1
|
Zhao X, Jia S, Zhao H, Liu P, Wu Z, Tao H, Yu B, Cui B. The interaction between maize resistant starch III and Bifidobacterium adolescentis during in vitro fermentation. Food Chem 2025; 463:140968. [PMID: 39265403 DOI: 10.1016/j.foodchem.2024.140968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
As an alternative to traditional dietary fibers with prebiotic effects, the interaction between resistant starch III (RS3) and gut microbiota is worth exploring. In this study, the effects of RS3 on the proliferation of Bifidobacterium adolescentis (B. adolescentis) and their structural changes before and after fermentation were investigated. Autoclaved-debranched resistant starch (ADRS) demonstrated the best proliferative effect for B. adolescentis and the highest roughness (Ra = 21.90 nm; Rq = 16.00 nm). The rough surface of ADRS was the key for B. adolescentis proliferation. B. adolescentis produced an extracellular amylase to assist degradation and showed the highest activity in ADRS. Fermentation disrupted short-range ordered structure and reduced R1047 cm-1/1022 cm-1 by 20.74 % and R995 cm-1/1022 cm-1 by 30.85 %. The extracellular amylase was essential substance for ADRS degradation. These findings help optimize RS3 structure and promote the proliferation of intestinal probiotics.
Collapse
Affiliation(s)
- Xinzhu Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Shuyu Jia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Haibo Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China; College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| |
Collapse
|
2
|
Sanchez-Gallardo R, Bottacini F, Friess L, Esteban-Torres M, Somers C, Moore RL, McAuliffe FM, Cotter PD, van Sinderen D. Unveiling metabolic pathways of selected plant-derived glycans by Bifidobacterium pseudocatenulatum. Front Microbiol 2024; 15:1414471. [PMID: 39081887 PMCID: PMC11286577 DOI: 10.3389/fmicb.2024.1414471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Bifidobacteria are commonly encountered members of the human gut microbiota that possess the enzymatic machinery necessary for the metabolism of certain plant-derived, complex carbohydrates. In the current study we describe differential growth profiles elicited by a panel of 21 newly isolated Bifidobacterium pseudocatenulatum strains on various plant-derived glycans. Using a combination of gene-trait matching and comparative genome analysis, we identified two distinct xylanases responsible for the degradation of xylan. Furthermore, three distinct extracellular α-amylases were shown to be involved in starch degradation by certain strains of B. pseudocatenulatum. Biochemical characterization showed that all three α-amylases can cleave the related substrates amylose, amylopectin, maltodextrin, glycogen and starch. The genes encoding these enzymes are variably found in the species B. pseudocatenulatum, therefore constituting a strain-specific adaptation to the gut environment as these glycans constitute common plant-derived carbohydrates present in the human diet. Overall, our study provides insights into the metabolism of these common dietary carbohydrates by a human-derived bifidobacterial species.
Collapse
Affiliation(s)
- Rocio Sanchez-Gallardo
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Lisa Friess
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Maria Esteban-Torres
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Clarissa Somers
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Rebecca L. Moore
- UCD Perinatal Research Centre, School of Medicine, National Maternity Hospital, University College Dublin, Dublin, Ireland
| | - Fionnuala M. McAuliffe
- UCD Perinatal Research Centre, School of Medicine, National Maternity Hospital, University College Dublin, Dublin, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre Moorepark, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Jung DH, Kim IY, Kim YJ, Chung WH, Lim MY, Nam YD, Seo DH, Park CS. Lacticaseibacillus paracasei completely utilizes fructooligosacchrides in the human gut through β-fructosidase (FosE). World J Microbiol Biotechnol 2024; 40:261. [PMID: 38972914 DOI: 10.1007/s11274-024-04068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
The fecal microbiota of two healthy adults was cultivated in a medium containing commercial fructooligosaccharides [FOS; 1-kestose (GF2), nystose (GF3), and 1F-fructofuranosylnystose (GF4)]. Initially, the proportions of lactobacilli in the two feces samples were only 0.42% and 0.17%; however, they significantly increased to 7.2% and 4.8%, respectively, after cultivation on FOS. Most FOS-utilizing isolates could utilize only GF2; however, Lacticaseibacillus paracasei strain Lp02 could fully consume GF3 and GF4 too. The FOS operon (fosRABCDXE) was present in Lc. paracasei Lp02 and another Lc. paracasei strain, KCTC 3510T, but fosE was only partially present in the non-FOS-degrading strain KCTC 3510T. In addition, the top six upregulated genes in the presence of FOS were fosABCDXE, particularly fosE. FosE is a β-fructosidase that hydrolyzes both sucrose and all three FOS. Finally, a genome-based analysis suggested that fosE is mainly observed in Lc. paracasei, and only 13.5% (61/452) of their reported genomes were confirmed to include it. In conclusion, FosE allows the utilization of FOS, including GF3 and GF4 as well as GF2, by some Lc. paracasei strains, suggesting that this species plays a pivotal role in FOS utilization in the human gut.
Collapse
Affiliation(s)
- Dong-Hyun Jung
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - In-Young Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ye-Jin Kim
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Won-Hyong Chung
- Department of Animal Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Mi-Young Lim
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104, Republic of Korea
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
4
|
Kim YJ, Jung DH, Park CS. Important roles of Ruminococcaceae in the human intestine for resistant starch utilization. Food Sci Biotechnol 2024; 33:2009-2019. [PMID: 39130658 PMCID: PMC11315831 DOI: 10.1007/s10068-024-01621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 08/13/2024] Open
Abstract
Intricate ecosystem of the human gut microbiome is affected by various environmental factors, genetic makeup of the individual, and diet. Specifically, resistant starch (RS) is indigestible in the small intestine but nourishes the gut microbiota in the colon. Degradation of RS in the gut begins with primary degraders, such as Bifidobacterium adolescentis and Ruminococcus bromii. Recently, new RS degraders, such as Ruminococcoides bili, have been reported. These microorganisms play crucial roles in the transformation of RS into short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate. SCFAs are necessary to maintain optimal intestinal health, regulate inflammation, and protect against various illnesses. This review discusses the effects of RS on gut and highlights its complex interactions with gut flora, especially the Ruminococcaceae family.
Collapse
Affiliation(s)
- Ye-Jin Kim
- Department of Food Science and Biostechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| | - Dong-Hyun Jung
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biostechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
5
|
Xiao M, Zhang C, Duan H, Narbad A, Zhao J, Chen W, Zhai Q, Yu L, Tian F. Cross-feeding of bifidobacteria promotes intestinal homeostasis: a lifelong perspective on the host health. NPJ Biofilms Microbiomes 2024; 10:47. [PMID: 38898089 PMCID: PMC11186840 DOI: 10.1038/s41522-024-00524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Throughout the life span of a host, bifidobacteria have shown superior colonization and glycan abilities. Complex glycans, such as human milk oligosaccharides and plant glycans, that reach the colon are directly internalized by the transport system of bifidobacteria, cleaved into simple structures by extracellular glycosyl hydrolase, and transported to cells for fermentation. The glycan utilization of bifidobacteria introduces cross-feeding activities between bifidobacterial strains and other microbiota, which are influenced by host nutrition and regulate gut homeostasis. This review discusses bifidobacterial glycan utilization strategies, focusing on the cross-feeding involved in bifidobacteria and its potential health benefits. Furthermore, the impact of cross-feeding on the gut trophic niche of bifidobacteria and host health is also highlighted. This review provides novel insights into the interactions between microbe-microbe and host-microbe.
Collapse
Affiliation(s)
- Meifang Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuan Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park Colney, Norwich, Norfolk, NR4 7UA, UK
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
6
|
Liu Z, Luo S, Liu C, Hu X. Tannic acid delaying metabolism of resistant starch by gut microbiota during in vitro human fecal fermentation. Food Chem 2024; 440:138261. [PMID: 38150905 DOI: 10.1016/j.foodchem.2023.138261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
This work investigated the effect of tannic acid on the fermentation rate of resistant starch. It was found that 1.0 and 1.5 μmol/L tannic acid decreased the rate of producing gas and short-chain fatty acids (SCFAs) from fermentation of resistant starch, and 1.5 μmol/mL tannic acid had a more profound effect, which confirmed that tannic acid delayed the metabolism of resistant starch. Moreover, tannic acid significantly inhibited the α-amylase activity during fermentation. On the other hand, tannic acid delayed the enrichment of some starch-degrading bacteria. Besides, fermentation of the resistant starch/tannic acid mixtures resulted in more SCFAs, particularly butyrate, and higher abundance of beneficial bacteria, including Bifidobacterium, Faecalibacterium, Blautia and Dorea, than fermentation of resistant starch after 48 h. Thus, it was inferred that tannic acid could delay the metabolism of resistant starch, which was due to its inhibitory effect on the α-amylase activity and regulatory effect on gut microbiota.
Collapse
Affiliation(s)
- Zijun Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang 330200, Jiangxi, China
| | - Shunjing Luo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang 330200, Jiangxi, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang 330200, Jiangxi, China
| | - Xiuting Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co., Ltd., Nanchang 330200, Jiangxi, China.
| |
Collapse
|
7
|
Zhang X, Yi X, Yu W, Chen T, Gao B, Gilbert RG, Li C. Subtle structural variations of resistant starch from whole cooked rice significantly impact metabolic outputs of gut microbiota. Carbohydr Polym 2024; 329:121779. [PMID: 38286529 DOI: 10.1016/j.carbpol.2024.121779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024]
Abstract
While cooked rice is widely consumed as a whole food, the specific characteristics and impact of its resistant starch (RS) on gut microbiota are largely unexplored. In this study, three rice varieties with distinct starch molecular structures were used to prepare RS from cooked rice. All three types of RS had a crystalline structure characterized as B + V type, with the V type being the predominant crystalline polymorph. Distinct differences in chain-length distributions were observed among different RSs, with rapidly fermentable starch fractions comprising short amylopectin and long amylose chains, while the degrees of polymerization (DPs) ∼ 10, 37, 65, and 105 fractions comprised the slowly fermentable starch. Jasmine rice RS showed the highest proportion of this slowly fermentable starch fraction, which appeared to be specifically utilized by Megasphaera_elsdenii_DSM_20460 OTU198. The fermentation of Jasmine RS resulted in the highest production of butyrate after 24 h, which was positively correlated with the relative abundance of Megasphaera_elsdenii_DSM_20460 OTU198. These findings collectively indicate that RS in cooked rice with a higher V type crystallinity and DPs ∼ 10, 37, 65, and 105 fractions promote butyrate production and stimulate the growth of butyrate-producing bacteria in the human gut, thereby conferring beneficial effects on gut health.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueer Yi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wenwen Yu
- Department of Food Science & Engineering, Jinan University, Huangpu West Avenue 601, Guangzhou City 510632, China
| | - Tingting Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Boyan Gao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Robert G Gilbert
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu Province, China; The University of Queensland, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia
| | - Cheng Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| |
Collapse
|
8
|
Photenhauer AL, Villafuerte-Vega RC, Cerqueira FM, Armbruster KM, Mareček F, Chen T, Wawrzak Z, Hopkins JB, Vander Kooi CW, Janeček Š, Ruotolo BT, Koropatkin NM. The Ruminococcus bromii amylosome protein Sas6 binds single and double helical α-glucan structures in starch. Nat Struct Mol Biol 2024; 31:255-265. [PMID: 38177679 PMCID: PMC11081458 DOI: 10.1038/s41594-023-01166-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 10/27/2023] [Indexed: 01/06/2024]
Abstract
Resistant starch is a prebiotic accessed by gut bacteria with specialized amylases and starch-binding proteins. The human gut symbiont Ruminococcus bromii expresses Sas6 (Starch Adherence System member 6), which consists of two starch-specific carbohydrate-binding modules from family 26 (RbCBM26) and family 74 (RbCBM74). Here, we present the crystal structures of Sas6 and of RbCBM74 bound with a double helical dimer of maltodecaose. The RbCBM74 starch-binding groove complements the double helical α-glucan geometry of amylopectin, suggesting that this module selects this feature in starch granules. Isothermal titration calorimetry and native mass spectrometry demonstrate that RbCBM74 recognizes longer single and double helical α-glucans, while RbCBM26 binds short maltooligosaccharides. Bioinformatic analysis supports the conservation of the amylopectin-targeting platform in CBM74s from resistant-starch degrading bacteria. Our results suggest that RbCBM74 and RbCBM26 within Sas6 recognize discrete aspects of the starch granule, providing molecular insight into how this structure is accommodated by gut bacteria.
Collapse
Affiliation(s)
- Amanda L Photenhauer
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Filipe M Cerqueira
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Krista M Armbruster
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Filip Mareček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tiantian Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zdzislaw Wawrzak
- Northwestern Synchrotron Research Center-LS-CAT, Northwestern University, Argonne, IL, USA
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological, Chemical, and Physical Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Nicole M Koropatkin
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Sun Y, Zhang S, Nie Q, He H, Tan H, Geng F, Ji H, Hu J, Nie S. Gut firmicutes: Relationship with dietary fiber and role in host homeostasis. Crit Rev Food Sci Nutr 2023; 63:12073-12088. [PMID: 35822206 DOI: 10.1080/10408398.2022.2098249] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Firmicutes and Bacteroidetes are the predominant bacterial phyla colonizing the healthy human gut. Accumulating evidence suggests that dietary fiber plays a crucial role in host health, yet most studies have focused on how the dietary fiber affects health through gut Bacteroides. More recently, gut Firmicutes have been found to possess many genes responsible for fermenting dietary fiber, and could also interact with the intestinal mucosa and thereby contribute to homeostasis. Consequently, the relationship between dietary fiber and Firmicutes is of interest, as well as the role of Firmicutes in host health. In this review, we summarize the current knowledge regarding the molecular mechanism of dietary fiber degradation by gut Firmicutes and explain the communication pathway of the dietary fiber-Firmicutes-host axis, and the beneficial effects of dietary fiber-induced Firmicutes and their metabolites on health. A better understanding of the dialogue sustained by the dietary fiber-Firmicutes axis and the host could provide new insights into probiotic therapy and novel dietary interventions aimed at increasing the abundance of Firmicutes (such as Faecalibacterium, Lactobacillus, and Roseburia) to promote health.
Collapse
Affiliation(s)
- Yonggan Sun
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Huijun He
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Haihua Ji
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| |
Collapse
|
10
|
Chen R, Zhang C, Xu F, Yu L, Tian F, Chen W, Zhai Q. Meta-analysis reveals gut microbiome and functional pathway alterations in response to resistant starch. Food Funct 2023. [PMID: 37194392 DOI: 10.1039/d3fo00845b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Resistant starch (RS) has the ability to improve the structure of the gut microbiota, regulate glucolipid metabolism and maintain the health of the human body, and has been extensively studied by many scholars in recent years. However, previous studies have provided a wide range of results on the differences in the gut microbiota after RS intake. In this article, we performed a meta-analysis of a total of 955 samples of 248 individuals from the seven studies included to compare the gut microbiota of the baseline and the end-point of RS intake. At the end-point, RS intake was related to a lower gut microbial α-diversity and higher relative abundance of Ruminococcus, Agathobacter, Faecalibacterium and Bifidobacterium, and the functional pathways of the gut microbiota related to the carbohydrate metabolism, lipid metabolism, amino acid metabolism and genetic information processing were higher. Different types of resistant starch and different populations led to varied responses on the gut microbiome. The altered gut microbiome may contribute to improve the blood glucose level and insulin resistance, which may be a potential treatment route for diabetes, obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Ruimin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chengcheng Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fusheng Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
11
|
Tian Y, Wang Y, Zhong Y, Møller MS, Westh P, Svensson B, Blennow A. Interfacial Catalysis during Amylolytic Degradation of Starch Granules: Current Understanding and Kinetic Approaches. Molecules 2023; 28:molecules28093799. [PMID: 37175208 PMCID: PMC10180094 DOI: 10.3390/molecules28093799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Enzymatic hydrolysis of starch granules forms the fundamental basis of how nature degrades starch in plant cells, how starch is utilized as an energy resource in foods, and develops efficient, low-cost saccharification of starch, such as bioethanol and sweeteners. However, most investigations on starch hydrolysis have focused on its rates of degradation, either in its gelatinized or soluble state. These systems are inherently more well-defined, and kinetic parameters can be readily derived for different hydrolytic enzymes and starch molecular structures. Conversely, hydrolysis is notably slower for solid substrates, such as starch granules, and the kinetics are more complex. The main problems include that the surface of the substrate is multifaceted, its chemical and physical properties are ill-defined, and it also continuously changes as the hydrolysis proceeds. Hence, methods need to be developed for analyzing such heterogeneous catalytic systems. Most data on starch granule degradation are obtained on a long-term enzyme-action basis from which initial rates cannot be derived. In this review, we discuss these various aspects and future possibilities for developing experimental procedures to describe and understand interfacial enzyme hydrolysis of native starch granules more accurately.
Collapse
Affiliation(s)
- Yu Tian
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Yu Wang
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yuyue Zhong
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Marie Sofie Møller
- Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Peter Westh
- Interfacial Enzymology, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Andreas Blennow
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
12
|
Sasaki Y, Yanagita M, Hashiguchi M, Horigome A, Xiao JZ, Odamaki T, Kitahara K, Fujita K. Assimilation of arabinogalactan side chains with novel 3- O-β-L-arabinopyranosyl-α-L-arabinofuranosidase in Bifidobacterium pseudocatenulatum. MICROBIOME RESEARCH REPORTS 2023; 2:12. [PMID: 38047276 PMCID: PMC10688797 DOI: 10.20517/mrr.2023.08] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/19/2023] [Accepted: 04/06/2023] [Indexed: 12/05/2023]
Abstract
Aim: Dietary plant fibers affect gut microbiota composition; however, the underlying microbial degradation pathways are not fully understood. We previously discovered 3-O-α-D-galactosyl-α-L-arabinofuranosidase (GAfase), a glycoside hydrolase family 39 enzyme involved in the assimilation of side chains of arabinogalactan protein (AGP), from Bifidobacterium longum subsp. longum (B. longum) JCM7052. Although GAfase homologs are not highly prevalent in the Bifidobacterium genus, several Bifidobacterium strains possess the homologs. To explore the differences in substrate specificity among the homologs, a homolog of B. longum GAfase in Bifidobacterium pseudocatenulatum MCC10289 (MCC10289_0425) was characterized. Methods: Gum arabic, larch, wheat AGP, and sugar beet arabinan were used to determine the substrate specificity of the MCC10289_0425 protein. An amino acid replacement was introduced into GAfase to identify a critical residue that governs the differentiation of substrate specificity. The growth of several Bifidobacterium strains on β-L-arabinopyranosyl disaccharide and larch AGP was examined. Results: MCC10289_0425 was identified to be an unprecedented 3-O-β-L-arabinopyranosyl-α-L-arabinofuranosidase (AAfase) with low GAfase activity. A single amino acid replacement (Asn119 to Tyr) at the catalytic site converted GAfase into AAfase. AAfase releases sugar source from AGP, thereby allowing B. pseudocatenulatum growth. Conclusion: Bifidobacteria have evolved several homologous enzymes with overlapping but distinct substrate specificities depending on the species. They have acquired different fitness abilities to respond to diverse plant polysaccharide structures.
Collapse
Affiliation(s)
- Yuki Sasaki
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Makoto Yanagita
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| | - Mimika Hashiguchi
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| | - Ayako Horigome
- Next Generation Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Kanefumi Kitahara
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| |
Collapse
|
13
|
Lian Z, Xu Y, Wang C, Chen Y, Yuan L, Liu Z, Liu Y, He P, Cai Z, Zhao J. Gut microbiota-derived melatonin from Puerariae Lobatae Radix-resistant starch supplementation attenuates ischemic stroke injury via a positive microbial co-occurrence pattern. Pharmacol Res 2023; 190:106714. [PMID: 36863429 DOI: 10.1016/j.phrs.2023.106714] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Ischemic stroke is closely associated with gut microbiota dysbiosis and intestinal barrier dysfunction. Prebiotic intervention could modulate the intestinal microbiota, thus considered a practical strategy for neurological disorders. Puerariae Lobatae Radix-resistant starch (PLR-RS) is a potential novel prebiotic; however, its role in ischemic stroke remains unknown. This study aimed to clarify the effects and underlying mechanisms of PLR-RS in ischemic stroke. Middle cerebral artery occlusion surgery was performed to establish a model of ischemic stroke in rats. After gavage for 14 days, PLR-RS attenuated ischemic stroke-induced brain impairment and gut barrier dysfunction. Moreover, PLR-RS rescued gut microbiota dysbiosis and enriched Akkermansia and Bifidobacterium. We transplanted the fecal microbiota from PLR-RS-treated rats into rats with ischemic stroke and found that the brain and colon damage were also ameliorated. Notably, we found that PLR-RS promoted the gut microbiota to produce a higher level of melatonin. Intriguingly, exogenous gavage of melatonin attenuated ischemic stroke injury. In particular, melatonin attenuated brain impairment via a positive co-occurrence pattern in the intestinal microecology. Specific beneficial bacteria served as leaders or keystone species to promoted gut homeostasis, such as Enterobacter, Bacteroidales_S24-7_group, Prevotella_9, Ruminococcaceae and Lachnospiraceae. Thus, this new underlying mechanism could explain that the therapeutic efficacy of PLR-RS on ischemic stroke at least partly attributed to gut microbiota-derived melatonin. In summary, improving intestinal microecology by prebiotic intervention and melatonin supplementation in the gut were found to be effective therapies for ischemic stroke.
Collapse
Affiliation(s)
- Zhuoshi Lian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Xu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chan Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ye Chen
- Department of Gastroenterology, Integrative Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China
| | - Li Yuan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongyu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yarui Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peishi He
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zheng Cai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China.
| | - Jie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China; Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
14
|
Jung DH, Park CS. Resistant starch utilization by Bifidobacterium, the beneficial human gut bacteria. Food Sci Biotechnol 2023; 32:441-452. [PMID: 36911330 PMCID: PMC9992497 DOI: 10.1007/s10068-023-01253-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Resistant starch (RS) reaches the large intestine largely intact, where it is fermented by the gut microbiota, resulting in the production of short-chain fatty acids (SCFAs) that have beneficial effects on the human body. Bifidobacteria are a major species widely used in the probiotic field, and are increased in the gut by RS, indicating their importance in RS metabolism in the intestine. Bifidobacteria have a genetic advantage in starch metabolism as they possess a significant number of starch-degrading enzymes and extraordinary three RS-degrading enzymes, allowing them to utilize RS. However, to date, only three species of RS-degrading bifidobacteria have been reported as single isolates B. adolescentis, B. choerinum, and B. pseudolongum. In this review, we describe recent studies on RS utilization by Bifidobacterium, based on their biochemical characteristics and genetic findings. This review provides a crucial understanding of how bifidobacteria survive in specific niches with abundant RS such as the human gut.
Collapse
Affiliation(s)
- Dong-Hyun Jung
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689 Republic of Korea
- Division of Food and Nutrition, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin, 17104 Republic of Korea
| |
Collapse
|
15
|
Cordeiro RL, Santos CR, Domingues MN, Lima TB, Pirolla RAS, Morais MAB, Colombari FM, Miyamoto RY, Persinoti GF, Borges AC, de Farias MA, Stoffel F, Li C, Gozzo FC, van Heel M, Guerin ME, Sundberg EJ, Wang LX, Portugal RV, Giuseppe PO, Murakami MT. Mechanism of high-mannose N-glycan breakdown and metabolism by Bifidobacterium longum. Nat Chem Biol 2023; 19:218-229. [PMID: 36443572 PMCID: PMC10367113 DOI: 10.1038/s41589-022-01202-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
Abstract
Bifidobacteria are early colonizers of the human gut and play central roles in human health and metabolism. To thrive in this competitive niche, these bacteria evolved the capacity to use complex carbohydrates, including mammalian N-glycans. Herein, we elucidated pivotal biochemical steps involved in high-mannose N-glycan utilization by Bifidobacterium longum. After N-glycan release by an endo-β-N-acetylglucosaminidase, the mannosyl arms are trimmed by the cooperative action of three functionally distinct glycoside hydrolase 38 (GH38) α-mannosidases and a specific GH125 α-1,6-mannosidase. High-resolution cryo-electron microscopy structures revealed that bifidobacterial GH38 α-mannosidases form homotetramers, with the N-terminal jelly roll domain contributing to substrate selectivity. Additionally, an α-glucosidase enables the processing of monoglucosylated N-glycans. Notably, the main degradation product, mannose, is isomerized into fructose before phosphorylation, an unconventional metabolic route connecting it to the bifid shunt pathway. These findings shed light on key molecular mechanisms used by bifidobacteria to use high-mannose N-glycans, a perennial carbon and energy source in the intestinal lumen.
Collapse
Affiliation(s)
- Rosa L Cordeiro
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Camila R Santos
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Mariane N Domingues
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Tatiani B Lima
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Renan A S Pirolla
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Mariana A B Morais
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Felippe M Colombari
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Renan Y Miyamoto
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Gabriela F Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Antonio C Borges
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcelo A de Farias
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Fabiane Stoffel
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Department of Chemistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Fabio C Gozzo
- Institute of Chemistry, University of Campinas, Campinas, Brazil
| | - Marin van Heel
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Marcelo E Guerin
- Structural Glycobiology Laboratory, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, Spain
- Structural Glycobiology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Eric J Sundberg
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Rodrigo V Portugal
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | - Priscila O Giuseppe
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| | - Mario T Murakami
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil.
| |
Collapse
|
16
|
Effect of resistant starch types as a prebiotic. Appl Microbiol Biotechnol 2023; 107:491-515. [PMID: 36512032 DOI: 10.1007/s00253-022-12325-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Since the role of intestinal microbiota in metabolism was understood, the importance of dietary components such as fibres and prebiotics, which affect the modulation of microbiota, has been increasing day by day. While all prebiotic components are considered dietary fibre, not every dietary fibre is considered a prebiotic. While fructooligosaccharides, galactooligosaccharides, inulin, and galactans are considered prebiotics, other fermentable carbohydrates are considered candidate prebiotic components based on in vitro and preclinical studies. Resistant starch, one of such carbohydrates, is considered a potential prebiotic component when it is made resistant to digestion naturally or chemically. In this review, both in vitro and in vivo studies in which the prebiotic capacity of type II, type III, and type IV resistant starch isolated from food and produced commercially was assessed were analyzed. According to the results of current studies, certain types of resistant starch are thought to have a high prebiotic capacity, and they may be candidate prebiotic components although positive results have not been achieved in all studies. KEY POINTS: • Resistant starch is undigested in the small intestine and is fermented in the large intestine. • Resistant starch fermentation positively affects the growth of Bifidobacterium and Lactobacillus. • Resistant starch can be considered a prebiotic ingredient.
Collapse
|
17
|
Orihara K, Yahagi K, Saito Y, Watanabe Y, Sasai T, Hara T, Tsukuda N, Oki K, Fujimoto J, Matsuki T. Characterization of Bifidobacterium kashiwanohense that utilizes both milk- and plant-derived oligosaccharides. Gut Microbes 2023; 15:2207455. [PMID: 37188713 PMCID: PMC10187079 DOI: 10.1080/19490976.2023.2207455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Bifidobacteria are prominent members of the human gut microbiota throughout life. The ability to utilize milk- and plant-derived carbohydrates is important for bifidobacterial colonization of the infant and adult gut. The Bifidobacterium catenulatum subspecies kashiwanohense (B. kashiwanohense) was originally isolated from infant feces. However, only a few strains have been described, and the characteristics of this subspecies have been poorly investigated. Here, we characterized genotypes and phenotypes of 23 B. kashiwanohense-associated strains, including 12 newly sequenced isolates. Genome-based analysis clarified the phylogenetic relationship between these strains, revealing that only 13 strains are genuine B. kashiwanohense. We defined specific marker sequences and investigated the worldwide prevalence of B. kashiwanohense based on metagenome data. This revealed that not only infants but also adults and weaning children harbor this subspecies in the gut. Most B. kashiwanohense strains utilize long-chain xylans and possess genes for extracellular xylanase (GH10), arabinofuranosidase and xylosidase (GH43), and ABC transporters that contribute to the utilization of xylan-derived oligosaccharides. We also confirmed that B. kashiwanohense strains utilize short- and long-chain human milk oligosaccharides and possess genes for fucosidase (GH95 and GH29) and specific ABC transporter substrate-binding proteins that contribute to the utilization of a wide range of human milk oligosaccharides. Collectively, we found that B. kashiwanohense strains utilize both plant- and milk-derived carbohydrates and identified key genetic factors that allow them to assimilate various carbohydrates.
Collapse
Affiliation(s)
- Kento Orihara
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kana Yahagi
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Yuki Saito
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Yohei Watanabe
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Toshio Sasai
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Taeko Hara
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Naoki Tsukuda
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kaihei Oki
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Junji Fujimoto
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Takahiro Matsuki
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| |
Collapse
|
18
|
Lee AH, Jha AR, Do S, Scarsella E, Shmalberg J, Schauwecker A, Steelman AJ, Honaker RW, Swanson KS. Dietary enrichment of resistant starches or fibers differentially alter the feline fecal microbiome and metabolite profile. Anim Microbiome 2022; 4:61. [PMID: 36471455 PMCID: PMC9720964 DOI: 10.1186/s42523-022-00213-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 11/18/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Cats are strict carnivores but possess a complex gastrointestinal (GI) microbial community that actively ferments dietary substrates that are not digested and reach the colon. The GI microbiota responses to dietary inclusion of resistant starches versus fibers have not been tested in cats. Thus, our objective was to evaluate the effects of diets enriched in resistant starch or fibers on the fecal characteristics, microbiome, and metabolite profiles of cats. Twelve healthy adult domestic shorthair cats (age = 9.6 ± 4.0 year; body weight = 3.9 ± 1.0 kg) were used in a replicated 3 × 3 Latin square design to test diets that were enriched with: (1) resistant starch (ERS), (2) a fiber-prebiotic-probiotic blend (FPPB), or (3) a fiber-prebiotic-probiotic blend + immune-modulating ingredients (iFPPB). In each 28-day period, 22 days of diet adaptation was followed by fecal and blood sample collection. Fecal samples were used for shotgun metagenomic sequencing. In addition, fecal and blood metabolite measurements and white blood cell stimulation was performed to assess immune function. RESULTS A total of 1690 bacterial species were identified, with 259 species differing between fiber-rich and ERS treatments. In comparison with fiber-rich treatments that increased diversity and promoted Firmicutes and Bacteroidetes populations, resistant starch reduced microbial diversity and fecal pH, led to a bloom in Actinobacteria, and modified Kyoto Encyclopedia of Genes and Genomes orthology (KO) terms pertaining to starch and sucrose metabolism, fatty acid biosynthesis and metabolism, epithelial cell signaling, among others. Resistant starch also differentially modified fecal metabolite concentrations with relevance to GI and overall host health (increased butyrate; decreased propionate and protein catabolites - branched-chain fatty acids; phenols and indoles; ammonia) and reduced blood cholesterol, which correlated strongly with microbial taxa and KO terms, and allowed for a high predictive efficiency of diet groups by random forest analysis. CONCLUSION Even though domestic cats and other carnivores evolved by eating low-carbohydrate diets rich in protein and fat, our results demonstrate that the feline microbiome and metabolite profiles are highly responsive to dietary change and in directions that are predictable.
Collapse
Affiliation(s)
- Anne H Lee
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aashish R Jha
- Genetic Heritage Group, Program in Biology, New York University Abu Dhabi, Abu Dhabi, UAE
- NomNomNow, Inc., Oakland, CA, 94607, USA
| | - Sungho Do
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elisa Scarsella
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Justin Shmalberg
- NomNomNow, Inc., Oakland, CA, 94607, USA
- Department of Comparative, Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Amy Schauwecker
- PetSmart Proprietary Brand Product Development, Phoenix, AZ, 85080, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- 162 Animal Sciences Laboratory, 1207 West Gregory Drive, M/C 630, Urbana, IL, 61801, USA.
| |
Collapse
|
19
|
Ryu HJ, Jung DH, Yoo SH, Tuncil YE, Lee BH. Bifidogenic property of enzymatically synthesized water-insoluble α-glucans with different α-1,6 branching ratio. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
DeMartino P, Johnston EA, Petersen KS, Kris-Etherton PM, Cockburn DW. Additional Resistant Starch from One Potato Side Dish per Day Alters the Gut Microbiota but Not Fecal Short-Chain Fatty Acid Concentrations. Nutrients 2022; 14:nu14030721. [PMID: 35277080 PMCID: PMC8840755 DOI: 10.3390/nu14030721] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/11/2023] Open
Abstract
The composition of the gut microbiota and their metabolites are associated with cardiometabolic health and disease risk. Intake of dietary fibers, including resistant starch (RS), has been shown to favorably affect the health of the gut microbiome. The aim of this research was to measure changes in the gut microbiota and fecal short-chain fatty acids as part of a randomized, crossover supplemental feeding study. Fifty participants (68% female, aged 40 ± 13 years, BMI 24.5 ± 3.6 kg/m2) completed this study. Potato dishes (POT) contained more RS than refined grain dishes (REF) (POT: 1.31% wet basis (95% CI: 0.94, 1.71); REF: 0.73% wet basis (95% CI: 0.34, 1.14); p = 0.03). Overall, potato dish consumption decreased alpha diversity, but beta diversity was not impacted. Potato dish consumption was found to increase the abundance of Hungatella xylanolytica, as well as that of the butyrate producing Roseburia faecis, though fecal butyrate levels were unchanged. Intake of one potato-based side dish per day resulted in modest changes in gut microbiota composition and diversity, compared to isocaloric intake of refined grains in healthy adults. Studies examining foods naturally higher in RS are needed to understand microbiota changes in response to dietary intake of RS and associated health effects.
Collapse
Affiliation(s)
- Peter DeMartino
- Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA;
| | - Emily A. Johnston
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA; (E.A.J.); (K.S.P.); (P.M.K.-E.)
| | - Kristina S. Petersen
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA; (E.A.J.); (K.S.P.); (P.M.K.-E.)
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Penny M. Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA; (E.A.J.); (K.S.P.); (P.M.K.-E.)
| | - Darrell W. Cockburn
- Department of Food Science, Pennsylvania State University, University Park, PA 16802, USA;
- Correspondence: ; Tel.: +1-814-863-2950
| |
Collapse
|
21
|
Arp CG, Correa MJ, Ferrero C. Resistant starches: A smart alternative for the development of functional bread and other starch-based foods. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Kim SY, Kim H, Kim YJ, Jung DH, Seo DH, Jung JH, Park CS. Enzymatic analysis of truncation mutants of a type II pullulanase from Bifidobacterium adolescentis P2P3, a resistant starch-degrading gut bacterium. Int J Biol Macromol 2021; 193:1340-1349. [PMID: 34740684 DOI: 10.1016/j.ijbiomac.2021.10.193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/28/2022]
Abstract
A putative type II pullulanase gene, pulP, was identified in Bifidobacterium adolescentis P2P3. PulP possesses an α-amylase domain at the N-terminus and a pullulanase type I domain at the C-terminus, as well as three carbohydrate-binding modules (one CBM25 and two CBM41s) between them. The native PulP and four truncated mutant recombinant proteins (PulPΔCΔP, PulPΔP, PulPΔAΔC, and PulPΔA), in which each of the two catalytic domains and/or the CBMs were deleted, were produced in Escherichia coli and their specific properties were characterized. The removal of either catalytic domain abolished the corresponding catalytic activity of the wild-type enzyme. Deletion of the C-terminal domain resulted in a drastic decrease in the optimal temperature and thermostability, indicating that the pullulanase domain might be related to the temperature dependency of the enzyme. In addition, the elimination of the CBMs in the mutant proteins led to a loss of binding affinity toward raw substrates as well as the loss of their hydrolysis activities compared to the wild-type enzyme. HPAEC and TLC analyses proved that PulP and its mutants could hydrolyze α-glucans into maltotriose as their main product. These results suggest that PulP may play an important role in α-glucan metabolism in B. adolescentis P2P3.
Collapse
Affiliation(s)
- Sun-Young Kim
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hyeran Kim
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ye-Jin Kim
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dong-Hyun Jung
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Dong-Ho Seo
- Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jong-Hyun Jung
- Radiation Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
23
|
Liyanage GSG, Inoue R, Fujitani M, Ishijima T, Shibutani T, Abe K, Kishida T, Okada S. Effects of Soy Isoflavones, Resistant Starch and Antibiotics on Polycystic Ovary Syndrome (PCOS)-Like Features in Letrozole-Treated Rats. Nutrients 2021; 13:nu13113759. [PMID: 34836015 PMCID: PMC8621859 DOI: 10.3390/nu13113759] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in reproductive-aged women. Recently, various dietary interventions have been used extensively as a novel therapy against PCOS. In the present study, we show that soy isoflavone metabolites and resistant starch, together with gut microbiota modulations, were successful in decreasing the severity of PCOS-like reproductive features while increasing the expression of gut barrier markers and butyric acid in the gut. In the letrozole-induced PCOS model rats, the intake of both 0.05% soy isoflavones and 11% resistant starch, even with letrozole treatment, reduced the severity of menstrual irregularity and polycystic ovaries with a high concentration of soy isoflavones and equol in plasma. Antibiotic cocktail treatment suppressed soy isoflavone metabolism in the gut and showed no considerable effects on reducing the PCOS-like symptoms. The mRNA expression level of occludin significantly increased with soy isoflavone and resistant starch combined treatment. Bacterial genera such as Blautia, Dorea and Clostridium were positively correlated with menstrual irregularity under resistant starch intake. Moreover, the concentration of butyric acid was elevated by resistant starch intake. In conclusion, we propose that both dietary interventions and gut microbiota modulations could be effectively used in reducing the severity of PCOS reproductive features.
Collapse
Affiliation(s)
- Geethika S. G. Liyanage
- Food Functionality Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (G.S.G.L.); (T.I.); (T.S.); (K.A.)
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka 573-0101, Japan;
| | - Mina Fujitani
- Laboratory of Nutrition Science, Division of Applied Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan; (M.F.); (T.K.)
| | - Tomoko Ishijima
- Food Functionality Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (G.S.G.L.); (T.I.); (T.S.); (K.A.)
| | - Taisei Shibutani
- Food Functionality Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (G.S.G.L.); (T.I.); (T.S.); (K.A.)
| | - Keiko Abe
- Food Functionality Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (G.S.G.L.); (T.I.); (T.S.); (K.A.)
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Taro Kishida
- Laboratory of Nutrition Science, Division of Applied Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan; (M.F.); (T.K.)
- Food and Health Sciences Research Centre, Graduate School of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - Shinji Okada
- Food Functionality Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (G.S.G.L.); (T.I.); (T.S.); (K.A.)
- Correspondence: ; Tel.: +81-3-5841-1127
| |
Collapse
|
24
|
Fragomeno M, Assad S, Mobili P, Peruzzo PJ, Minnaard J, Pérez PF. Biomodification of acenocoumarol by bifidobacteria. FEMS Microbiol Lett 2021; 368:6371100. [PMID: 34529059 DOI: 10.1093/femsle/fnab125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
The increased interest of consumers in probiotic foods requires a deeper knowledge on the possible interactions with drugs, because their pharmacological properties could be modified. In this context, these studies are relevant for drugs such as acenocoumarol, whose dosage must be controlled due to, among other factors, food-drug interactions. Acenocoumarol is an oral anticoagulant with a narrow therapeutic range. The aim of the present research is to evaluate, in vitro, the effect of bifidobacteria on acenocoumarol. The drug was incubated with Bifidobacterium bifidum CIDCA 5310 or Bifidobacterium adolescentis CIDCA 5317 in MRS broth at 37°C for 24 h in anaerobic conditions. The effect of incubation with sterilized spent culture supernatants (SSCS) was also evaluated. Analysis by RP-HPLC showed that both bifidobacterial strains reduced the area of the acenocoumarol peak and two new peaks were evidenced. In addition, a decrease in the intensity of the bands at 1650, 1390 and 1110/cm was observed in the FTIR spectroscopic determinations. Moreover, a new band appeared at 1720/cm. No effect on the drug was observed when incubation was performed with SSCS. The present study showed a significant change in the concentration of the anticoagulant after incubation with bifidobacteria and results are compatible with biomodification of the drug due to enzymatic activity of bifidobacteria.
Collapse
Affiliation(s)
- Melisa Fragomeno
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA). Calle 47 y 116, CP 1900, La Plata, Argentina
| | - Sabrina Assad
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA). Calle 47 y 116, CP 1900, La Plata, Argentina
| | - Pablo Mobili
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA). Calle 47 y 116, CP 1900, La Plata, Argentina
| | - Pablo J Peruzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - INIFTA (UNLP - CONICET CCT La Plata), Diag. 113 y 64, CC 16 Suc. 4 (B1904DPI) La Plata, Argentina
| | - Jessica Minnaard
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA). Calle 47 y 116, CP 1900, La Plata, Argentina.,Área Microbiología e Inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP. Calle 47 y 115, CP 1900, La Plata, 13, Argentina
| | - Pablo Fernando Pérez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA). Calle 47 y 116, CP 1900, La Plata, Argentina.,Área Microbiología e Inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP. Calle 47 y 115, CP 1900, La Plata, 13, Argentina
| |
Collapse
|
25
|
|
26
|
Briggs JA, Grondin JM, Brumer H. Communal living: glycan utilization by the human gut microbiota. Environ Microbiol 2020; 23:15-35. [PMID: 33185970 DOI: 10.1111/1462-2920.15317] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022]
Abstract
Our lower gastrointestinal tract plays host to a vast consortium of microbes, known as the human gut microbiota (HGM). The HGM thrives on a complex and diverse range of glycan structures from both dietary and host sources, the breakdown of which requires the concerted action of cohorts of carbohydrate-active enzymes (CAZymes), carbohydrate-binding proteins, and transporters. The glycan utilization profile of individual taxa, whether 'specialist' or 'generalist', is dictated by the number and functional diversity of these glycan utilization systems. Furthermore, taxa in the HGM may either compete or cooperate in glycan deconstruction, thereby creating a complex ecological web spanning diverse nutrient niches. As a result, our diet plays a central role in shaping the composition of the HGM. This review presents an overview of our current understanding of glycan utilization by the HGM on three levels: (i) molecular mechanisms of individual glycan deconstruction and uptake by key bacteria, (ii) glycan-mediated microbial interactions, and (iii) community-scale effects of dietary changes. Despite significant recent advancements, there remains much to be discovered regarding complex glycan metabolism in the HGM and its potential to affect positive health outcomes.
Collapse
Affiliation(s)
- Jonathon A Briggs
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Julie M Grondin
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|