1
|
Du M, Liu J, Wang Q, Wang F, Bi L, Ma C, Song M, Jiang G. Immobilization of laccase on magnetic PEGDA-CS inverse opal hydrogel for enhancement of bisphenol A degradation in aqueous solution. J Environ Sci (China) 2025; 147:74-82. [PMID: 39003085 DOI: 10.1016/j.jes.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 07/15/2024]
Abstract
Endocrine disruptors such as bisphenol A (BPA) adversely affect the environment and human health. Laccases are used for the efficient biodegradation of various persistent organic pollutants in an environmentally safe manner. However, the direct application of free laccases is generally hindered by short enzyme lifetimes, non-reusability, and the high cost of a single use. In this study, laccases were immobilized on a novel magnetic three-dimensional poly(ethylene glycol) diacrylate (PEGDA)-chitosan (CS) inverse opal hydrogel (LAC@MPEGDA@CS@IOH). The immobilized laccase showed significant improvement in the BPA degradation performance and superior storage stability compared with the free laccase. 91.1% of 100 mg/L BPA was removed by the LAC@MPEGDA@CS@IOH in 3 hr, whereas only 50.6% of BPA was removed by the same amount of the free laccase. Compared with the laccase, the outstanding BPA degradation efficiency of the LAC@MPEGDA@CS@IOH was maintained over a wider range of pH values and temperatures. Moreover, its relative activity of was maintained at 70.4% after 10 cycles, and the system performed well in actual water matrices. This efficient method for preparing immobilized laccases is simple and green, and it can be used to further develop ecofriendly biocatalysts to remove organic pollutants from wastewater.
Collapse
Affiliation(s)
- Mei Du
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingzhang Liu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiong Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Bi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Ma
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li C, Wang Z, Niu Z, Li J, Chen L, Cui X, Li F. Development of an effective method for purifying trypsin using a recombinant inhibitor. Protein Expr Purif 2025; 225:106597. [PMID: 39233018 DOI: 10.1016/j.pep.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
A trypsin affinity material was prepared by covalently immobilizing buckwheat trypsin inhibitor (BTI) on epichlorohydrin-activated cross-linked agarose gel (Selfinose CL 6 B). The optimal conditions for activating Selfinose CL 6 B were 15 % epichlorohydrin and 0.8 M NaOH at 40 °C for 2 h. The optimal pH for immobilizing BTI was 9.5. BTI-Sefinose CL 6 B showed a maximum adsorption capacity of 2.25 mg trypsin/(g support). The material also displayed good reusability, retaining over 90 % of its initial adsorption capacity after 30 cycles. High-purity trypsin was obtained from locust homogenate using BTI-Selfinose CL 6 B through one-step affinity chromatography. The molecular mass and Km value of locust trypsin were determined as 27 kDa and 0.241 mM using N-benzoyl-DL-arginine-nitroanilide as substrate. The optimal temperature and pH of trypsin activity were 55 °C and 9.0, respectively. The enzyme exhibited good stability in the temperature range of 30-50 °C and pH range of 4.0-10.0. BTI-Selfinose CL 6 B demonstrates potential application in the preparation of high-purity trypsin and the discovery of more novel trypsin from various species.
Collapse
Affiliation(s)
- Chen Li
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Zhaoxia Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Zejie Niu
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Jiao Li
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Lanxin Chen
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaodong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China.
| | - Fang Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Shanxi, Taiyuan, 030032, China.
| |
Collapse
|
3
|
Yang Y, Zhang S, Dong W, Hu X. Laccase immobilized on amino modified magnetic biochar as a recyclable biocatalyst for efficient degradation of trichloroethylene. Int J Biol Macromol 2024; 282:136709. [PMID: 39437952 DOI: 10.1016/j.ijbiomac.2024.136709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Bioremediation of trichloroethylene (TCE) contaminated groundwater has recently attracted considerable attention. In this study, laccase was immobilized on amino modified magnetic pine biochar (MBC-NH2) by adsorption-crosslinking-covalent binding method, and its application in the degradation of TCE was evaluated. MBC-NH2 was obtained from pine sawdust by calcination, magnetic modification and amino modification. MBC-NH2 had high specific surface area (71.3 m2/g), rich surface functional groups and good magnetism. Under the conditions of 25 °C, pH = 4, glutaraldehyde (GA) concentration of 7 %, crosslinking time of 1 h, laccase concentration of 0.75 mg/mL, and immobilization time of 7 h, the loading capacity of laccase on MBC-NH2 carrier was as high as 782 mg/g. Compared with free laccase, immobilized laccase showed higher pH stability and thermal stability, and its activity remained 48.5 % after being reused for 10 times, and 80.8 % after being stored at 4 °C for 30 days. The immobilized laccase exhibited a good degradation effect on TCE. At 25 °C, pH = 4, immobilized laccase concentration of 0.35 g/L, and initial TCE concentration of 10 mg/L, the degradation efficiency of TCE by immobilized laccase was as high as 92.1 % within 48 h. In addition, the degradation products of TCE were analyzed, and the results showed that immobilized laccase could degrade TCE into non-toxic products through epoxidation, hydroxylation, and dechlorination. The immobilized laccase biocatalyst prepared in this study can achieve efficient degradation of TCE, which provides a feasible solution for chlorinated pollution of water resources. These research results are of great significance for the synthesis of biocatalysts for the efficient degradation of chlorinated hydrocarbons.
Collapse
Affiliation(s)
- Yaoyu Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Shaobin Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China
| | - Wenya Dong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - Xiaojun Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, PR China.
| |
Collapse
|
4
|
Wei Y, Xie W, Wang X, Chong Q, Li S, Chen Z. Photothermal degradation of triphenylmethane dye wastewater by Fe 3O 4@C-laccase. Int J Biol Macromol 2024; 282:137053. [PMID: 39481701 DOI: 10.1016/j.ijbiomac.2024.137053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
The degradation of synthetic dye wastewater is important for green chemistry and cost-effectiveness. In this study, we developed Fe3O4@C-laccase (laccase immobilized on Fe3O4@C nanoparticles) for photothermal degradation of high concentration of triphenylmethane dye wastewater. The Fe3O4@C-laccase possessed superior pH and thermal stabilities, as well as excellent tolerance to organic solvents, inhibitors, and metal ions. Laccase activity assays revealed that the activity recovery was approximately 118.2 %. Furthermore, the Fe3O4@C-laccase presented rapid and sustainable photothermal degradation capabilities to triphenylmethane dye wastewater. The initial removal efficiencies of 400 mg/L malachite green (MG), 400 mg/L brilliant green (BG), 100 mg/L crystal violet (CV), and 600 mg/L mixed dye (MG:BG:CV = 1:1:1) wastewater were approximately 99.8 %, 99.9 %, 96.4 % and 99.2 % by 60 min treatment, respectively. After undergoing 10 batches of reuse, the photothermal degradation efficiencies of the triphenylmethane dye wastewater remained consistently high, at about 99.3 %, 97.4 %, 94.0 %, and 95.1 %, respectively. The excellent photothermal degradation properties indicate that the Fe3O4@C-laccase holds promise for addressing high concentration of textile wastewater in various applications.
Collapse
Affiliation(s)
- Yuhang Wei
- School of Chemical and Environmental Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu 241000, China
| | - Weiwei Xie
- School of Chemical and Environmental Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu 241000, China
| | - Xinyue Wang
- School of Chemical and Environmental Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu 241000, China
| | - Qingyang Chong
- School of Chemical and Environmental Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu 241000, China
| | - Song Li
- School of Biology and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Zhiming Chen
- School of Chemical and Environmental Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
5
|
Rezagholizade-Shirvan A, Ghasemi A, Mazaheri Y, Shokri S, Fallahizadeh S, Alizadeh Sani M, Mohtashami M, Mahmoudzadeh M, Sarafraz M, Darroudi M, Rezaei Z, Shamloo E. Removal of aflatoxin M 1 in milk using magnetic laccase/MoS 2/chitosan nanocomposite as an efficient sorbent. CHEMOSPHERE 2024; 365:143334. [PMID: 39278325 DOI: 10.1016/j.chemosphere.2024.143334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
The current study tries to find the impact of the integration of laccase enzyme (Lac) onto magnetized chitosan (Cs) nanoparticles composed of molybdenum disulfide (MoS2 NPs) (Fe3O4/Cs/MoS2/Lac NPs) on the removal of AFM1 in milk samples. The Fe3O4/Cs/MoS2/Lac NPs were characterized by FT-IR, XRD, BET, TEM, FESEM, EDS, PSA, and VSM analysis. The cytotoxic activity of the synthesized nanoparticles in different concentrations was evaluated using the MTT method. The results show that the synthesized nanoparticles don't have cytotoxic activity at concentrations less than 20 mg/l. The ability of the prepared nanoparticles to remove AFM1 was compared by bare laccase enzyme, MoS2, and Fe3O4/Cs/MoS2 composite, indicating that the Fe3O4/Cs/MoS2/Lac NPs the highest adsorption efficiency toward AFM1. Besides, the immobilization efficiency of laccase with a concentration range of 0.5-2.0 was investigated, indicating that the highest activity recovery of 96.8% was obtained using 2 mg/ml laccase loading capacity. The highest removal percentage of AFM1 (68.5%) in the milk samples was obtained by the Fe3O4/Cs/MoS2/Lac NPs at a contact time of 1 h. As a result, Fe3O4/MoS2/Cs/Lac NPs can potentially be utilized as an effective sorbent with high capacity and selectivity to remove AFM1 from milk samples.
Collapse
Affiliation(s)
| | - Ahmad Ghasemi
- Department of Biochemistry, Nutrition and Food Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yeganeh Mazaheri
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Shokri
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Fallahizadeh
- School of Public Health, Yasuj University of Medical Sciences, Yasuj, Iran; Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Maryam Mahmoudzadeh
- Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansour Sarafraz
- School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeinab Rezaei
- University of Applied Science and Technology, Center of Cheshme noshan khorasan (Alis), Iran
| | - Ehsan Shamloo
- Department of Food Science and Technology, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
6
|
Meng Q, Yi X, Zhou H, Song H, Liu Y, Zhan J, Pan H. Isolation of marine polyethylene (PE)-degrading bacteria and its potential degradation mechanisms. MARINE POLLUTION BULLETIN 2024; 207:116875. [PMID: 39236493 DOI: 10.1016/j.marpolbul.2024.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 09/07/2024]
Abstract
Microbial degradation of polyethylene (PE) offers a promising solution to plastic pollution in the marine environment, but research in this field is limited. In this study, we isolated a novel marine strain of Pseudalkalibacillus sp. MQ-1 that can degrade PE. Scanning electron microscopy and water contact angle results showed that MQ-1 could adhere to PE films and render them hydrophilic. Analyses using X-ray diffraction, fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed a decrease in relative crystallinity, the appearance of new functional groups and an increase in the oxygen-to‑carbon ratio of the PE films, making them more susceptible to degradation. The results of gel permeation chromatography and liquid chromatography-mass spectrometry indicated the depolymerization of the long PE chains, with the detection of an intermediate, decanediol. Furthermore, genome sequencing was employed to investigate the underlying mechanisms of PE degradation. The results of genome sequencing analysis identified the genes associated with PE degradation, including cytochrome P450, alcohol dehydrogenase, and aldehyde dehydrogenase involved in the oxidative reaction, monooxygenase related to ester bond formation, and esterase associated with ester bond cleavage. In addition, enzymes involved in fatty acid metabolism and intracellular transport have been identified, collectively providing insights into the metabolic pathway of PE degradation.
Collapse
Affiliation(s)
- Qian Meng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China.
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Hongyu Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Chemical Engineering, Ocean and Life Sciences, Panjin Campus, Dalian University of Technology, Panjin, China.
| |
Collapse
|
7
|
Sodhi AS, Bhatia S, Batra N. Laccase: Sustainable production strategies, heterologous expression and potential biotechnological applications. Int J Biol Macromol 2024; 280:135745. [PMID: 39293621 DOI: 10.1016/j.ijbiomac.2024.135745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Laccase is a multicopper oxidase enzyme that target different types of phenols and aromatic amines. The enzyme can be isolated and characterized from microbes, plants and insects. Its ubiquitous nature and delignification ability makes it a valuable tool for research and development. Sustainable production methods are being employed to develop low cost biomanufacturing of the enzyme while achieving high titers. Laccase have significant industrial application ranging from food industry where it can be used for wine stabilization, texture improvement and detection of phenolic compounds in food products, to cosmetics offering benefits such as skin brightening and hair colouring. Dye decolourization/degradation, removal of pharmaceutical products/emerging pollutants and hydrocarbons from wastewater, biobleaching of textile fabrics, biofuel production and delignification of biomass making laccase a promising green biocatalyst. Innovative methods such as using inducers, microbial co-culturing, recombinant DNA technology, protein engineering have pivotal role in developing laccase with tailored properties. Enzyme immobilization using new age compounds including nanoparticles, carbonaceous components, agro-industrial residues enhance activity, stability and reusability. Commercial formulations of laccase have been prepared and readily available for a variety of applications. Certain challenges including production cost, metabolic stress in response to heterologous expression, difficulty in purification needs to be addressed.
Collapse
Affiliation(s)
- Abhinashi Singh Sodhi
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh 160030, India
| | - Sonu Bhatia
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh 160030, India
| | - Navneet Batra
- Department of Biotechnology, Goswami Ganesh Dutta Sanatan Dharma College, Sector-32-C, Chandigarh 160030, India.
| |
Collapse
|
8
|
Alvarado-Ramírez L, Sutherland E, Melchor-Martínez EM, Parra-Saldívar R, Bonaccorso AD, Czekster CM. The Immobilization of a Cyclodipeptide Synthase Enables Biocatalysis for Cyclodipeptide Production. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:13080-13089. [PMID: 39239621 PMCID: PMC11372833 DOI: 10.1021/acssuschemeng.4c01230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Cyclodipeptide synthases (CDPSs) are enzymes that use aminoacylated tRNAs as substrates to produce cyclic dipeptide natural products acting as anticancer and neuroprotective compounds. Many CDPSs, however, suffer from instability and poor recyclability, while enzyme immobilization can enhance catalyst efficiency and reuse. Here, the CDPS enzyme from Parcubacteria bacterium RAAC4_OD1_1 was immobilized using three different supports: biochar from waste materials, calcium-alginate beads, and chitosan beads. Immobilization of active PbCDPS was successful, and production of the cyclodipeptide cyclo (His-Glu) (cHE) was confirmed by HPLC-MS. Biochar from spent coffee activated with glutaraldehyde, alginate beads, and chitosan beads activated with glutaraldehyde led to a 5-fold improvement in cHE production, with the immobilized enzyme remaining active for seven consecutive cycles. Furthermore, we co-immobilized three enzymes participating in the cascade reaction yielding cHE (PbCDPS, histidyl-tRNA synthetase, and glutamyl-tRNA synthetase). The enzymatic cascade successfully produced the cyclic dipeptide, underscoring the potential of immobilizing various enzymes within a single support. Importantly, we demonstrated that tRNAs remained free in solution and were not adsorbed by the beads. We paved the way for the immobilization of enzymes that utilize tRNAs and other complex substrates, thereby expanding the range of reactions that can be exploited by using this technology.
Collapse
Affiliation(s)
| | - Emmajay Sutherland
- School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K
| | - Elda M Melchor-Martínez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Alfredo D Bonaccorso
- School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K
| | | |
Collapse
|
9
|
Alvarado-Ramírez L, Rostro-Alanis MDJ, Rodríguez-Rodríguez J, Hernández Luna CE, Castillo-Zacarías C, Iqbal HMN, Parra-Saldívar R. Biotransformation of 2,4,6-Trinitrotoluene by a cocktail of native laccases from Pycnoporus sanguineus CS43 under oxygenic and non-oxygenic atmospheres. CHEMOSPHERE 2024; 352:141406. [PMID: 38367881 DOI: 10.1016/j.chemosphere.2024.141406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/19/2024]
Abstract
2,4,6-Trinitrotoluene (TNT) is a highly toxic nitroaromatic explosive known for its environmental consequences, contaminating soil and groundwater throughout its life cycle, from production to disposal. Therefore, the urgency of developing innovative and ecological strategies to remedy the affected areas is recognized. This study reports, for the first time, the enzymatic biotransformation of TNT by a cocktail of native laccases from Pycnoporus sanguineus CS43. The laccases displayed efficient TNT conversion under both oxygenic and non-oxygenic conditions, achieving biotransformation rates of 80% and 87% within 48 h at a temperature of 60 °C and pH 7. Preliminary kinetic constants were calculated with the laccase cocktail, being a Vmax of 1.133 μM min-1 and 0.2984 μM min-1, and the Km values were 1586 μM and 458 μM, in an oxygenic and non-oxygenic atmosphere, respectively. High-performance liquid chromatography-mass spectrometry (HPLC/MS) confirmed the formation of amino dinitrotoluene isomers and hydroxylamine isomers as biotransformation products. In summary, this study suggests the potential application of laccases for the direct biotransformation of recalcitrant compounds like TNT, offering an environmentally friendly approach to address contamination issues.
Collapse
Affiliation(s)
| | | | | | - Carlos Eduardo Hernández Luna
- Laboratorio de Enzimología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Pedro de Alba y Manuel L. Barragán, Cd. Universitaria, 66451, San Nicolás de los Garza, Nuevo León, Mexico.
| | - Carlos Castillo-Zacarías
- Universidad Autónoma de Nuevo León, Facultad de Ingeniería Civil, Departamento de Ingeniería Ambiental, Ciudad Universitaria S/N, San Nicolás de los Garza, Nuevo León, C.P. 66455, Mexico.
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Mexico.
| | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Mexico.
| |
Collapse
|
10
|
Sosa-Hernández JE, Gutierrez EM, Ochoa Sierra JS, Aquines O, Robledo-Padilla F, Melchor-Martínez EM, Iqbal HM, Parra-Salvídar R. Laccase-based catalytic microreactor for BPA biotransformation. Heliyon 2024; 10:e24483. [PMID: 38298720 PMCID: PMC10827767 DOI: 10.1016/j.heliyon.2024.e24483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/16/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
A laccase-based catalytic reactor was developed into a polydimethylsiloxane (PDMS) microfluidic device, allowing the degradation of different concentrations of the emergent pollutant, Bisphenol-A (BPA), at a rate similar to free enzyme. Among the immobilizing agents used, 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) was capable of immobilizing a more significant amount of the laccase enzyme in comparison to glutaraldehyde (GA), and the passive method (2989, 1537, and 1905 U/mL, respectively). The immobilized enzyme inside the microfluidic device could degrade 55 ppm of BPA at a reaction rate of 0.5309 U/mL*min with a contaminant initial concentration of 100 ppm at room temperature. In conclusion, the design of a microfluidic device and the immobilization of the laccase enzyme successfully allowed a high capacity of BPA degradation.
Collapse
Affiliation(s)
- Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, 64849, Mexico
| | - Elsa M. Gutierrez
- Departmento de Ingeniería Biomédica, Universidad de Monterrey, Monterrey, Nuevo León, Mexico
| | | | - Osvaldo Aquines
- Department of Physics and Mathematics, Universidad de Monterrey, San Pedro Garza García, Mexico
| | - Felipe Robledo-Padilla
- Department of Physics and Mathematics, Universidad de Monterrey, San Pedro Garza García, Mexico
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, 64849, Mexico
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, 64849, Mexico
| | - Roberto Parra-Salvídar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing Monterrey, 64849, Mexico
| |
Collapse
|
11
|
Rodríguez-Couto S. Immobilized-laccase bioreactors for wastewater treatment. Biotechnol J 2024; 19:e2300354. [PMID: 37750809 DOI: 10.1002/biot.202300354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/09/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Laccases have shown to be efficient biocatalysts for the removal of recalcitrant pollutants from wastewater. Thus, they catalyze the oxidation of a wide variety of organic compounds by reducing molecular oxygen to water. However, the use of free laccases holds several drawbacks such as poor reusability, high cost, low stability and sensitivity to different denaturing agents that may occur in wastewater. Such drawbacks can be circumvented by immobilizing laccase enzymes in/on solid carriers. Hence, during the last decades different approaches considering various techniques and solid carriers to immobilize laccase enzymes have been developed and tested for the removal of pollutants from wastewater. To scale up wastewater treatment bioprocesses, immobilized laccases are placed in different reactor configurations.
Collapse
Affiliation(s)
- Susana Rodríguez-Couto
- Department of Separation Science, LUT School of Engineering Science, Lappeenranta-Lahti University of Technology LUT, Mikkeli, Finland
| |
Collapse
|
12
|
Alvarado-Ramírez L, Machorro-García G, López-Legarrea A, Trejo-Ayala D, Rostro-Alanis MDJ, Sánchez-Sánchez M, Blanco RM, Rodríguez-Rodríguez J, Parra-Saldívar R. Metal-organic frameworks for enzyme immobilization and nanozymes: A laccase-focused review. Biotechnol Adv 2024; 70:108299. [PMID: 38072099 DOI: 10.1016/j.biotechadv.2023.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Laccases are natural catalysts with remarkable catalytic activity. However, their application is limited by their lack of stability. Metal-organic frameworks (MOFs) have emerged as a promising alternative for enzyme immobilization. Enzymes can be immobilized in MOFs via two approaches: postsynthetic immobilization and in situ immobilization. In postsynthetic immobilization, an enzyme is embedded after MOF formation by covalent interactions or adsorption. In contrast, in in situ immobilization, a MOF is formed in the presence of an enzyme. Additionally, MOFs have exhibited intrinsic enzyme-like activity. These materials, known as nanozymes when they have the ability to replace enzymes in certain catalytic processes, have multiple key advantages, such as low cost, easy preparation, and large surface areas. This review presents a general overview of the most recent advances in both enzyme@MOF biocatalysts and MOF-based nanozymes in different applications, with a focus on laccase, which is one of the most widely investigated enzymes with excellent industrial potential.
Collapse
Affiliation(s)
| | | | - Andrea López-Legarrea
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Dulce Trejo-Ayala
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | | | - Manuel Sánchez-Sánchez
- Instituto de Catálisis y Petroleoquímica (ICP), Consejo Superior de Investigaciones Científicas (CSIC). C/ Marie Curie, 2, Madrid 28049, Spain.
| | - Rosa M Blanco
- Instituto de Catálisis y Petroleoquímica (ICP), Consejo Superior de Investigaciones Científicas (CSIC). C/ Marie Curie, 2, Madrid 28049, Spain.
| | | | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico.
| |
Collapse
|
13
|
Bilal M, Singh AK, Iqbal HMN, Kim TH, Boczkaj G, Athmaneh K, Ashraf SS. Bio-mitigation of organic pollutants using horseradish peroxidase as a promising biocatalytic platform for environmental sustainability. ENVIRONMENTAL RESEARCH 2023; 239:117192. [PMID: 37748672 DOI: 10.1016/j.envres.2023.117192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
A wide array of environmental pollutants is often generated and released into the ecosystem from industrial and human activities. Antibiotics, phenolic compounds, hydroquinone, industrial dyes, and Endocrine-Disrupting Chemicals (EDCs) are prevalent pollutants in water matrices. To promote environmental sustainability and minimize the impact of these pollutants, it is essential to eliminate such contaminants. Although there are multiple methods for pollutants removal, many of them are inefficient and environmentally unfriendly. Horseradish peroxidase (HRP) has been widely explored for its ability to oxidize the aforementioned pollutants, both alone and in combination with other peroxidases, and in an immobilized way. Numerous positive attributes make HRP an excellent biocatalyst in the biodegradation of diverse environmentally hazardous pollutants. In the present review, we underlined the major advancements in the HRP for environmental research. Numerous immobilization and combinational studies have been reviewed and summarized to comprehend the degradability, fate, and biotransformation of pollutants. In addition, a possible deployment of emerging computational methodologies for improved catalysis has been highlighted, along with future outlook and concluding remarks.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233, Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| | - Anil Kumar Singh
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma aGandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233, Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland
| | - Khawlah Athmaneh
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Syed Salman Ashraf
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Biotechnology (BTC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center (AMCC), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
14
|
Bautista-Zamudio PA, Flórez-Restrepo MA, López-Legarda X, Monroy-Giraldo LC, Segura-Sánchez F. Biodegradation of plastics by white-rot fungi: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165950. [PMID: 37536592 DOI: 10.1016/j.scitotenv.2023.165950] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Plastic pollution is one of the most environmental problems in the last two centuries, because of their excessive usage and their rapidly increasing production, which overcome the ability of natural degradation. Moreover, this problem become an escalating environmental issue caused by inadequate disposal, ineffective or nonexistent waste collection methods, and a lack of appropriate measures to deal with the problem, such as incineration and landfilling. Consequently, plastic wastes have become so ubiquitous and have accumulated in the environment impacting ecosystems and wildlife. The above, enhances the urgent need to explore alternative approaches that can effectively reduce waste without causing harsh environmental consequences. For example, white-rot fungi are a promising alternative to deal with the problem. These fungi produce ligninolytic enzymes able to break down the molecular structures of plastics, making them more bioavailable and allowing their degradation process, thereby mitigating waste accumulation. Over the years, several research studies have focused on the utilization of white-rot fungi to degrade plastics. This review presents a summary of plastic degradation biochemistry by white-rot fungi and the function of their ligninolytic enzymes. It also includes a collection of different research studies involving white-rot fungi to degrade plastic, their enzymes, the techniques used and the obtained results. Also, this highlights the significance of pre-treatments and the study of plastic blends with natural fibers or metallic ions, which have shown higher levels of degradation. Finally, it raises the limitations of the biotechnological processes and the prospects for future studies.
Collapse
Affiliation(s)
- Paula Andrea Bautista-Zamudio
- Grupo Biopolimer, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52 - 21, Medellín 050010, Colombia
| | - María Alejandra Flórez-Restrepo
- Grupo Biopolimer, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52 - 21, Medellín 050010, Colombia
| | - Xiomara López-Legarda
- Grupo Biopolimer, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52 - 21, Medellín 050010, Colombia.
| | - Leidy Carolina Monroy-Giraldo
- Grupo Biopolimer, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52 - 21, Medellín 050010, Colombia
| | - Freimar Segura-Sánchez
- Grupo Biopolimer, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia UdeA, Calle 70 No. 52 - 21, Medellín 050010, Colombia
| |
Collapse
|
15
|
Xie J, Ren D, Li Z, Zhang X, Zhang S, Chen W. Degradation of 2,4-DCP by immobilized laccase on modified biochar carrier. Bioprocess Biosyst Eng 2023; 46:1591-1611. [PMID: 37656258 DOI: 10.1007/s00449-023-02922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
Rape straw was used as the raw material for the biochar in this study, which was then changed using acid, alkali, and magnetic techniques. The laccase was attached using the adsorptions-crosslinking process, and the three modified biochars served as the carriers. The ideal circumstances for laccase immobilization were explored, and both biochar and immobilized laccase's characteristics were examined. The removal of 2,4-dichlorophenol (2,4-DCP) by immobilized laccase from modified biochar and its degradation products were researched. The main conclusions are as follows: the optimal concentration of glutaraldehyde (GLU) was 4%, and the pH was four, and the enzyme dosage was 1.75 mg/mL for the immobilized laccase of acid-modified biochar (SBC@LAC). The optimal concentration of GLU was 5%; the pH was four, and the enzyme dosage was 2 mg/mL for immobilized laccase from alkali-modified biochar (JBC@LAC). The optimal concentration of GLU was 5%; the pH was four, and the enzyme dosage was 1.75 mg/mL for immobilized laccase from magnetically modified biochar (CBC@LAC). SEM images could show the changes in the surface morphology of biochar caused by three modification methods. The BET results demonstrated that acid and magnetic modification increased the specific surface area of biochar, and alkali modification mainly expanded the pore size of biochar. FT-IR and XRD showed that modification and laccase loading had little effect on the structure of biochar. The stability of immobilized laccase was better than that of free laccase in acid-base, heat, and storage. Among the three modified biochar immobilized laccases, JBC@LAC showed the best acid-base stability and thermal stability, and the relative enzyme activity changed the least when pH and temperature conditions changed. The storage stability of SBC@LAC is the best. After 30 days of storage, the relative enzyme activity is still 83%. The removal rates of 2,4-DCP were 57, 99, and 63%, respectively, by SBC@LAC, JBC@LAC, and CBC@LAC. After five reuses, the removal rates of 2,4-DCP by SBC@LAC, JBC@LAC and CBC@LAC were 26, 42, and 27%, respectively. The intermediate products of 2,4-DCP degradation by immobilized laccase were p-phenol, p-benzoquinone and maleic acid.
Collapse
Affiliation(s)
- Junfeng Xie
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China.
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China.
| | - Zihang Li
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Xiaoqing Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| | - Wangsheng Chen
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, 430081, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, 430081, Hubei, China
| |
Collapse
|
16
|
Kyomuhimbo HD, Feleni U, Haneklaus NH, Brink H. Recent Advances in Applications of Oxidases and Peroxidases Polymer-Based Enzyme Biocatalysts in Sensing and Wastewater Treatment: A Review. Polymers (Basel) 2023; 15:3492. [PMID: 37631549 PMCID: PMC10460086 DOI: 10.3390/polym15163492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Oxidase and peroxidase enzymes have attracted attention in various biotechnological industries due to their ease of synthesis, wide range of applications, and operation under mild conditions. Their applicability, however, is limited by their poor stability in harsher conditions and their non-reusability. As a result, several approaches such as enzyme engineering, medium engineering, and enzyme immobilization have been used to improve the enzyme properties. Several materials have been used as supports for these enzymes to increase their stability and reusability. This review focusses on the immobilization of oxidase and peroxidase enzymes on metal and metal oxide nanoparticle-polymer composite supports and the different methods used to achieve the immobilization. The application of the enzyme-metal/metal oxide-polymer biocatalysts in biosensing of hydrogen peroxide, glucose, pesticides, and herbicides as well as blood components such as cholesterol, urea, dopamine, and xanthine have been extensively reviewed. The application of the biocatalysts in wastewater treatment through degradation of dyes, pesticides, and other organic compounds has also been discussed.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| | - Usisipho Feleni
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Florida Campus, Roodepoort, Johannesburg 1710, South Africa;
| | - Nils H. Haneklaus
- Transdisciplinarity Laboratory Sustainable Mineral Resources, University for Continuing Education Krems, 3500 Krems, Austria;
| | - Hendrik Brink
- Department of Chemical Engineering, University of Pretoria, Pretoria 0028, South Africa;
| |
Collapse
|
17
|
Ahmed Z, Arshad A, Bilal M, Iqbal HMN, Ahmed I. Nano-biocatalytic Systems for Cellulose de-polymerization: A Drive from Design to Applications. Top Catal 2023; 66:592-605. [DOI: 10.1007/s11244-023-01785-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2023] [Indexed: 02/24/2023]
|
18
|
Riaz R, Ashraf M, Hussain N, Baqar Z, Bilal M, Iqbal HMN. Redesigning Robust Biocatalysts by Engineering Enzyme Microenvironment and Enzyme Immobilization. Catal Letters 2023; 153:1587-1601. [DOI: 10.1007/s10562-022-04137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
|
19
|
George J, K Alanazi A, Senthil Kumar P, Venkataraman S, Rajendran DS, Athilakshmi JK, Singh I, Singh I, Sen P, Purushothaman M, Balakumaran PA, Vaidyanathan VK, M Abo-Dief H. Laccase-immobilized on superparamagnetic iron oxide nanoparticles incorporated polymeric ultrafiltration membrane for the removal of toxic pentachlorophenol. CHEMOSPHERE 2023; 331:138734. [PMID: 37088205 DOI: 10.1016/j.chemosphere.2023.138734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
A biocatalytic membrane offers an ideal alternative to the conventional treatment process for the removal of toxic pentachlorophenol (PCP). The limelight of the study is to utilize superparamagnetic iron oxide nanoparticles (SPIONs) incorporated (poly (methyl vinyl ether-alt-maleic acid) (PMVEAMA) and poly (ether - ether) sulfone (PEES)) membrane for immobilization of laccase and its application towards the removal of PCP. In regard to immobilization of Tramates versicolor laccase onto membranes, 5 mM glutaraldehyde with 10 h cross-linking time was employed, yielding 76.92% and 77.96% activity recovery for PEES/PMVEAMA/La and PEES/PMVEAMA/SPIONs/Lac, respectively. In the context of kinetics and stability studies, the immobilized laccase on PEES/PMVEAMA/Lac membrane outperforms the free and PEES/PMVEAMA laccases. At pH 7.0, the free enzyme loses half of its activity, while the immobilized laccases maintained more than 87% of their initial activity even after 480 min. With regard to PCP removal, the removal efficiency of immobilized laccase on the membrane was more than free enzyme. With 100 ppm of PCP, immobilized laccase on PEES/PMVEAMA/SPIONs membrane at pH 4.0 and 50 °C had a removal efficacy of 61.65% in 24 h. Furthermore, to perk up the removal of PCP, the laccase-aided system with mediators was investigated. Amongst, veratryl alcohol displayed 71.04% of PCP removal using immobilized laccase. The reusability of the laccase heightened after immobilization on PEES/PMVEAMA/SPIONs portraying 62.44% of the residual activity with 39.4% of PCP removal even after five cycles. The current investigation reveals the efficacy of the mediator-aided PEES/PMVEAMA/lac membrane system towards removing PCP from the aqueous solution, which can also be proposed for a membrane bioreactor.
Collapse
Affiliation(s)
- Jenet George
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Abdullah K Alanazi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Jothyswarupha Krishnakumar Athilakshmi
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Isita Singh
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Ishani Singh
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - Pramit Sen
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | | | - Palanisamy Athiyaman Balakumaran
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| | - Hala M Abo-Dief
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
20
|
Zangi AR, Amiri A, Borzouee F, Bagherifar R, Pazooki P, Hamishehkar H, Javadzadeh Y. Immobilized nanoparticles-mediated enzyme therapy; promising way into clinical development. DISCOVER NANO 2023; 18:55. [PMID: 37382752 PMCID: PMC10409955 DOI: 10.1186/s11671-023-03823-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/06/2023] [Indexed: 06/30/2023]
Abstract
Enzyme (Enz)-mediated therapy indicated a remarkable effect in the treatment of many human cancers and diseases with an insight into clinical phases. Because of insufficient immobilization (Imb) approach and ineffective carrier, Enz therapeutic exhibits low biological efficacy and bio-physicochemical stability. Although efforts have been made to remove the limitations mentioned in clinical trials, efficient Imb-destabilization and modification of nanoparticles (NPs) remain challenging. NP internalization through insufficient membrane permeability, precise endosomal escape, and endonuclease protection following release are the primary development approaches. In recent years, innovative manipulation of the material for Enz immobilization (EI) fabrication and NP preparation has enabled nanomaterial platforms to improve Enz therapeutic outcomes and provide low-diverse clinical applications. In this review article, we examine recent advances in EI approaches and emerging views and explore the impact of Enz-mediated NPs on clinical therapeutic outcomes with at least diverse effects.
Collapse
Affiliation(s)
- Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ala Amiri
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Fatemeh Borzouee
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouya Pazooki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, 5166-15731, Iran
| | - Yousef Javadzadeh
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, 5166-15731, Iran.
| |
Collapse
|
21
|
Kyomuhimbo HD, Brink HG. Applications and immobilization strategies of the copper-centred laccase enzyme; a review. Heliyon 2023; 9:e13156. [PMID: 36747551 PMCID: PMC9898315 DOI: 10.1016/j.heliyon.2023.e13156] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/11/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Laccase is a multi-copper enzyme widely expressed in fungi, higher plants, and bacteria which facilitates the direct reduction of molecular oxygen to water (without hydrogen peroxide production) accompanied by the oxidation of an electron donor. Laccase has attracted attention in biotechnological applications due to its non-specificity and use of molecular oxygen as secondary substrate. This review discusses different applications of laccase in various sectors of food, paper and pulp, waste water treatment, pharmaceuticals, sensors, and fuel cells. Despite the many advantages of laccase, challenges such as high cost due to its non-reusability, instability in harsh environmental conditions, and proteolysis are often encountered in its application. One of the approaches used to minimize these challenges is immobilization. The various methods used to immobilize laccase and the different supports used are further extensively discussed in this review.
Collapse
Affiliation(s)
- Hilda Dinah Kyomuhimbo
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| | - Hendrik G. Brink
- Water Utilisation and Environmental Engineering Division, Department of Chemical Engineering, University of Pretoria, South Africa
| |
Collapse
|
22
|
Design and Applications of Enzyme-Linked Nanostructured Materials for Efficient Bio-catalysis. Top Catal 2023. [DOI: 10.1007/s11244-022-01770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Rodrigues AF, da Silva AF, da Silva FL, dos Santos KM, de Oliveira MP, Nobre MM, Catumba BD, Sales MB, Silva AR, Braz AKS, Cavalcante AL, Alexandre JY, Junior PG, Valério RB, de Castro Bizerra V, do Santos JC. A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Nanomaterial Constructs for Catalytic Applications in Biomedicine: Nanobiocatalysts and Nanozymes. Top Catal 2022; 66:707-722. [PMID: 36597435 PMCID: PMC9798949 DOI: 10.1007/s11244-022-01766-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomaterials have an increasing interest in many research areas including biomedicine such as chronic inflammations, disease detection, drug delivery, and infections treatment. Their relevant role is, in many cases, associated with an effective catalytic application, either as a pure catalyst (acting as a nanozyme) or as a support for catalytically active materials (forming nanobiocatalysts). In this review, we analyze the construction of nanozymes and nanobiocatalyst by different existing forms of nanomaterials including carbon-based nanomaterials, metal-based nanomaterials, and polymer-based nanocomposites. Then, we examine successful examples of such nanomaterials employed in biomedical research. The role played by nanomaterials in catalytic applications is analyzed to identify possible research directions toward the development of the field and the achievement of real practicability. Graphical Abstract
Collapse
|
25
|
Liu R, Wang S, Han M, Zhang W, Xu H, Hu Y. Co-immobilization of electron mediator and laccase onto dialdehyde starch cross-linked magnetic chitosan nanomaterials for organic pollutants’ removal. Bioprocess Biosyst Eng 2022; 45:1955-1966. [PMID: 36355205 DOI: 10.1007/s00449-022-02799-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
In this study, an amino-functionalized ionic liquid-modified magnetic chitosan (MACS-NIL) containing 2,2-diamine-di-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) was used as a carrier, and dialdehyde starch (DAS) was used as a cross-linking agent to covalently immobilize laccase (MACS-NIL-DAS-lac), which realized the co-immobilization of laccase and ABTS. The carrier was characterized by Fourier infrared transform spectroscopy, scanning electron microscopy, thermogravimetric analysis, X-ray diffraction analysis, electron paramagnetic resonance, etc. The immobilization efficiency and activity retention of MACS-NIL-DAS-lac could reach 76.7% and 69.8%, respectively. At the same time, its pH stability, thermal stability, and storage stability had been significantly improved. In the organic pollutant removal performance test, the removal rate of 2,4-dichlorophenol (10 mg/L) by MACS-NIL-DAS-lac (1 U) could reach 100% within 6 h, and the removal efficiency could still reach 88.6% after six catalytic runs. In addition, MACS-NIL-DAS-lac also showed excellent degradation ability for other conventional phenolic pollutants and polycyclic aromatic hydrocarbons. The research results showed that MACS-NIL-DAS fabricated by the combination inorganic material, organic biomacromolecules, ionic liquid, and electron mediator could be used as a novel carrier for laccase immobilization and the immobilized laccase showed excellent removal efficiency for organic pollutants.
Collapse
Affiliation(s)
- Runtang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Silin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Mengyao Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China
| | - Huajin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, China.
| |
Collapse
|
26
|
Site-Specific Covalent Immobilization of Methylobacterium extorquens Non-Blue Laccse Melac13220 on Fe3O4 Nanoparticles by Aldehyde Tag. Catalysts 2022. [DOI: 10.3390/catal12111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the present study, the non-blue laccase Melac13220 from Methylobacterium extorquens was immobilized using three methods to overcome problems related to the stability and reusability of the free enzyme: entrapment of the enzyme with sodium alginate, crosslinking of the enzyme with glutaraldehyde and chitosan-, and site-specific covalent immobilization of the enzyme on Fe3O4 nanoparticles by an aldehyde tag. The site-specific covalent immobilization method showed the highest immobilization efficiency and vitality recovery. The optimum temperature of Melac13220 was increased from 65 °C to 80 °C. Immobilized Melac13220 showed significant tolerance to some organic solvents and maintained approximately 80% activity after 10 cycles of use. Differential scanning calorimetry (DSC) indicated that the melting temperature of the enzyme was increased (from 57 °C to 79 °C). Immobilization of Melac13220 also led to improvement in dye decolorization such that Congo Red was completely decolorized within 10 h. The immobilized enzyme can be easily prepared without purification, demonstrating the advantages of using the aldehyde tag strategy and providing a reference for the practical application of different immobilized laccase methods in the industrial field.
Collapse
|
27
|
Yao C, Xia W, Dou M, Du Y, Wu J. Oxidative degradation of UV-irradiated polyethylene by laccase-mediator system. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129709. [PMID: 35939906 DOI: 10.1016/j.jhazmat.2022.129709] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Polyethylene (PE) is one of the most widely used plastics. However, the chemical inertness, inefficient recycling, and random landfilling of PE waste have caused serious pollution to the natural environment. In this study, a series of laccase-mediator systems (LMS) were constructed by combination of two laccases from Botrytis aclada (BaLac) and Bacillus subtilis (BsLac) with three synthetic mediators (ABTS, HBT, and TEMPO) to oxidize LDPE films (UVPE) pretreated with high-temperature UV irradiation. Scanning electron microscopy showed aging phenomena such as etching, fragmentation, and cracking on the surface of the UVPE films after LMS incubation. The FTIR results showed that LMS-UVPE added new oxygen-containing functional groups such as -OH, -CO, and CC. High-temperature gel chromatography confirmed that the average reduction in weight-average molecular weight (Mw) was approximately 40% for the BaLac experimental group. GC-MS analysis showed the presence of oxygen-containing products, such as aldehydes, ketones, and alcohols, in the reaction mixture. To verify the oxidation process UVPE degradation by LMS, we inferred three possible pathways by combined analysis of the oxidation products of LMS on UVPE and model substrates oleic acid and squalene.
Collapse
Affiliation(s)
- Congyu Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Mingde Dou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Yanyi Du
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China.
| |
Collapse
|
28
|
Zhu Q, Song J, Liu Z, Wu K, Li X, Chen Z, Pang H. Photothermal catalytic degradation of textile dyes by laccase immobilized on Fe3O4@SiO2 nanoparticles. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Farag AM, El-Naggar MY, Ghanem KM. 2,4-Dichlorophenol biotransformation using immobilized marine halophilic Bacillus subtilis culture and laccase enzyme: application in wastewater treatment. J Genet Eng Biotechnol 2022; 20:134. [PMID: 36112327 PMCID: PMC9481827 DOI: 10.1186/s43141-022-00417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/10/2022] [Indexed: 11/30/2022]
Abstract
Background 2,4-Dichlorophenol (2,4-DCP) is a very toxic aromatic compound for humans and the environment and is highly resistant to degradation. Therefore, it is necessary to develop efficient remediation and cost-effective approaches to this pollutant. Microbial enzymes such as laccases can degrade phenols, but limited information is known about immobilized bacterial laccase and their reuse. Methods Immobilization of marine halophilic Bacillus subtilis AAK cultures via entrapment and adsorption techniques and degradation of different phenolic compounds by immobilized cells were estimated. Partial purification and immobilization of laccase enzymes were carried out. In addition, the biodegradation of 2,4-DCP and others contaminated by wastewater was investigated. Results Immobilization of cells and partially purified laccase enzymes by adsorption into 3% alginate increased 2,4-DCP biotransformation compared with free cells and free enzymes. In addition, the reuse of both the immobilized culture and laccase enzymes was evaluated. The highest removal of 2,4-DCP from pulp and paper wastewater samples inoculated by immobilized cells and the immobilized enzyme was 90% and 95%, respectively, at 50 h and 52 h of incubation, compared to free cells and free enzyme. Conclusion The results of this study have revealed the immobilization of a biocatalyst and its laccase enzyme as a promising technique for enhancing the degradation of 2,4-DCP and other toxic phenolic and aromatic compounds. The reuse of the biocatalyst and its laccase enzyme enabled the application of this cost-effective bioremediation strategy. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00417-1.
Collapse
|
30
|
dos Santos PM, Baruque JR, de Souza Lira RK, Leite SGF, do Nascimento RP, Borges CP, Wojcieszak R, Itabaiana I. Corn Cob as a Green Support for Laccase Immobilization-Application on Decolorization of Remazol Brilliant Blue R. Int J Mol Sci 2022; 23:ijms23169363. [PMID: 36012620 PMCID: PMC9409158 DOI: 10.3390/ijms23169363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The high demand for food and energy imposed by the increased life expectancy of the population has driven agricultural activity, which is reflected in the larger quantities of agro-industrial waste generated, and requires new forms of use. Brazil has the greatest biodiversity in the world, where corn is one of the main agricultural genres, and where over 40% of the waste generated is from cobs without an efficient destination. With the aim of the valorization of these residues, we proposed to study the immobilization of laccase from Aspergillus spp. (LAsp) in residual corn cob and its application in the degradation of Remazol Brilliant Blue R (RBBR) dye. The highest yields in immobilized protein (75%) and residual activity (40%) were obtained at pH 7.0 and an enzyme concentration of 0.1 g.mL−1, whose expressed enzyme activity was 1854 U.kg−1. At a temperature of 60 °C, more than 90% of the initial activity present in the immobilized biocatalyst was maintained. The immobilized enzyme showed higher efficiency in the degradation (64%) of RBBR dye in 48 h, with improvement in the process in 72 h (75%). The new biocatalyst showed operational efficiency during three cycles, and a higher degradation rate than the free enzyme, making it a competitive biocatalyst and amenable to industrial applications.
Collapse
Affiliation(s)
- Priscila M. dos Santos
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Julia R. Baruque
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Regiane K. de Souza Lira
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Selma G. F. Leite
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Rodrigo P. do Nascimento
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Cristiano P. Borges
- COPPE/Chemical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro 21941-972, Brazil
| | - Robert Wojcieszak
- CNRS, Centrale Lille, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, University Lille, University Artois, F-59000 Lille, France
| | - Ivaldo Itabaiana
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- CNRS, Centrale Lille, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, University Lille, University Artois, F-59000 Lille, France
- Correspondence: ; Tel.: +55-2139-387-580
| |
Collapse
|
31
|
Kamal S, Rehman S, Bibi I, Akhter N, Amir R, Alsanie WF, Iqbal HMN. Graphene oxide/chitosan composites as novel support to provide high yield and stable formulations of pectinase for industrial applications. Int J Biol Macromol 2022; 220:683-691. [PMID: 35987366 DOI: 10.1016/j.ijbiomac.2022.08.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022]
Abstract
An extracellular pectinase from a mixed consortium of Bacillus sp. (BSP) was immobilized onto graphene oxide/chitosan composite (GO/CS) through covalent binding to enhance its recycling and operational stability features. Different parameters were optimized, including cross-linker concentration (%), time, pH, and GO/CS-pectinase ratios. GO/CS-pectinase was further characterized by FT-IR and XRD. The activity of GO/CS-pectinase was reached up to 804 μmolmin-1 with an immobilization efficiency of 80.64 ± 1.15 % under optimum conditions. GO/CS-pectinase exhibited a 3.0-folds higher half-life (t1/2) than free pectinase at 50, 55, and 60 °C, respectively. The Vmax and KM values of GO/CS-pectinase were found to be nearly equal to the free pectinase indicating that conformational flexibility was retained. Kd, t1/2, ∆G*, ∆H*, and ∆S* of both free pectinase and GO/CS-pectinase was 0.0339 & 0.0721 min-1, 9.62 and 40.44 min, 81.35, 90.72 kJmol-1, 47.098 & 63.635 kJmol-1, -102.86 & -81.340 Jmole-1 K-1. SEM morphological analysis further confirmed the successful binding of pectinase with GO/CS, which retained about 92 % of its original catalytic activity after ten consecutive reaction cycles. Finally, GO/CS-pectinase was employed for guava juice clarification which exhibited the turbidity reduction up to 81 % after 75 min of treatment.
Collapse
Affiliation(s)
- Shagufta Kamal
- Department of Biochemistry, Government College University Faisalabad, Pakistan.
| | - Saima Rehman
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Ismat Bibi
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Naheed Akhter
- College of Allied Health Professionals, Faculty of Medical Sciences, Government College University Faisalabad, Pakistan
| | - Rija Amir
- Department of Chemistry, Government College University Faisalabad, Pakistan
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif, Saudi Arabia; Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
32
|
Luo H, Liu X, Yu D, Yuan J, Tan J, Li H. Research Progress on Lignocellulosic Biomass Degradation Catalyzed by Enzymatic Nanomaterials. Chem Asian J 2022; 17:e202200566. [PMID: 35862657 DOI: 10.1002/asia.202200566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Indexed: 11/11/2022]
Abstract
Lignocellulose biomass (LCB) has extensive applications in many fields such as bioenergy, food, medicines, and raw materials for producing value-added products. One of the keys to efficient utilization of LCB is to obtain directly available oligo- and monomers (e.g., glucose). With the characteristics of easy recovery and separation, high efficiency, economy, and environmental protection, immobilized enzymes have been developed as heterogeneous catalysts to degrade LCB effectively. In this review, applications and mechanisms of LCB-degrading enzymes are discussed, and the nanomaterials and methods used to immobilize enzymes are also discussed. Finally, the research progress of lignocellulose biodegradation catalyzed by nano-enzymes was discussed.
Collapse
Affiliation(s)
- Hangyu Luo
- Guiyang University, College of Biology and Environmental Engineering, CHINA
| | - Xiaofang Liu
- Guiyang University, College of Biology and Environmental Engineering, CHINA
| | - Dayong Yu
- Guiyang University, College of Biology and Environmental Engineering, CHINA
| | - Junfa Yuan
- Guizhou University, Center for R&D of Fine Chemicals, CHINA
| | - Jinyu Tan
- Guizhou University, Center for R&D of Fine Chemicals, CHINA
| | - Hu Li
- Guizhou University, Center for R&D of Fine Chemicals, Huaxi Street, 550025, Guiyang, CHINA
| |
Collapse
|
33
|
Yaashikaa PR, Devi MK, Kumar PS. Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review. CHEMOSPHERE 2022; 299:134390. [PMID: 35339523 DOI: 10.1016/j.chemosphere.2022.134390] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Nowadays, ecofriendly, low-cost, and sustainable alternatives techniques have been focused on the effective removal of hazardous pollutants from the water streams. In this context, enzyme immobilization seems to be of specific interest to several researchers to develop novel, effective, greener, and hybrid strategies for the removal of toxic contaminants. Immobilization is a biotechnological tool, anchoring the enzymes on support material to enhance the stability and retain the structural conformation of enzymes for catalysis. Recyclability and reusability are the main merits of immobilized enzymes over free enzymes. Studies showed that immobilized enzyme laccase can be used up to 7 cycles with 66% efficiency, peroxidase can be recycled to 2 cycles with 50% efficiency, and also cellulase to 3 cycles with 91% efficiency. In this review, basic concepts of immobilization, different immobilization techniques, and carriers used for immobilization are summarized. In addition to that, the potential of immobilized enzymes as the bioremediation agents for the effective degradation of pollutants from the contaminated zone and the impact of different operating parameters are summarized in-depth. Further, this review provides future trends and challenges that have to be solved shortly for enhancing the potential of immobilized systems for large-scale industrial wastewater treatment.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - M Keerthana Devi
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
34
|
Molina MA, Díez-Jaén J, Sánchez-Sánchez M, Blanco RM. One-pot laccase@MOF biocatalysts efficiently remove bisphenol A from water. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Abstract
The accumulation of waste and toxic compounds has become increasingly harmful to the environment and human health. In this context, the use of laccases has become a focus of interest, due to the properties of these versatile enzymes: low substrate specificity, and water formation as a non-toxic end product. Thus, we begin our study with a general overview of the importance of laccase for the environment and industry, starting with the sources of laccases (plant, bacterial and fungal laccases), the structure and mechanism of laccases, microbial biosynthesis, and the immobilization of laccases. Then, we continue with an overview of agro-waste treatment by laccases wherein we observe the importance of laccases for the biodisponibilization of substrates and the biodegradation of agro-industrial byproducts; we then show some aspects regarding the degradation of xenobiotic compounds, dyes, and pharmaceutical products. The objective of this research is to emphasize and fully investigate the effects of laccase action on the decomposition of lignocellulosic materials and on the removal of harmful compounds from soil and water, in order to provide a sustainable solution to reducing environmental pollution.
Collapse
|
36
|
Martínez SAH, Melchor-Martínez EM, Hernández JAR, Parra-Saldívar R, Iqbal HM. Magnetic nanomaterials assisted nanobiocatalysis systems and their applications in biofuels production. FUEL 2022. [DOI: 10.1016/j.fuel.2021.122927] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Castrovilli MC, Tempesta E, Cartoni A, Plescia P, Bolognesi P, Chiarinelli J, Calandra P, Cicco N, Verrastro MF, Centonze D, Gullo L, Del Giudice A, Galantini L, Avaldi L. Fabrication of a New, Low-Cost, and Environment-Friendly Laccase-Based Biosensor by Electrospray Immobilization with Unprecedented Reuse and Storage Performances. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:1888-1898. [PMID: 35154910 PMCID: PMC8830555 DOI: 10.1021/acssuschemeng.1c07604] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/10/2022] [Indexed: 05/06/2023]
Abstract
The fabrication of enzyme-based biosensors has received much attention for their selectivity and sensitivity. In particular, laccase-based biosensors have attracted a lot of interest for their capacity to detect highly toxic molecules in the environment, becoming essential tools in the fields of white biotechnology and green chemistry. The manufacturing of a new, metal-free, laccase-based biosensor with unprecedented reuse and storage capabilities has been achieved in this work through the application of the electrospray deposition (ESD) methodology as the enzyme immobilization technique. Electrospray ionization (ESI) has been used for ambient soft-landing of laccase enzymes on a carbon substrate, employing sustainable chemistry. This study shows how the ESD technique can be successfully exploited for the fabrication of a new promising environment-friendly electrochemical amperometric laccase-based biosensor, with storage capability up to two months without any particular care and reuse performance up to 63 measurements on the same electrode just prepared and 20 measurements on the one-year-old electrode subjected to redeposition. The laccase-based biosensor has been tested for catechol detection in the linear range 2-100 μM, with a limit of detection of 1.7 μM, without interference from chrome, cadmium, arsenic, and zinc and without any memory effects.
Collapse
Affiliation(s)
- Mattea Carmen Castrovilli
- Istituto
di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, 00015 Monterotondo, Italy
| | - Emanuela Tempesta
- CNR-Institute
of Environmental Geology and Geoengineering (CNR-IGAG), Area della Ricerca Roma1, Via Salaria
km 29.300, 00015 Monterotondo, Italy
| | - Antonella Cartoni
- Department
of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Paolo Plescia
- CNR-Institute
of Environmental Geology and Geoengineering (CNR-IGAG), Area della Ricerca Roma1, Via Salaria
km 29.300, 00015 Monterotondo, Italy
| | - Paola Bolognesi
- Istituto
di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, 00015 Monterotondo, Italy
| | - Jacopo Chiarinelli
- Istituto
di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, 00015 Monterotondo, Italy
| | - Pietro Calandra
- CNR-Institute
for the Study of Nanostructured Materials (CNR-ISMN), Area della Ricerca Roma1, Via Salaria
km 29.300, 00015 Monterotondo, Italy
| | - Nunzia Cicco
- CNR-Institute
of Methodologies for Environmental Analysis (CNR-IMAA), Contrada Santa Loja, Tito Scalo, 85050 Potenza, Italy
| | - Maria Filomena Verrastro
- Istituto
di Struttura della Materia-CNR (ISM-CNR), Contrada Santa Loja, Tito
Scalo 85050, Potenza, Italy
| | - Diego Centonze
- Dipartimento
di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università degli Studi di Foggia, via Napoli, 25, 71122 Foggia, Italy
| | - Ludovica Gullo
- Department
of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185 Roma, Italy
| | | | - Luciano Galantini
- Department
of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185 Roma, Italy
| | - Lorenzo Avaldi
- Istituto
di Struttura della Materia-CNR (ISM-CNR), Area della Ricerca di Roma 1, 00015 Monterotondo, Italy
| |
Collapse
|
38
|
Zdarta J, Jesionowski T, Pinelo M, Meyer AS, Iqbal HMN, Bilal M, Nguyen LN, Nghiem LD. Free and immobilized biocatalysts for removing micropollutants from water and wastewater: Recent progress and challenges. BIORESOURCE TECHNOLOGY 2022; 344:126201. [PMID: 34710611 DOI: 10.1016/j.biortech.2021.126201] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023]
Abstract
Enzymatic conversion of micropollutants into less-toxic derivatives is an important bioremediation strategy. This paper aims to critically review the progress in water and wastewater treatment by both free and immobilized enzymes presenting this approach as highly efficient and performed under environmentally benign and friendly conditions. The review also summarises the effects of inorganic and organic wastewater matrix constituents on enzymatic activity and degradation efficiency of micropollutants. Finally, application of enzymatic reactors facilitate continuous treatment of wastewater and obtaining of pure final effluents. Of a particular note, enzymatic treatment of micropollutants from wastewater has been mostly reported by laboratory scale studies. Thus, this review also highlights key research gaps of the existing techniques and provides future perspectives to facilitate the transfer of the lab-scale solutions to a larger scale and to improve operationability of biodegradation processes.
Collapse
Affiliation(s)
- Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo, PL-60965 Poznan, Poland.
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo, PL-60965 Poznan, Poland
| | - Manuel Pinelo
- Process and Systems Engineering Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, DK-2800 Kongens Lyngby, Denmark
| | - Anne S Meyer
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kongens Lyngby, Denmark
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
39
|
Rodríguez-Hernández JA, Araújo RG, López-Pacheco IY, Rodas-Zuluaga LI, González-González RB, Parra-Arroyo L, Sosa-Hernández JE, Melchor-Martínez EM, Martínez-Ruiz M, Barceló D, Pastrana LM, Iqbal HMN, Parra-Saldívar R. Environmental persistence, detection, and mitigation of endocrine disrupting contaminants in wastewater treatment plants – a review with a focus on tertiary treatment technologies. ENVIRONMENTAL SCIENCE: ADVANCES 2022; 1:680-704. [DOI: 10.1039/d2va00179a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Endocrine disrupting chemicals are a group of contaminants that have severe effects on humans and animals when exposed, like cancer and alterations to the nervous and reproductive systems.
Collapse
Affiliation(s)
| | - Rafael G. Araújo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Itzel Y. López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | | | - Reyna Berenice González-González
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Elda M. Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain
- Catalan Institute for Water Research (ICRA-CERCA), Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, 248007, Uttarakhand, India
| | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, Mexico, 64849
| |
Collapse
|
40
|
Brugnari T, Braga DM, Dos Santos CSA, Torres BHC, Modkovski TA, Haminiuk CWI, Maciel GM. Laccases as green and versatile biocatalysts: from lab to enzyme market-an overview. BIORESOUR BIOPROCESS 2021; 8:131. [PMID: 38650295 PMCID: PMC10991308 DOI: 10.1186/s40643-021-00484-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Laccases are multi-copper oxidase enzymes that catalyze the oxidation of different compounds (phenolics and non-phenolics). The scientific literature on laccases is quite extensive, including many basic and applied research about the structure, functions, mechanism of action and a variety of biotechnological applications of these versatile enzymes. Laccases can be used in various industries/sectors, from the environmental field to the cosmetics industry, including food processing and the textile industry (dyes biodegradation and synthesis). Known as eco-friendly or green enzymes, the application of laccases in biocatalytic processes represents a promising sustainable alternative to conventional methods. Due to the advantages granted by enzyme immobilization, publications on immobilized laccases increased substantially in recent years. Many patents related to the use of laccases are available, however, the real industrial or environmental use of laccases is still challenged by cost-benefit, especially concerning the feasibility of producing this enzyme on a large scale. Although this is a compelling point and the enzyme market is heated, articles on the production and application of laccases usually neglect the economic assessment of the processes. In this review, we present a description of laccases structure and mechanisms of action including the different sources (fungi, bacteria, and plants) for laccases production and tools for laccases evolution and prediction of potential substrates. In addition, we both compare approaches for scaling-up processes with an emphasis on cost reduction and productivity and critically review several immobilization methods for laccases. Following the critical view on production and immobilization, we provide a set of applications for free and immobilized laccases based on articles published within the last five years and patents which may guide future strategies for laccase use and commercialization.
Collapse
Affiliation(s)
- Tatiane Brugnari
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil.
| | - Dayane Moreira Braga
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Camila Souza Almeida Dos Santos
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Bruno Henrique Czelusniak Torres
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Tatiani Andressa Modkovski
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Charles Windson Isidoro Haminiuk
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| | - Giselle Maria Maciel
- Biotechnology Laboratory, Department of Chemistry and Biology, Graduate Program in Environmental Science and Technology, Federal University of Technology, Paraná, Curitiba, Brazil
| |
Collapse
|
41
|
Loi M, Glazunova O, Fedorova T, Logrieco AF, Mulè G. Fungal Laccases: The Forefront of Enzymes for Sustainability. J Fungi (Basel) 2021; 7:1048. [PMID: 34947030 PMCID: PMC8708107 DOI: 10.3390/jof7121048] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 01/22/2023] Open
Abstract
Enzymatic catalysis is one of the main pillars of sustainability for industrial production. Enzyme application allows minimization of the use of toxic solvents and to valorize the agro-industrial residues through reuse. In addition, they are safe and energy efficient. Nonetheless, their use in biotechnological processes is still hindered by the cost, stability, and low rate of recycling and reuse. Among the many industrial enzymes, fungal laccases (LCs) are perfect candidates to serve as a biotechnological tool as they are outstanding, versatile catalytic oxidants, only requiring molecular oxygen to function. LCs are able to degrade phenolic components of lignin, allowing them to efficiently reuse the lignocellulosic biomass for the production of enzymes, bioactive compounds, or clean energy, while minimizing the use of chemicals. Therefore, this review aims to give an overview of fungal LC, a promising green and sustainable enzyme, its mechanism of action, advantages, disadvantages, and solutions for its use as a tool to reduce the environmental and economic impact of industrial processes with a particular insight on the reuse of agro-wastes.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; (M.L.); (A.F.L.)
| | - Olga Glazunova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.G.); (T.F.)
| | - Tatyana Fedorova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (O.G.); (T.F.)
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; (M.L.); (A.F.L.)
| | - Giuseppina Mulè
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70126 Bari, Italy; (M.L.); (A.F.L.)
| |
Collapse
|
42
|
Alvarado-Ramírez L, Rostro-Alanis M, Rodríguez-Rodríguez J, Sosa-Hernández JE, Melchor-Martínez EM, Iqbal HMN, Parra-Saldívar R. Enzyme (Single and Multiple) and Nanozyme Biosensors: Recent Developments and Their Novel Applications in the Water-Food-Health Nexus. BIOSENSORS 2021; 11:410. [PMID: 34821626 PMCID: PMC8615953 DOI: 10.3390/bios11110410] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/05/2023]
Abstract
The use of sensors in critical areas for human development such as water, food, and health has increased in recent decades. When the sensor uses biological recognition, it is known as a biosensor. Nowadays, the development of biosensors has been increased due to the need for reliable, fast, and sensitive techniques for the detection of multiple analytes. In recent years, with the advancement in nanotechnology within biocatalysis, enzyme-based biosensors have been emerging as reliable, sensitive, and selectively tools. A wide variety of enzyme biosensors has been developed by detecting multiple analytes. In this way, together with technological advances in areas such as biotechnology and materials sciences, different modalities of biosensors have been developed, such as bi-enzymatic biosensors and nanozyme biosensors. Furthermore, the use of more than one enzyme within the same detection system leads to bi-enzymatic biosensors or multi-enzyme sensors. The development and synthesis of new materials with enzyme-like properties have been growing, giving rise to nanozymes, considered a promising tool in the biosensor field due to their multiple advantages. In this review, general views and a comparison describing the advantages and disadvantages of each enzyme-based biosensor modality, their possible trends and the principal reported applications will be presented.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (L.A.-R.); (M.R.-A.); (J.R.-R.); (J.E.S.-H.); (E.M.M.-M.); (H.M.N.I.)
| |
Collapse
|
43
|
Abstract
The market for industrial enzymes has witnessed constant growth, which is currently around 7% a year, projected to reach $10.5 billion in 2024. Lipases are hydrolase enzymes naturally responsible for triglyceride hydrolysis. They are the most expansively used industrial biocatalysts, with wide application in a broad range of industries. However, these biocatalytic processes are usually limited by the low stability of the enzyme, the half-life time, and the processes required to solve these problems are complex and lack application feasibility at the industrial scale. Emerging technologies create new materials for enzyme carriers and sophisticate the well-known immobilization principles to produce more robust, eco-friendlier, and cheaper biocatalysts. Therefore, this review discusses the trending studies and industrial applications of the materials and protocols for lipase immobilization, analyzing their advantages and disadvantages. Finally, it summarizes the current challenges and potential alternatives for lipases at the industrial level.
Collapse
|
44
|
Yanto DHY, Guntoro MA, Nurhayat OD, Anita SH, Oktaviani M, Ramadhan KP, Pradipta MF, Watanabe T. Biodegradation and biodetoxification of batik dye wastewater by laccase from Trametes hirsuta EDN 082 immobilised on light expanded clay aggregate. 3 Biotech 2021; 11:247. [PMID: 33968590 DOI: 10.1007/s13205-021-02806-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 01/15/2023] Open
Abstract
The biodegradation and biodetoxification of batik industrial wastewater by laccase enzyme immobilised on light expanded clay aggregate (LECA) were investigated. Laccase from Trametes hirsuta EDN 082 was covalently immobilised by modifying the LECA surface using (3-aminopropyl)trimethoxysilane and glutaraldehyde. The enzymatic characterisation of LECA-laccase showed promising results with an enzyme loading of 6.67 U/g and an immobilisation yield of 66.7% at the initial laccase activity of 10 U/g LECA. LECA-laccase successfully degraded batik industrial wastewater containing indigosol dye up to 98.2%. In addition, the decolorisation extent was more than 95.4% after four cycles. The phytotoxicity assessment of Vigna radiata and the microbial toxicity of two pathogenic bacteria, Bacillus subtilis and Pseudomonas aeruginosa, showed biodetoxification of treated batik dye wastewater. The characterisation using 3D light microscopy, scanning electron microscopy and Fourier transform infrared for LECA-laccase confirmed that laccase was successfully immobilised on LECA, and the decolorisation achieved through the combination of adsorption and enzymatic degradation. This study offers an environmentally friendly, effective and affordable LECA-laccase as a method for batik dye wastewater treatment. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02806-8.
Collapse
Affiliation(s)
- Dede Heri Yuli Yanto
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km. 46, Cibinong, Bogor 16911 Indonesia
| | - Maria Andriani Guntoro
- Department of Chemistry, Gajah Mada University (UGM), Jl. Bulaksumur, Caturtunggal, Yogyakarta 55281 Indonesia
| | - Oktan Dwi Nurhayat
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km. 46, Cibinong, Bogor 16911 Indonesia
| | - Sita Heris Anita
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km. 46, Cibinong, Bogor 16911 Indonesia
| | - Maulida Oktaviani
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km. 46, Cibinong, Bogor 16911 Indonesia
| | - Kharisma Panji Ramadhan
- Research Center for Biomaterials, Indonesian Institute of Sciences (LIPI), Jl. Raya Bogor Km. 46, Cibinong, Bogor 16911 Indonesia
| | - Mokhammad Fajar Pradipta
- Department of Chemistry, Gajah Mada University (UGM), Jl. Bulaksumur, Caturtunggal, Yogyakarta 55281 Indonesia
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, 611-0011 Japan
| |
Collapse
|