1
|
Daraie M, Tajbakhsh M, Ayati A, Rashidi S. Ag nanoparticles on arginine-cyanoguanidine functionalized magnetic g-C 3N 4: A catalyst for nitroaromatic hydrogenation and regioselective click reactions. Heliyon 2024; 10:e38956. [PMID: 39435055 PMCID: PMC11491912 DOI: 10.1016/j.heliyon.2024.e38956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
This study describes the development of a novel hybrid nanocatalyst that was obtained by doping magnetic g-C3N4 with Ag nanoparticles and modifying it with arginine and cyanoguanidine (Ag@Fe3O4-g-C3N4-Arg-CG). Comprehensive characterization of the nanocatalyst using techniques such as FTIR, XRD, SEM, and TGA confirmed its structural and morphological properties. The catalytic efficiency of the synthesized nanostructure was evaluated in two key reactions: the reduction of nitroaromatic compounds and a click reaction for 1,2,3-triazole synthesis. The results demonstrate that Ag@Fe3O4-g-C3N4-Arg-CG effectively reduced various nitroaromatic compounds to substituted anilines at room temperature using NaBH4 as the reducing agent. Nitrobenzene reduction did not proceed in aprotic solvents such as acetonitrile, CH2Cl2, and dimethylformamide, whereas it exhibited a high reaction yield in protic solvents such as ethanol and water. The highest yield (100 %) was observed in water at 50 °C using H2O solvent. Additionally, the nanohybrid exhibited significant potential for "green" click chemistry by efficiently synthesizing 1,2,3-triazoles under mild conditions, with low catalyst loading. Its magnetic properties facilitated easy recovery, and the catalyst maintained high activity over six cycles, making it suitable for sustainable applications in organic transformations.
Collapse
Affiliation(s)
- Mansoureh Daraie
- Department of Chemistry, Science and Research Branch, Islamic Azad University, P.O. Box 14515/775, Tehran, Iran
| | - Mahmood Tajbakhsh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Ali Ayati
- Department of Chemical Engineering, Faculty of Advanced Technologies, Quchan University of Technology, Quchan, Iran
| | - Sara Rashidi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, P.O. Box 14515/775, Tehran, Iran
| |
Collapse
|
2
|
Sirajudheen P, Vigneshwaran S, Thomas N, Selvaraj M, Assiri MA, Park CM. Critical assessment of recent advancements in chitosan-functionalized iron and geopolymer-based adsorbents for the selective removal of arsenic from water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:946. [PMID: 39289191 DOI: 10.1007/s10661-024-13087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
Inorganic arsenic (As), a known carcinogen and major contaminant in drinking water, affects over 140 million people globally, with levels exceeding the World Health Organization's (WHO) guidelines of 10 μg L-1. Developing innovative technologies for effluent handling and decontaminating polluted water is critical. This paper summarizes the fundamental characteristics of chitosan-embedded composites for As adsorption from water. The primary challenge in selectively removing As ions is the presence of phosphate, which is chemically similar to As(V). This study evaluates and summarizes innovative As adsorbents based on chitosan and its composite modifications, focusing on factors influencing their adsorption affinity. The kinetics, isotherms, column models, and thermodynamic aspects of the sorption processes were also explored. Finally, the adsorption process and implications of functionalized chitosan for wastewater treatment were analyzed. There have been minimal developments in water disinfection using metal-biopolymer composites for environmental purposes. This field of study offers numerous research opportunities to expand the use of biopolymer composites as detoxifying materials and to gain deeper insights into the foundations of biopolymer composite adsorbents, which merit further investigation to enhance adsorbent stability.
Collapse
Affiliation(s)
- P Sirajudheen
- Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi, Malappuram, Kerala, 676306, India.
| | - S Vigneshwaran
- Environmental System Laboratory, Department of Civil Engineering, Kyung Hee University Global Campus, Seoul, 1732 Deogyong-daero, Giheung-Gu, Yongin-Si, Gyeonggi-Do, 16705, Republic of Korea
| | - Nygil Thomas
- Department of Chemistry, Nirmalagiri College, Kuthuparamba, Nirmalagiri P.O, Kannur, Kerala, 670701, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, 61413, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, 61413, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha, 61413, Saudi Arabia
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
3
|
Afzaal M, Nawaz R, Hussain S, Nadeem M, Irshad MA, Irfan A, Mannan HA, Al-Mutairi AA, Islam A, Al-Hussain SA, Rubab M, Zaki MEA. Removal of oxytetracycline from pharmaceutical wastewater using kappa carrageenan hydrogel. Sci Rep 2024; 14:19687. [PMID: 39181917 PMCID: PMC11344773 DOI: 10.1038/s41598-024-69989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
This study investigated the adsorption of Oxytetracycline (OTC) from pharmaceutical wastewater using a kappa carrageenan based hydrogel (KPB). The aim of the present study was to explore the potential of KPB for long-term pharmaceutical wastewater treatment. A sustainable adsorbent was developed to address oxytetracycline (OTC) contamination. The hydrogel's structural and adsorption characteristics were examined using various techniques like Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), X-ray powder diffraction (XRD), and kinetic models. The results revealed considerable changes in the vibrational modes and adsorption bands of the hydrogel, suggesting the effective functionalization of Bentonite nano-clay. Kappa carrageenan based hydrogel achieved the maximum removal (98.5%) of OTC at concerntration of 40 mg/L, pH 8, cotact time of 140 min and adsorbent dose of 0.1 g (KPB-3). Adsorption of OTC increased up to 99% with increasing initial concentrations. The study achieved 95% adsorption capacity for OTC using a KPB film at a concentration of 20 mg/L and a 0.1 g adsorbent dose within 60 min. It also revealed that chemisorptions processes outperform physical adsorption. The Pseudo-Second-Order model, which emphasized the importance of chemical adsorption in the removal process, is better suited to represent the adsorption behavior. Excellent matches were found that R2 = 0.99 for KPB-3, R2 = 0.984 for KPB-2 and R2 = 0.989 for KPB-1 indicated strong chemical bonding interactions. Statisctical analysis (ANOVA) was performed using SPSS (version 25) and it was found that pH and concentration had significant influence on OTC adsorption by the hydrogel, with p-values less than 0.05. The study identified that a Kappa carrageenan-based hydrogel with bentonite nano-clay and polyvinyl alcohol (PVA) can efficiently remove OTC from pharmaceutical effluent, with a p-value of 0.054, but weak positive linear associations with pH, temperature, and contact time. This research contributed to sustainable wastewater treatment and environmental engineering.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
- Faculty of Engineering and Quantity Surveying, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Saddam Hussain
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan
| | - Mahnoor Nadeem
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Hafiz Abdul Mannan
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Aamal A Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Atif Islam
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan
- School of Chemistry, University of the Punjab, Lahore, 54590, Pakistan
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Mehwish Rubab
- Department of Environmental Science, University of Okara, Renala Khurd Okara, 56130, Pakistan
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Gonçalves JO, Strieder MM, Silva LFO, Dos Reis GS, Dotto GL. Advanced technologies in water treatment: Chitosan and its modifications as effective agents in the adsorption of contaminants. Int J Biol Macromol 2024; 270:132307. [PMID: 38740151 DOI: 10.1016/j.ijbiomac.2024.132307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Chitosan, derived from the abundant biopolymer chitin, has emerged as a promising option for water treatment due to its intrinsic bioavailability. This review emphasizes the notable characteristics of chitosan, which allow for various modifications, expanding its applications. The polymer's effectiveness in adsorbing contaminants, particularly in advanced water treatment technologies, is highlighted. The review underscores the potential of chitosan-based hybrid materials, including nanocomposites, hydrogels, membranes, films, sponges, nanoparticles, microspheres, and flakes, as innovative alternatives to traditional chemical-based adsorbents. The advantages of using these materials in wastewater treatment, especially in removing heavy metals, dyes, and emerging compounds, are explored. The study delves into the mechanisms involved in wastewater treatment with chitosan, emphasizing the interactions between the polymer and various contaminants. Additionally, the application of chitosan as a contaminant removal agent in a post-pandemic context is addressed, considering the challenges related to waste management and environmental preservation. The analysis highlights the potential contribution of chitosan in mitigating environmental impacts post-pandemic, offering practical solutions for treating contaminated effluents and promoting sustainability. The study addresses current obstacles and prospects for chitosan-based wastewater treatment, emphasizing its promising role in sustainable water management.
Collapse
Affiliation(s)
- Janaína Oliveira Gonçalves
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia.
| | - Monique Martins Strieder
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, Rua Pedro Zaccaria 1300, Limeira, São Paulo 13484-350, Brazil
| | | | - Glaydson Simões Dos Reis
- Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900 Santa Maria, RS, Brazil.
| |
Collapse
|
5
|
Gumsel E, Bulut S, Okur M. Investigation of adsorption potential of acid violet 90 dye with chitosan/halloysite/boron nitride composite materials. Int J Biol Macromol 2024; 264:130531. [PMID: 38428759 DOI: 10.1016/j.ijbiomac.2024.130531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
In this study, composite adsorbents consisting of a mixture of chitosan (CTS), boron nitride (h-BN) and halloysite (HNT) were used for the adsorption of Acid Violet 90 (AV90) dye in a batch system. Adsorbents CTS, CTS/HNT, CTS/h-BN and CTS/h-BN/HNT beads were prepared by simple dropping method and dried in a freeze dryer. The beads were characterized by FT-IR, SEM and zeta potential analysis. The effects of pH (2-8) and dye concentration (50-250 mg/L) on AV90 adsorption properties of beads were investigated. In addition, Langmuir, Freunlich, Temkin and Henry adsorption isotherm models were used to examine the dye adsorption mechanism. It was observed that the Langmuir and Freundlich adsorption isotherm models were in good agreement with the experimental data. In the dye concentration range studied, the qm values of CTS, CTS/h-BN1, CTS/h-BN3, CTS/HNT/h-BN1, CTS/HNT/h-BN3, CTS/HNT obtained from the Langmuir isotherm model was 27.62, 17.80, 10.11, 8.71, 32.57, 19.96 mg/g, respectively. Pseudo-first order, pseudo-second order and intra-particle diffusion kinetic models were used to examine the adsorption kinetics of adsorbents. As a result, it is thought that the use of this study in the field of dye adsorption can be an innovative and important study.
Collapse
Affiliation(s)
- Elif Gumsel
- Gazi University, Faculty of Engineering, Department of Chemical Engineering, 06570 Ankara, Turkey
| | - SeherNur Bulut
- Gazi University, Faculty of Engineering, Department of Chemical Engineering, 06570 Ankara, Turkey
| | - Mujgan Okur
- Gazi University, Faculty of Engineering, Department of Chemical Engineering, 06570 Ankara, Turkey.
| |
Collapse
|
6
|
Kallawar GA, Bhanvase BA. A review on existing and emerging approaches for textile wastewater treatments: challenges and future perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1748-1789. [PMID: 38055170 DOI: 10.1007/s11356-023-31175-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023]
Abstract
This comprehensive review explores the complex environment of textile wastewater treatment technologies, highlighting both well-established and emerging techniques. Textile wastewater poses a significant environmental challenge, containing diverse contaminants and chemicals. The review presents a detailed examination of conventional treatments such as coagulation, flocculation, and biological processes, highlighting their effectiveness and limitations. In textile industry, various textile operations such as sizing, de-sizing, dyeing, bleaching, and mercerization consume large quantities of water generating effluent high in color, chemical oxygen demand, and solids. The dyes, mordants, and variety of other chemicals used in textile processing lead to effluent variable in characteristics. Furthermore, it explores innovative and emerging techniques, including advanced oxidation processes, membrane filtration, and nanotechnology-based solutions. Future perspectives in textile wastewater treatment are discussed in-depth, emphasizing the importance of interdisciplinary research, technological advancements, and the integration of circular economy principles. Numerous dyes used in the textile industry have been shown to have mutagenic, cytotoxic, and ecotoxic potential in studies. Therefore, it is necessary to assess the methods used to remediate textile waste water. Major topics including the chemical composition of textile waste water, the chemistry of the dye molecules, the selection of a treatment technique, the benefits and drawbacks of the various treatment options, and the cost of operation are also addressed. Overall, this review offers a valuable resource for researchers and industry professionals working in the textile industry, pointing towards a more sustainable and environmentally responsible future.
Collapse
Affiliation(s)
- Gauri A Kallawar
- Department of Chemical Technology, Dr. Babasaheb Ambedkar, Marathwada University, Chatrapati Sambhajinagar, 431004, MS, India
- Department of Chemical Engineering, Laxminarayan Innovation Technological University (Formerly Laxminarayan Institute of Technology), Nagpur, 440033, MS, India
| | - Bharat A Bhanvase
- Department of Chemical Engineering, Laxminarayan Innovation Technological University (Formerly Laxminarayan Institute of Technology), Nagpur, 440033, MS, India.
| |
Collapse
|
7
|
Wang Q, Jia X, Jin M, Guo R, Niu B, Yan H, Wang H. A magnetically recyclable carboxyl-functionalized chitosan composite for efficiently removing methyl orange from wastewater: Isotherm, kinetics, thermodynamic, and adsorption mechanism. Int J Biol Macromol 2023; 253:126631. [PMID: 37659500 DOI: 10.1016/j.ijbiomac.2023.126631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
In this study, a kind of magnetically recyclable adsorbent for dyes was synthesized by grafting diethylenetriamine pentaacetate acid (DTPA) to the composite of Fe3O4 microspheres and crosslinked chitosan (CS). The microstructures, molecular structure, crystal structure, and magnetic hysteresis loops of the chitosan matrix adsorbent before and after grafting was characterized. The results suggested that DTPA was covalent bonded with the composite of Fe3O4 microspheres and chitosan. The modified composite has larger specific surface area and can realize rapid solid-liquid separation. Batch experiments were conducted to optimize the parameters affecting the adsorption of methyl orange (MO). The adsorption process could be better described by pseudo-second-order kinetics model and Langmuir isotherm equation, and its saturated adsorption capacity of the modified adsorbents was 1541.5 mg·g-1 at 25 °C, which was 1.40 times of that the unmodified adsorbent (1104.1 mg·g-1). The obtained values of the thermodynamic parameters indicated that the adsorption was a spontaneous process. The regeneration experiment proved the stability and reproducibility of the adsorbent even after five cycles of adsorption-desorption. The primary adsorption mechanism was electrostatic interaction and hydrogen bonding. The adsorbent could be potentially applied for removing dyes from wastewater in wide pH of range, especially acid wastewater.
Collapse
Affiliation(s)
- Qingqing Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaoli Jia
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Mingchao Jin
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Ruijie Guo
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Baolong Niu
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Hong Yan
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China; College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Huifang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, PR China.
| |
Collapse
|
8
|
Morshedaski N, Raji F, Rahbar-Kelishami A. Optimization of Y and T-shaped microchannels for liquid-liquid extraction. Sci Rep 2023; 13:19708. [PMID: 37953298 PMCID: PMC10641066 DOI: 10.1038/s41598-023-46333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Solvent extraction on a micro-scale has received much attention due to its advantages in recent years. The purpose of this research is to compare the inlet geometry of T and Y-shaped microchannels. In this research, solvent extraction of Crystal Violet (CV) was investigated using Di-(2-ethylhexyl) phosphoric acid (D2EHPA) extractor and hexane solvent in Y and T-shaped microchannels with lengths of 4, 6, and 8 cm. The effect of parameters such as inlet geometry, length of microchannels (4-8 cm), dye solution pH (3-11), flow rate (1-1.5 mL/h) and the concentration of CV (25-75 ppm) was investigated. The Results showed that under the same conditions, Y-shaped microchannel performance is better than T-shaped microchannel. pH of dye solution phase, flow rate, inlet CV concentration, and microchannel length were obtained as optimal conditions for extraction, 10.9, 1.1 mL/h, 46.4 ppm, and 7.6 cm, respectively, and the amount of extraction, in this case, was % 97/96 was obtained.
Collapse
Affiliation(s)
- Negah Morshedaski
- Research Lab for Advanced Separation Processes, Faculty of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Farshad Raji
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Ahmad Rahbar-Kelishami
- Research Lab for Advanced Separation Processes, Faculty of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran.
| |
Collapse
|
9
|
Chelu M, Musuc AM, Popa M, Calderon Moreno JM. Chitosan Hydrogels for Water Purification Applications. Gels 2023; 9:664. [PMID: 37623119 PMCID: PMC10453846 DOI: 10.3390/gels9080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Chitosan-based hydrogels have gained significant attention for their potential applications in water treatment and purification due to their remarkable properties such as bioavailability, biocompatibility, biodegradability, environmental friendliness, high pollutants adsorption capacity, and water adsorption capacity. This article comprehensively reviews recent advances in chitosan-based hydrogel materials for water purification applications. The synthesis methods, structural properties, and water purification performance of chitosan-based hydrogels are critically analyzed. The incorporation of various nanomaterials into chitosan-based hydrogels, such as nanoparticles, graphene, and metal-organic frameworks, has been explored to enhance their performance. The mechanisms of water purification, including adsorption, filtration, and antimicrobial activity, are also discussed in detail. The potential of chitosan-based hydrogels for the removal of pollutants, such as heavy metals, organic contaminants, and microorganisms, from water sources is highlighted. Moreover, the challenges and future perspectives of chitosan-based hydrogels in water treatment and water purification applications are also illustrated. Overall, this article provides valuable insights into the current state of the art regarding chitosan-based hydrogels for water purification applications and highlights their potential for addressing global water pollution challenges.
Collapse
Affiliation(s)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| | | | - Jose M. Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| |
Collapse
|
10
|
Rusu L, Suceveanu EM, Blaga AC, Nedeff FM, Șuteu D. Insights into Recent Advances of Biomaterials Based on Microbial Biomass and Natural Polymers for Sustainable Removal of Pharmaceuticals Residues. Polymers (Basel) 2023; 15:2923. [PMID: 37447569 DOI: 10.3390/polym15132923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Pharmaceuticals are acknowledged as emerging contaminants in water resources. The concentration of pharmaceutical compounds in the environment has increased due to the rapid development of the pharmaceutical industry, the increasing use of human and veterinary drugs, and the ineffectiveness of conventional technologies to remove pharmaceutical compounds from water. The application of biomaterials derived from renewable resources in emerging pollutant removal techniques constitutes a new research direction in the field. In this context, the article reviews the literature on pharmaceutical removal from water sources using microbial biomass and natural polymers in biosorption or biodegradation processes. Microorganisms, in their active or inactive form, natural polymers and biocomposites based on inorganic materials, as well as microbial biomass immobilized or encapsulated in polymer matrix, were analyzed in this work. The review examines the benefits, limitations, and drawbacks of employing these biomaterials, as well as the prospects for future research and industrial implementation. From these points of view, current trends in the field are clearly reviewed. Finally, this study demonstrated how biocomposites made of natural polymers and microbial biomass suggest a viable adsorbent biomaterial for reducing environmental pollution that is also efficient, inexpensive, and sustainable.
Collapse
Affiliation(s)
- Lăcrămioara Rusu
- Faculty of Engineering, "Vasile Alecsandri" University of Bacau, 157 Calea Mărăşeşti, 600115 Bacau, Romania
| | - Elena-Mirela Suceveanu
- Faculty of Engineering, "Vasile Alecsandri" University of Bacau, 157 Calea Mărăşeşti, 600115 Bacau, Romania
| | - Alexandra-Cristina Blaga
- Faculty of Chemical Engineering an Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University from Iasi, 71 A Mangeron Blvd., 700050 Iasi, Romania
| | - Florin Marian Nedeff
- Faculty of Engineering, "Vasile Alecsandri" University of Bacau, 157 Calea Mărăşeşti, 600115 Bacau, Romania
| | - Daniela Șuteu
- Faculty of Chemical Engineering an Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University from Iasi, 71 A Mangeron Blvd., 700050 Iasi, Romania
| |
Collapse
|
11
|
Ayati A, Tanhaei B, Beiki H, Krivoshapkin P, Krivoshapkina E, Tracey C. Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: A review. CHEMOSPHERE 2023; 323:138241. [PMID: 36841446 DOI: 10.1016/j.chemosphere.2023.138241] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Over the last decade, the removal of pharmaceuticals from aquatic bodies has garnered substantial attention from the scientific community. Ibuprofen (IBP), a non-steroidal anti-inflammatory drug, is released into the environment in pharmaceutical waste as well as medical, hospital, and household effluents. Adsorption technology is a highly efficient approach to reduce the IBP in the aquatic environment, particularly at low IBP concentrations. Due to the exceptional surface properties of carbonaceous materials, they are considered ideal adsorbents for the IBP removal of, with high binding capacity. Given the importance of the topic, the adsorptive removal of IBP from effluent using various carbonaceous adsorbents, including activated carbon, biochar, graphene-based materials, and carbon nanostructures, has been compiled and critically reviewed. Furthermore, the adsorption behavior, binding mechanisms, the most effective parameters, thermodynamics, and regeneration methods as well as the cost analysis were comprehensively reviewed for modified and unmodified carbonaceous adsorbents. The compiled studies on the IBP adsorption shows that the IBP uptake of some carbon-based adsorbents is significantly than that of commercial activated carbons. In the future, much attention is needed for practical utilization and upscaling of the research findings to aid the management and sustainability of water resource.
Collapse
Affiliation(s)
- Ali Ayati
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia.
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Hossein Beiki
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Elena Krivoshapkina
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Chantal Tracey
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
12
|
Liu P, Song T, Deng R, Hou X, Yi J. The efficient removal of congo red and ciprofloxacin by peony seeds shell activated carbon with ultra-high specific surface area. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53177-53190. [PMID: 36853543 PMCID: PMC9973249 DOI: 10.1007/s11356-023-26146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Preparation of high-performance activated carbon from agroforestry waste biomass can effectively improve the shortcomings of traditional biomass carbon performance. Using the waste biomass peony seeds shell (PSS) as the precursors in this study, high performance activated carbon was prepared by the KOH two-step activation method and used to remove congo red (CR) and ciprofloxacin (CIP) in water pollution. The obtained PSS-based activated carbons (PSACs) were characterized by SEM, EDS, N2 adsorption-desorption isotherm, FTIR, and XRD methods. The results showed that the activated carbon at 700 °C (PSAC-700) had an ultra-high specific surface area (2980.96 m2/g), excellent micropore volume (1.12 cm3/g), and abundant surface functional groups. The results of adsorption performance revealed that PSAC-700 exhibited excellent adsorption capacity for CR (qmax = 2003.2 mg/g) and CIP (qmax = 782.3 mg/g), which was superior to the carbon-based adsorbents reported reviously in the literature. Langmuir model could well describe the adsorption process of PSACs for CR and CIP, indicating that the pollutant molecules were uniformly adsorbed on the surface monolayer. The regeneration experiment suggested that after three cycles, the adsorption capacities of PSAC-700 for CR and CIP reached 1814 mg/g and 697 mg/g, respectively, with good repeatability. The preparation of PSAC-700 in this study has high adsorption capacity and strong application, which is an ideal material for wastewater purification adsorbent and has broad application prospect.
Collapse
Affiliation(s)
- Pu Liu
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China.
| | - Tianpeng Song
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Ruixue Deng
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Xiaogai Hou
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| | - Junpeng Yi
- Luoyang Key Laboratory of Natural Products Functional Factor Research and Development, Chemical Engineering & Pharmaceutical College, Henan University of Science and Technology, Luoyang, 471023, Henan, China
| |
Collapse
|
13
|
Enhanced removal of anionic Methyl Orange azo dye by an Iron oxide (Fe3O4) loaded Lotus leaf powder (LLP@Fe3O4) composite: Synthesis, characterization, kinetics, isotherms, and thermodynamic perspectives. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
14
|
Valizadeh K, Bateni A, Sojoodi N, Rafiei R, Behroozi AH, Maleki A. Preparation and characterization of chitosan-curdlan composite magnetized by zinc ferrite for efficient adsorption of tetracycline antibiotics in water. Int J Biol Macromol 2023; 235:123826. [PMID: 36828094 DOI: 10.1016/j.ijbiomac.2023.123826] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Tetracycline (TC) antibiotic-related water pollution directly threatens human health and ecosystems. Here, a zinc ferrite/chitosan-curdlan (ZNF/CHT-CRD) magnetic composite was prepared via a co-precipitation method to be used as a novel, green adsorbent for TC removal from water. Benefiting from a multitude of functional groups, CRD was first crosslinked with CHT and then magnetized with ZNF to provide an easy separation from the solution with an external magnetic force. The successful synthesis and magnetization of the composite were verified with different characterization techniques. The effect of solution pH and composite dosage was carefully evaluated. The optimum solution pH and composite dosage were 6 and 0.65 g/L, respectively, with complete TC removal. The adsorption process by the magnetic composite followed the pseudo-first-order kinetics and Langmuir isotherm models. The maximum adsorption capacity determined from the Langmuir model was 371.42 mg/g at 328 K. Thermodynamic parameters indicated endothermic and spontaneous adsorption. Meanwhile, the composite could be readily separated from the aqueous solution thanks to its magnetic property. Then, it was regenerated with acetone and ethanol to be reused for five more successive cycles. Interestingly, the prepared adsorbent was highly stable and performant in removing TC, maintaining approximately 90 % of its first-cycle adsorption capacity. The adsorption mechanism was primarily attributed to electrostatic and hydrogen bonding attractions. Overall, the currently developed adsorbent could be a more favorable, efficient, and cost-effective candidate than other magnetic chitosan-based composites. These features make it applicable for treating water contaminated with various pharmaceutical pollutants with high separation efficiency and easy recovery under successive adsorption-desorption cycles.
Collapse
Affiliation(s)
- Kamran Valizadeh
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Bateni
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nazanin Sojoodi
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Rana Rafiei
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Amir Hossein Behroozi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
15
|
Jiang R, Shen TT, Zhu HY, Fu YQ, Jiang ST, Li JB, Wang JL. Magnetic Fe 3O 4 embedded chitosan-crosslinked-polyacrylamide composites with enhanced removal of food dye: Characterization, adsorption and mechanism. Int J Biol Macromol 2023; 227:1234-1244. [PMID: 36464188 DOI: 10.1016/j.ijbiomac.2022.11.310] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
The water solubility in acid solution, relative low adsorption capacities and unsatisfactory separation performance limit application of traditional chitosan-based adsorbents in wastewater treatment. To break the limitation, a hydrophilic magnetic Fe3O4 embedded chitosan-crosslinked-polyacrylamide composites (abbreviated as m-CS-c-PAM) were prepared by a two-step method. The m-CS-c-PAM composites were systematically characterized using SEM, XRD, FTIR, VSM, TGA and BET. Sunset yellow (SY) was selected as model food dye to investigate adsorption kinetics and thermodynamic parameters of food dye adsorption onto m-CS-c-PAM. Compared with magnetic Fe3O4/chitosan, m-CS-c-PAM can adapt to a wider range of pH (2-10) and resist the presence of inorganic salts. m-CS-c-PAM was proved to have high adsorption capacity (359.71 mg g-1) for SY dye at 298 K, much higher than magnetic Fe3O4/chitosan and many reported adsorbents. Moreover, m-CS-c-PAM could be rapidly and efficiently separated from treated solution within 15 s by an external magnet and regenerated by NaOH solution. With its excellent adsorption capacity, pH-independent adsorption capability for food dye, easy and convenient separation ability, satisfactory reusability, m-CS-c-PAM can be a promising material for food wastewater treatment.
Collapse
Affiliation(s)
- Ru Jiang
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, Zhejiang, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Ting-Ting Shen
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Hua-Yue Zhu
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, Zhejiang, China; Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, China.
| | - Yong-Qian Fu
- Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Taizhou 318000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Sheng-Tao Jiang
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, Zhejiang, China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, China
| | - Jian-Bing Li
- Environmental Engineering Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Jian-Ling Wang
- Department of Environmental Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| |
Collapse
|
16
|
Prasetyo E, Toyoda K. Humic acid attachment on chitosan-modified silica gel as an economical, efficient, and selective adsorbent for thorium and uranium removal. ENVIRONMENTAL TECHNOLOGY 2023; 44:170-184. [PMID: 34384343 DOI: 10.1080/09593330.2021.1968038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
A novel, low-cost adsorbent material was prepared by the immobilization of humic acid on a silica gel surface coated with cross-linked chitosan (SiChiHA). The adsorbent was developed to remove selectively of Th(IV) and U(VI) from aqueous solution, including their pre-concentration and separation from lanthanides and high salinity conditions. A simple waste-less humic acid immobilization method was shown to be successful based on FT-IR, SEM-EDS, and zeta potential characterization results. The adsorbent was found to be stable over a wide pH range, with the highest capacities obtained at pH 3.5 (Th(IV)) and pH 5 (U(VI)). Langmuir model calculations yielded a maximum capacity of 30.6 mg g-1 and 75.4 mg g-1 for Th(IV) and U(VI). The adsorption process was found to be rapid (half concentration was removed within 10 min) and best described by a pseudo-second order rate equation. Increasing NaCl concentration up to 2 mol L-1 or lanthanide concentration up to 100 times did not significantly affect the removal efficiency for either Th(IV) of U(VI). Both elements could be sequentially separated by elution with ammonium citrate and nitric acid, respectively. The adsorption-desorption experiment showed that the adsorbent could be used for at least five cycles without significant capacity loss. This study provides insight into the development of low-cost adsorbent with practical functionality, including separation and regeneration ability, the advantageous properties scarcely reported in low-cost adsorbent literature.
Collapse
Affiliation(s)
- Erik Prasetyo
- Graduate School of Environmental Science (GSES), Hokkaido University, Sapporo, Japan
- Research Unit for Mineral Technology, Indonesian Institute of Sciences, Bandar Lampung, Indonesia
| | - Kazuhiro Toyoda
- Graduate School of Environmental Science (GSES), Hokkaido University, Sapporo, Japan
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Valizadeh K, Bateni A, Sojoodi N, Ataabadi MR, Behroozi AH, Maleki A, You Z. Magnetized inulin by Fe 3O 4 as a bio-nano adsorbent for treating water contaminated with methyl orange and crystal violet dyes. Sci Rep 2022; 12:22034. [PMID: 36539589 PMCID: PMC9767922 DOI: 10.1038/s41598-022-26652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Current work focuses on fabricating a new bio-nano adsorbent of Fe3O4@inulin nanocomposite via an in-situ co-precipitation procedure to adsorb methyl orange (MO) and crystal violet (CV) dyes from aqueous solutions. Different physical characterization analyses verified the successful fabrication of the magnetic nanocomposite. The adsorbent performance in dye removal was evaluated by varying initial dye concentration, adsorbent dosage, pH and temperature in 5110 mg/L, 0.10.8 g/L, 111 and 283-338 K, respectively. Due to the pH of zero point of charge and intrinsic properties of dyes, the optimum pHs were 5 and 7 for MO and CV adsorption, respectively. The correlation of coefficient (R2) and reduced chi-squared value were the criteria in order to select the best isotherm and kinetics models. The Langmuir model illustrated a better fit for the adsorption data for both dyes, demonstrating the maximum adsorption capacity of 276.26 and 223.57 mg/g at 338 K for MO and CV, respectively. As well, the pseudo-second-order model showed a better fitness for kinetics data compared to the pseudo-first-order and Elovich models. The thermodynamic parameters exhibited that the dye adsorption process is endothermic and spontaneous, which supported the enhanced adsorption rate by increasing temperature. Moreover, the nanocomposite presented outstanding capacity and stability after 6 successive cycles by retaining more than 87% of its initial dye removal efficiency. Overall, the magnetized inulin with Fe3O4 could be a competent adsorbent for eliminating anionic and cationic dyes from water.
Collapse
Affiliation(s)
- Kamran Valizadeh
- grid.411463.50000 0001 0706 2472Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Bateni
- grid.411463.50000 0001 0706 2472Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nazanin Sojoodi
- grid.411463.50000 0001 0706 2472Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Rostami Ataabadi
- grid.411748.f0000 0001 0387 0587School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Amir Hossein Behroozi
- grid.411748.f0000 0001 0387 0587School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- grid.411748.f0000 0001 0387 0587Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114 Iran
| | - Zhenjiang You
- grid.1038.a0000 0004 0389 4302Center for Sustainable Energy and Resources, Edith Cowan University, Joondalup, WA 6027 Australia ,grid.1003.20000 0000 9320 7537School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
18
|
Bisaria K, Wadhwa S, Mathur A, Roy S, Dixit A, Singh R. New bismuth oxyiodide/chitosan nanocomposite for ultrasonic waves expedited adsorptive removal of amoxicillin from aqueous medium: kinetic, isotherm and thermodynamic investigations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86260-86276. [PMID: 34993771 DOI: 10.1007/s11356-021-17546-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Amoxicillin (AMX) is a widely used antibiotic, which induces harmful effects to nature via bioaccumulation and persistence in the environment if discharged untreated into water bodies. In the current study, a novel bionanocomposite, bismuth oxyiodide-chitosan (BiOI-Ch), was synthesized by a facile precipitation method and its amoxicillin (AMX) adsorption capacity in the presence of ultrasonic waves has been explored. Multiple batch experiments were performed to achieve the optimum operational parameters for maximum adsorption of AMX and the obtained results were as follows: pH 3, 80 mg g-1 AMX concentration, 1.7 g L-1 adsorbent dose, temperature 298 K and ultrasonication time 20 min. Composite removed approximately 90% AMX from the solution under optimized conditions, while the maximal adsorption capacity was determined to be 81.01 mg g-1. BiOI-Ch exhibited superior adsorption capacity as compared to pure BiOI (33.78 mg g-1). To understand the dynamics of reaction, several kinetic and isotherm models were also examined. The adsorption process obeyed pseudo-second-order kinetic model (R2 = 0.98) and was well fitted to Freundlich isotherm (R2 = 0.99). The addition of biowaste chitosan to non-toxic bismuth-based nanoparticles coupled with ultrasonication led to enhanced functional groups as well as surface area of the nanocomposite resulting in superior adsorption capacity, fast adsorption kinetics and improved mass transfer for the removal of AMX molecules. Thus, this study demonstrates the synergistic effect of ultrasonication in improved performance of novel BiOI-Ch for potential application in the elimination of persistent and detrimental pollutants from industrial effluent after necessary optimization for large-scale operation.
Collapse
Affiliation(s)
- Kavya Bisaria
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Shikha Wadhwa
- Department of Chemistry, School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| | - Ashish Mathur
- Department of Physics, School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
| | - Souradeep Roy
- Center for Interdisciplinary Research and Innovation, University of Petroleum and Energy Studies, Dehdradun, India
| | - Ashwani Dixit
- Central Pulp and Paper Research Institute, Saharanpur, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
19
|
Shahinpour A, Tanhaei B, Ayati A, Beiki H, Sillanpää M. Binary dyes adsorption onto novel designed magnetic clay-biopolymer hydrogel involves characterization and adsorption performance: Kinetic, equilibrium, thermodynamic, and adsorption mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Rahimzadeh G, Tajbakhsh M, Daraie M, Ayati A. Heteropolyacid coupled with cyanoguanidine decorated magnetic chitosan as an efficient catalyst for the synthesis of pyranochromene derivatives. Sci Rep 2022; 12:17027. [PMID: 36220912 PMCID: PMC9554034 DOI: 10.1038/s41598-022-21196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 12/29/2022] Open
Abstract
In this study, a novel nanocatalyst was successfully prepared by heteropolyacid immobilization of magnetic chitosan-cyanoguanidine composite and fully characterized by different analysis methods, including FTIR, XRD, TGA, SEM, and EDS. The catalytic activity of fabricated composite was examined in a one-pot three-component reaction, involving the diverse active methylene compounds, various aryl aldehydes, and malononitrile in water. The results revealed the efficient catalytic performance of composite, while all reactions proceeded smoothly and led to the formation of the corresponding pyranochromene derivatives in high to excellent yields.
Collapse
Affiliation(s)
- Golnaz Rahimzadeh
- grid.411622.20000 0000 9618 7703Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mahmood Tajbakhsh
- grid.411622.20000 0000 9618 7703Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Mansoureh Daraie
- grid.411463.50000 0001 0706 2472Department of Chemistry, Science and Research Branch, Islamic Azad University, P.O. Box 14515/775, Tehran, Iran
| | - Ali Ayati
- grid.449416.a0000 0004 7433 8899Department of Chemical Engineering, Quchan University Technology, Quchan, Iran
| |
Collapse
|
21
|
Eltaweil AS, Hashem OA, Abdel-Hamid H, Abd El-Monaem EM, Ayoup MS. Synthesis of a new magnetic Sulfacetamide-Ethylacetoacetate hydrazone-chitosan Schiff-base for Cr(VI) removal. Int J Biol Macromol 2022; 222:1465-1475. [PMID: 36113599 DOI: 10.1016/j.ijbiomac.2022.09.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 01/13/2023]
Abstract
In this study, a novel magnetic organic-inorganic composite was fabricated. Where, Chitosan, sulfacetamide and ethylacetoacetae were used to prepare a new Sulfacetamide-Ethylacetoacetate hydrazone-chitosan Schiff-base (SEH-CSB) with a variety of active sites that capable of forming coordinate covalent bonds with Cr(VI). This was followed by modification of the formed SHE-CSB with NiFe2O4 to obtain the magnetic Chitosan-Schiff-base (NiFe2O4@SEH-CSB). NiFe2O4@SEH-CSB was characterized using FTIR, zeta potential, SEM, VSM and XPS. Results clarified that SHE played a crucial role in the removal of Cr(VI). The removal of Cr(VI) on NiFe2O4@SEH-CSB was found to be more fitted to pseudo-2nd order kinetics model and Freundlich isotherm. Besides, the maximum adsorption capacity of NiFe2O4@SEH-CSB for Cr(VI) was found to be 373.61 mg/g. The plausible mechanism for the removal of Cr(VI) on NiFe2O4@SEH-CSB composite suggested coulombic interaction, outer-sphere complexation, ion-exchange, surface complexation and coordinate-covalent bond pathways. The magnetic property enabled easy recycling of NiFe2O4@SEH-CSB composite.
Collapse
Affiliation(s)
| | - Omar A Hashem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Hamida Abdel-Hamid
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohammed Salah Ayoup
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
22
|
Insight into the adsorption of dyes onto chitin in aqueous solution: An experimental and computational study. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
Chen Q, Qi Y, Jiang Y, Quan W, Luo H, Wu K, Li S, Ouyang Q. Progress in Research of Chitosan Chemical Modification Technologies and Their Applications. Mar Drugs 2022; 20:md20080536. [PMID: 36005539 PMCID: PMC9410415 DOI: 10.3390/md20080536] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, which is derived from chitin, is the only known natural alkaline cationic polymer. Chitosan is a biological material that can significantly improve the living standard of the country. It has excellent properties such as good biodegradability, biocompatibility, and cell affinity, and has excellent biological activities such as antibacterial, antioxidant, and hemostasis. In recent years, the demand has increased significantly in many fields and has huge application potential. Due to the poor water solubility of chitosan, its wide application is limited. However, chemical modification of the chitosan matrix structure can improve its solubility and biological activity, thereby expanding its application range. The review covers the period from 1996 to 2022 and was elaborated by searching Google Scholar, PubMed, Elsevier, ACS publications, MDPI, Web of Science, Springer, and other databases. The various chemical modification methods of chitosan and its main activities and application research progress were reviewed. In general, the modification of chitosan and the application of its derivatives have had great progress, such as various reactions, optimization of conditions, new synthetic routes, and synthesis of various novel multifunctional chitosan derivatives. The chemical properties of modified chitosan are usually better than those of unmodified chitosan, so chitosan derivatives have been widely used and have more promising prospects. This paper aims to explore the latest progress in chitosan chemical modification technologies and analyze the application of chitosan and its derivatives in various fields, including pharmaceuticals and textiles, thus providing a basis for further development and utilization of chitosan.
Collapse
Affiliation(s)
- Qizhou Chen
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Yi Qi
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Yuwei Jiang
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Weiyan Quan
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Hui Luo
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Correspondence: (H.L.); (Q.O.); Tel.: +86-137-0273-9877 (H.L.); +86-180-2842-0107 (Q.O.)
| | - Kefeng Wu
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Sidong Li
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Qianqian Ouyang
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Correspondence: (H.L.); (Q.O.); Tel.: +86-137-0273-9877 (H.L.); +86-180-2842-0107 (Q.O.)
| |
Collapse
|
24
|
Rial JB, Ferreira ML. Potential applications of spent adsorbents and catalysts: Re-valorization of waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153370. [PMID: 35093378 DOI: 10.1016/j.scitotenv.2022.153370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 05/27/2023]
Abstract
Water pollution has increased with the growth of human population and its industrial activities. Textile effluents constitute a particular threat due to the presence of heavy metals and dyes. Adsorption is one of the most applied technologies in contaminant removal owing to its high efficiency, low cost, practical implementation and possibility to operate in several experimental conditions. However, this process implies the generation of spent materials, representing a limitation to scale-up. Although the applications of exhausted solids in effluent treatments have not been extensively reviewed before, their reutilization appears to be an environmentally and economically attainable alternative. This work summarizes the potential value of solids post-use. The open literature reports that spent adsorbents based on polysaccharides with iron oxides may adsorb up to 1 g g-1 of organic pollutants and up to near 100% of metallic ions from wastewater (Cu2+, Cd2+, Zn2+, Pb2+). The studied conditions vary from 30 to 60 °C, 0,05 to 6 g L-1 of adsorbent, 10 mg L-1 to 250 mg L-1 of organic pollutants (dyes) and pH between 2 and 8. Spent adsorbents in dye removal have proven to have near 95% efficiency in metallic ion adsorption. Otherwise, the spent solids could be applied to remove Ca2+ and Mg2+ to decrease the hardness of water. Furthermore, at the end-of-life, these materials could be used in cement and ceramic production. To achieve these aims, it is necessary to design the bioadsorbents and biocatalysts considering not only their primary uses (as adsorbent of organic pollutants), but also secondary applications (as toxic metal or hardness removal) and even their final destination (as additive in ceramic or cement production). Finally, further studies are required on the composition, properties, stability at long-term and the life-cycle cost of these materials when they are applied in the construction industry.
Collapse
Affiliation(s)
- Juliana Belen Rial
- PLAPIQUI-UNS-CONICET, Camino La Carrindanga Km 7, CC 717, 8000 Bahía Blanca, Argentina; Departamento de Ingeniería Química, UNS, Avda. Alem 1253, 8000 Bahía Blanca, Argentina.
| | - María Luján Ferreira
- PLAPIQUI-UNS-CONICET, Camino La Carrindanga Km 7, CC 717, 8000 Bahía Blanca, Argentina; Departamento de Química, UNS, Avda. Alem 1253, 8000 Bahía Blanca, Argentina
| |
Collapse
|
25
|
Abstract
The extensive use of color dyes in modern society has resulted in serious concerns of water contamination. Many organic dyes bear charges; thus, materials of opposite charges have been tested for sorptive removal. However, the results from several studies also showed that anionic dyes methyl orange (MO) and alizarin red S (ARS) could be removed from water using minerals of negative charges, but the mechanisms were not addressed. In this study, negatively charged clinoptilolite was tested for its removal of anionic dyes MO and ARS from water under different physico-chemical conditions and to investigate the mechanism of Mo and ARS removal. The sorption capacities were 166 and 92 mmol/kg for MO and ARS, respectively, confirming the uptake of anionic dyes on negatively charged framework silicates. The influence of solution pH and ionic strength on MO removal was minimal, indicating the strong affinity of anionic dyes for clinoptilolite in comparison to other inorganic species. It was speculated that the N in the dimethyl group may bear a partial positive charge, which may have a net electrostatic attraction to the negatively charged mineral surfaces for MO sorption. For ARS, sorption may involve hydrogen bonding formation between the dye and the clinoptilolite. Moreover, under the experimental conditions, the MO molecules form dimers in solution via dimeric π-π interactions. Thus, the sorption of the dimers or aggregation of the MO monomers and dimers on clinoptilolite surface was attributed to additional MO removal, as suggested by molecular dynamic simulations. The speculation was supported by FTIR analyses and molecular dynamic simulations. As such, negatively charged Earth materials may be used as sorbents for the removal of certain anionic dyes via sorption, a new perspective for the innovative use of Earth materials.
Collapse
|
26
|
Jin Y, Zhang B, Chen G, Chen H, Tang S. Combining biological and chemical methods to disassemble of cellulose from corn straw for the preparation of porous carbons with enhanced adsorption performance. Int J Biol Macromol 2022; 209:315-329. [PMID: 35405151 DOI: 10.1016/j.ijbiomac.2022.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 12/20/2022]
Abstract
In this study, we used a combination of chemical and biological pretreatment methods to extract cellulose from corn straw with a relative content of 92.40%. The adsorption performance and mechanism of the prepared porous carbon were investigated using synthetic dye malachite green (MG) and antibiotic tetracycline hydrochloride (TC) as adsorption models. The kinetic studies suggested that the adsorption followed the pseudo-second-order model and Bangham model. The Freundlich isotherm model fitted the adsorption data best for both MG and TC. The thermodynamic studies showed that the adsorption of MG and TC by adsorbents were spontaneous and endothermic in nature. In addition, the adsorption performance was maintained at 50% of the original value after five cycles. More importantly, this method not only improved the adsorption performance of prepared porous carbon materials but also provides a reference for the application of other lignocellulosic materials for cellulose extraction.
Collapse
Affiliation(s)
- Yiping Jin
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Bolun Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Guang Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Huan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Shanshan Tang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
27
|
Maliki S, Sharma G, Kumar A, Moral-Zamorano M, Moradi O, Baselga J, Stadler FJ, García-Peñas A. Chitosan as a Tool for Sustainable Development: A Mini Review. Polymers (Basel) 2022; 14:polym14071475. [PMID: 35406347 PMCID: PMC9003291 DOI: 10.3390/polym14071475] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023] Open
Abstract
New developments require innovative ecofriendly materials defined by their biocompatibility, biodegradability, and versatility. For that reason, the scientific society is focused on biopolymers such as chitosan, which is the second most abundant in the world after cellulose. These new materials should show good properties in terms of sustainability, circularity, and energy consumption during industrial applications. The idea is to replace traditional raw materials with new ecofriendly materials which contribute to keeping a high production rate but also reducing its environmental impact and the costs. The chitosan shows interesting and unique properties, thus it can be used for different purposes which contributes to the design and development of sustainable novel materials. This helps in promoting sustainability through the use of chitosan and diverse materials based on it. For example, it is a good sustainable alternative for food packaging or it can be used for sustainable agriculture. The chitosan can also reduce the pollution of other industrial processes such as paper production. This mini review collects some of the most important advances for the sustainable use of chitosan for promoting circular economy. Hence, the present review focuses on different aspects of chitosan from its synthesis to multiple applications.
Collapse
Affiliation(s)
- Soundouss Maliki
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, India;
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
- School of Science and Technology, Glocal University, Saharanpur 247001, India
- Correspondence: (G.S.); (A.G.-P.)
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, India;
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
| | - María Moral-Zamorano
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran 61349, Iran;
| | - Juan Baselga
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Florian J. Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
| | - Alberto García-Peñas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
- Correspondence: (G.S.); (A.G.-P.)
| |
Collapse
|
28
|
ZrMOX Particles for Enhanced Removal of Methyl Orange from Wastewater: Preparation, Characterization, and Adsorption Study. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/9685352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The wide application of organic dyes in many industries has brought challenges to the effective treatment of organic wastewater. In this study, a series of ZrMOX (M: Fe, Co, Ni, Cu) particles were prepared by the coprecipitation method to adsorb methyl orange (MO) in aqueous solution. The adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and N2 adsorption-desorption. The selected adsorbent with the best adsorption performance was ZrFeOX with a molar ratio of 1 : 1 and calcination temperature of 573 K; the maximum adsorption capacity was 138.95 mg·g-1. The adsorption behavior of MO onto the adsorbent was studied as a function of contact time, initial concentrations, adsorption temperature, and pH conditions. The analysis results showed that pseudo-second-order, Elovich, and Langmuir models were suitable to describe the adsorption behavior of MO on the adsorbent. In addition, regeneration experiments presented that the MO removal rate reached over 96% after repeated recycling for 5 times. The adsorbent developed in this work is not only simple to prepare and low cost but also green and energy-saving, which can make some contributions to environmental governance.
Collapse
|
29
|
Tabrizi SH, Tanhaei B, Ayati A, Ranjbari S. Substantial improvement in the adsorption behavior of montmorillonite toward Tartrazine through hexadecylamine impregnation. ENVIRONMENTAL RESEARCH 2022; 204:111965. [PMID: 34453900 DOI: 10.1016/j.envres.2021.111965] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In the present work, the surface of montmorillonite K10 was successfully modified by hexadecylamine surfactant (Mt-HDA) and its intercalation and characteristics were assessed by XRD, FTIR, SEM, EDX and BET methods. Also, its adsorption performance was systematically examined in the removal of Tartrazine (TZ), as a sulfonated azo dye model, from aqueous phase. Our results showed that the HDA modification remarkably improved the adsorption ability of montmorillonite toward TZ molecules. The highest adsorption efficiency was achieved >98% at the pH range of 4-6 within a fast process (less than 30 min). The maximum adsorption capacity Mt-HDA toward TZ molecules was found to be ~59 mg/g at 45 °C. The kinetic study indicated that the adsorption kinetic follows pseudo-second-order model, which shows the chemisorption process between Mt-HDA and TZ molecules. Besides, the adsorption isotherm showed the monolayer coverage of Mt-HDA surface adsorption sites, which was fitted with the Langmuir isotherm model in an exothermic process. The adsorption mechanism was studied.
Collapse
Affiliation(s)
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Ali Ayati
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Sara Ranjbari
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
30
|
Ranjbari S, Ayati A, Tanhaei B, Al-Othman A, Karimi F. The surfactant-ionic liquid bi-functionalization of chitosan beads for their adsorption performance improvement toward Tartrazine. ENVIRONMENTAL RESEARCH 2022; 204:111961. [PMID: 34492277 DOI: 10.1016/j.envres.2021.111961] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, the ionic liquid (Aliquat-336) and anionic surfactant (cetyltrimethylammonium bromide, CTAB) bi-functionalized chitosan beads were prepared and characterised using different techniques, including FTIR, XRD, SEM, EDS and BET surface area analysis. The characteristic analysis confirmed the successful conjugation of chitosan beads with both surfactant and ionic liquid. The novel fabricated beads (CS-CTAB-AL) were efficiently employed, as a high-performance adsorbent, for the removal of Tartrazine (TZ), an anionic food dye, from polluted water. The optimum adsorption of TZ onto the CS-CTAB-AL was found at 2 g L-1 of adsorbent in the wide pH range of 4-11, whereas just 45 min was required to reach more than 90% adsorption efficiency in the studied conditions. Also, the adsorption and kinetic studies showed that the experimental data well fitted the pseudo-first-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity of prepared beads was found to be 45.95 mg g-1 at 45 °C. The adsorption properties of enabling CS-CTAB-AL conjugation introduced a new type of adsorbents, exploited the combination of ionic liquid and surfactant capabilities for wastewater treatment.
Collapse
Affiliation(s)
- Sara Ranjbari
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, PO. Box 26666, United Arab Emirates
| | - Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| |
Collapse
|
31
|
Men J, Dong C, Han Y, Yang Y, Wang J, Lv Z, Wang L, Wang Y. Preparation of grafted adsorbent CPVA- g-PMAA and its adsorption performance for amlodipine. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2041030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jiying Men
- School of Chemical Engineering and Technology, North University of China, Taiyuan, People’s Republic of China
| | - Chengya Dong
- School of Chemical Engineering and Technology, North University of China, Taiyuan, People’s Republic of China
- Institute of Testing Technology, Institute of Jinxi Industry Group Co., Ltd., Taiyuan, People’s Republic of China
| | - Yuanrui Han
- School of Chemical Engineering and Technology, North University of China, Taiyuan, People’s Republic of China
| | - Yuanyuan Yang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, People’s Republic of China
| | - Ji Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, People’s Republic of China
| | - Zhenyan Lv
- School of Chemical Engineering and Technology, North University of China, Taiyuan, People’s Republic of China
| | - Limin Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, People’s Republic of China
| | - Yanhong Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, People’s Republic of China
| |
Collapse
|
32
|
Sridhar A, Ponnuchamy M, Kapoor A, Prabhakar S. Valorization of food waste as adsorbents for toxic dye removal from contaminated waters: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127432. [PMID: 34688000 DOI: 10.1016/j.jhazmat.2021.127432] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/09/2021] [Accepted: 10/02/2021] [Indexed: 05/07/2023]
Abstract
Industrial contaminants such as dyes and intermediates are released into water bodies, making the water unfit for human use. At the same time large amounts of food wastes accumulate near the work places, residential complexes etc. polluting the air due to putrefaction. The need of the hour lies in finding innovative solutions for dye removal from wastewater streams. In this context, the article emphasizes adoption or conversion of food waste materials, an ecological nuisance, as adsorbents for the removal of dyes from wastewaters. Adsorption, being a well-established technique, the review critically examines the specific potential of food waste constituents as dye adsorbents. The efficacy of food waste-based adsorbents is examined, besides addressing the possible adsorption mechanisms and the factors affecting phenomenon such as pH, temperature, contact time, adsorbent dosage, particle size, and ionic strength. Integration of information and communication technology approaches with adsorption isotherms and kinetic models are emphasized to bring out their role in improving overall modeling performance. Additionally, the reusability of adsorbents has been highlighted for effective substrate utilization. The review makes an attempt to stress the valorization of food waste materials to remove dyes from contaminated waters thereby ensuring long-term sustainability.
Collapse
Affiliation(s)
- Adithya Sridhar
- School of Food Science and Nutrition, Faculty of Environment, The University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India.
| | - Sivaraman Prabhakar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603 203, India
| |
Collapse
|
33
|
Simultaneous adsorption of cobalt ions, azo dye, and imidacloprid pesticide on the magnetic chitosan/activated carbon@UiO-66 bio-nanocomposite: Optimization, mechanisms, regeneration, and application. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120258] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Omer AM, Dey R, Eltaweil AS, Abd El-Monaem EM, Ziora ZM. Insights into recent advances of chitosan-based adsorbents for sustainable removal of heavy metals and anions. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103543] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
35
|
Karimi F, Ayati A, Tanhaei B, Sanati AL, Afshar S, Kardan A, Dabirifar Z, Karaman C. Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; A powerful approach in water treatment. ENVIRONMENTAL RESEARCH 2022; 203:111753. [PMID: 34331923 DOI: 10.1016/j.envres.2021.111753] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 05/02/2023]
Abstract
In this study, a magnetic chitosan/Al2O3/Fe3O4 (M-Cs) nanocomposite was developed by ethylenediaminetetraacetic acid (EDTA) functionalization to enhance its adsorption behavior for the removal of Cd(II), Cu(II) and Zn(II) metal ions from aqueous solution. The results revealed that the EDTA functionalization of M-Cs increased its adsorption capacity ~9.1, ~5.6 and ~14.3 times toward Cu, Cd and Zn ions. The maximum adsorption capacity followed the order of Cd(II) > Cu(II) > Zn(II) and the maximum adsorption efficiency was achieved at pH of 5.3 with the removal percentage of 99.98, 93.69 and 83.81 %, respectively, for the removal of Cu, Cd and Zn ions. The metal ions adsorption kinetic obeyed pseudo-second-order equation and the Langmuir isothermal was found the most fitted model for their adsorption isothermal experimental data. In addition, the thermodynamic study illustrated that the adsorption process was exothermic and spontaneous in nature.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290, Coimbra, Portugal
| | - Safoora Afshar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Alireza Kardan
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Zeynab Dabirifar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey
| |
Collapse
|
36
|
Magnetic Fe3O4 nanoparticles loaded papaya (Carica papaya L.) seed powder as an effective and recyclable adsorbent material for the separation of anionic azo dye (Congo Red) from liquid phase: Evaluation of adsorption properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Using chitosan-based heterogeneous catalyst for degradation of Acid Blue 25 in the effective electro-Fenton process with rotating cathodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
38
|
Liu M, Xie Z, Ye H, Li W, Shi W, Liu Y. Magnetic cross-linked chitosan for efficient removing anionic and cationic dyes from aqueous solution. Int J Biol Macromol 2021; 193:337-346. [PMID: 34710473 DOI: 10.1016/j.ijbiomac.2021.10.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
Herein, a novel magnetic cross-linked chitosan CS-BA@Fe3O4 was rationally synthesized by cross-linked with epichlorohydrin and coated with Fe3O4 to the acylated chitosan, which was prepared by the reaction of chitosan with benzenetricarboxylic anhydride. The as-obtained absorbent was characterized by FTIR, XRD, VSM, TGA, TEM, BET, SEM and EDS. The results showed that the maximum adsorption capacities of CR and CV were 471.46 ± 16.97 mg/g and 515.91 ± 25.12 mg/g at 318.15 K, respectively. The main adsorption mechanisms were H-bonding and electrostatic interaction. The kinetic data were in good agreement with the pseudo-second-order model and closed to adsorption equilibrium at 30 min. Thermodynamic studies showed that the adsorption on CS-BA@Fe3O4 were spontaneous and endothermic. More importantly, the adsorbent exhibited excellent regeneration properties after 6 cycles and remarkable stability under harsh environments including strong acid, strong alkali, multi-salt and mixed dyes conditions. Therefore, abundant efforts revealed a broad application prospect of CS-BA@Fe3O4 in water remediation.
Collapse
Affiliation(s)
- Minyao Liu
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Zhengfeng Xie
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China.
| | - Hao Ye
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Wei Li
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Wei Shi
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Yucheng Liu
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
39
|
Rathinam K, Kou X, Hobby R, Panglisch S. Sustainable Development of Magnetic Chitosan Core-Shell Network for the Removal of Organic Dyes from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7701. [PMID: 34947299 PMCID: PMC8706649 DOI: 10.3390/ma14247701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
The wide use of alizarin red S (ARS), a typical anthraquinone dye, has led to its continued accumulation in the aquatic environment, which causes mutagenic and carcinogenic effects on organisms. Therefore, this study focused on the removal of ARS dye by adsorption onto a magnetic chitosan core-shell network (MCN). The successful synthesis of the MCN was confirmed by ATR-FTIR, SEM, and EDX analysis. The influence of several parameters on the removal of ARS dye by the MCN revealed that the adsorption process reached equilibrium after 60 min, pH played a major role, and electrostatic interactions dominated for the ARS dye removal under acidic conditions. The adsorption data were described well by the Langmuir isotherm and a pseudo-second order kinetic model. In addition to the preferable adsorption of hydrophobic dissolved organic matter (DOM) fractions onto the MCN, the electrostatic repulsive forces between the previously adsorbed DOM onto MCN and ARS dye resulted in lower ARS dye removal. Furthermore, the MCN could easily be regenerated and reused for up to at least five cycles with more than 70% of its original efficiency. Most importantly, the spent MCN was pyrolytically converted into N-doped magnetic carbon and used as an adsorbent for various dyes, thus establishing a waste-free adsorption process.
Collapse
Affiliation(s)
- Karthik Rathinam
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
| | - Xinwei Kou
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
| | - Ralph Hobby
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
| | - Stefan Panglisch
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
- IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany
- DGMT German Society for Membrane Technology e.V., Universitätsstr. 2, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), Universitätsstr. 2, 45141 Essen, Germany
| |
Collapse
|
40
|
Torezan L, Bortoluz J, Guerra NB, Ferrarini F, Bonetto LR, da Silva Teixeira C, da Silva Crespo J, Giovanela M, Carli LN. Magnetic chitosan microspheres for the removal of methyl violet 2B from aqueous solutions. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2008420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Luciane Torezan
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Jordana Bortoluz
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Nayrim Brizuela Guerra
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Fabrício Ferrarini
- Laboratório Virtual de Predição de Propriedades – LVPP, Departamento de Engenharia Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luis Rafael Bonetto
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Cristiano da Silva Teixeira
- Centro Tecnológico, de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, Santa Catarina, Brazil
| | - Janaina da Silva Crespo
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Marcelo Giovanela
- Área do Conhecimento de Ciências Exatas e Engenharias, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Larissa Nardini Carli
- Centro Tecnológico, de Ciências Exatas e Educação, Universidade Federal de Santa Catarina, Blumenau, Santa Catarina, Brazil
| |
Collapse
|
41
|
Long-chain ligand design in creating magnetic nano adsorbents for separation of REE from LTM. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Sirajudheen P, Poovathumkuzhi NC, Vigneshwaran S, Chelaveettil BM, Meenakshi S. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water - A comprehensive review. Carbohydr Polym 2021; 273:118604. [PMID: 34561004 DOI: 10.1016/j.carbpol.2021.118604] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022]
Abstract
The presence of pollutants in the water bodies deteriorate the water quality and make it unfit for use. From an environmental perspective, it is essential to develop new technologies for the wastewater treatment and recycling of dye contaminated water. The surface modified chitin and chitosan biopolymeric composites based adsorbents, have an important role in the toxic organic dyes from removal wastewater. The surface modification of biopolymers with various organics and inorganics produces more active sites at the surface of the adsorbent, which enhances dye and adsorbent interaction more reliable. Herein, the work brought in the thought of the application of various chitin and chitosan composites in wastewater remediation and suggested the versatility in composites for the development of rapid, selective and effective removal processes for the detoxification of a variety of organic dyes. It further emphasizes the existing obstruction and impending prediction for the deprivation of dyes via adsorption techniques.
Collapse
Affiliation(s)
- Palliyalil Sirajudheen
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India; Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi - 676306, Malappuram, Kerala, India
| | | | - Sivakumar Vigneshwaran
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India; Department of Chemistry, Nadar Saraswathi College of Engineering and Technology, 11 Vadapudupatti- 625 531, Theni, Tamil Nadu, India
| | | | - Sankaran Meenakshi
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India.
| |
Collapse
|
43
|
A decade development in the application of chitosan-based materials for dye adsorption: A short review. Int J Biol Macromol 2021; 191:1151-1163. [PMID: 34600954 DOI: 10.1016/j.ijbiomac.2021.09.179] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022]
Abstract
The presence of dyes in the aquatic environment as a result of anthropogenic activities, especially textile industries, is a critical environmental challenge that hinders the availability of potable water. Different wastewater treatment approaches have been used to remediate dyes in aquatic environments; however, most of these approaches are limited by factors ranging from high cost to the incomplete removal of the dyes and contaminants. Thus, the use of adsorption as a water treatment technology to remove dyes and other contaminants has been widely investigated using different adsorbents. This study evaluated the significance of chitosan as a viable adsorbent for removing dyes from water treatment. We summarised the literature and research results obtained between 2009 and 2020 regarding the adsorption of dyes onto chitosan and modified chitosan-based adsorbents prepared through physical and chemical processing, including crosslinking impregnation, grafting, and membrane preparation. Furthermore, we demonstrated the effects of various chitosan-based materials and modifications; they all improve the properties of chitosan by promoting the adsorption of dyes. Hence, the application of chitosan-based materials with various modifications should be considered a cutting-edge approach for the remediation of dyes and other contaminants in aquatic environments toward the global aim of making potable water globally available.
Collapse
|
44
|
Akinremi C, Adeogun AI, Poupin M, Huddersman K. Chitosan-Terephthalic Acid-Magnetic Composite Beads for Effective Removal of the Acid Blue Dye from Aqueous Solutions: Kinetics, Isotherm, and Statistical Modeling. ACS OMEGA 2021; 6:30499-30514. [PMID: 34805679 PMCID: PMC8600647 DOI: 10.1021/acsomega.1c03964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
A terephthalic acid-modified chitosan-magnetic nanocomposite (Cs-Tp@Fe3O4) was synthesized and characterized. The synthesized Cs-Tp@Fe3O4 was used in a batch process for the adsorptive removal of the acid blue 25 (AB-25) dye in aqueous solutions. The kinetic data were subjected to the pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion models, while the equilibrium data were evaluated with the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models. The effects of the initial dye concentration, contact time, and adsorbent dosage, as well as their interactions, on the removal efficiency were investigated using the design of experiments based on a central composite design, and the resultant data were modeled with the response surface methodology (RSM), artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), and multiple linear regression (MLR) approaches. The adsorption process followed pseudo-first-order with good agreement between the experimental Q e(exp) and calculated Q e(cal.) amounts of dye adsorbed, as well as the values of correlation coefficient, R 2 (0.999) and percentage of sum square error, % SSE (0.640). All the investigated adsorption isotherms fitted all models well in the order of Dubinin-Radushkevich > Langmuir > Freundlich > Temkin with R 2 > 0.9 with the monolayer maximum adsorption capacity of 440.24 mg/g obtained from the Langmuir isotherm. The RSM model predicted the maximum removal efficiency at an optimum initial dye concentration of 19.11 mg/L, a contact time of 95.3 min, and an adsorbent dosage of 0.18 g. Statistically, the models were fitted in the order of RSM > ANN > ANFIS > MLR. These results indicated that the prepared Cs-Tp@Fe3O4 is an efficient adsorbent for the AB-25 dye removal with excellent stability for water treatment applications.
Collapse
Affiliation(s)
- Caroline
Avosuahi Akinremi
- Chemistry
Department, Federal University of Agriculture, Abeokuta 110001, Nigeria
- Faculty
of Health and Life Sciences, De Montfort
University, The Gateway, Leicester LE1 9BH, U.K.
| | | | - Maxime Poupin
- Centre
Universitaire de la Charente, Université
de Poitiers, Pharmacy
79 Chemin de la Croix du Milieu, La Couronne 16400, France
| | - Katherine Huddersman
- Faculty
of Health and Life Sciences, De Montfort
University, The Gateway, Leicester LE1 9BH, U.K.
| |
Collapse
|
45
|
Tokarčíková M, Motyka O, Peikertová P, Gabor R, Seidlerová J. Magnetically Modified Biosorbent for Rapid Beryllium Elimination from the Aqueous Environment. MATERIALS 2021; 14:ma14216610. [PMID: 34772136 PMCID: PMC8585364 DOI: 10.3390/ma14216610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/06/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Although both beryllium and its compounds display high toxicity, little attention has been focused on the removal of beryllium from wastewaters. In this research, magnetically modified biochar obtained from poor-quality wheat with two distinct FexOy contents was studied as a sorbent for the elimination of beryllium from an aqueous solution. The determined elimination efficiency was higher than 80% in both prepared composites, and the presence of FexOy did not affect the sorption properties. The experimental qmax values were determined to be 1.44 mg/g for original biochar and biochar with lower content of iron and 1.45 mg/g for the biochar with higher iron content. The optimum pH values favorable for sorption were determined to be 6. After the sorption procedure, the sorbent was still magnetically active enough to be removed from the solution by a magnet. Using magnetically modified sorbents proved to be an easy to apply, low-cost, and effective technique.
Collapse
|
46
|
Malek NNA, Jawad AH, Ismail K, Razuan R, ALOthman ZA. Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: Adsorption parametric optimization. Int J Biol Macromol 2021; 189:464-476. [PMID: 34450144 DOI: 10.1016/j.ijbiomac.2021.08.160] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/13/2023]
Abstract
A magnetic biocomposite blend of chitosan-polyvinyl alcohol/fly ash (m-Cs-PVA/FA) was developed by adding fly ash (FA) microparticles into the polymeric matrix of magnetic chitosan-polyvinyl alcohol (m-Cs-PVA). The effectiveness of m-Cs-PVA/FA as an adsorbent to remove textile dye (reactive orange 16, RO16) from aquatic environment was evaluated. The optimum adsorption key parameters and their significant interactions were determined by Box-Behnken Design (BBD). The analysis of variance (ANOVA) indicates the significant interactions can be observed between m-Cs-PVA/FA dose with solution pH, and m-Cs-PVA/FA dose with working temperature. Considering these significant interactions, the highest removal of RO16 (%) was found 90.3% at m-Cs-PVA/FA dose (0.06 g), solution pH (4), working temperature (30 °C), and contact time (17.5 min). The results of adsorption kinetics revealed that the RO16 adsorption was better described by the pseudo-second-order model. The results of adsorption isotherm indicated a multilayer adsorption process as well described by Freundlich model with maximum adsorption capacity of 123.8 mg/g at 30 °C. An external magnetic field can be easily applied to recover the adsorbent (m-Cs-PVA/FA). The results supported that the synthesized m-Cs-PVA/FA presents itself as an effective and promising adsorbent for textile dye with preferable adsorption capacity and separation ability during and after the adsorption process.
Collapse
Affiliation(s)
- Nurul Najwa Abd Malek
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Khudzir Ismail
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia
| | - R Razuan
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Zeid A ALOthman
- Chemistry Department, P.O. Box 2455, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
47
|
Elzamly RA, Mohamed HM, Mohamed MI, Zaky HT, Harding DR, Kandile NG. New sustainable chemically modified chitosan derivatives for different applications: Synthesis and characterization. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
48
|
Comprehensive batch and continuous methyl orange removal studies using surfactant modified chitosan-clinoptilolite composite. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118601] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
49
|
Hou Y, Liang Y, Hu H, Tao Y, Zhou J, Cai J. Facile preparation of multi-porous biochar from lotus biomass for methyl orange removal: Kinetics, isotherms, and regeneration studies. BIORESOURCE TECHNOLOGY 2021; 329:124877. [PMID: 33639382 DOI: 10.1016/j.biortech.2021.124877] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 05/17/2023]
Abstract
Biomass is a promising carbon source because of its low-cost and rich carbon component. Here, lotus root as self N-source was used to produce N-doped biochar via a simple carbonization after freeze-drying, showing surface areas up to 694 m2/g with partial mesopores. Applicability of biochar as adsorbent for dyes removal was explored using methyl orange (MO) as model pollutant dye. LBC-800 sample obtained at 800 °C had the largest capacity of 320 mg/g in 300 mg/L solution at 25 °C with fast equilibrium time of 60 min, and pseudo-second order model expressed better for kinetics. LBC-800 also had an unprecedented maximum capacity of 449 mg/g with superior conformity to Langmuir model. The biochar was efficient for MO removal with high capacity and fast kinetic, and significantly the sustainable feature of lotus root would allow a large-scale production of biochar as well as promising use in wastewater treatment fields.
Collapse
Affiliation(s)
- Yanrui Hou
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Ye Liang
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Hongbo Hu
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Yinping Tao
- Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Jicheng Zhou
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Jinjun Cai
- School of Chemical Engineering, Xiangtan University, Xiangtan 411105, China; State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
| |
Collapse
|
50
|
Chen S, Xia Y, Zhang B, Chen H, Chen G, Tang S. Disassembly of lignocellulose into cellulose, hemicellulose, and lignin for preparation of porous carbon materials with enhanced performances. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124956. [PMID: 33421852 DOI: 10.1016/j.jhazmat.2020.124956] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Lignocellulose is the primary component of many biomasses, including corn straw. Herein, lignocellulose in corn straw was disassembled into the individual polymers, cellulose, hemicellulose, and lignin via a mild and facile method. Subsequently, three porous carbon materials were prepared by carbonization and chemical activation of cellulose (PCCC), hemicellulose (PCHC), and lignin (PCLC). The three materials showed higher specific surface areas (2565.7, 2996.1, and 2590.3 m2 g-1) and higher porosities (1.4261, 1.5876, and 1.2406 cm3 g-1) than that of PCCS, a porous carbon material derived from raw corn straw (1993 m2 g-1 and 1.19 cm3 g-1). Of note, PCCC and PCHC exhibited higher adsorption (1025.5 and 950.1 mg g-1) of brilliant green (BG), than PCCS (876.7 mg g-1). Besides, the BG adsorption capacities of the designed materials were higher than that of most adsorbents, and 2-2.5 times higher than that of graphite oxide (416.7 mg g-1). These study results indicate that the disassembly of lignocellulosic biomass into cellulose, hemicellulose, and lignin is an effective strategy for preparing various porous carbon materials with enhanced performances.
Collapse
Affiliation(s)
- Siji Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Yuhan Xia
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Bolun Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Huan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Guang Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| | - Shanshan Tang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; The Key Laboratory of Straw Biology and Utilization, the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|