1
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Stepanenko OV, Sulatskaya AI. Degradation of pathogenic amyloids induced by matrix metalloproteinase-9. Int J Biol Macromol 2024; 281:136362. [PMID: 39395518 DOI: 10.1016/j.ijbiomac.2024.136362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Over the past decade, the greatest promise for treating severe and currently incurable systemic and neurodegenerative diseases has turned to agents capable of effectively degrading pathological amyloid deposits without causing side effects. Specifically, amyloid destruction observed in immunotherapy is hypothesized to occur through activation of proteolytic enzymes. This study examines poorly understood effects of an immune enzyme, extracellular matrix metalloproteinase-9 (MMP9), on amyloids associated with Alzheimer's and Parkinson's diseases, lysozyme, insulin, and dialysis-related amyloidoses. The study establishes the universality of MMP9's effect on various amyloids, with its efficacy largely depending on the fibrillar cluster size. Irreversible amyloid degradation by MMP9 is attributed to the destruction of intramolecular interactions rather than intermolecular hydrogen bonds in the fibril backbone. This process results in the loss of ordered fiber structure without reducing aggregate size or increasing cytotoxicity. Thus, MMP9 can mitigate side effects of anti-amyloid therapy associated with the formation of low-molecular-weight degradation products that may accelerate fibrillogenesis and amyloid propagation between tissues and organs. MMP9 shows promise as a component of safe anti-amyloid drugs by enhancing the accessibility of binding sites through "loosening" amyloid clusters, which facilitates subsequent fragmentation and monomerization by other enzymes.
Collapse
Affiliation(s)
- Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Ekaterina V Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| |
Collapse
|
2
|
Roy S, Srinivasan VR, Arunagiri S, Mishra N, Bhatia A, Shejale KP, Prajapati KP, Kar K, Anand BG. Molecular insights into the phase transition of lysozyme into amyloid nanostructures: Implications of therapeutic strategies in diverse pathological conditions. Adv Colloid Interface Sci 2024; 331:103205. [PMID: 38875805 DOI: 10.1016/j.cis.2024.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Lysozyme, a well-known bacteriolytic enzyme, exhibits a fascinating yet complex behavior when it comes to protein aggregation. Under certain conditions, this enzyme undergoes flexible transformation, transitioning from partially unfolded intermediate units of native conformers into complex cross-β-rich nano fibrillar amyloid architectures. Formation of such lysozyme amyloids has been implicated in a multitude of pathological and medical severities, like hepatic dysfunction, hepatomegaly, splenic rupture as well as spleen dysfunction, nephropathy, sicca syndrome, renal dysfunction, renal amyloidosis, and systemic amyloidosis. In this comprehensive review, we have attempted to provide in-depth insights into the aggregating behavior of lysozyme across a spectrum of variables, including concentrations, temperatures, pH levels, and mutations. Our objective is to elucidate the underlying mechanisms that govern lysozyme's aggregation process and to unravel the complex interplay between its structural attributes. Moreover, this work has critically examined the latest advancements in the field, focusing specifically on novel strategies and systems, that have been implemented to delay or inhibit the lysozyme amyloidogenesis. Apart from this, we have tried to explore and advance our fundamental understanding of the complex processes involved in lysozyme aggregation. This will help the research community to lay a robust foundation for screening, designing, and formulating targeted anti-amyloid therapeutics offering improved treatment modalities and interventions not only for lysozyme-linked amyloidopathy but for a wide range of amyloid-related disorders.
Collapse
Affiliation(s)
- Sindhujit Roy
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Venkat Ramanan Srinivasan
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Subash Arunagiri
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anubhuti Bhatia
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kiran P Shejale
- Dept. of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India..
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India..
| |
Collapse
|
3
|
Sammani PKT, Yospanya W, Niwa T, Kohata A, Taguchi H, Kinbara K. Monitoring insulin fibrillation kinetics using chromatographic analysis. Int J Biol Macromol 2024; 275:133660. [PMID: 38969030 DOI: 10.1016/j.ijbiomac.2024.133660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Insulin is a small protein widely used to treat patients with diabetes and is a commonly used model for protein fibrillation studies. Under specific conditions, such as low pH and high temperature, insulin monomers aggregate to form fibrils. This aggregation is problematic for manufacturing and storage of insulin. The thioflavin T (ThT) assay is commonly used to study amyloid fibrillation but suffers from several limitations, such as the effect of protein concentration, the size of the amyloid fibrillar bundles, competitive binding, and fibril aggregation, all of which hinder precise quantitative analysis. Here, we present a method for studying the kinetics of insulin fibrillation utilizing ultra-performance liquid chromatography (UPLC). This method enables the quantitative detection of soluble insulin components, including chemically modified components. The formation of a deamidated species could be monitored at the early stage of fibrillation, and this species was likely included in the fibrils. In addition, in the presence of inhibitors known to compete with ThT for binding to fibrils, UPLC analysis showed the disappearance of soluble components even though the ThT assay did not indicate the presence of fibrils. These results suggest that the UPLC-based analysis presented here can complement the ThT assay for investigating the kinetics of protein fibrillation.
Collapse
Affiliation(s)
| | - Wijak Yospanya
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Ai Kohata
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan; Research Center for Autonomous Systems Materialogy (ASMat), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
4
|
Iqbal A, Alam MT, Khan A, Siddiqui T, Ali A. Inhibition of protein misfolding and aggregation by steroidal quinoxalin-2(1H)-one and their molecular docking studies. Int J Biol Macromol 2024; 269:132020. [PMID: 38704061 DOI: 10.1016/j.ijbiomac.2024.132020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
A series of D-ring fused 16-substituted steroidal quinoxalin-2(1H)-one attached to an electron-releasing (ER) or electron-withdrawing (EW) groups via steroidal oxoacetate intermediate were synthesized to investigate their protein aggregation inhibition potential using human lysozyme (HLZ). The influence of the type of substituent at the C-6 positions of the quinoxalin-2(1H)-one ring on the protein aggregation inhibition potential was observed, showing that the EW moiety improved the protein aggregation inhibition potency. Of all the evaluated compounds, NO2-substituted quinoxalin-2(1H)-one derivative 13 was the most active compound and had a maximum protein aggregation inhibition effect. Significant stabilization effects strongly support the binding of the most biologically active steroidal quinoxalin-2(1H)-one with docking studies. The predicted physicochemical and ADME properties lie within a drug-like space which shows no violation of Lipinski's rule of five except compounds 12 and 13. Combined, our results suggest that D-ring fused 16-substituted steroidal quinoxalin-2(1H)-one has the potential to modulate the protein aggregation inhibition effect.
Collapse
Affiliation(s)
- Arfeen Iqbal
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Md Tauqir Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Asna Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Tabassum Siddiqui
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Abad Ali
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India.
| |
Collapse
|
5
|
Muthu SA, Qureshi A, Sharma R, Bisaria I, Parvez S, Grover S, Ahmad B. Redesigning the kinetics of lysozyme amyloid aggregation by cephalosporin molecules. J Biomol Struct Dyn 2024:1-16. [PMID: 38682862 DOI: 10.1080/07391102.2024.2335304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
In lysozyme amyloidosis, fibrillar aggregates of lysozyme are associated with severe renal, hepatic, and gastrointestinal manifestations, with no definite therapy. Current drugs are now being tested in amyloidosis clinical trials as aggregation inhibitors to mitigate disease progression. The tetracycline group among antimicrobials in use is in phase II of clinical trials, whereas some macrolides and cephalosporins have shown neuroprotection. In the present study, two cephalosporins, ceftazidime (CZD) and cefotaxime (CXM), and a glycopeptide, vancomycin (VNC), are evaluated for inhibition of amyloid aggregation of hen egg white lysozyme (HEWL) under two conditions (i) 4 M guanidine hydrochloride (GuHCl) at pH 6.5 and 37° C, (ii) At pH 1.5 and 65 °C. Fluorescence quench titration and molecular docking methods report that CZD, CXM, and VNC interact more strongly with the partially folded intermediates (PFI) in comparison to the protein's natural state (N). However, only CZD and CXM proficiently inhibit the aggregation. Transmission electron microscopy, tinctorial assessments, and aggregation kinetics all support oligomer-level inhibition. Transition structures in CZD-HEWL and CXM-HEWL aggregation are shown by circular dichroism (CD). On the other hand, kinetic variables and soluble fraction assays point to a localized association of monomers. Intrinsic fluorescence (IF),1-Anilino 8-naphthalene sulphonic acid, and CD demonstrate structural and conformational modifications redesigning the PFI. GuHCl-induced unfolding and differential scanning fluorimetry suggested that the PFI monomers bound to CZD and CXM exhibited partial stability. Our results present two mechanisms that function in both solution conditions, creating a novel avenue for the screening of putative inhibitors for drug repurposing. We extend our proposed mechanisms in the designing of physical inhibitors of amyloid aggregation considering shorter time frames and foolproof methods.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shivani A Muthu
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Afnaan Qureshi
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Rahul Sharma
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Ishita Bisaria
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Sonam Grover
- Department of Molecular Medicine, School of Interdisciplinary Studies, Jamia Hamdard, New Delhi, India
| | - Basir Ahmad
- Protein Assembly Laboratory, Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Chen N, Ren Y, Xing L, Liu Z, Chen L, Liu S, Zhou X. In situ Raman spectral observation of succinimide intermediates in amyloid fibrillation kinetics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123867. [PMID: 38198993 DOI: 10.1016/j.saa.2024.123867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Succinimide intermediates play the crucial role in the nucleation process for protein amyloid fibril formation, as they can usually induce a non-native conformation in a fraction of soluble proteins to render amyloidogenicity and neurotoxicity. Thus, in situ detection of succinimide intermediates during amyloid fibrillation kinetics is of considerable importance, albeit challenging, because these succinimides are generally unstable in physiological conditions. Here, we found an in situ Raman spectral fingerprint to trace the succinimide intermediates in amyloid fibril formation, wherein the carbonyl symmetric stretching of cyclic imide in the succinimide derivative is located at ca. 1790 cm-1. Using its intensity as an indicator of succinimide intermediates, we have in situ detected and unravelled the role of succinimide intermediates during the oligomer formation from the Bz-Asp-Gly-NH2 dipeptide or the amyloid fibrillation kinetics of lysozyme with thermal/acid treatment.
Collapse
Affiliation(s)
- Ning Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi Ren
- Key Laboratory of Tropical Biological Resources of the Ministry of Education, Department of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Lei Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhongqiang Liu
- Key Laboratory of Tropical Biological Resources of the Ministry of Education, Department of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China.
| | - Lin Chen
- School of Physics and Materials Engineering, Hefei Normal University, Hefei, Anhui 230601, China
| | - Shilin Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoguo Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
7
|
Wang Y, Huo Y, Wang S, Zheng T, Du W. β-Carboline Alkaloids Resist the Aggregation and Cytotoxicity of Human Islet Amyloid Polypeptide. Chembiochem 2023; 24:e202300395. [PMID: 37485551 DOI: 10.1002/cbic.202300395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
β-Carboline alkaloids have a variety of pharmacological activities, such as antitumor, antibiosis and antidiabetes. Harmine and harmol are two structurally similar β-carbolines that occur in many medicinal plants. In this work, we chose harmine and harmol to impede the amyloid fibril formation of human islet amyloid polypeptide (hIAPP) associated with type 2 diabetes mellitus (T2DM), by a series of physicochemical and biochemical methods. The results indicate that harmine and harmol effectively prevent peptide fibril formation and alleviate toxic oligomer species. In addition, both small molecules exhibit strong binding affinities with hIAPP mainly through hydrophobic and hydrogen bonding interactions, thus reducing the cytotoxicity induced by hIAPP. Their distinct binding pattern with hIAPP is closely linked to the molecular configuration of the two small molecules, affecting their ability to impede peptide aggregation. The study is of great significance for the application and development of β-carboline alkaloids against T2DM.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Chemistry, Renmin University of China, No.59, Zhong Guan Cun Street Haidian District, Beijing, 100872, P. R. China
| | - Yan Huo
- Department of Chemistry, Renmin University of China, No.59, Zhong Guan Cun Street Haidian District, Beijing, 100872, P. R. China
| | - Shao Wang
- Department of Chemistry, Renmin University of China, No.59, Zhong Guan Cun Street Haidian District, Beijing, 100872, P. R. China
| | - Ting Zheng
- Department of Chemistry, Renmin University of China, No.59, Zhong Guan Cun Street Haidian District, Beijing, 100872, P. R. China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, No.59, Zhong Guan Cun Street Haidian District, Beijing, 100872, P. R. China
| |
Collapse
|
8
|
Abbaspour S, Alijanvand SH, Morshedi D, Shojaosadati SA. Inhibitory effect of plain and functionalized graphene nanoplateles on hen egg white lysozyme fibrillation. Colloids Surf B Biointerfaces 2023; 230:113487. [PMID: 37542838 DOI: 10.1016/j.colsurfb.2023.113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/22/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Protein fibrillation is a phenomenon associated with misfolding and the production of highly ordered nanofibrils, which may cause serious degenerative diseases such as Parkinson's disease, Alzheimer's disease, and type 2 diabetes. Upon contact with biological fluids, the nanomaterials are immediately covered by proteins and interact with them. In this study, the effects of Graphene NanoPlateles (Plain-GNPs) and their modified forms with a carboxyl group (GNPs -COOH) and an amine group (GNPs -NH2) are evaluated on the fibrillation process of Hen Egg White Lysozyme (HEWL). The fibrillation process of HEWL was studied using thioflavin-T, Circular Dichroism spectrometry, and Atomic Force Microscopy. Plain-GNPs significantly decreased the fibrillation process at different stages, including nucleation, exponential fibrillation phases, and end-mature fibril products. However, GNPs-COOH and GNPs-NH2 affected the final fluorescence of ThT. The species formed in the presence of Plain-GNPs showed less toxicity in SH-SY5Y cells, which could be applicable for therapeutic purposes.
Collapse
Affiliation(s)
- Sakineh Abbaspour
- Biotechnology Group Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, the Islamic Republic of Iran; Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965-161, Tehran, the Islamic Republic of Iran
| | - Saeid Hadi Alijanvand
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965-161, Tehran, the Islamic Republic of Iran
| | - Dina Morshedi
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, P.O. Box 14965-161, Tehran, the Islamic Republic of Iran
| | - Seyed Abbas Shojaosadati
- Biotechnology Group Faculty of Chemical Engineering, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, the Islamic Republic of Iran.
| |
Collapse
|
9
|
Siebert HC, Eckert T, Bhunia A, Klatte N, Mohri M, Siebert S, Kozarova A, Hudson JW, Zhang R, Zhang N, Li L, Gousias K, Kanakis D, Yan M, Jiménez-Barbero J, Kožár T, Nifantiev NE, Vollmer C, Brandenburger T, Kindgen-Milles D, Haak T, Petridis AK. Blood pH Analysis in Combination with Molecular Medical Tools in Relation to COVID-19 Symptoms. Biomedicines 2023; 11:biomedicines11051421. [PMID: 37239092 DOI: 10.3390/biomedicines11051421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The global outbreak of SARS-CoV-2/COVID-19 provided the stage to accumulate an enormous biomedical data set and an opportunity as well as a challenge to test new concepts and strategies to combat the pandemic. New research and molecular medical protocols may be deployed in different scientific fields, e.g., glycobiology, nanopharmacology, or nanomedicine. We correlated clinical biomedical data derived from patients in intensive care units with structural biology and biophysical data from NMR and/or CAMM (computer-aided molecular modeling). Consequently, new diagnostic and therapeutic approaches against SARS-CoV-2 were evaluated. Specifically, we tested the suitability of incretin mimetics with one or two pH-sensitive amino acid residues as potential drugs to prevent or cure long-COVID symptoms. Blood pH values in correlation with temperature alterations in patient bodies were of clinical importance. The effects of biophysical parameters such as temperature and pH value variation in relation to physical-chemical membrane properties (e.g., glycosylation state, affinity of certain amino acid sequences to sialic acids as well as other carbohydrate residues and lipid structures) provided helpful hints in identifying a potential Achilles heel against long COVID. In silico CAMM methods and in vitro NMR experiments (including 31P NMR measurements) were applied to analyze the structural behavior of incretin mimetics and SARS-CoV fusion peptides interacting with dodecylphosphocholine (DPC) micelles. These supramolecular complexes were analyzed under physiological conditions by 1H and 31P NMR techniques. We were able to observe characteristic interaction states of incretin mimetics, SARS-CoV fusion peptides and DPC membranes. Novel interaction profiles (indicated, e.g., by 31P NMR signal splitting) were detected. Furthermore, we evaluated GM1 gangliosides and sialic acid-coated silica nanoparticles in complex with DPC micelles in order to create a simple virus host cell membrane model. This is a first step in exploring the structure-function relationship between the SARS-CoV-2 spike protein and incretin mimetics with conserved pH-sensitive histidine residues in their carbohydrate recognition domains as found in galectins. The applied methods were effective in identifying peptide sequences as well as certain carbohydrate moieties with the potential to protect the blood-brain barrier (BBB). These clinically relevant observations on low blood pH values in fatal COVID-19 cases open routes for new therapeutic approaches, especially against long-COVID symptoms.
Collapse
Affiliation(s)
- Hans-Christian Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Thomas Eckert
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
- RISCC-Research Institute for Scientific Computing and Consulting, Ludwig-Schunk-Str. 15, 35452 Heuchelheim, Germany
- Institut für Veterinärphysiologie und Biochemie, Fachbereich Veterinärmedizin, Justus-Liebig Universität Gießen, Frankfurter Str. 100, 35392 Gießen, Germany
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Nele Klatte
- Department of Chemistry and Biology, University of Applied Sciences Fresenius, Limburger Str. 2, 65510 Idstein, Germany
| | - Marzieh Mohri
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Simone Siebert
- RI-B-NT-Research Institute of Bioinformatics and Nanotechnology, Schauenburgerstr. 116, 24118 Kiel, Germany
| | - Anna Kozarova
- Department of Biomedical Sciences, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - John W Hudson
- Department of Biomedical Sciences, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Ruiyan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ning Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Lan Li
- Klinik für Neurochirurgie, Alfried Krupp Krankenhaus, Rüttenscheid, Alfried-Krupp-Straße 21, 45131 Essen, Germany
| | - Konstantinos Gousias
- Klinik für Neurochirurgie, Klinikum Lünen, St.-Marien-Hospital, Akad. Lehrkrankenhaus der Westfälische Wilhelms-Universität Münster, 44534 Lünen, Germany
| | - Dimitrios Kanakis
- Institute of Pathology, University of Nicosia Medical School, 2408 Egkomi, Cyprus
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA
| | | | - Tibor Kožár
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University, Jesenná 5, 04001 Košice, Slovakia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Christian Vollmer
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Timo Brandenburger
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Detlef Kindgen-Milles
- Department of Anesthesiology, University Hospital Düsseldorf, Heinrich-Heine University Duesseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Thomas Haak
- Diabetes Klinik Bad Mergentheim, Theodor-Klotzbücher-Str. 12, 97980 Bad Mergentheim, Germany
| | - Athanasios K Petridis
- Medical School, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Khan A, Alam MT, Iqbal A, Siddiqui T, Ali A. Microwave-assisted one-pot multicomponent synthesis of steroidal pyrido[2,3-d]pyrimidines and their possible implications in drug development. Steroids 2023; 190:109154. [PMID: 36521632 DOI: 10.1016/j.steroids.2022.109154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Protein misfolding can lead to fibrillar and non-fibrillar deposits which are the signs of countless human diseases. A promising strategy for the prevention of such diseases is the inhibition of protein aggregation, and the most crucial step toward effective prevention is the development of small molecules having the potential for protein-aggregation inhibition. In this search, a series of novel steroidal pyrido[2,3-d]pyrimidines have been synthesized employing steroidal ketone, substituted aldehydes, and 2,6-diaminopyrimidin-4(3H)-one through the microwave-assisted one-pot multicomponent methodology. The aggregation inhibition potential of newly synthesized compounds was evaluated on human lysozyme (HLZ). All the synthesized compounds were found to be efficient in the inhibition of protein aggregation in carefully designed in vitro experiments. Moreover, molecular docking studies also determine the binding interactions between all the synthesized compounds and native HLZ through hydrogen bonding. The structures of synthesized compounds were also elucidated using various spectroscopic techniques.
Collapse
Affiliation(s)
- Asna Khan
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Md Tauqir Alam
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Arfeen Iqbal
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Tabassum Siddiqui
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Abad Ali
- Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh 202 002, UP, India.
| |
Collapse
|
11
|
Cheong DY, Roh S, Park I, Lin Y, Lee YH, Lee T, Lee SW, Lee D, Jung HG, Kim H, Lee W, Yoon DS, Hong Y, Lee G. Proteolysis-driven proliferation and rigidification of pepsin-resistant amyloid fibrils. Int J Biol Macromol 2023; 227:601-607. [PMID: 36543295 DOI: 10.1016/j.ijbiomac.2022.12.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/20/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Proteolysis of amyloids is related to prevention and treatment of amyloidosis. What if the conditions for proteolysis were the same to those for amyloid formation? For example, pepsin, a gastric protease is activated in an acidic environment, which, interestingly, is also a condition that induces the amyloid formation. Here, we investigate the competition reactions between proteolysis and synthesis of amyloid under pepsin-activated conditions. The changes in the quantities and nanomechanical properties of amyloids after pepsin treatment were examined by fluorescence assay, circular dichroism and atomic force microscopy. We found that, in the case of pepsin-resistant amyloid, a secondary reaction can be accelerated, thereby proliferating amyloids. Moreover, after this reaction, the amyloid became 32.4 % thicker and 24.2 % stiffer than the original one. Our results suggest a new insight into the proteolysis-driven proliferation and rigidification of pepsin-resistant amyloids.
Collapse
Affiliation(s)
- Da Yeon Cheong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Seokbeom Roh
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Insu Park
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, South Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chungbuk 28119, South Korea; Bio-Analytical Science, University of Science and Technology, Daejeon 34113, South Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, South Korea; Research Headquarters, Korea Brain Research Institute, Daegu 41068, South Korea
| | - Taeha Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea
| | - Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea
| | - Hyo Gi Jung
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Hyunji Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea
| | - Wonseok Lee
- Department of Electrical Engineering, Korea National University of Transportation, Chungju 27469, South Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, South Korea; ASTRION Inc., Seoul 02841, South Korea.
| | - Yoochan Hong
- Department of Medical Devices, Korea Institute of Machinery and Materials (KIMM), Daegu 42994, South Korea.
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, South Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong 30019, South Korea.
| |
Collapse
|
12
|
Sun H, Wang J. Novel perspective for protein-drug interaction analysis: atomic force microscope. Analyst 2023; 148:454-474. [PMID: 36398684 DOI: 10.1039/d2an01591a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteins are major drug targets, and drug-target interaction identification and analysis are important factors for drug discovery. Atomic force microscopy (AFM) is a powerful tool making it possible to image proteins with nanometric resolution and probe intermolecular forces under physiological conditions. We review recent studies conducted in the field of target protein drug discovery using AFM-based analysis technology, including drug-driven changes in nanomechanical properties of protein morphology and interactions. Underlying mechanisms (including thermodynamic and kinetic parameters) of the drug-target interaction and drug-modulating protein-protein interaction (PPI) on the surfaces of models or living cells are discussed. Furthermore, challenges and the outlook for the field are likewise discussed. Overall, this insight into the mechanical properties of protein-drug interactions provides an unprecedented information framework for rational drug discovery in the pharmaceutical field.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
13
|
Hu A, Li L. Effects of ultrasound pretreatment on functional property, antioxidant activity, and digestibility of soy protein isolate nanofibrils. ULTRASONICS SONOCHEMISTRY 2022; 90:106193. [PMID: 36257213 PMCID: PMC9579045 DOI: 10.1016/j.ultsonch.2022.106193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/12/2022] [Accepted: 10/06/2022] [Indexed: 05/25/2023]
Abstract
Nanofibrils, an effective method to modulate the functional properties of proteins, can be promoted by ultrasound pretreatment. This study investigated the effect of ultrasound pretreatment on the structure, functional property, antioxidant activity and digestibility of soy protein isolate (SPI) nanofibrils. The results showed that high amplitude ultrasound had a significant effect on structure of SPI nanofibrils. SPI nanofibrils pretreated by 80% amplitude ultrasound showed a blueshift of the amide II band in Fourier transform infrared spectroscopy (FTIR), resulted in more tryptophan residues being buried and increased the crystallinity. Low amplitude ultrasound (20%) pretreatment significantly improved the solubility, emulsifying activity index (EAI) and water absorption capacity (WAC) of SPI nanofibrils, but 80% amplitude ultrasound pretreatment of SPI nanofibrils reduced emulsifying stability index (ESI). High amplitude ultrasound (60% and 80%) pretreatment of SPI nanofibrils improved the foaming capacity and foaming stability and decreased denaturation temperature. DPPH radical scavenging activity of SPI nanofibrils were significantly improved by ultrasound pretreatment. 20% amplitude ultrasound pretreatment improved DPPH, ABTS radical scavenging activity and ferric reducing antioxidant power of SPI nanofibrils. The digestion rate of 80% amplitude ultrasound-pretreated nanofibrils were consistently higher, and SPI nanofibrils pretreated by ultrasound were more fragmented and shorter after simulating gastrointestinal digestion. This study would expand the application of food-grade protein nanofibrils in the food industry.
Collapse
Affiliation(s)
- Anna Hu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
14
|
Ábrahám Á, Massignan F, Gyulai G, Katona M, Taricska N, Kiss É. Comparative Study of the Solid-Liquid Interfacial Adsorption of Proteins in Their Native and Amyloid Forms. Int J Mol Sci 2022; 23:13219. [PMID: 36362007 PMCID: PMC9656260 DOI: 10.3390/ijms232113219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/14/2023] Open
Abstract
The adhesive properties of amyloid fibers are thought to play a crucial role in various negative and positive aggregation processes, the study of which might help in their understanding and control. Amyloids have been prepared from two proteins, lysozyme and β-lactoglobulin, as well as an Exendin-4 derivative miniprotein (E5). Thermal treatment was applied to form amyloids and their structure was verified by thioflavin T (ThT), 8-Anilino-1-naphthalenesulfonic acid (ANS) dye tests and electronic circular dichroism spectroscopy (ECD). Adsorption properties of the native and amyloid forms of the three proteins were investigated and compared using the mass-sensitive quartz crystal microbalance (QCM) technique. Due to the possible electrostatic and hydrophobic interactions, similar adsorbed amounts were found for the native or amyloid forms, while the structures of the adsorbed layers differed significantly. Native proteins formed smooth and dense adsorption layers. On the contrary, a viscoelastic, highly loose layer was formed in the presence of the amyloid forms, shown by increased motional resistance values determined by the QCM technique and also indicated by atomic force microscopy (AFM) and wettability measurements. The elongated structure and increased hydrophobicity of amyloids might contribute to this kind of aggregation.
Collapse
Affiliation(s)
- Ágnes Ábrahám
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE Lendület “Momentum” Peptide-Based Vaccines Research Group, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Flavio Massignan
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Gergő Gyulai
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Miklós Katona
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Nóra Taricska
- ELKH-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Éva Kiss
- Laboratory of Interfaces and Nanostructures, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
15
|
Du X, Koronyo Y, Mirzaei N, Yang C, Fuchs DT, Black KL, Koronyo-Hamaoui M, Gao L. Label-free hyperspectral imaging and deep-learning prediction of retinal amyloid β-protein and phosphorylated tau. PNAS NEXUS 2022; 1:pgac164. [PMID: 36157597 PMCID: PMC9491695 DOI: 10.1093/pnasnexus/pgac164] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/15/2022] [Indexed: 01/16/2023]
Abstract
Alzheimer's disease (AD) is a major risk for the aging population. The pathological hallmarks of AD-an abnormal deposition of amyloid β-protein (Aβ) and phosphorylated tau (pTau)-have been demonstrated in the retinas of AD patients, including in prodromal patients with mild cognitive impairment (MCI). Aβ pathology, especially the accumulation of the amyloidogenic 42-residue long alloform (Aβ42), is considered an early and specific sign of AD, and together with tauopathy, confirms AD diagnosis. To visualize retinal Aβ and pTau, state-of-the-art methods use fluorescence. However, administering contrast agents complicates the imaging procedure. To address this problem from fundamentals, ex-vivo studies were performed to develop a label-free hyperspectral imaging method to detect the spectral signatures of Aβ42 and pS396-Tau, and predicted their abundance in retinal cross-sections. For the first time, we reported the spectral signature of pTau and demonstrated an accurate prediction of Aβ and pTau distribution powered by deep learning. We expect our finding will lay the groundwork for label-free detection of AD.
Collapse
Affiliation(s)
- Xiaoxi Du
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chengshuai Yang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Liang Gao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Chen Y, Liu Q, Yang F, Yu H, Xie Y, Yao W. Lysozyme amyloid fibril: Regulation, application, hazard analysis, and future perspectives. Int J Biol Macromol 2022; 200:151-161. [PMID: 34995654 DOI: 10.1016/j.ijbiomac.2021.12.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/15/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
Self-assembly of misfolded proteins into ordered fibrillar aggregates known as amyloid results in various human diseases. However, more and more proteins, whether in human body or in food, have been found to be able to form amyloid fibrils with in-depth researches. As a model protein for amyloid research, lysozyme has always been the focus of research in various fields. Firstly, the formation mechanisms of amyloid fibrils are discussed concisely. Researches on the regulation of lysozyme amyloid fibrils are helpful to find suitable therapeutic drugs and unfriendly substances. And this review article summarizes a number of exogenous substances including small molecules, nanoparticles, macromolecules, and polymers. Small molecules are mainly connected to lysozyme through hydrophobic interaction, electrostatic interaction, π-π interaction, van der Waals force and hydrogen bond. Nanoparticles inhibit the formation of amyloid fibers by stabilizing lysozyme and fixing β-sheet. Besides, the applications of lysozyme amyloid fibrils in food-related fields are considered furtherly due to outstanding physical and mechanical properties. Nevertheless, the potential health threats are still worthy of our attention. Finally, we also give suggestions and opinions on the future research direction of lysozyme amyloid fibrils.
Collapse
Affiliation(s)
- Yulun Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Qingrun Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, No.235 Daxue West Road, Hohhot 010021, Inner Mongolia Autonomous Region, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
17
|
Phenylalanine and indole effects on the pathogenicity of human lysozyme amorphous aggregates. Enzyme Microb Technol 2022; 158:110036. [DOI: 10.1016/j.enzmictec.2022.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022]
|
18
|
Triterpenoids impede the fibrillation and cytotoxicity of human islet amyloid polypeptide. Int J Biol Macromol 2022; 199:189-200. [PMID: 34973981 DOI: 10.1016/j.ijbiomac.2021.12.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/05/2023]
Abstract
The inhibition of human islet amyloid polypeptide (hIAPP) deposition to block its toxicity is an important strategy for the prevention and treatment of type II diabetes mellitus (T2DM).Natural compounds with pharmacological properties and low toxicity can serve as a good point to discover potential inhibitors of protein misfolding, which may be useful for the treatment of various amyloidosis-related diseases. Previous studies have reported that triterpenoids, such as maslinic acid (MA) and momordicin I (MI), can modulate glucose metabolism partially by reducing insulin resistance. However, the internal antidiabetic mechanism of these triterpenoids remains unclear. In this study, we examined the inhibition and disaggregation of MAandits isomer MI on the fibrillation of hIAPP using various experimental and computational approaches. The assembly behaviors and peptide-induced cytotoxicity of hIAPP could be effectively resisted by MA and MI. Moreover, the interaction of the two triterpenoids with hIAPP displayed a spontaneous and exothermic process. Moreover, molecular dynamics simulation results of different peptides revealed that MA and MI could bind to Asn and other non-polar residues near the core C-terminal region and reduce the oligomerization of hIAPP. The binding affinity was predominantly contributed by hydrophobic, electrostatic and hydrogen bonding interactions. The present work provides valuable data for MA and MI to treat T2DM and amyloidosis-related diseases.
Collapse
|
19
|
Xu J, Wang Y, Zheng T, Huo Y, Du W. Biflavones inhibit the fibrillation and cytotoxicity of human islet amyloid polypeptide. J Mater Chem B 2022; 10:4650-4661. [DOI: 10.1039/d2tb00230b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biflavones are a kind of natural compounds with a variety of biological activities, which have the effects of reversing diabetes and neurodegenerative diseases. Human islet amyloid polypeptide (hIAPP) is closely...
Collapse
|
20
|
Zhao X, Meng X, Ragauskas AJ, Lai C, Ling Z, Huang C, Yong Q. Unlocking the secret of lignin-enzyme interactions: Recent advances in developing state-of-the-art analytical techniques. Biotechnol Adv 2021; 54:107830. [PMID: 34480987 DOI: 10.1016/j.biotechadv.2021.107830] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/07/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Bioconversion of renewable lignocellulosics to produce liquid fuels and chemicals is one of the most effective ways to solve the problem of fossil resource shortage, energy security, and environmental challenges. Among the many biorefinery pathways, hydrolysis of lignocellulosics to fermentable monosaccharides by cellulase is arguably the most critical step of lignocellulose bioconversion. In the process of enzymatic hydrolysis, the direct physical contact between enzymes and cellulose is an essential prerequisite for the hydrolysis to occur. However, lignin is considered one of the most recalcitrant factors hindering the accessibility of cellulose by binding to cellulase unproductively, which reduces the saccharification rate and yield of sugars. This results in high costs for the saccharification of carbohydrates. The various interactions between enzymes and lignin have been explored from different perspectives in literature, and a basic lignin inhibition mechanism has been proposed. However, the exact interaction between lignin and enzyme as well as the recently reported promotion of some types of lignin on enzymatic hydrolysis is still unclear at the molecular level. Multiple analytical techniques have been developed, and fully unlocking the secret of lignin-enzyme interactions would require a continuous improvement of the currently available analytical techniques. This review summarizes the current commonly used advanced research analytical techniques for investigating the interaction between lignin and enzyme, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy (FLS), and molecular dynamics (MD) simulations. Interdisciplinary integration of these analytical methods is pursued to provide new insight into the interactions between lignin and enzymes. This review will serve as a resource for future research seeking to develop new methodologies for a better understanding of the basic mechanism of lignin-enzyme binding during the critical hydrolysis process.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chenhuan Lai
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhe Ling
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
21
|
Fan W, Chen XD, Liu LM, Chen N, Zhou XG, Zhang ZH, Liu SL. Concentration-dependent influence of silver nanoparticles on amyloid fibrillation kinetics of hen egg-white lysozyme. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Wei Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-dong Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Li-ming Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ning Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-guo Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-hong Zhang
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Shi-lin Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
22
|
Ashrafian H, Zadeh EH, Tajbakhsh M, Majid N, Srivastava GN, Khan RH. Discovery of a tetracyclic indole alkaloid that postpones fibrillation of hen egg white lysozyme protein. Int J Biol Macromol 2021; 183:1939-1947. [PMID: 34097957 DOI: 10.1016/j.ijbiomac.2021.05.212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Protein aggregation, such as amyloid fibril formation, is molecular hallmark of many neurodegenerative disorders including Alzheimer's, Parkinson's, and Prion disease. Indole alkaloids are well-known as the compounds having the ability to inhibit protein fibrillation. In this study, we experimentally and computationally have investigated the anti-amyloid property of a derivative of a synthesized tetracyclic indole alkaloid (TCIA), possessing capable functional groups. The fibrillation reaction of Hen White Egg Lysozyme (HEWL) was performed in absence and presence of the indole alkaloid. For quantitative analysis, we used Thioflovin T binding assay which showed ~50% reduction in fibril formation in the presence of 20 μM TCIA. Using TEM imaging, we observed a significant morphological change in our model protein in the presence of TCIA. In addition, we exploited FT-IR assay by which Amide I peak's shifting toward lower wavenumber was clearly observed. Using Molecular Docking, the interaction of the inhibitor (TCIA) with the protein's amyloidogenic region was modeled. Also, different biophysical parameters were calculated by Molecular Dynamics (MD) simulation. Various biochemical assays, conformational change, and hydrophobicity exposure of the protein during amyloid formation indicated that the compound assists HEWL to keep its native structure via destabilizing β-sheet structure.
Collapse
Affiliation(s)
- Hossein Ashrafian
- Department of Chemistry and Biochemistry, the Ohio State University, Columbus, OH, USA; Biochemistry Lab, Chemistry department, Sharif University of Technology, Tehran, Iran.
| | | | | | - Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202 002, India
| | - Gopal N Srivastava
- Department of Chemistry and Biochemistry, the Ohio State University, Columbus, OH, USA
| | - Rizwan Hassan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202 002, India.
| |
Collapse
|
23
|
Yoon BK, Ma GJ, Park H, Ferhan AR, Cho NJ, Jackman JA. Solvent-induced conformational tuning of lysozyme protein adlayers on silica surfaces: A QCM-D and LSPR study. Int J Biol Macromol 2021; 182:1906-1914. [PMID: 34022315 DOI: 10.1016/j.ijbiomac.2021.05.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 10/24/2022]
Abstract
There is broad interest in functionalizing solid surfaces with lysozyme, which is a widely studied antimicrobial protein. To date, most efforts have focused on developing more effective immobilization schemes to promote lysozyme attachment in fully aqueous conditions, while there remains an outstanding need to understand how tuning the solution-phase conformational stability of lysozyme proteins can modulate adsorption behavior and resulting adlayer properties. Inspired by the unique conformational behavior of lysozyme proteins in water-ethanol mixtures, we conducted quartz crystal microbalance-dissipation (QCM-D) and localized surface plasmon resonance (LSPR) measurements to systematically investigate the adsorption behavior of lysozyme proteins onto silica surfaces across a wide range of water-ethanol mixtures. Our findings revealed that lysozyme adsorption behavior strongly depended on the ethanol fraction in a non-monotonic fashion and this trend could be rationalized by taking into account how competing effects of water and ethanol solvation influence solution-phase protein size and conformational stability. Integrated analysis of the QCM-D and LSPR measurement trends enabled quantitative determination of the solvent mass within lysozyme adlayers, which tended to decrease at higher ethanol fractions and supported that the hydrodynamic properties of lysozyme adlayers are mainly influenced by the degree of protein conformational flexibility as opposed to solvation effects alone.
Collapse
Affiliation(s)
- Bo Kyeong Yoon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gamaliel Junren Ma
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Hyeonjin Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Joshua A Jackman
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
24
|
Xu J, Zheng T, Huang X, Wang Y, Yin G, Du W. Procyanidine resists the fibril formation of human islet amyloid polypeptide. Int J Biol Macromol 2021; 183:1067-1078. [PMID: 33965498 DOI: 10.1016/j.ijbiomac.2021.05.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Human islet amyloid polypeptide (hIAPP) is widely studied due to its close correlation with the pathogenic mechanism of type II diabetes mellitus (T2DM). Bioflavonoids have been used in the neurodegeneration and diabetes studies. However, the structure-activity relationship remains unclear in many of these compounds. In this work, we performed diverse biophysical and biochemical methods to explore the inhibition of procyanidine on hIAPP and compared with that on amyloid-β (Aβ) protein which is linked to Alzheimer's disease (AD). The procyanidine effectively inhibited the aggregation of hIAPP and Aβ through hydrophobic and hydrogen bonding interactions, it dissolved the aged fibrils into nanoscale particles. The compound also ameliorated the cytotoxicity and the membrane leakage by reducing the peptide oligomerization. The procyanidine showed better binding affinity and inhibitory effects on peptide aggregation and upregulated the cell viability to hIAPP than to Aβ, which could be a prospective inhibitor against hIAPP. This work also offered a possible strategy for T2DM and AD treatments.
Collapse
Affiliation(s)
- Jufei Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ting Zheng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiangyi Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yanan Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Guowei Yin
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
25
|
Jin L, Liu C, Zhang N, Zhang R, Yan M, Bhunia A, Zhang Q, Liu M, Han J, Siebert HC. Attenuation of Human Lysozyme Amyloid Fibrillation by ACE Inhibitor Captopril: A Combined Spectroscopy, Microscopy, Cytotoxicity, and Docking Study. Biomacromolecules 2021; 22:1910-1920. [PMID: 33844512 DOI: 10.1021/acs.biomac.0c01802] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Misfolding proteins could form oligomers or amyloid fibers, which can cause a variety of amyloid-associated diseases. Thus, the inhibition of protein misfolding and fibrillation is a promising way to prevent and treat these diseases. Captopril (CAP) is an angiotensin-converting enzyme inhibitor (ACEI) that is widely used to treat diseases such as hypertension and heart failure. In this study, we found that CAP inhibits human lysozyme (HL) fibrillation through the combination techniques of biophysics and biochemistry. The data obtained by thioflavin-T (ThT) and Congo red (CR) assays showed that CAP hindered the aggregation of HL amyloid fibrils by reducing the β-sheet structure of HL amyloid, with an IC50 value of 34.75 ± 1.23 μM. Meanwhile, the particle size of HL amyloid decreased sharply in a concentration-dependent approach after CAP treatment. According to the visualization of atomic force microscopy (AFM) and transmission electron microscopy (TEM), we verified that in the presence of CAP, the needle-like fibers of HL amyloid were significantly reduced. In addition, CAP incubation dramatically improved the cell survival rate exposed to HL fibers. Our studies also revealed that CAP could form hydrogen bonds with amino acid residues of Glu 35 and Ala 108 in the binding pocket of HL, which help in maintaining the α-helical structure of HL and then prevent the formation of amyloid fibrillation. It can be concluded that CAP has antiamyloidogenic activity and a protective effect on HL amyloid cytotoxicity.
Collapse
Affiliation(s)
- Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, 1 University Avenue, Lowell, Massachusetts 01854, United States
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Qinxiu Zhang
- School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jun Han
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| |
Collapse
|
26
|
Gao W, Jin L, Liu C, Zhang N, Zhang R, Bednarikova Z, Gazova Z, Bhunia A, Siebert HC, Dong H. Inhibition behavior of Sennoside A and Sennoside C on amyloid fibrillation of human lysozyme and its possible mechanism. Int J Biol Macromol 2021; 178:424-433. [PMID: 33662415 DOI: 10.1016/j.ijbiomac.2021.02.213] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/24/2021] [Accepted: 02/27/2021] [Indexed: 11/29/2022]
Abstract
Amyloid proteins were recognized as the crucial cause of many senile diseases. In this study, the inhibitory effects of Sennoside A (SA) and Sennoside C (SC) on amyloid fibrillation were evaluated by the combination of biophysical approaches and molecular docking tool using human lysozyme (HL) as amyloid-forming model. The results of thioflavin-T (ThT), 8-anilino-1-naphthalenesulfonic acid (ANS) and congo red (CR) assays indicated that both SA and SC could inhibit the amyloid fibrillation of HL in a dose-dependent manner. The IC50 value of SA and SC on HL fibrillation was 200.09 μM and 186.20 μM, respectively. These findings were further verified by transmission electron microscopy (TEM) and atomic force microscopy (AFM), which showed that the addition of SA or SC could sharply reduce the amyloid fibrillation of HL. Additionally, the interactions of HL with SA and SC were investigated by steady-state fluorescence spectra and molecular docking studies. The results suggested that both SA and SC could bind to the binding pocket of HL and form a stable complex mainly via hydrogen bonds, van-der-Waals forces and hydrophobic interactions. In conclusion, our experiments revealed that both SA and SC can significantly inhibit amyloid fibrillation of HL.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Li Jin
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chunhong Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Ruiyan Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Zuzana Bednarikova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Zuzana Gazova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Kosice, Slovakia
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), 700054 Kolkata, India
| | - Hans-Christian Siebert
- RI-B-NT Research Institute of Bioinformatics and Nanotechnology, Franziusallee 177, 24148 Kiel, Germany
| | - Huijun Dong
- Department of Pharmacy, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
27
|
Dubey S, Kallubai M, Subramanyam R. Improving the inhibition of β-amyloid aggregation by withanolide and withanoside derivatives. Int J Biol Macromol 2021; 173:56-65. [PMID: 33465364 DOI: 10.1016/j.ijbiomac.2021.01.094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/11/2020] [Accepted: 01/14/2021] [Indexed: 12/01/2022]
Abstract
Here, we have studied the ameliorative effects of Withania somnifera derivatives (Withanolide A, Withanolide B, Withanoside IV, and Withanoside V) on the fibril formation of amyloid-β 42 for Alzheimer's disease. We analyzed reduction in the aggregation of β amyloid protein with these Ashwagandha derivatives by Thioflavin T assay in the oligomeric and fibrillar state. We have tested the cytotoxic activity of these compounds against human SK-N-SH cell line for 48 h, and the IC 50 value found to be 28.61 ± 2.91, 14.84 ± 1.45, 18.76 ± 0.76 and 30.14 ± 2.59 μM, respectively. After the treatment of the cells with half the concentration of IC 50 value, there was a remarkable decrease in the number of apoptotic cells stained by TUNEL assay indicating the DNA damage and also observed significant decrease of reactive oxygen species. Also, the binding and molecular stability of these derivatives with amyloid β was also studied using bioinformatics tools where these molecules were interacted at LVFFA region which is inhibition site of amyloid-β1 42. These studies revealed that the Withanolides and Withanosides interact with the hydrophobic core of amyloid-β 1-42 in the oligomeric stage, preventing further interaction with the monomers and diminishing aggregation.
Collapse
Affiliation(s)
- Shreya Dubey
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India
| | - Monika Kallubai
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana 500046, India.
| |
Collapse
|