1
|
Cheng C, Xu Z, Zhao Q, Gao M, Li T, Li G, Chi K, Xu J, Cheng B. Prepartion of low-cost blended lyocell fibres with phosphorus, nitrogen, halogen and inorganic flame retardants and study on their synergistic fame retardancy mechanism. Int J Biol Macromol 2024; 282:136971. [PMID: 39471917 DOI: 10.1016/j.ijbiomac.2024.136971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Cellulose is a kind of green and renewable materials, but its flammability limits its wide application. In order to enhance the flame retardancy of cellulose materials, herein, melamine cyanurate, decabromodiphenyl ethane, 1,2-Bis(2-oxo-5,5-dimethyl-1,3,2-dioxyphosphacyclohexyl-2-imino)ethane(BODIE) and montmorillonite were used as four typical flame retardants. These flame retardants were used alone or in combination to prepare several flame retardant lyocell fibres by physical blending method. Furthermore, the flame retardancy mechanism of phosphorus, nitrogen, halogen and inorganic flame retardant was studied through TG-IR and Raman test, and the synergistic flame retardant between four flame retardants were studied for the first time. The results showed that the nitrogen and halogen-containing flame retardants played the gas-phase flame retardant action by inert gas dilution and chemical quenching of active radicals, respectively. The inorganic flame retardant exerted condensed-phase flame retardant mechanism. The phosphorus flame retardant played both gas and condensed-phase flame retardant effect by chemical quenching of active radicals and cellulose carbonization. Furthermore, the synergism index of phosphorus‑nitrogen and phosphorus-halogen in cellulose materials were 2.1 and 1.7, respectively. There was no obvious synergistic effect between inorganic flame retardant with other flame retardants. In addition, the use of any flame retardant alone tailored the fibre's Limiting Oxygen Index (LOI) lower than 28 %. In contrast, the fibres achieved a LOI of 31 % and a tensile strength of 3.0 cN/dtex when the content of phosphorous flame retardant, nitrogen flame retardant and halogen flame retardant were 45-75 %, 12-55 %, 0-25 %, respectively. This study prepared a method for preparing flame retardant cellulose materials with extremely low-cost and large-scale application potential, and provided a theoretical basis that the selection of flame retardants helped to improve the flame retardant performance of cellulose materials.
Collapse
Affiliation(s)
- Chunzu Cheng
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongkai Xu
- China Textile Academy, State Key Laboratory of Bio-based Fiber Manufacturing Technology, Beijing 100025, China; Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qingbo Zhao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Gao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ting Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guozhen Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Kedong Chi
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jigang Xu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bowen Cheng
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Kassie BB, Getahun MJ, Azanaw A, Ferede BT, Tassew DF. Surface modification of cellulose nanocrystals for biomedical and personal hygiene applications. Int J Biol Macromol 2024; 282:136949. [PMID: 39490486 DOI: 10.1016/j.ijbiomac.2024.136949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for sustainable and effective materials in biomedical and personal hygiene applications has driven the exploration of cellulose nanocrystals (CNCs) derived from biomass. These nanomaterials are highly valued for their exceptional mechanical properties, biocompatibility, and renewable nature. Researchers are exploring CNCs for advancing medical and hygiene products, but surface modification is often needed to maximize their benefits. Techniques such as chemical functionalization, physical coating, and hybridization can significantly enhance CNCs dispersibility, stability, and interaction with biological systems. This versatility makes CNCs suitable for a variety of applications, including drug delivery systems, wound dressings, and personal hygiene products. Despite their advantages, maintaining the inherent properties of CNCs while integrating new functionalities through modification poses a challenge. Understanding the impact of various modification techniques on CNC performance is crucial for optimizing their effectiveness. This review aimed to consolidate current knowledge on the surface modification of biomass-derived CNCs, offering insights into different methods and their implications for biomedical and personal hygiene applications. By highlighting advancements, challenges, and prospects, it served as a crucial resource for advancing the development and application of CNCs in these critical fields.
Collapse
Affiliation(s)
- Bantamlak Birlie Kassie
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia; Medical Textile Research Center, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia.
| | | | - Aklilu Azanaw
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Bayu Teshome Ferede
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Dehenenet Flatie Tassew
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| |
Collapse
|
3
|
Al-Qahtani SD, Abu Al-Ola KA, Al-Senani GM. Tannin-encapsulated electrospun nanofibrous membrane of cellulose nanowhiskers-reinforced polysulfone for colorimetric detection of iron(III). Int J Biol Macromol 2024; 281:136516. [PMID: 39396600 DOI: 10.1016/j.ijbiomac.2024.136516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
A nanocomposite of tannic acid and cellulose nanowhiskers (CNW)-reinforced polysulfone (PSF) was used to develop a metallochromic nanofibrous membrane sensor for iron(III) in aqueous media. Tannic acid was used as an active detecting probe, whereas the CNW@PSF composite was employed as a hosting material. Cellulose nanowhiskers (7-12 nm) were obtained from microcrystalline cellulose (MCC). According to the coloration parameters, a bathochromic shift from colorless (415 nm) to purple (561 nm) occurs when ferric cations bind to the phenolic hydroxyls of the tannic acid probe. The concentration of ferric was found to be directly correlated to the extent of the color change, demonstrating a detection limit of 0.1-250 ppm. This could be attributed to the creation of a coordinative complex between ferric ions and phenolic tannic acid. The generated nanofibers were inspected by energy-dispersive X-ray (EDX) and scanning electron microscopy (SEM). The electrospun nanofibrous membrane showed an average diameter between 75 and 150 nm. The tannic acid-containing nanofibers are remarkably reusable and simple. The tannic acid-encapsulated polysulfone nanofibrous membrane was used to detect various metal ions, demonstrating a high selectivity for Fe3+. The ideal pH range for the identification of Fe3+ was determined to be in the range of 4.25-6.75.
Collapse
Affiliation(s)
- Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Khulood A Abu Al-Ola
- Chemistry Department, College of Sciences, Al-Madina Al-Munawarah, Taibah University, Al-Madina 30002, Saudi Arabia
| | - Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| |
Collapse
|
4
|
Sun J, Wen Z, Khan MA, Lv K, Shen H, Dai L, Li Y, Ding Y, Liu C, Li MC. A review of cellulose nanomaterial-stabilized Pickering foam: Formation, properties, and emerging oilfield applications. Int J Biol Macromol 2024; 281:136274. [PMID: 39374724 DOI: 10.1016/j.ijbiomac.2024.136274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/28/2024] [Accepted: 10/02/2024] [Indexed: 10/09/2024]
Abstract
The rapid development of the petroleum industry has led to increasing demands for high-performance oilfield working fluids, such as drilling fluids, fracturing fluids, and fluids for enhanced oil recovery. Liquid foam is widely utilized as the oilfield working fluids due to its advantages, including low density, high mobility, superior cutting suspending ability, excellent fluid diversion capacity, and outstanding sweep efficiency. However, the short lifespan of foam limits its broad application in the oilfield. Considering the advantages of environmental protection, renewability, high specific surface area, tailorable surface chemistry, and excellent rheological properties of cellulose nanomaterials (CNMs), Pickering foams stabilized by CNMs offer improved eco-friendliness and foam stability. In this review, the classification and preparation methods of CNMs are briefly introduced. Subsequently, the preparation methods, properties, and application prospects of CNM-stabilized Pickering foams as oilfield working fluids are summarized. Finally, the challenges and prospects of CNM-stabilized Pickering foam are outlined, aiming to pave the way for the development of petroleum industry in an eco-friendlier manner.
Collapse
Affiliation(s)
- Jinsheng Sun
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Zhibo Wen
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Muhammad Arqam Khan
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Department of Petroleum Engineering, NED University of Engineering & Technology, Pakistan
| | - Kaihe Lv
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Haokun Shen
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Liyao Dai
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yecheng Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yang Ding
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mei-Chun Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China.
| |
Collapse
|
5
|
Liu YH, Xu Y, He YT, Wen JL, Yuan TQ. Lignocellulosic biomass-derived functional nanocellulose for food-related applications: A review. Int J Biol Macromol 2024; 277:134536. [PMID: 39111481 DOI: 10.1016/j.ijbiomac.2024.134536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/14/2024] [Accepted: 08/04/2024] [Indexed: 08/11/2024]
Abstract
In recent years, nanocellulose (NC) has gained significant attention due to its remarkable properties, such as adjustable surface chemistry, extraordinary biological properties, low toxicity and low density. This review summarizes the preparation of NC derived from lignocellulosic biomass (LCB), including cellulose nanofibrils (CNF), cellulose nanocrystals (CNC), and lignin-containing cellulose nanofibrils (LCNF). It focuses on examining the impact of non-cellulosic components such as lignin and hemicellulose on the functionality of NC. Additionally, various surface modification strategies of NC were discussed, including esterification, etherification and silylation. The review also emphasizes the progress of NC application in areas such as Pickering emulsions, food packaging materials, food additives, and hydrogels. Finally, the prospects for producing NC from LCB and its application in food-related fields are examined. This work aims to demonstrate the effective benefits of preparing NC from lignocellulosic biomass and its potential application in the food industry.
Collapse
Affiliation(s)
- Yi-Hui Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Ying Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Yu-Tong He
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Zamani S, Rezaei Kolarijani N, Naeiji M, Vaez A, Maghsoodifar H, Sadeghi Douki SAH, Salehi M. Development of carboxymethyl cellulose/gelatin hydrogel loaded with Omega-3 for skin regeneration. J Biomater Appl 2024; 39:377-395. [PMID: 39049504 DOI: 10.1177/08853282241265769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Hydrogels have several characteristics, including biocompatibility, physical similarity with the skin's extracellular matrix, and regeneration capacity. Cell migration and proliferation are facilitated by natural polymers such as gelatin (Gel) and carboxymethyl cellulose (CMC). Gelatin dressing acts as a structural framework for cell migration into the wound area, stimulating cell division and promoting granulation tissue formation. Omega-3 fatty acids from fish oil may prevent wound infection and improve the healing of wounds in the early stages. We studied the preparation of wound dressing containing Omega-3 and its ability to heal wounds. In this study, CMC-Gel hydrogels containing different concentrations of Omega-3 were investigated in full-thickness wounds. After the fabrication of the hydrogels by using surfactant (tween 20) and microemulsion method (oil in water), various tests such as SEM, Water uptake evaluation, weight loss, cell viability, blood compatibility, and in vivo study in rat cutaneous modeling during 14 days were performed to evaluate the properties of the fabricated hydrogels. The analysis of the hydrogels revealed that they possess porous structures with interconnected pores, with an average size of 83.23 ± 6.43 μm. The hydrogels exhibited a swelling capacity of up to 60% of their initial weight within 24 h, as indicated by the weight loss and swelling measurements. Cell viability study with the MTT technique showed that no cytotoxicity was observed at the recommended dosage, however, increasing the amount of omega-3 caused hemolysis, cell death, and inhibition of coagulation activity. An in vivo study in adult male rats with a full-thickness model showed greater than 91% improvement of the primary wound region after 2 weeks of treatment. Histological analysis demonstrated Omega-3 in hydrogels, which is a promising approach for topical skin treatment to prevent scar, and has shown efficacy as wound dressing by improving the repair process at the defect site.
Collapse
Affiliation(s)
- Sepehr Zamani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nariman Rezaei Kolarijani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahdi Naeiji
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hasan Maghsoodifar
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Majid Salehi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Health Technology Incubator Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
7
|
Kassie BB, Daget TM, Tassew DF. Synthesis, functionalization, and commercial application of cellulose-based nanomaterials. Int J Biol Macromol 2024; 278:134990. [PMID: 39181366 DOI: 10.1016/j.ijbiomac.2024.134990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
In recent times, cellulose, an abundant and renewable biopolymer, has attracted considerable interest due to its potential applications in nanotechnology. This review explores the latest developments in cellulose-based nanomaterial synthesis, functionalization, and commercial applications. Beginning with an overview of the diverse sources of cellulose and the methods employed for its isolation and purification, the review delves into the various techniques used for the synthesis of cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs), highlighting their unique properties and potential applications. Furthermore, the functionalization strategies employed to enhance the properties and tailor the functionalities of cellulose-based nanomaterials were discussed. The review also provides insights into the emerging commercial applications of cellulose-based nanomaterials across diverse sectors, including packaging, biomedical engineering, textiles, and environmental remediation. Finally, challenges and prospects for the widespread adoption of cellulose-based nanomaterials are outlined, emphasizing the need for further research and development to unlock their full potential in sustainable and innovative applications.
Collapse
Affiliation(s)
- Bantamlak Birlie Kassie
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia.
| | - Tekalgn Mamay Daget
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| | - Dehenenet Flatie Tassew
- Textile Faculty, Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, P.O. Box 1037, Ethiopia
| |
Collapse
|
8
|
Puss KK, Paaver P, Loog M, Salmar S. Ultrasound effect on a biorefinery lignin-cellulose mixture. ULTRASONICS SONOCHEMISTRY 2024; 111:107071. [PMID: 39303645 PMCID: PMC11440299 DOI: 10.1016/j.ultsonch.2024.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Forest biorefineries provide multiple new avenues for applied research. The main concept lies in the malleability of the processes and their stepwise organization. The core element of the biorefinery concept addressed in the present study is the pretreatment step; here, wood biomass is converted into free hemicellulosic sugars, lignin and cellulose. In traditional approaches, the pretreatment step is a starting point for isolating and separating lignin or cellulose through different processes. In this study, instead of performing any separation, a lignin-cellulose mixture was used as its own material, and the effects of ultrasound treatment with a probe system at 20 kHz, with various amplitude, sonication time and dry matter content were investigated with the aim of assessing the formation of a nanocellulose structure with a high lignin content (>30 %) and investigating the stability of the lignin-cellulose mixture under aqueous conditions. We demonstrated the importance of dry matter content for the specific particle size and water retention values for this mixture. US treatment of lignin-cellulose mixtures <4 % dry matter formed a gel-like material, with low particle size (90 % below 30 μm and smallest at nanoscale). Low dry matter loading led to better US transfer and higher conversion of cellulose to <100 nm nanoparticles. Our study can serve as a baseline for future developments in the field of stable emulsions, filtering materials or inputs for material synthesis.
Collapse
Affiliation(s)
- Kait Kaarel Puss
- Institute of Bioengineering, Nooruse 1, Tartu, Estonia; Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, Estonia.
| | - Peeter Paaver
- University of Tartu, Institute of Ecology and Earth Sciences, Ravila 14a, Tartu, Estonia
| | - Mart Loog
- Institute of Bioengineering, Nooruse 1, Tartu, Estonia
| | - Siim Salmar
- Institute of Chemistry, University of Tartu, Ravila 14a, Tartu, Estonia
| |
Collapse
|
9
|
Surov OV, Voronova MI. Sulfuric acid solvolysis of cellulose in a butanol-1/benzene mixture for isolating cellulose nanocrystals. Int J Biol Macromol 2024; 280:135606. [PMID: 39276901 DOI: 10.1016/j.ijbiomac.2024.135606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/26/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The absence of a universal method for isolating cellulose nanocrystals (CNCs) has prompted researchers to explore alternative approaches to traditional sulfuric acid hydrolysis. In this study, the authors continue their previous research by investigating CNC synthesis through cellulose solvolysis in an alcoholic environment. The CNCs were successfully obtained utilizing controlled sulfuric acid solvolysis of sulfate cellulose in a butanol-1/benzene mixture. The highest CNC yield (over 60 %) was achieved at strictly controlled acid-to-benzene ratios in a butanol-1/benzene/sulfuric acid reaction mixture, with a significant reduction in the optimal acid concentration. The study also analyzes the physicochemical properties of the isolated CNCs. No surface alkylation of the synthesized CNCs was observed during the cellulose solvolysis in the butanol-1/benzene mixture. Besides, the properties of these CNCs closely resembled those obtained through traditional sulfuric acid hydrolysis. The paper also discusses the potential mechanism of cellulose solvolysis in the process of CNC production.
Collapse
Affiliation(s)
- Oleg V Surov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russian Federation.
| | - Marina I Voronova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 Akademicheskaya St., Ivanovo 153045, Russian Federation.
| |
Collapse
|
10
|
Yang S, Feng M, Xu J, Deng Z, Zhang H. Encapsulation, characterization and in vitro releasing of xylanase and glucose oxidase (GOD) into cellulose nanocrystals stabilized three-layer microcapsules. Int J Biol Macromol 2024:135515. [PMID: 39260632 DOI: 10.1016/j.ijbiomac.2024.135515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/05/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
The xylanase and glucose oxidase (GOD) are easily inactivated, restricting their applicaiton in food and agriculture fields. In this work, xylanase and glucose oxidase (GOD) were encapsulated into cellulose nanocrystals (CNC) stabilized three-layer microcapsules via ionic gelation technique to improve their bioavailability and targeted delivery. Encapsulation efficiency (EE), physicochemical properties, and in vitro releasing of xylanase and GOD encapsulated in microcapsules were investigated. EE of xylanase and GOD reached the highest values (73.34 % and 67.16 %, respectively) at an enzyme concentration of 35 mg/mL. In vitro experiments revealed that cumulative release of both enzymes encapsulated in microcapsules was greater than that of controls in simulated gastric tract (SGT) and simulated intestinal tract (SIT). The release of xylanase increased from 41.62 % (gastric tract) to 77.13 % (intestine tract), and release of GOD increased from 42.63 % to 72.11 %, respectively. Novel hydrogel carriers as enzymes encapsulation system could effectively improve the survival rate of enzymes in harsh environments and could be widely employed in food, feed and other industries.
Collapse
Affiliation(s)
- Shoufeng Yang
- Shanghai Veterinary Bio-tech Key Laboratory, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Miaomiao Feng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jianxiong Xu
- Shanghai Veterinary Bio-tech Key Laboratory, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Hongcai Zhang
- Shanghai Veterinary Bio-tech Key Laboratory, College of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
11
|
Chen J, Yang Y, Fan W, Zhu Y, Yang R, Xu Y. How surface modification of cellulose nanocrystals affects the crystallization process of poly (β-hydroxybutyrate). Int J Biol Macromol 2024; 276:134119. [PMID: 39098456 DOI: 10.1016/j.ijbiomac.2024.134119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Hydroxyl groups on the surface of cellulose nanocrystals (CNC) are modified by chemical methods, CNC and the modified CNC are used as fillers to prepare PHB/cellulose nanocomposites. The absorption peak of carbonyl group of the modified CNC (CNC-CL and CNC-LA) appears in the FT-IR spectra, which proves that the modifications are successful. Thermal stability of CNC-CL and CNC-LA is better than that of pure CNC. Pure CNC is beneficial to the nucleation of PHB, while CNC-CL and CNC-LA inhibit the nucleation of PHB. The spherulite size of PHB and its nanocomposites increases linearly over time, and the maximum growth rate of PHB spherulite exists at 90 °C. Rheological analysis shows that viscous deformation plays the dominant role in PHB, PHBC and PHBC-CL samples, while the elastic deformation is dominant in PHBC-LA. According to the rheological data, the dispersion of CNC-CL and CNC-LA in PHB is better than that of CNC. This work demonstrates the impact of modified CNC on the crystallization and viscoelastic properties of PHB. Moreover, the interface enhancement effect of modified CNC on PHB/CNC nanomaterials is revealed from the crystallization and rheology perspectives.
Collapse
Affiliation(s)
- Jianxiang Chen
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Yang Yang
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Wangxi Fan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yunfeng Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Runmiao Yang
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Yuling Xu
- Department of Materials Science and Engineering, Nanjing Tech University, Jiangsu 211816, China
| |
Collapse
|
12
|
Awasthi S, Komal, Pandey SK. Translational applications of magnetic nanocellulose composites. NANOSCALE 2024; 16:15884-15908. [PMID: 39136070 DOI: 10.1039/d4nr01794c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Nanocellulose has emerged as a potential 'green' material owing to its inimitable properties. Furthermore, the significant development in technology has facilitated the design of multidimensional nanocellulose structures, including one-dimensional (1D: microparticles and nanofibers), two-dimensional (2D: coatings), and three-dimensional (3D: hydrogels/ferrogels) composites. In this case, nanocellulose composites blended with magnetic nanoparticles represent a new class of hybrid materials with improved biocompatibility and biodegradability. The application field of magnetic nanocellulose composites (MNCs) ranges from biomedicine and the environment to catalysis and sensing. In this review, we present the major applications of MNCs, emphasizing their innovative benefits and how they interconnect with translational applications in clinics and the environment. Additionally, we focus on the synthesis techniques and role of different additives in the fabrication of MNCs for achieving extremely precise and intricate tasks related to real-world applications. Subsequently, we reveal the recent interdisciplinary research on MNCs and discuss their mechanical, tribological, electrochemical, magnetic, and biological phenomena. Finally, this review concludes with a portrayal of computational modelling together with a glimpse of the various translational applications of MNCs. Therefore, it is anticipated that the current review will provide the readers with an extensive opportunity and a more comprehensive depiction related to the types, properties, and applications of MNCs.
Collapse
Affiliation(s)
- Shikha Awasthi
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India.
| | - Komal
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur-303007, Rajasthan, India.
| | - Sarvesh Kumar Pandey
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal-462003, Madhya Pradesh, India.
| |
Collapse
|
13
|
Singh S, Bhardwaj S, Choudhary N, Patgiri R, Teramoto Y, Maji PK. Stimuli-Responsive Chiral Cellulose Nanocrystals Based Self-Assemblies for Security Measures to Prevent Counterfeiting: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41743-41765. [PMID: 39102587 DOI: 10.1021/acsami.4c08290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The proliferation of misleading information and counterfeit products in conjunction with technical progress presents substantial worldwide issues. To address the issue of counterfeiting, many tactics, such as the use of luminous anticounterfeiting systems, have been investigated. Nevertheless, traditional fluorescent compounds have a restricted effectiveness. Cellulose nanocrystals (CNCs), known for their renewable nature and outstanding qualities, present an excellent opportunity to develop intelligent, optically active materials formed due to their self-assembly behavior and stimuli response. CNCs and their derivatives-based self-assemblies allow for the creation of adaptable luminous materials that may be used to prevent counterfeiting. These materials integrate the photophysical characteristics of optically active components due to their stimuli-responsive behavior, enabling their use in fibers, labels, films, hydrogels, and inks. Despite substantial attention, existing materials frequently fall short of practical criteria due to limited knowledge and poor performance comparisons. This review aims to provide information on the latest developments in anticounterfeit materials based on stimuli-responsive CNCs and derivatives. It also includes the scope of artificial intelligence (AI) in the near future. It will emphasize the potential uses of these materials and encourage future investigation in this rapidly growing area of study.
Collapse
Affiliation(s)
- Shiva Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 240071, India
| | - Shakshi Bhardwaj
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 240071, India
| | - Nitesh Choudhary
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 240071, India
| | - Rohan Patgiri
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 240071, India
| | - Yoshikuni Teramoto
- Division of Forest & Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 6068502, Japan
| | - Pradip K Maji
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Saharanpur 240071, India
| |
Collapse
|
14
|
Xue Y, Zhang H, Su F, Zhang L, Lang G, Zhu Y, Gu C, Zhou P, Zhan X, Liu D. Gradient Hierarchically Porous Ionic-Junction Fibers of Wet-Spun Carboxymethyl Cellulose Coagulated with Copper Sulfate. Biomacromolecules 2024; 25:4867-4878. [PMID: 39047203 DOI: 10.1021/acs.biomac.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Polyelectrolyte-based ionic-junction fibers newly serve as signal transmission and translation media between electronic devices and biological systems, facilitating ion transport within organic matrices. In this work, we fabricated gel filaments of carboxymethyl cellulose (CMC) chelated with Cu(II) ions through wet-spinning, using a saturated coagulant of CuSO4. Interestingly, the as-spun fibers exhibited dramatic 3D porous frameworks that varied with the temperature and precursor concentration. At 20 °C, the Cu(II) chelation networks favored the formation of well-organized cellular chambers or corrugated channels, displaying dense stacking patterns. However, critical transitions from cellular chambers to corrugated channels occurred at precursor dope concentrations of approximately 2 and 7 wt %, with the porous structure diminishing beyond 8 wt %. We have proposed schematic diagrams to mimic the 3D pore structure, dense porous stacking, and formation mechanism, according to electronic micrographs. Our investigations revealed that the distinct ion-junction channels or chambers are under the control of axial drawing extension as well as the outside-inside penetration of Cu(II) ions into the dope and inside-outside diffusion of water into coagulants. Therefore, controlling the metal chelation-water diffusion process at specific temperatures and concentrations will offer valuable insights for tailoring ionic-junction soft filaments with gradient hierarchically porous structures and shape memory properties.
Collapse
Affiliation(s)
- Yongjun Xue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Hua Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Fan Su
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Lu Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Gaoyuan Lang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Ying Zhu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chengyu Gu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Peng Zhou
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xinrui Zhan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Dagang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environment Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
15
|
Sathasivam T, Sugiarto S, Yew MPY, Oh XY, Chan SY, Chan BQY, Tim MJ, Kai D. Transforming textile waste into nanocellulose for a circular future. NANOSCALE 2024; 16:14168-14194. [PMID: 39012322 DOI: 10.1039/d4nr01839g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The expansion of the textile industry and improvements in living standards have led to increased cotton textile production, resulting in a rise in textile waste, with cotton accounting for 24% of total textile waste. Effective waste management through recycling and reuse is crucial to reducing global waste production. Nanocellulose has diverse applications in environmental, geotechnical, food packaging, and biomedical engineering areas. As interest in nanocellulose's unique properties grows, cotton-based textile waste emerges as a promising source for nanocellulose development. However, there is a notable lack of comprehensive reviews on the extraction of nanocellulose from textile waste as a sustainable biomaterial. This paper aims to address this gap by exploring current extraction processes, properties, and recent applications of nanocellulose derived from textile waste. We discussed (1) the potential of nanocellulose resources from different textile wastes, (2) a comparison of the various extraction methods, (3) the functionalization technology and the potential application of such nanocellulose in the textile industry, and (4) the life cycle assessment (LCA) and potential gap of the current technology. It also emphasizes the potential reintegration of extracted nanocellulose into the textile industry to manufacture high-value products, thus completing the loop and strengthening the circular economy.
Collapse
Affiliation(s)
- Thenapakiam Sathasivam
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore.
| | - Sigit Sugiarto
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore.
| | - Michelle Pek Yin Yew
- Institute of Materials Research and Engineering (IMRE), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore
| | - Xin Yi Oh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore.
| | - Siew Yin Chan
- Institute of Materials Research and Engineering (IMRE), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore
| | - Mao Jie Tim
- Chemical & Biomolecular Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dan Kai
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore.
- Institute of Materials Research and Engineering (IMRE), The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, 138634 Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
16
|
Zhu X, Li H, Cai L, Wu Y, Wang J, Xu S, Wang S, Wang H, Wang D, Chen J. ZnO nanoparticles encapsulated cellulose-lignin film for antibacterial and biodegradable food packaging. iScience 2024; 27:110008. [PMID: 38989453 PMCID: PMC11233912 DOI: 10.1016/j.isci.2024.110008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/01/2024] [Accepted: 05/14/2024] [Indexed: 07/12/2024] Open
Abstract
Foodborne illness caused by consuming foods contaminated by pathogens remains threating to the public health. Despite considerable efforts of using renewable source materials, it is highly demanding to fabricate food packaging with multiple properties including eco-friendliness, bactericidal effect and biocompatibility. Here, sodium lignosulfonate (SL) and ZnO nanoparticles (ZnO NPs) were used as functional filler and structure components, respectively, on the cellulose nanofibers (CNFs)-based films, which endows the produced membrane (CNF/SL-ZnO) the UV-light blocking, antioxidant, and antimicrobial characteristics. Due to the interconnected polymeric structure, the prepared CNF/SL-ZnO films possessed considerable mechanical properties, thermal stability, and good moisture barrier capability. Moreover, the tested samples exhibited an improved shelf life in food packaging. Furthermore, metagenome analysis revealed superior biodegradability of obtained films with negligible side effect on the soil microenvironment. Therefore, the biocompatible, degradable, and antibacterial CNF/SL-ZnO film holds enormous potential for sustainable uses including food packaging.
Collapse
Affiliation(s)
- Xinyi Zhu
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Taizhou Center for Disease Control and Prevention, Taizhou 318000, China
| | - Henghui Li
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ling Cai
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yixian Wu
- Department of Health Promotion Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Wang
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shangcheng Xu
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
| | - Shoulin Wang
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hao Wang
- Northern Jiangsu People’s Hospital Affiliated to Nanjing Medical University, Yangzhou 225001, China
| | - Daorong Wang
- Northern Jiangsu People’s Hospital Affiliated to Nanjing Medical University, Yangzhou 225001, China
| | - Jin Chen
- The Affiliated Chongqing Prevention and Treatment Center for Occupational Diseases, School of Public Health, Nanjing Medical University, Chongqing 400060, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
17
|
Hou Z, Zhou T, Bai L, Wang W, Chen H, Yang L, Yang H, Wei D. Design of Cellulose Nanocrystal-Based Self-Healing Nanocomposite Hydrogels and Application in Motion Sensing and Sweat Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37087-37099. [PMID: 38958653 DOI: 10.1021/acsami.4c07717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Hydrogels, as flexible materials, have been widely used in the field of flexible sensors. Human sweat contains a variety of biomarkers that can reflect the physiological state of the human body. Therefore, it is of great practical significance and application value to realize the detection of sweat composition and combine it with human motion sensing through a hydrogel. Based on mussel-inspired chemistry, polydopamine (PDA) and gold nanoparticles (AuNPs) were coated on the surface of cellulose nanocrystals (CNCs) to obtain CNC-based nanocomposites (CNCs@PDA-Au), which could simultaneously enhance the mechanical, electrochemical, and self-healing properties of hydrogels. The CNCs@PDA-Au was composited with poly(vinyl alcohol) (PVA) hydrogel to obtain the nanocomposite hydrogel (PVA/CNCs@PDA-Au) by freeze-thaw cycles. The PVA/CNCs@PDA-Au has excellent mechanical strength (7.2 MPa) and self-healing properties (88.3%). The motion sensors designed with PVA/CNCs@PDA-Au exhibited a fast response time (122.9 ms), wide strain sensing range (0-600.0%), excellent stability, and fatigue resistance. With the unique electrochemical redox properties of uric acid, the designed hydrogel sensor successfully realized the detection of uric acid in sweat with a wide detection range (1.0-100.0 μmol/L) and low detection limit (0.42 μmol/L). In this study, the dual detection of human motion and uric acid in sweat was successfully realized by the designed PVA/CNCs@PDA-Au nanocomposite hydrogel.
Collapse
Affiliation(s)
- Zehua Hou
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Tianjun Zhou
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Liangjiu Bai
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Shandong Baoyuan Biotechnology Co., Ltd., Yantai 264006, China
| | - Wenxiang Wang
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hou Chen
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lixia Yang
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Huawei Yang
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Donglei Wei
- Key Laboratory of High Performance and Functional Polymers in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| |
Collapse
|
18
|
Al-Senani GM, Al-Qahtani SD. Preparation of multifunctional and mechanically-reliable smart wood infiltrated with cellulose nanocrystal-reinforced polyvinyl alcohol nanocomposite. Int J Biol Macromol 2024; 273:133226. [PMID: 38889827 DOI: 10.1016/j.ijbiomac.2024.133226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Multifunctional transparent woods have recently attracted a great interest as efficient products for many applications, such as smart window and smart packaging. Herein, a transparent wood with several desirable properties, including flame-retardant activity, ultraviolet shielding, superhydrophobicity, good roughness, durability and photostability was developed. The current photoluminescent wood showed a remarkable capacity to keep releasing light in the dark for extended durations. Multifunctional transparent wood was prepared by infiltrating a delignified wooden bulk with a combination of polyvinyl alcohol (PVA), ammonium polyphosphate (APP), cellulose nanocrystals, and rare-earth strontium aluminate nanoparticles (RSAN). Cellulose nanocrystals were prepared from microcrystalline cellulose, and used as reinforcement nanofiller to enhance the mechanical strength of the polyvinyl alcohol matrix and a dispersant agent to avoid agglomeration of RSAN. RSAN displayed diameters of 8-16 nm, while cellulose nanocrystals displayed lengths of 75-150 nm and diameters of 5-10 nm. According to photoluminescence spectra and the colorimetric space coordinates reported by the CIE Lab parameters, the transparent wood changed color to bright green when exposed to UV irradiation. For the produced phosphorescent wood surfaces, an absorption band was detected at 365 nm to generate an emission band at 519 nm.
Collapse
Affiliation(s)
- Ghadah M Al-Senani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Salhah D Al-Qahtani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
19
|
Liu Y, Chen R, Li F, Sun L, Guo Z, Jiang Z, Ren Y. Asymmetric ionic bond shielding encountering with carboxylate capturing metal ions for enhancing the flame retardant durability of regenerated cellulose fibers. Int J Biol Macromol 2024; 273:133158. [PMID: 38878937 DOI: 10.1016/j.ijbiomac.2024.133158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/19/2024]
Abstract
Enhancing the flame retardancy and durability of cellulose fibers, particularly environmentally friendly regenerated cellulose fibers types like Lyocell fibers, is essential for advancing their broader application. This study introduced a novel approach to address this challenge. Cationic-modified Lyocell fibers (Lyocell@CAT) were prepared by introducing quaternary ammonium structures into the molecular chain of Lyocell fibers. Simultaneously, a flame retardant, APA, containing -COO-NH4+ and -P=O(O-NH4+)2 groups was synthesized. APA was then covalently bonded to Lyocell@CAT to prepare Lyocell@CAT@APA. Even after undergoing 30 laundering cycles (LCs), Lyocell@CAT@APA maintained a LOI value of 37.2 %, exhibiting outstanding flame retardant durability. The quaternary ammonium structure within Lyocell@CAT@APA formed asymmetric ionic bonds with the phosphate and carboxylate groups in APA, effectively shielding the binding of Na+ ions with phosphate groups during laundering, thereby enhancing the durability. Additionally, the consumption of Na+ ions by carboxylate groups further prevented their binding to phosphate groups, which contributed to enhance the durability properties. Flame retardant mechanism analysis revealed that both gas and condensed phase synergistically endowed excellent flame retardancy to Lyocell fibers. Overall, this innovative strategy presented a promising prospect for developing bio-safe, durable, and flame retardant cellulose textiles.
Collapse
Affiliation(s)
- Yansong Liu
- Lutai School of Textile and Appeal, Shandong University of Technology, Zibo 255000, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, Zhejiang, China; Fujian Provincial Key Laboratory of Textiles Inspection Technology, Fujian Fiber Inspection Center, Fuzhou 350008, Fujian, China
| | - Ruixue Chen
- Lutai School of Textile and Appeal, Shandong University of Technology, Zibo 255000, China
| | - Fuqiang Li
- Lutai School of Textile and Appeal, Shandong University of Technology, Zibo 255000, China
| | - Ling Sun
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Zengge Guo
- Lutai School of Textile and Appeal, Shandong University of Technology, Zibo 255000, China.
| | - Zhaohui Jiang
- Lutai School of Textile and Appeal, Shandong University of Technology, Zibo 255000, China; State Key Laboratory of Biobased Fiber Manufacturing Technology, China Textile Academy, Beijing, China.
| | - Yuanlin Ren
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
20
|
Thipchai P, Sringarm K, Punyodom W, Jantanasakulwong K, Thanakkasaranee S, Panyathip R, Arjin C, Rachtanapun P. Production of Nanocellulose from Sugarcane Bagasse and Development of Nanocellulose Conjugated with Polylysine for Fumonisin B1 Toxicity Absorption. Polymers (Basel) 2024; 16:1881. [PMID: 39000736 PMCID: PMC11244476 DOI: 10.3390/polym16131881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
The present study aimed to extract nanocellulose (NC) from sugarcane bagasse agricultural waste through a chemical method (sulfuric acid hydrolysis and ultrasonication). Subsequently, the nanocellulose product was conjugated with polylysine (NC-PL) and assessed for its efficacy in reducing the toxicity of Fumonisin B1 (FB1), a mycotoxin produced by fungi commonly found in corn, wheat, and other grains. Experimental results confirmed the successful conjugation of NC and PL, as evidenced by FTIR peaks at 1635 and 1625 cm-1 indicating amide I and amide II vibrations in polylysine (PL). SEM analysis revealed a larger size due to PL coating, consistent with DLS results showing the increased size and positive charge (38.0 mV) on the NC-PL surface. Moreover, the effect of FB1 adsorption by NC and NC-PL was evaluated at various concentrations (0-200,000 μg/mL). NC-PL demonstrated the ability to adsorb FB1 at concentrations of 2000, 20,000, and 200,000 μg/mL, with adsorption efficiencies of 94.4-100%. Human hepatocellular carcinoma (HepG2) cells were utilized to assess NC and NC-PL cytotoxic effects. This result is a preliminary step towards standardizing results for future studies on their application as novel FB1 binders in food, food packaging, and functional feeds.
Collapse
Affiliation(s)
- Parichat Thipchai
- Doctor of Philosophy Program in Nanoscience and Nanotechnology (International Program/Interdisciplinary), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Korawan Sringarm
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (C.A.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (S.T.)
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (S.T.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Sarinthip Thanakkasaranee
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (S.T.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Rangsan Panyathip
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (C.A.)
| | - Pornchai Rachtanapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (K.J.); (S.T.)
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Packaging Technology, School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| |
Collapse
|
21
|
De Cristofaro GA, Paolucci M, Pappalardo D, Pagliarulo C, Sessini V, Lo Re G. Interface interactions driven antioxidant properties in olive leaf extract/cellulose nanocrystals/poly(butylene adipate-co-terephthalate) biomaterials. Int J Biol Macromol 2024; 272:132509. [PMID: 38843608 DOI: 10.1016/j.ijbiomac.2024.132509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024]
Abstract
Functional packaging represents a new frontier for research on food packaging materials. In this context, adding antioxidant properties to packaging films is of interest. In this study, poly(butylene adipate-co-terephthalate) (PBAT) and olive leaf extract (OLE) have been melt-compounded to obtain novel biomaterials suitable for applications which would benefit from the antioxidant activity. The effect of cellulose nanocrystals (CNC) on the PBAT/OLE system was investigated, considering the interface interactions between PBAT/OLE and OLE/CNC. The biomaterials' physical and antioxidant properties were characterized. Morphological analysis corroborates the full miscibility between OLE and PBAT and that OLE favours CNC dispersion into the polymer matrix. Tensile tests show a stable plasticizer effect of OLE for a month in line with good interface PBAT/OLE interactions. Simulant food tests indicate a delay of OLE release from the 20 wt% OLE-based materials. Antioxidant activity tests prove the antioxidant effect of OLE depending on the released polyphenols, prolonged in the system at 20 wt% of OLE. Fluorescence spectroscopy demonstrates the nature of the non-covalent PBAT/OLE interphase interactions in π-π stacking bonds. The presence of CNC in the biomaterials leads to strong hydrogen bonding interactions between CNC and OLE, accelerating OLE released from the PBAT matrix.
Collapse
Affiliation(s)
- Giuseppa Anna De Cristofaro
- University of Sannio - Department of Science and Technology, Via Francesco De Sanctis snc, 82100 Benevento, Italy.
| | - Marina Paolucci
- University of Sannio - Department of Science and Technology, Via Francesco De Sanctis snc, 82100 Benevento, Italy.
| | - Daniela Pappalardo
- University of Sannio - Department of Science and Technology, Via Francesco De Sanctis snc, 82100 Benevento, Italy.
| | - Caterina Pagliarulo
- University of Sannio - Department of Science and Technology, Via Francesco De Sanctis snc, 82100 Benevento, Italy.
| | - Valentina Sessini
- Department of Organic and Inorganic Chemistry, Institute of Chemical Research "Andrés M. del Río" (IQAR), Universidad de Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain.
| | - Giada Lo Re
- Department of Industrial and Materials Science, Chalmers University of Technology, Rännvägen 2A, 41258 Gothenburg, Sweden; Wallenberg Wood Science Centre, Chalmers University of Technology, Kemigården 4, 41258 Gothenburg, Sweden.
| |
Collapse
|
22
|
Nie C, Liu B, Tan Y, Wu P, Niu Y, Fan G, Wang J. Synergistic stabilization of high internal phase Pickering emulsions by peanut isolate proteins and cellulose nanocrystals for β-carotene encapsulation. Int J Biol Macromol 2024; 267:131196. [PMID: 38574915 DOI: 10.1016/j.ijbiomac.2024.131196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
In this study, high internal phase Pickering emulsions (HIPPEs) were stabilized by the complexes of peanut protein isolate (PPI) and cellulose nanocrystals (CNCs) for encapsulation β-carotene to retard its degradation during processing and storage. CNCs were prepared by H2SO4 hydrolysis (HCNCs), APS oxidation (ACNCs) and TEMPO oxidation (TCNCs), exhibiting needle-like or rod-like structures with nanoscale size and uniformly distributed around the spherical PPI particle, which enhanced the emulsifying capability of PPI. Results of optical micrographs and droplet size measurement showed that Pickering emulsions stabilized by PPI/ACNCs complexes exhibited the most excellent stability after 30 days of storage, which indicated that ACNCs had the most obvious effect to improve emulsifying capability of PPI. HIPPEs encapsulated β-carotene (βc-HIPPEs) were stabilized by PPI/ACNCs complexes and showed excellent inverted storage stability. Moreover, βc-HIPPEs exhibited typical shear thinning behavior investigated by rheological properties analysis. During thermal treatment, ultraviolet radiation and oxidation, the retentions of β-carotene encapsulated in HIPPEs were improved significantly. This research holds promise in expanding Pickering emulsions stabilized by proteins-polysaccharide particles to delivery systems for hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Chunling Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingqian Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yinfeng Tan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengrui Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yefan Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guangsen Fan
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Jianguo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
23
|
Verma C, Singh V, AlFantazi A. Cellulose, cellulose derivatives and cellulose composites in sustainable corrosion protection: challenges and opportunities. Phys Chem Chem Phys 2024; 26:11217-11242. [PMID: 38587831 DOI: 10.1039/d3cp06057h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The use of cellulose-based compounds in coating and aqueous phase corrosion prevention is becoming more popular because they provide excellent protection and satisfy the requirements of green chemistry and sustainable development. Cellulose derivatives, primarily carboxymethyl cellulose (CMC) and hydroxyethyl cellulose (HEC), are widely employed in corrosion prevention. They function as efficient inhibitors by adhering to the metal's surface and creating a corrosion-inhibitive barrier by binding using their -OH groups. Their inhibition efficiency (%IE) depends upon various factors, including their concentration, temperature, chemical composition, the nature of the metal/electrolyte and availability of synergists (X-, Zn2+, surfactants and polymers). Cellulose derivatives also possess potential applications in anticorrosive coatings as they prevent corrosive species from penetrating and encourage adhesion and cohesion, guaranteeing the metal substrate underneath long-term protection. The current review article outlines the developments made in the past and present to prevent corrosion in both the coating phase and solution by using cellulose derivatives. Together with examining the difficulties of the present and the prospects for the future, the corrosion inhibition mechanism of cellulose derivatives in the solution and coating phases has also been investigated.
Collapse
Affiliation(s)
- Chandrabhan Verma
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Vidusha Singh
- Department of Chemistry, Udai Pratap (U.P.) Autonomous College, Varanasi 221002, India
| | - Akram AlFantazi
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
24
|
Chang Z, Liang D, Sun S, Zheng S, Sun K, Wang H, Chen Y, Guo D, Zhao H, Sha L, Jiang W. Innovative modification of cellulose fibers for paper-based electrode materials using metal-organic coordination polymers. Int J Biol Macromol 2024; 264:130599. [PMID: 38442834 DOI: 10.1016/j.ijbiomac.2024.130599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Cellulosic paper-based electrode materials have attracted increasing attention in the field of flexible supercapacitor. As a conductive polymer, polyaniline exhibits high theoretical pseudocapacitive capacitance and has been applied in paper-based electrode materials along with cellulose fibers. However, the stacking of polyaniline usually leads to poor performance of electrodes. In this study, metal-organic coordination polymers of zirconium-alizarin red S and zirconium-phytic acid are applied to modulate the polyaniline layer to obtain high-performance cellulosic paper-based electrode materials. Zirconium hydroxide is firstly loaded on cellulose fibers while alizarin red S and phytic acid are introduced to regulate the morphology of polyaniline through doping and coordination processes. The results show that the introduction of dual coordination polymers is effective to regulate the morphology of polyaniline on cellulose fibers. The performances of the paper-based electrode materials, including electrical conductivity and electrochemistry, are apparently improved. It provides a promising strategy for the potential development of economical and green electrode materials in the conventional paper-making process.
Collapse
Affiliation(s)
- Ziyang Chang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Dingqiang Liang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shirong Sun
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Shuo Zheng
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Kexin Sun
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Haiping Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yanguang Chen
- College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Daliang Guo
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Huifang Zhao
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Lizheng Sha
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Wenyan Jiang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Zhejiang University of Science and Technology, Hangzhou 310023, China
| |
Collapse
|
25
|
Peng C, Long T, Luo S, Ouyang M, Luo H, Xu D, Lin Q. Visualizing and sorbing Hg(II) with a cellulose-based red fluorescence aerogel: Simultaneous detection and removal. Int J Biol Macromol 2024; 264:130563. [PMID: 38431018 DOI: 10.1016/j.ijbiomac.2024.130563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Both sensing and removal of Hg(II) are important to environment and human health in view of the high toxicity and wide applications of mercury in industry. This study aims to develop a cellulose-based fluorescent aerogel for simultaneous Hg(II) sensing and removal via conveniently cross-linking two nanomaterials cellulose nanocrystals and bovine serum albumin-functionalized gold nanoclusters (BSA-AuNCs) with epichlorohydrin. The aerogel exhibited strong homogeneous red fluorescence at the non-edged regions under UV light due to highly dispersed BSA-AuNCs in it, and its fluorescence could be quenched by Hg(II). Through taking pictures with a smartphone, Hg(II) in the range of 0-1000 μg/L could be quantified with a detection limit of 12.7 μg/L. The sorption isotherm of Hg(II) by the aerogel followed Freundlich model with an equation of Qe = 0.329*Ce1/0.971 and a coefficient of 0.999. The maximum sorption capacity can achieve 483.21 mg/g for Hg(II), much higher than many reported sorbents. The results further confirmed Hg(II) strong sorption and sensitive detection are due to its complexation and redox reaction with the chemical groups in aerogels and its strong fluorescence quenching effect. Due to extensive sources and low cost, cellulose is potential to be developed into aerogels with multiple functions for sophisticated applications.
Collapse
Affiliation(s)
- Chenzhan Peng
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China; Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Tiantian Long
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China; Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Shan Luo
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China; Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Min Ouyang
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China; Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Hongmei Luo
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China; Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Dong Xu
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China; Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Qinlu Lin
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| |
Collapse
|
26
|
Ahmed S, Janaswamy S, Yadav MP. Biodegradable films from the lignocellulosic fibers of wheat straw biomass and the effect of calcium ions. Int J Biol Macromol 2024; 264:130601. [PMID: 38442836 DOI: 10.1016/j.ijbiomac.2024.130601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Plastics are hazardous to human health, and plastic waste results in environmental pollution and ecological catastrophe. Biobased polymers from renewable sources have recently become promising for developing biodegradable packaging films. Among them, lignocellulosic residue from agricultural biomass is inexpensive, renewable, and biodegradable. This study aims to develop biodegradable films using lignocellulosic residue from wheat straw biomass. The methodology is a green process that solubilizes lignocellulosic chains using Zn2+ ions and crosslinks with Ca2+ ions of different concentrations (200-800 mM). The results reveal that the increase of Ca2+ ions significantly decreases moisture content, water solubility, water vapor permeability, transparency, and elongation of films. The tensile strength is recorded as 6.61 ± 0.07 MPa with the addition of 800 mM of CaCl2, which is approximately 2.5 times higher than commercial polyethylene films. Around 90 % of films biodegrade within a month in soil containing 20 % moisture content. Overall, lignocellulosic residue from wheat straw biomass could be an excellent replacement for synthetic polymer to fabricate strong, transparent, and biodegradable plastic films.
Collapse
Affiliation(s)
- Shafaet Ahmed
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA
| | - Srinivas Janaswamy
- Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Yadav
- Sustainable Biofuels and Co-Products Research Unit, Eastern Regional Research Center, ARS, USDA, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| |
Collapse
|
27
|
Shi SC, Ouyang SW, Rahmadiawan D. Erythrosine-Dialdehyde Cellulose Nanocrystal Coatings for Antibacterial Paper Packaging. Polymers (Basel) 2024; 16:960. [PMID: 38611218 PMCID: PMC11013871 DOI: 10.3390/polym16070960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Though paper is an environmentally friendly alternative to plastic as a packaging material, it lacks antibacterial properties, and some papers have a low resistance to oil or water. In this study, a multifunctional paper-coating material was developed to reduce the use of plastic packaging and enhance paper performance. Natural cellulose nanocrystals (CNCs) with excellent properties were used as the base material for the coating. The CNCs were functionalized into dialdehyde CNCs (DACNCs) through periodate oxidation. The DACNCs were subsequently complexed using erythrosine as a photosensitizer to form an erythrosine-CNC composite (Ery-DACNCs) with photodynamic inactivation. The Ery-DACNCs achieved inactivations above 90% after 30 min of green light irradiation and above 85% after 60 min of white light irradiation (to simulate real-world lighting conditions), indicating photodynamic inactivation effects. The optimal parameters for a layer-by-layer dip coating of kraft paper with Ery-DACNCs were 4.5-wt% Ery-DACNCs and 15 coating layers. Compared to non-coated kraft paper and polyethylene-coated paper, the Ery-DACNC-coated paper exhibited enhanced mechanical properties (an increase of 28% in bursting strength). More than 90% of the bacteria were inactivated after 40 min of green light irradiation, and more than 80% were inactivated after 60 min of white light irradiation.
Collapse
Affiliation(s)
- Shih-Chen Shi
- Department of Mechanical Engineering, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan; (S.-W.O.); (D.R.)
| | - Sing-Wei Ouyang
- Department of Mechanical Engineering, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan; (S.-W.O.); (D.R.)
| | - Dieter Rahmadiawan
- Department of Mechanical Engineering, National Cheng Kung University, No.1, University Road, Tainan 70101, Taiwan; (S.-W.O.); (D.R.)
- Department of Mechanical Engineering, Universitas Negeri Padang, Padang 25173, Indonesia
| |
Collapse
|
28
|
Rana AK, Gupta VK, Hart P, Thakur VK. Cellulose-alginate hydrogels and their nanocomposites for water remediation and biomedical applications. ENVIRONMENTAL RESEARCH 2024; 243:117889. [PMID: 38086501 DOI: 10.1016/j.envres.2023.117889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
In the last decade, both cellulose and alginate polysaccharides have been extensively utilized for the synthesis of biocompatible hydrogels because of their alluring characteristics like low cost, biodegradability, hydrophilicity, biodegradability, ease of availability and non-toxicity. The presence of abundant hydrophilic functional groups (like carboxyl and hydroxyl) on the surface of cellulose and alginate or their derivatives makes these materials promising candidates for the preparation of hydrogels with appealing structures and characteristics, leading to growing research in water treatment and biomedical fields. These two polysaccharides are typically blended together to improve hydrogels' desired qualities (mechanical strength, adsorption properties, cellulose/alginate yield). So, keeping in view their extensive applicability, in the present review article, recent advances in the development of cellulose/nanocellulose-alginate-based hydrogels and their relevance in water treatment (adsorption of dyes, heavy metals, etc.) and biomedical field (wound healing, tissue engineering, drug delivery) has been reviewed. Further, impact of other inorganic/organic additives in cellulose/nanocellulose-alginate-based hydrogels properties like contaminants adsorption, drug delivery, tissue engineering, etc., has also been studied. Moreover, the current difficulties and future prospects of nanocellulose-alginate-based hydrogels regarding their water purification and biomedical applications are also discussed at the end.
Collapse
Affiliation(s)
- Ashvinder K Rana
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK
| | - Phil Hart
- Renewable and Sustainable Energy Research Centre, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali, 140413, Punjab, India.
| |
Collapse
|
29
|
Channab BE, El Idrissi A, Essamlali Y, Zahouily M. Nanocellulose: Structure, modification, biodegradation and applications in agriculture as slow/controlled release fertilizer, superabsorbent, and crop protection: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119928. [PMID: 38219662 DOI: 10.1016/j.jenvman.2023.119928] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/28/2023] [Accepted: 12/23/2023] [Indexed: 01/16/2024]
Abstract
This review investigates the potential of nanocellulose in agriculture, encompassing its structure, synthesis, modification, and applications. Our investigation of the characteristics of nanocellulose includes a comprehensive classification of its structure. Various mechanical, chemical and enzymatic synthesis techniques are evaluated, each offering distinct possibilities. The central role of surface functionalization is thoroughly examined. In particular, we are evaluating the conventional production of nanocellulose, thus contributing to the novelty. This review is a pioneering effort to comprehensively explore the use of nanocellulose in slow and controlled release fertilizers, revolutionizing nutrient management and improving crop productivity with reduced environmental impact. Additionally, our work uniquely integrates diverse applications of nanocellulose in agriculture, ranging from slow-release fertilizers, superabsorbent cellulose hydrogels for drought stress mitigation, and long-lasting crop protection via nanocellulose-based seed coatings. The study ends by identifying challenges and unexplored opportunities in the use of nanocellulose in agriculture. This review makes an innovative contribution by being the first comprehensive study to examine the multiple applications of nanocellulose in agriculture, including slow-release and controlled-release fertilizers.
Collapse
Affiliation(s)
- Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco.
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco
| | - Younes Essamlali
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| |
Collapse
|
30
|
Xu T, Li A, Zheng X, Ji B, Mei J, Zhou M, Li Z. Porous carboxymethyl cellulose nanocrystalline imprinted composite aerogels for selective adsorption of gadolinium. CHEMOSPHERE 2024; 349:140931. [PMID: 38096994 DOI: 10.1016/j.chemosphere.2023.140931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Gadolinium is widely applied in medical and high-tech materials because of special magnetic properties. Recovery of gadolinium from waste rare earth products has both economic and environmental value. In this experiment, honeycomb porous composite aerogels were constructed using sericin and sodium alginate mixed with functionally modified carboxymethylated cellulose nanocrystals for the adsorption and separation of gadolinium ions. There were large numbers of carboxyl groups as well as hydroxyl groups on the surface of sodium alginate and filamentous protein, which provided more sites for the adsorption of gadolinium ions. Besides, a stable honeycomb structure appeared on the surface of composite aerogels when the mixture of filamentous protein and sodium alginate was 1:1, which increased the specific surface area of materials to 140.65 m2 g-1. Additionally, the imprinted composite aerogels Ic-CNC/SSA were prepared by virtue of the imprinting technology, enhancing the adsorption selectivity of composite aerogels for gadolinium. The adsorption experiments revealed that the maximum adsorption capacity of Ic-CNC/SSA reached 93.41 mg g-1 at pH 7.0, indicating good selective adsorption of gadolinium ions. In summary, such composite aerogels provide great potential and reference value for the selective adsorption of gadolinium ions in industry.
Collapse
Affiliation(s)
- Tongtong Xu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Ang Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Xudong Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| | - Biao Ji
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jinfeng Mei
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Man Zhou
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
31
|
Kim M, Doh H. Upcycling Food By-products: Characteristics and Applications of Nanocellulose. Chem Asian J 2024:e202301068. [PMID: 38246883 DOI: 10.1002/asia.202301068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
Rising global food prices and the increasing prevalence of food insecurity highlight the imprudence of food waste and the inefficiencies of the current food system. Upcycling food by-products holds significant potential for mitigating food loss and waste within the food supply chain. Food by-products can be utilized to extract nanocellulose, a material that has obtained substantial attention recently due to its renewability, biocompatibility, bioavailability, and a multitude of remarkable properties. Cellulose nanomaterials have been the subject of extensive research and have shown promise across a wide array of applications, including the food industry. Notably, nanocellulose possesses unique attributes such as a surface area, aspect ratio, rheological behavior, water absorption capabilities, crystallinity, surface modification, as well as low possibilities of cytotoxicity and genotoxicity. These qualities make nanocellulose suitable for diverse applications spanning the realms of food production, biomedicine, packaging, and beyond. This review aims to provide an overview of the outcomes and potential applications of cellulose nanomaterials derived from food by-products. Nanocellulose can be produced through both top-down and bottom-up approaches, yielding various types of nanocellulose. Each of these variants possesses distinctive characteristics that have the potential to significantly enhance multiple sectors within the commercial market.
Collapse
Affiliation(s)
- Mikyung Kim
- Department of Food Science and Biotechnology, Ewha Womans University, Seodaemun-gu, Seoul 03760, Republic of Korea
- Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea, 03710
| | - Hansol Doh
- Department of Food Science and Biotechnology, Ewha Womans University, Seodaemun-gu, Seoul 03760, Republic of Korea
- Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, Republic of Korea, 03710
| |
Collapse
|
32
|
Negi A, Tehrani-Bagha AR. Cellulose Functionalization Using N-Heterocyclic-Based Leaving Group Chemistry. Polymers (Basel) 2024; 16:149. [PMID: 38201814 PMCID: PMC10780667 DOI: 10.3390/polym16010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
There has been continuous interest in developing novel activators that facilitate the functionalization of cellulosic materials. In this paper, we developed a strategy in which trisubstituted triazinium salts act as cellulose preactivators. As leaving groups, these triazinium salts utilize N-heterocycles (pyridine, imidazole, and nicotinic acid). Initially, we optimized the synthetic route for developing these novel cellulose preactivators (triazinium salts), whose structures were confirmed using NMR spectroscopy. The surface zeta potential of cellulose changed from a negative value to a positive one after preactivation due to the cationic nature of these preactivators. To enhance the scope of the study, we functionalized the cellulose-preactivated materials with a series of amine- or hydroxy-containing aliphatic and aromatic hydrocarbons, nucleophilic amino acids (cysteine), colorants (2-aminoanthraquinone and 2-amino-3-methyl-anthraquinone), and biopolymer (zein protein). The treated samples were analyzed using FTIR, time-gated Raman spectroscopy, and reflection spectroscopy, and the success of the functionalization process was validated. To widen the scope of such chemistries, we synthesized four reactive agents containing N-heterocyclic-based leaving groups (pyridine and nicotinic acid) and successfully functionalized cellulose with them in one step. The proposed single- and two-step functionalization approaches will provide opportunities for chemically linking various chemical compounds to cellulose for different applications.
Collapse
Affiliation(s)
| | - Ali R. Tehrani-Bagha
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland;
| |
Collapse
|
33
|
Neethu Das P, Govind Raj K. Chitosan coated graphene oxide incorporated sodium alginate hydrogel beads for the controlled release of amoxicillin. Int J Biol Macromol 2024; 254:127837. [PMID: 37923036 DOI: 10.1016/j.ijbiomac.2023.127837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Biopolymers are crucial in pharmaceuticals, particularly for controlled drug release. In this study, we loaded the broad-spectrum antibacterial drug amoxicillin into sodium alginate, a well-known biopolymer. Graphene oxide was incorporated into the composite, and the hydrogel beads were coated with chitosan for its mucoadhesive properties. Various composites were formulated by adjusting the weight percentage of graphene oxide (GO). The fabricated beads demonstrated controlled and sustained drug release, with 98 % of the loaded drug molecules released over 24 h at gastric pH. The antibacterial test using the disc diffusion technique confirmed the drug release, exhibiting greater effectiveness against the gram-positive bacterium S. aureus than the gram-negative bacterium E. coli. The drug release data were optimized using zero order, first order, Higuchi, and Korsmeyer-Peppas models. The experimental data were best fit to the Korsmeyer-Peppas model with a relatively higher correlation coefficient value. Biocompatibility was evaluated through a cell viability test using mouse fibroblast cell lines (L929). The MTT viability assay confirmed high levels of cytocompatibility, even at higher concentrations (100 μg/mL), with 98.15 % viable cells. These results highlight the potential of the fabricated beads as an effective amoxicillin drug delivery system with biomedical applications.
Collapse
Affiliation(s)
- P Neethu Das
- Department of Chemistry, Malabar Christian College, Calicut, Kerala 673001, India
| | - K Govind Raj
- Department of Chemistry, Malabar Christian College, Calicut, Kerala 673001, India.
| |
Collapse
|
34
|
Lu S, Zhou Y, Hu X, Wang T, Xu B, Cui R, Ma T, Song Y. Tailoring the optical and mechanical properties of cellulose nanocrystal film by sugar alcohols and its pH/humidity-responsive behavior. Int J Biol Macromol 2023; 253:127316. [PMID: 37820913 DOI: 10.1016/j.ijbiomac.2023.127316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Cellulose nanocrystals (CNC) have gained widespread attention in intelligent food packaging because of their iridescent optical properties. Here, we report a CNC composite film employing CNC, sugar alcohols (e.g., maltol, erythritol, mannitol, sorbitol, and xylitol) and natural pigment anthocyanins, which has a special iridescent color that can be used as a pH and humidity sensor. The effects of five sugar alcohols with different addition ratios on the structural, optical, and mechanical properties of the CNC films were investigated. The results demonstrated that the addition of sugar alcohol made composite films exhibiting a red-shift of λmax, a more uniform color in visual observation, and a larger pitch. Among them, the CNC-mannitol composite film with a ratio of 10:1 exhibited the best mechanical properties, possessing a tensile stress strength of 57 MPa and toughness of 137 J/m3. Subsequently, anthocyanins were incorporated to this composite film, which showed a marked color change along with the pH from 2 to 12 and exhibited a reversible color change from red to transparent upon a relative humidity change from 35 % to 85 %. Overall, such multi-environment-responsive iridescent films with excellent mechanical properties have a great potential for use in intelligent food packaging applications.
Collapse
Affiliation(s)
- Shuyu Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yuxing Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xinna Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Tianhui Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Bo Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ranran Cui
- Guangxi Qingqing Biotech Co., Ltd, Guangxi, Fangchenggang 538000, China
| | - Tao Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Yi Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; National Engineering Research Center for Fruits and Vegetable Processing, Beijing 100193, China; Key Laboratory of Fruits and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
35
|
Pellá MCG, Simão AR, Pereira GM, Rubira AF. Hydrolysis effects on the water uptake of starch-g-glycidyl methacrylate ( GMASt)/dimethylacrylamide (DMAAm)-based hydrogels for potential agricultural purposes. Int J Biol Macromol 2023; 253:127654. [PMID: 37884240 DOI: 10.1016/j.ijbiomac.2023.127654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
This work assessed the effect of different hydrolysis periods on the properties of hydrogels based on 75 % w w-1 of N,N'-dimethyl acrylamide (DMAAm) and 25 % w w-1 of starch-g-(glycidyl methacrylate) (GMASt). FTIR results confirmed the conversion of ester groups into carboxylic acids and carboxylates, besides forming a keto-enol tautomer due to the peeling reaction of starch. For DMAAm, the hydrolysis mostly converted amide into carboxylate groups. The morphology, thermal stability, and the mechanical properties of the predominantly amorphous matrices (as confirmed by XRD results) did not drastically change even after 10 days of hydrolysis in alkali media. However, the thermogravimetric analysis results suggested that DMAAm partially protected GMASt from the hydrolysis. The swelling degree of the matrix increased from (10.1 ± 2.1) g g-1 to (61.9 ± 2.6) g g-1 after 1 day of hydrolysis, but no statistical differences (at 95 % of significance) were observed for the matrices hydrolyzed for longer periods, confirming that the maximum hydrolysis occurred within 24 h. The results confirmed that the hydrolysis increased the water uptake of the GMASt/DMAAm-based matrices, making appealing for uses as a water retentor for agricultural purposes.
Collapse
Affiliation(s)
| | - Andressa Renatta Simão
- Department of Chemistry, State University of Maringa, 5790, Av. Colombo, Maringa, Parana 87020-900, Brazil
| | - Guilherme Miranda Pereira
- Department of Sciences, State University of Maringa, 5790, Av. Reitor Zeferino Vaz, Goioere, Parana 87360-000, Brazil
| | - Adley Forti Rubira
- Department of Chemistry, State University of Maringa, 5790, Av. Colombo, Maringa, Parana 87020-900, Brazil.
| |
Collapse
|
36
|
Bora A, Sarmah D, Karak N. Cellulosic wastepaper modified starch/ itaconic acid/ acrylic acid-based biodegradable hydrogel as a sustain release of NPK fertilizer vehicle for agricultural applications. Int J Biol Macromol 2023; 253:126555. [PMID: 37659498 DOI: 10.1016/j.ijbiomac.2023.126555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/09/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
In this work, wastepaper powder was used as a modifying agent for a biodegradable hydrogel composite of starch, itaconic acid, and acrylic acid. After the addition of an optimum amount of the modifying agent, the swelling ability of the hydrogel was enhanced from 503 g/g to 647 g/g. Further, the hydrogel was also used for sustained release of NPK fertilizer and subsequent effect of the fertilizer loaded hydrogel in okra seed germination was also studied. The NPK loaded-hydrogel showed good sustained-release behavior and 98 % of N, 81 % of P and 95 % of K release were observed after 20th day of incubation. Moreover, the release study was explained by using different kinetic models. In seed germination study, a higher and faster germination rate for okra seeds was observed in case of NPK loaded hydrogel compared to the control system, which was attributed to the synergistic effect of essential macronutrients (N, P, and K) and water that were inside the hydrogel. Most importantly, the hydrogel was found to be biodegradable by using soil burial method and further confirmed by FTIR and SEM analyses. Thus, this work provides an efficient way for utilization of wastepaper in the production of a biodegradable hydrogel for agricultural applications.
Collapse
Affiliation(s)
- Ashok Bora
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, 784028 Tezpur, Assam, India
| | - Dimpee Sarmah
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, 784028 Tezpur, Assam, India
| | - Niranjan Karak
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, 784028 Tezpur, Assam, India.
| |
Collapse
|
37
|
Jali S, Mohan TP, Mwangi FM, Kanny K. A Review on Barrier Properties of Cellulose/Clay Nanocomposite Polymers for Packaging Applications. Polymers (Basel) 2023; 16:51. [PMID: 38201717 PMCID: PMC10780723 DOI: 10.3390/polym16010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Packaging materials are used to protect consumer goods, such as food, drinks, cosmetics, healthcare items, and more, from harmful gases and physical and chemical damage during storage, distribution, and handling. Synthetic plastics are commonly used because they exhibit sufficient characteristics for packaging requirements, but their end lives result in environmental pollution, the depletion of landfill space, rising sea pollution, and more. These exist because of their poor biodegradability, limited recyclability, etc. There has been an increasing demand for replacing these polymers with bio-based biodegradable materials for a sustainable environment. Cellulosic nanomaterials have been proposed as a potential substitute in the preparation of packaging films. Nevertheless, their application is limited due to their poor properties, such as their barrier, thermal, and mechanical properties, to name a few. The barrier properties of materials play a pivotal role in extending and determining the shelf lives of packaged foods. Nanofillers have been used to enhance the barrier properties. This article reviews the literature on the barrier properties of cellulose/clay nanocomposite polymers. Cellulose extraction stages such as pretreatment, bleaching, and nanoparticle isolation are outlined, followed by cellulose modification methods. Finally, a brief discussion on nanofillers is provided, followed by an extensive literature review on the barrier properties of cellulose/clay nanocomposite polymers. Although similar reviews have been presented, the use of modification processes applied to cellulose, clay, and final nanocomposites to enhance the barrier properties has not been reviewed. Therefore, this article focuses on this scope.
Collapse
Affiliation(s)
- Sandile Jali
- Composite Research Group (CRG), Durban University of Technology, Durban 4000, South Africa; (S.J.); (F.M.M.); (K.K.)
| | - Turup Pandurangan Mohan
- Composite Research Group (CRG), Durban University of Technology, Durban 4000, South Africa; (S.J.); (F.M.M.); (K.K.)
| | - Festus Maina Mwangi
- Composite Research Group (CRG), Durban University of Technology, Durban 4000, South Africa; (S.J.); (F.M.M.); (K.K.)
- Department of Mechanical Engineering, Durban University of Technology, Durban 4000, South Africa
| | - Krishnan Kanny
- Composite Research Group (CRG), Durban University of Technology, Durban 4000, South Africa; (S.J.); (F.M.M.); (K.K.)
| |
Collapse
|
38
|
Chen Z, Chen L, Khoo KS, Gupta VK, Sharma M, Show PL, Yap PS. Exploitation of lignocellulosic-based biomass biorefinery: A critical review of renewable bioresource, sustainability and economic views. Biotechnol Adv 2023; 69:108265. [PMID: 37783293 DOI: 10.1016/j.biotechadv.2023.108265] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Urbanization has driven the demand for fossil fuels, however, the overly exploited resource has caused severe damage on environmental pollution. Biorefining using abundant lignocellulosic biomass is an emerging strategy to replace traditional fossil fuels. Value-added lignin biomass reduces the waste pollution in the environment and provides a green path of conversion to obtain renewable resources. The technology is designed to produce biofuels, biomaterials and value-added products from lignocellulosic biomass. In the biorefinery process, the pretreatment step is required to reduce the recalcitrant structure of lignocellulose biomass and improve the enzymatic digestion. There is still a gap in the full and deep understanding of the biorefinery process including the pretreatment process, thus it is necessary to provide optimized and adapted biorefinery solutions to cope with the conversion process in different biorefineries to further provide efficiency in industrial applications. Current research progress on value-added applications of lignocellulosic biomass still stagnates at the biofuel phase, and there is a lack of comprehensive discussion of emerging potential applications. This review article explores the advantages, disadvantages and properties of pretreatment methods including physical, chemical, physico-chemical and biological pretreatment methods. Value-added bioproducts produced from lignocellulosic biomass were comprehensively evaluated in terms of encompassing biochemical products , cosmetics, pharmaceuticals, potent functional materials from cellulose and lignin, waste management alternatives, multifunctional carbon materials and eco-friendly products. This review article critically identifies research-related to sustainability of lignocellulosic biomass to promote the development of green chemistry and to facilitate the refinement of high-value, environmentally-friendly materials. In addition, to align commercialized practice of lignocellulosic biomass application towards the 21st century, this paper provides a comprehensive analysis of lignocellulosic biomass biorefining and the utilization of biorefinery green technologies is further analyzed as being considered sustainable, including having potential benefits in terms of environmental, economic and social impacts. This facilitates sustainability options for biorefinery processes by providing policy makers with intuitive evaluation and guidance.
Collapse
Affiliation(s)
- Zhonghao Chen
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Lin Chen
- School of Civil Engineering, Chongqing University, Chongqing 400045, China; Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| | | | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Pow-Seng Yap
- Department of Civil Engineering, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
39
|
Ansari MZ, Banitaba SN, Khademolqorani S, Kamika I, Jadhav VV. Overlooked Promising Green Features of Electrospun Cellulose-Based Fibers in Lithium-Ion Batteries. ACS OMEGA 2023; 8:43388-43407. [PMID: 38027388 PMCID: PMC10666264 DOI: 10.1021/acsomega.3c05068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/17/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Lithium-ion batteries (LIBs) are accounted as promising power tools, applicable in a wide range of energy-based equipment, from portable devices to electric vehicles. Meanwhile, approaching a cost-effective, environmentally friendly, and safe LIB array has remained sluggish yet. In this regard, cellulose, as a nontoxic natural renewable polymer, has provided a stable and cohesive electrode structure with excellent mechanical stability and reduced electrode cracking or delamination during cycling. Additionally, the porous configuration of the cellulose allows for efficient and faster ion transport as a separator component. Miniaturizing cellulose and its derivatives have revealed more fabulous characteristics for the anode, cathode, and separator resulting from the increased surface-to-volume ratio and superior porosity, as well as their thin and lightweight architectures. The focal point of this review outlines the challenges relating to the extraction and electrospinning of cellulose-based nanofibers. Additionally, the efforts to employ these membranes as the LIBs' components are elucidated. Correspondingly, despite the great performance of cellulose-based LIB structures, a research gap is sensed in this era, possibly due to the difficulties in processing the electrospun cellulose fibers. Hence, this review can provide a source of recent advancements and innovations in cellulose-based electrospun LIBs for researchers who aim to develop versatile battery structures using green materials, worthwhile, and eco-friendly processing techniques.
Collapse
Affiliation(s)
- Mohd Zahid Ansari
- School
of Materials Science and Engineering, Yeungnam
University, Gyeongsan 38541, Republic
of Korea
| | - Seyedeh Nooshin Banitaba
- Department
of Textile Engineering, Amirkabir University
of Technology, Tehran 159163-4311, Iran
- Emerald
Experts Laboratory, Isfahan Science and
Technology Town, Isfahan 84156-83111, Iran
| | - Sanaz Khademolqorani
- Emerald
Experts Laboratory, Isfahan Science and
Technology Town, Isfahan 84156-83111, Iran
- Department
of Textile Engineering, Isfahan University
of Technology, Isfahan 84156-83111, Iran
| | - Ilunga Kamika
- Institute
for Nanotechnology and Water Sustainability, College of Science, Engineering,
and Technology, University of South Africa, Florida Science Campus, Johannesburg 1709, South Africa
| | - Vijaykumar V. Jadhav
- Guandong
Province Key Laboratory of Materials Science and Technologies for
Energy Conversion, 241 Daxue Road, Shantou 515063, China
- Department
of Material Science and Engineering, Guangdong
Technion Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
| |
Collapse
|
40
|
Perrin L, Desobry S, Gillet G, Desobry-Banon S. Low-Frequency Ultrasound Effects on Cellulose Nanocrystals for Potential Application in Stabilizing Pickering Emulsions. Polymers (Basel) 2023; 15:4371. [PMID: 38006095 PMCID: PMC10674726 DOI: 10.3390/polym15224371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Cellulose, in the form of cellulose nanocrystals (CNCs), is a promising biomaterial for stabilizing Pickering emulsions (PEs). PEs are commonly formed using low-frequency ultrasound (LFU) treatment and impact CNC properties. The present study investigated the specific effects of LFU treatment on CNCs' chemical and physical properties. CNCs were characterized using dynamic light scattering, ζ;-potential determination, Fourier transform infrared spectroscopy, X-ray diffraction, and contact angle measurement. CNC suspensions were studied using rheological analysis and static multiple light scattering. LFU treatment broke CNC aggregates and modified the rheological behavior of CNC suspensions but did not affect the CNCs' chemical or crystallographic structures, surface charge, or hydrophilic properties. During the storage of CNC suspensions and PEs, liquid crystal formation was observed with cross-polarized light. Hypotheses related to the impact of liquid crystal CNCs on PE stability were proposed.
Collapse
Affiliation(s)
- Louise Perrin
- Laboratory of Biomolecules Engineering (LIBio), University of Lorraine, 2 Avenue de la Foret de Haye, BP 20163, 54500 Vandœuvre-les-Nancy, France; (S.D.); (S.D.-B.)
- SAS GENIALIS Route d’Acheres, 18250 Henrichemont, France;
| | - Stephane Desobry
- Laboratory of Biomolecules Engineering (LIBio), University of Lorraine, 2 Avenue de la Foret de Haye, BP 20163, 54500 Vandœuvre-les-Nancy, France; (S.D.); (S.D.-B.)
| | | | - Sylvie Desobry-Banon
- Laboratory of Biomolecules Engineering (LIBio), University of Lorraine, 2 Avenue de la Foret de Haye, BP 20163, 54500 Vandœuvre-les-Nancy, France; (S.D.); (S.D.-B.)
| |
Collapse
|
41
|
Li H, Li Y, Zhu S, Li Y, Zada I, Li Y. Recent advances in biopolymers-based carbon materials for supercapacitors. RSC Adv 2023; 13:33318-33335. [PMID: 38025848 PMCID: PMC10646438 DOI: 10.1039/d3ra06179e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Supercapacitors as potential candidates for novel green energy storage devices demonstrate a promising future in promoting sustainable energy supply, but their development is impeded by limited energy density, which can be addressed by developing high-capacitance electrode materials with efforts. Carbon materials derived from biopolymers have received much attention for their abundant reserves and environmentally sustainable nature, rendering them ideal for supercapacitor electrodes. However, the limited capacitance has hindered their widespread application, resulting in the proposal of various strategies to enhance the capacity properties of carbon electrodes. This paper critically reviewed the recent research progress of biopolymers-based carbon electrodes. The advances in biopolymers-based carbon electrodes for supercapacitors are presented, followed by the strategies to improve the capacitance of carbon electrodes which include pore engineering, doping engineering and composite engineering. Furthermore, this review is summarized and the challenges of biopolymer-derived carbon electrodes are discussed. The purpose of this review is to promote the widespread application of biopolymers in the domain of supercapacitors.
Collapse
Affiliation(s)
- Hongjie Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yanyu Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yulong Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Imran Zada
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
42
|
Park N, Friest MA, Liu L. Enhancing the Properties of Polyvinyl Alcohol Films by Blending with Corn Stover-Derived Cellulose Nanocrystals and Beeswax. Polymers (Basel) 2023; 15:4321. [PMID: 37960001 PMCID: PMC10648525 DOI: 10.3390/polym15214321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Coating is a technique to surround a target substance with a thin layer to obtain desirable properties. Polyvinyl alcohols (PVAs) are biodegradable plastics and have shown good applicability as a coating or film material. Cellulose nanocrystals are a promising green nanomaterial that has been shown to enhance the properties of PVA after blending. However, these PVA/CNC films have concerns in a moist environment due to high hydrophilicity. To overcome this issue, the current study incorporated beeswax into PVA/CNC films and investigated the effect of CNC and beeswax on the properties of the coatings and films. Results showed that the addition of corn stover-derived CNCs to PVA films increased tensile strength (from 11 to 25 MPa) and Young's modulus (from 32 to 173 MPa) and reduced water vapor transmission rate (from 25 to 20 g h-1 m-2). Beeswax added to PVA/CNC films further improved water vapor barrier properties (from 20 to 9 g h-1 m-2) and maintained Young's modulus (from 173 to 160 MPa), though it caused a reduction in the tensile strength (from 25 to 11 MPa) of the films. This information can help to select materials for blending with PVAs by obtaining the desirable endmost properties depending on applications.
Collapse
Affiliation(s)
- Namhyeon Park
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50010, USA
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA
| | - Mason A. Friest
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, USA
| | - Lingling Liu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
43
|
Khalid MY, Arif ZU, Noroozi R, Hossain M, Ramakrishna S, Umer R. 3D/4D printing of cellulose nanocrystals-based biomaterials: Additives for sustainable applications. Int J Biol Macromol 2023; 251:126287. [PMID: 37573913 DOI: 10.1016/j.ijbiomac.2023.126287] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Cellulose nanocrystals (CNCs) have gained significant attraction from both industrial and academic sectors, thanks to their biodegradability, non-toxicity, and renewability with remarkable mechanical characteristics. Desirable mechanical characteristics of CNCs include high stiffness, high strength, excellent flexibility, and large surface-to-volume ratio. Additionally, the mechanical properties of CNCs can be tailored through chemical modifications for high-end applications including tissue engineering, actuating, and biomedical. Modern manufacturing methods including 3D/4D printing are highly advantageous for developing sophisticated and intricate geometries. This review highlights the major developments of additive manufactured CNCs, which promote sustainable solutions across a wide range of applications. Additionally, this contribution also presents current challenges and future research directions of CNC-based composites developed through 3D/4D printing techniques for myriad engineering sectors including tissue engineering, wound healing, wearable electronics, robotics, and anti-counterfeiting applications. Overall, this review will greatly help research scientists from chemistry, materials, biomedicine, and other disciplines to comprehend the underlying principles, mechanical properties, and applications of additively manufactured CNC-based structures.
Collapse
Affiliation(s)
- Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates.
| | - Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus, 51041, Pakistan.
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Institute for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, SA1 8EN Swansea, UK.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, PO Box: 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
44
|
Olorunnisola D, Olorunnisola CG, Otitoju OB, Okoli CP, Rawel HM, Taubert A, Easun TL, Unuabonah EI. Cellulose-based adsorbents for solid phase extraction and recovery of pharmaceutical residues from water. Carbohydr Polym 2023; 318:121097. [PMID: 37479430 DOI: 10.1016/j.carbpol.2023.121097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/23/2023]
Abstract
Cellulose has attracted interest from researchers both in academic and industrial sectors due to its unique structural and physicochemical properties. The ease of surface modification of cellulose by the integration of nanomaterials, magnetic components, metal organic frameworks and polymers has made them a promising adsorbent for solid phase extraction of emerging contaminants, including pharmaceutical residues. This review summarizes, compares, and contrasts different types of cellulose-based adsorbents along with their applications in adsorption, extraction and pre-concentration of pharmaceutical residues in water for subsequent analysis. In addition, a comparison in efficiency of cellulose-based adsorbents and other types of adsorbents that have been used for the extraction of pharmaceuticals in water is presented. From our observation, cellulose-based materials have principally been investigated for the adsorption of pharmaceuticals in water. However, this review aims to shift the focus of researchers to the application of these adsorbents in the effective pre-concentration of pharmaceutical pollutants from water at trace concentrations, for quantification. At the end of the review, the challenges and future perspectives regarding cellulose-based adsorbents are discussed, thus providing an in-depth overview of the current state of the art in cellulose hybrid adsorbents for extraction of pharmaceuticals from water. This is expected to inspire the development of solid phase exraction materials that are efficient, relatively cheap, and prepared in a sustainable way.
Collapse
Affiliation(s)
- Damilare Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria; University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal (Ortsteil Bergholz-Rehbrücke), Arthur-Scheunert-Allee 114-116, Germany; Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Chidinma G Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Oluwaferanmi B Otitoju
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria
| | - Chukwunonso P Okoli
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemistry, Alex Ekwueme Federal University Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Harshadrai M Rawel
- University of Potsdam, Institute of Nutritional Science, 14558 Nuthetal (Ortsteil Bergholz-Rehbrücke), Arthur-Scheunert-Allee 114-116, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany
| | - Timothy L Easun
- School of Chemistry, Haworth Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Emmanuel I Unuabonah
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, PMB 230, Ede, Osun State, Nigeria; Department of Chemical Sciences, Redeemer's University, PMB 230, Ede, Osun State, Nigeria.
| |
Collapse
|
45
|
Las-Casas B, Dias IKR, Yupanqui-Mendoza SL, Pereira B, Costa GR, Rojas OJ, Arantes V. The emergence of hybrid cellulose nanomaterials as promising biomaterials. Int J Biol Macromol 2023; 250:126007. [PMID: 37524277 DOI: 10.1016/j.ijbiomac.2023.126007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Cellulose nanomaterials (CNs) are promising green materials due to their unique properties as well as their environmental benefits. Among these materials, cellulose nanofibrils (CNFs) and nanocrystals (CNCs) are the most extensively researched types of CNs. While they share some fundamental properties like low density, biodegradability, biocompatibility, and low toxicity, they also possess unique differentiating characteristics such as morphology, rheology, aspect ratio, crystallinity, mechanical and optical properties. Therefore, numerous comparative studies have been conducted, and recently, various studies have reported the synergetic advantages resulting from combining CNF and CNC. In this review, we initiate by addressing the terminology used to describe combinations of these and other types of CNs, proposing "hybrid cellulose nanomaterials" (HCNs) as the standardized classifictation for these materials. Subsequently, we briefly cover aspects of properties-driven applications and the performance of CNs, from both an individual and comparative perspective. Next, we comprehensively examine the potential of HCN-based materials, highlighting their performance for various applications. In conclusion, HCNs have demonstraded remarkable success in diverse areas, such as food packaging, electronic devices, 3D printing, biomedical and other fields, resulting in materials with superior performance when compared to neat CNF or CNC. Therefore, HCNs exhibit great potential for the development of environmentally friendly materials with enhanced properties.
Collapse
Affiliation(s)
- Bruno Las-Casas
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Isabella K R Dias
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Sergio Luis Yupanqui-Mendoza
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Bárbara Pereira
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Guilherme R Costa
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil
| | - Orlando J Rojas
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry, Department of Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC, Canada
| | - Valdeir Arantes
- Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, Universidade de Sao Paulo, Lorena, SP, Brazil.
| |
Collapse
|
46
|
Sharma S, Asolekar SR, Thakur VK, Asokan P. Valorization of cellulosic fiber derived from waste biomass of constructed wetland as a potential reinforcement in polymeric composites: A technological approach to achieve circular economy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 340:117850. [PMID: 37105106 DOI: 10.1016/j.jenvman.2023.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023]
Abstract
This study establishes the suitability of cellulosic fibers derived from Canna indica waste biomass for utilization as a reinforcement in natural fiber polymeric composites. The waste biomass was harvested from constructed wetlands engaged in the treatment of municipal wastewater from a gated community. The extracted Canna indica (CI) fibers were studied for their physicochemical, mechanical, structural, crystallographic, and thermal characteristics and proposed as a potential alternative to synthetic fiber. The CI fibers contained a relatively higher amount of cellulose (60 wt%) and a low wax fraction (0.5 wt%) - which is advantageous for its gainful utilization as a reinforcement. The CI fibers were thermally stable up to 237 °C and have an average fiber length, diameter, and density of 4.3 mm, 842 μm, and 0.75 g/cm3, respectively. The mean maximum tensile strength and Young's modulus were found to be 113 ± 6.82 MPa and 0.8 ± 7.91 GPa, respectively. The nano-indentation test displayed the nano hardness and modulus as 0.3 ± 0.6 GPa and 1.62 ± 0.2 GPa, respectively. The crystallographic properties of CI fibers consisted of an 87.45% crystallinity index and 3.2 nm crystallite size. The morphological attributes of CI fibers showed rough surfaces and shallow cavities on the surfaces of the fibers suggesting the suitability for its utilization as a reinforcement. It is argued that this technological approach can potentially achieve circular economy through valorization of Canna indica biomass harvested from natural wastewater treatment plants.
Collapse
Affiliation(s)
- Shruti Sharma
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Shyam R Asolekar
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun, 248007, Uttarakhand, India.
| | - P Asokan
- Green Engineered Materials and Additive Manufacturing Department, CSIR-Advanced Materials and Processes, Research Institute (AMPRI), Bhopal, 462026, India.
| |
Collapse
|
47
|
Hassanisaadi M, Saberi Riseh R, Rabiei A, Varma RS, Kennedy JF. Nano/micro-cellulose-based materials as remarkable sorbents for the remediation of agricultural resources from chemical pollutants. Int J Biol Macromol 2023; 246:125763. [PMID: 37429338 DOI: 10.1016/j.ijbiomac.2023.125763] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Overusing pesticides, fertilizers, and synthetic dyes has significantly increased their presence in various parts of the environment. The transportation of these pollutants into agricultural soil and water through rivers, soils, and groundwater has seriously threatened human and ecosystem health. Applying techniques and materials to clean up agricultural sources from pesticides, heavy metals (HMs), and synthetic dyes (SDs) is one of the major challenges in this century. The sorption technique offers a viable solution to remediate these chemical pollutants (CHPs). Cellulose-based materials have become popular in nano and micro scales because they are widely available, safe to use, biodegradable, and have a significant ability to absorb substances. Nanoscale cellulose-based materials exhibit greater capacity in absorbing pollutants compared to their microscale counterparts because they possess a larger surface area. Many available hydroxyl groups (-OH) and chemical and physical modifications enable the incorporation of CHPs on to cellulose-based materials. Following this potential, this review aims to comprehensively summarize recent advancements in the field of nano- and micro-cellulose-based materials as effective adsorbents for CHPs, given the abundance of cellulosic waste materials from agricultural residues. The recent developments pertaining to the enhancement of the sorption capacity of cellulose-based materials against pesticides, HMs, and SDs, are deliberated.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Ali Rabiei
- Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom
| |
Collapse
|
48
|
Huang A, Chen Y, Wu C. Wound Dressing Double-Crosslinked Quick Self-Healing Hydrogel Based on Carboxymethyl Chitosan and Modified Nanocellulose. Polymers (Basel) 2023; 15:3389. [PMID: 37631446 PMCID: PMC10459649 DOI: 10.3390/polym15163389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The use of hydrogels in wound dressings, which is pivotal for effective wound treatment, has been widely applied to diverse medical wound conditions. However, formulating natural hydrogels that combine robust strength and self-healing capabilities is a significant challenge. To overcome this, we successfully designed a natural nanocellulose self-healing hydrogel that can quickly self-heal and restore the complete hydrogel structure after injury to fill the injured area and protect the wound from external damage. Our study utilized modified natural polymer carboxymethyl chitosan (CMC), hydrazide-modified carboxymethyl cellulose nanofibers (HCNF), and cellulose nanocrystals modified by dialdehyde (DACNC) to fabricate the hydrogel. The amides containing more amino groups and HCNF in CMC can be used as cross-linking nodes, and the high aspect ratio and specific surface area of DACNC are favorable for the connection of many active hydrogels. The hydrogel is crosslinked by the dynamic imide bond and hydrazone bond between the amino group of CMC, the amide of HCNF, and the aldehyde of DACNC and has a double network structure. These connections can be readily reassembled when disrupted, enabling fast self-healing of hydrogels within five minutes. Moreover, HCNF and DACNC were incorporated as nano-reinforced fillers to bolster the hydrogel's strength while preserving its high liquid absorption capacity (381% equilibrium swelling rate).
Collapse
Affiliation(s)
| | - Yehong Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Chaojun Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| |
Collapse
|
49
|
Tang S, Chen Z, Chen F, Lai X, Wei Q, Chen X, Jiang C. Extraction and Surface Functionalization of Cellulose Nanocrystals from Sugarcane Bagasse. Molecules 2023; 28:5444. [PMID: 37513316 PMCID: PMC10386425 DOI: 10.3390/molecules28145444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The present study aimed to optimize the process for extracting cellulose nanocrystals (CNCs) from sugarcane bagasse through ultrasonic-assisted sulfuric acid hydrolysis and its subsequent modification with L-malic acid and silane coupling agent KH-550. The effects of the different modification methods and the order of modification on the structures and properties of bagasse CNCs were explored. The results indicated that the optimal process conditions were achieved at an acid-digestion temperature of 50 °C, a reaction time of 70 min, an ultrasonic power of 250 W, and a volume fraction of 55%. The modified CNCs were analyzed using infrared spectral, X-ray diffraction, and thermogravimetric techniques, which revealed that L-malic acid was attached to the hydroxyl group on the CNCs via ester bond formations, and the silane coupling agent KH-550 was adsorbed effectively on the CNCs' surfaces. Moreover, it was observed that the modification of the CNCs by L-malic acid and the KH-550 silane coupling agent occurred only on the surface, and the esterification-crosslinking modification method provided the best thermal stability. The performance of self-made CNC was found to be superior to that of purchased CNC based on the transmission electron microscopy analysis. Furthermore, the modified esterified-crosslinked CNCs exhibited the best structure and performance, thereby offering a potential avenue for the high-value utilization of sugarcane bagasse, a byproduct of sugarcane sugar production, and the expansion of the comprehensive utilization of sugarcane bagasse.
Collapse
Affiliation(s)
- Sen Tang
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
- Guangxi Sugar Resources Engineering Technology Research Center, Guangxi Science & Technology Normal University, Laibin 546199, China
- Institute of Modern Cane Sugar Industry Development, Guangxi Science &Technology Normal University, Laibin 546199, China
| | - Zhipeng Chen
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
| | - Feifan Chen
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
| | - Xuanren Lai
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
| | - Qiaoyan Wei
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
- Guangxi Sugar Resources Engineering Technology Research Center, Guangxi Science & Technology Normal University, Laibin 546199, China
- Institute of Modern Cane Sugar Industry Development, Guangxi Science &Technology Normal University, Laibin 546199, China
| | - Xianling Chen
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
- Guangxi Sugar Resources Engineering Technology Research Center, Guangxi Science & Technology Normal University, Laibin 546199, China
- Institute of Modern Cane Sugar Industry Development, Guangxi Science &Technology Normal University, Laibin 546199, China
| | - Caiyun Jiang
- School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin 546199, China
- Guangxi Sugar Resources Engineering Technology Research Center, Guangxi Science & Technology Normal University, Laibin 546199, China
- Institute of Modern Cane Sugar Industry Development, Guangxi Science &Technology Normal University, Laibin 546199, China
| |
Collapse
|
50
|
Veloso SRS, Azevedo AG, Teixeira PF, Fernandes CBP. Cellulose Nanocrystal (CNC) Gels: A Review. Gels 2023; 9:574. [PMID: 37504453 PMCID: PMC10379674 DOI: 10.3390/gels9070574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
The aim of this article is to review the research conducted in the field of aqueous and polymer composites cellulose nanocrystal (CNC) gels. The experimental techniques employed to characterize the rheological behavior of these materials will be summarized, and the main advantages of using CNC gels will also be addressed in this review. In addition, research devoted to the use of numerical simulation methodologies to describe the production of CNC-based materials, e.g., in 3D printing, is also discussed. Finally, this paper also discusses the application of CNC gels along with additives such as cross-linking agents, which can represent an enormous opportunity to develop improved materials for manufacturing processes.
Collapse
Affiliation(s)
- Sérgio R S Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Laboratory of Physics for Materials and Emergent Technologies (LaPMET), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Ana G Azevedo
- International Iberian Nanotechnology Laboratory (INL), Av. Mte. José Veiga s/n, 4715-330 Braga, Portugal
| | - Paulo F Teixeira
- Centre for Nanotechnology and Smart Materials (CeNTI), Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Célio B P Fernandes
- Transport Phenomena Research Centre (CEFT), Faculty of Engineering at University of Porto (FEUP), Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
- Centre of Mathematics (CMAT), School of Sciences, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|