. smegmatis by homologous recombination. rv1900c and MSMEG_4477 genes, cloned in pVV16, were expressed in the M. smegmatis knockout strain (M. smegmatis ΔMSMEG_4477). Gene knockout significantly altered colony morphology and growth kinetics of M. smegmatis. M. smegmatis ΔMSMEG_1900 (pVV16::rv1900c) colonies were less wrinkled and had smooth surface as compared to M. smegmatis ΔMSMEG_4477. The changes were reverted back to normal upon expression of MSMEG_4477 in knockout strain M. smegmatis ΔMSMEG_4477 (pVV16::MSMEG_4477). The expression of rv1900c enhanced the biofilm formation and survival of bacteria under various in vitro stresses like acidic, nutritive stress, including lysozyme, SDS and multiple antibiotics treatment in comparison to control. On the other hand the expression of rv1900c decreased the cell wall permeability. The resistance provided by M. smegmatis ΔMSMEG_4477 (pVV16::MSMEG_4477) was comparable to M. smegmatis having vector alone (MS_vec). The lipid content of M. smegmatis ΔMSMEG_1900 (pVV16::rv1900c) was observed to be different from M. smegmatis ΔMSMEG_4477 (pVV16::MSMEG_4477). M. smegmatis ΔMSMEG_1900 (pVV16::rv1900c) was more tolerant to stress conditions in comparison to M. smegmatis ΔMSMEG_4477 (pVV16::MSMEG_4477). Expression of rv1900c enhanced the intracellular survival of mycobacteria. Therefore, the present study suggested an association of Rv1900c to the stress tolerance by cell wall modification that might have resulted in enhanced intracellular survival of the mycobacteria.
Collapse
Affiliation(s)
- Bandana Kumari
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
13
|
Kumari B, Kaur J, Maan P, Kumar A, Kaur J. The lipolytic activity of LipJ, a stress-induced enzyme, is regulated by its C-terminal adenylate cyclase domain. Future Microbiol 2021; 16:487-507. [PMID: 33960821 DOI: 10.2217/fmb-2020-0223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The confirmation of lipolytic activity and role of Rv1900c in the Mycobacterium physiology Methods: rv1900c/N-terminus domain (rv1900NT) were cloned in pET28a/Escherichia coli, purified by affinity chromatography and characterized. Results: A zone of clearance on tributyrin-agar and activity with pNP-decanoate confirmed the lipolytic activity of Rv1900c. The Rv1900NT demonstrated higher enzyme specific activity, Vmax and kcat, but Rv1900c was more thermostable. The lipolytic activity of Rv1900c decreased in presence of ATP. Mycobacterium smegmatis expressed rv1900c/rv1900NT-altered colony morphology, growth, cell surface properties and survival under stress conditions. The effect was more prominent with Rv1900NT as compared with Rv1900c. Conclusion: The study confirmed the lipolytic activity of Rv1900c and suggested its regulation by the adenylate cyclase domain and role in the intracellular survival of bacteria.
Collapse
Affiliation(s)
- Bandana Kumari
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
| | - Jashandeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
| | - Pratibha Maan
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India.,Department of Experimental Medicine and Biotechnology PGIMER, Chandigarh, India
| | - Arbind Kumar
- COVID Testing Facility, CSIR-Institute of Himalayan Bioresources & Technology, Palampur, Himachal Pradesh, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
| |
Collapse
|
14
|
Mycobacterium tuberculosis Rv0580c Impedes the Intracellular Survival of Recombinant Mycobacteria, Manipulates the Cytokines, and Induces ER Stress and Apoptosis in Host Macrophages via NF-κB and p38/JNK Signaling. Pathogens 2021; 10:pathogens10020143. [PMID: 33535567 PMCID: PMC7912736 DOI: 10.3390/pathogens10020143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
The Mycobacterium tuberculosis (M. tb) genome encodes a large number of hypothetical proteins, which need to investigate their role in physiology, virulence, pathogenesis, and host interaction. To explore the role of hypothetical protein Rv0580c, we constructed the recombinant Mycobacterium smegmatis (M. smegmatis) strain, which expressed the Rv0580c protein heterologously. We observed that Rv0580c expressing M. smegmatis strain (Ms_Rv0580c) altered the colony morphology and increased the cell wall permeability, leading to this recombinant strain becoming susceptible to acidic stress, oxidative stress, cell wall-perturbing stress, and multiple antibiotics. The intracellular survival of Ms_Rv0580c was reduced in THP-1 macrophages. Ms_Rv0580c up-regulated the IFN-γ expression via NF-κB and JNK signaling, and down-regulated IL-10 expression via NF-κB signaling in THP-1 macrophages as compared to control. Moreover, Ms_Rv0580c up-regulated the expression of HIF-1α and ER stress marker genes via the NF-κB/JNK axis and JNK/p38 axis, respectively, and boosted the mitochondria-independent apoptosis in macrophages, which might be lead to eliminate the intracellular bacilli. This study explores the crucial role of Rv0580c protein in the physiology and novel host-pathogen interactions of mycobacteria.
Collapse
|
15
|
Abdalla AE, Yan S, Zeng J, Deng W, Xie L, Xie J. Mycobacterium tuberculosis Rv0341 Promotes Mycobacterium Survival in In Vitro Hostile Environments and within Macrophages and Induces Cytokines Expression. Pathogens 2020; 9:pathogens9060454. [PMID: 32521796 PMCID: PMC7350357 DOI: 10.3390/pathogens9060454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 01/02/2023] Open
Abstract
Mycobacterium tuberculosis represents an ancient deadly human pathogen that can survive and multiply within macrophages. The effectors are key players for the successful pathogenesis of this bacterium. M. tuberculosis open reading frame (ORF) Rv0341, a pathogenic mycobacteria-specific gene, was found to be upregulated in macrophages isolated from human tuberculosis granuloma and inside the macrophages during in vitro infection by M. tuberculosis. To understand the exact role of this gene, we expressed the Rv0341 gene in M. smegmatis, which is a non-pathogenic Mycobacterium. We found that Rv0341 expression can alter colony morphology, reduce the sliding capability, and decrease the cell wall permeability of M. smegmatis. Furthermore, Rv0341 remarkably enhanced M. smegmatis survival within macrophages and under multiple in vitro stress conditions when compared with the control strain. Ms_Rv0341 significantly induced expression of TNF-α, IL-1β, and IL-10 compared with M. smegmatis harboring an empty vector. In summary, these data suggest that Rv0341 is one of the M. tuberculosis virulence determinants that can promote bacilli survival in harsh conditions and inside macrophages.
Collapse
Affiliation(s)
- Abualgasim Elgaili Abdalla
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Al Jouf 2014, Saudi Arabia
| | - Shuangquan Yan
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
| | - Jie Zeng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
| | - Wanyan Deng
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
| | - Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Beibei, Chongqing 400715, China; (A.E.A.); (S.Y.); (J.Z.); (W.D.)
- Correspondence: ; Tel.: +86-135-9439-2126
| |
Collapse
|